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A B S T R A C T   

Ferroptosis is an iron-dependent form of cell death, which is triggered by disturbed membrane integrity due to an 
overproduction of lipid peroxides. Induction of ferroptosis comprises several alterations, i.e. altered iron 
metabolism, response to oxidative stress, or lipid peroxide production. At the physiological level transcription, 
translation, and microRNAs add to the appearance and/or activity of building blocks that negatively or positively 
balance ferroptosis. Ferroptosis contributes to tissue damage in the case of, e.g., brain and heart injury but may 
be desirable to overcome chemotherapy resistance. For a more complete picture, it is crucial to also consider the 
cellular microenvironment, which during inflammation and in the tumor context is dominated by hypoxia. This 
graphical review visualizes basic mechanisms of ferroptosis, categorizes general inducers and inhibitors of fer
roptosis, and puts a focus on microRNAs, iron homeostasis, and hypoxia as regulatory components.   

1. Introduction 

“To the well-organized mind, death is but the next great adventure” 
[1]. Death occurs to all life on earth, from the largest tree to the smallest 
unit of life, the single cell. For scientists the great adventure is to explore 
mechanisms of death, or more precisely cell death in its various forms, 
since it opens up ways for therapy either by inducing or inhibiting cell 
death. Different forms of cell death have been described over the last 
years. While apoptosis and necrosis are well defined, additional distinct 
forms such as pyroptosis or ferroptosis were noticed. Experiments con
ducted in the 1950s showed that cells die upon amino acid deprivation, 
which likely was the first hint towards a novel, but evolutionarily 
conserved form of cell death [2]. The term ferroptosis referring to this 
particular form of cell demise was coined in 2012 by Dixon and co
workers and describes an iron- and oxidative stress-dependent form of 
cell death [3]. Meanwhile it is known that ferroptosis is characterized by 
increased lipid peroxidation causing cell death by disturbing membrane 
integrity. Peroxidation of polyunsaturated fatty acids occurs via lip
oxygenase pathways and/or Fenton chemistry and takes place when the 

glutathione (GSH) or ubiquinone synthesis pathways are dysfunctional 
(Fig. 1). The Fenton reaction is strongly dependent on iron. Conse
quently, the cellular iron status determines the sensitivity of cells to
wards ferroptosis (Fig. 2). Lowering intracellular free iron by its export 
or storage appears to dampen ferroptosis. In contrast iron uptake in
creases the labile iron pool, enhances hydroxyl radical formation by 
Fenton chemistry, and increases the susceptibility to ferroptosis. Besides 
these fundamental regulatory processes, microRNAs add another layer 
of regulation (Fig. 3). Several microRNAs were characterized to possess 
either anti- or pro-ferroptotic properties, depending on their distinct 
targets. While the antioxidant capacity of a cell, the peroxide tone and 
iron availability (Figs. 1 and 2) are basic ferroptotic modulators, 
microRNAs appear as fine-tuning regulators. They have the potential to 
alter the ferroptotic sensitivity of a cell, mostly shown in experiments 
when overexpressed. The complex regulatory network of ferroptosis will 
only be complete if the cellular microenvironment is taken into 
consideration. Oxygen is an essential factor for most forms of life which 
allows cellular respiration. Consequently, its absence is life-threatening. 
Nevertheless, oxygen bears the risk of adding to oxidative stress. 
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Fig. 1. Basic mechanisms of ferroptosis. 
Ferroptosis is triggered by generating PLOO•, which 
damages cellular membrane integrity and finally 
promotes cell death [4]. To that end, PUFAs are 
processed via the ACSL4-ALOX axis to PLOOH, which 
react with hydroxyl radicals to form PLOO• [5]. Hy
droxyl radicals are generated by Fenton chemistry 
from H2O2 and Fe2+ in a non-enzymatic reaction [6]. 
Activation of the hippo pathway contributes to fer
roptosis by increasing the TfR, which adds to iron 
uptake and by inducing ACSL4. To protect cells from 
ferroptosis GPX4 processes PLOOH to the inert PLOH. 
This reaction demands GSH, which is produced from 
cystine. Cystine uptake is facilitated by SLC7A11, a 
glutamate/cystine antiporter. In addition, AIFM2 
(alias FSP1) attenuates lipid peroxidation by regen
erating the reduced form of the radical-trapping 
antioxidant CoQ, using NADH and CoQ as substrates 
[7]. CoQ production in turn is strongly dependent on 
the mevalonate-PDSS pathway. Interfering with any 
of the protective systems has been shown to enhance 
ferroptosis.   
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Fig. 2. Iron metabolism adds to ferroptosis. 
Alterations in iron metabolism determine the sensi
tivity of cells towards ferroptosis by regulating the 
cellular LIP. An increased LIP equals to higher 
amounts of Fe2+ within the cell that is able to 
enhance Fenton chemistry and hydroxyl radical pro
duction. The LIP is subjected to various regulations. 
Iron is taken up through Tf, which binds to the TfR. 
The complex is then endocytosed followed by the 
release of Fe2+, which is mediated by STEAP3 and 
DMT1 [8]. Additionally, the LIP can be enhanced by 
erythrophagocytosis [9]. Here, iron gets released 
from heme by HO-1, which accelerates ferroptosis 
[10]. Other major players in regulating the LIP are 
ferritins. Ferritins oxidize iron to Fe3+ and store this 
less reactive form of iron in a 24 subunit complex, 
thereby preventing ferroptosis [11,12]. Of note, fer
ritins exist in the cytosol (FTH) and in mitochondria 
(FTMT). Ferritin-bound iron is released into the LIP 
by NCOA4-dependent autophagosomal degradation 
of ferritin (FTH and FTMT). Another way to reduce 
the LIP is iron export by FPN. Diminished levels of 
FPN are associated with increased intracellular iron 
and ferroptosis [13]. Besides these mechanisms, CP 
was shown to protect cells from ferroptosis by trans
forming iron to the less reactive Fe3+ [14]. Within 
mitochondria Fe–S cluster synthesis is crucial for 
maintaining the ETC and the TCA cycle. The ETC, 
especially when damaged, is a generator of ROS, 
which may add to lipid peroxidation [15]. The TCA 
cycle in turn is crucial to keep the ETC running. Here 
α-KG is a central metabolite, which is synthesized 
either from citrate or glutamine. Apparently, central 
metabolic pathways can alter ferroptosis. Besides the 
ETC, CISD proteins need a Fe–S cluster to assure 
functionality of these proteins, which were shown to 
protect cells from lipid peroxidation and conse
quently ferroptosis [16–18]. Thus, CISD1 is assumed 
to transfers Fe–S clusters to ACO1, which suppresses 
FTH translation when no Fe–S cluster is bound and in 
turn contributes to regulate the LIP [19].   
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Fig. 3. Ferroptosis and microRNAs. 
MicroRNAs regulate the cellular transcriptome by 
fine-tuning distinct mRNAs. This has not only pro
found effects on metabolism but also towards regu
lation of ferroptosis. MicroRNAs are categorized into 
anti- and pro-ferroptotic microRNAs. Anti-ferroptotic 
microRNAs target mRNAs that code for proteins 
which promote ferroptosis. This includes ALOX15 or 
ACSL4, which are involved in generating PLOOH [6, 
20–23]. Iron uptake is decreased by miR-7-5p, which 
targets transferrin and indirectly reduces the labile 
iron pool and Fenton reactions [6]. Interference of 
microRNAs with glutamate metabolism was reported 
to decrease ferroptosis by reducing TCA cycle- and 
respiratory chain-mediated ROS production [24–28]. 
Nrf2, a major regulator of the antioxidative system, is 
inactive when bound to Keap1. Thus, microRNAs 
targeting Keap1 and activating Nrf2 can be consid
ered as anti-ferroptotic [6]. Pro-ferroptotic micro
RNAs directly target the SLC7A11/GPX4 system and 
facilitate lipid peroxidation, which provokes ferrop
tosis [29–38]. Besides directly targeting GPX4, its 
expression was shown to be regulated by HSPA5, a 
target gene of ATF4. Additionally, ATF4 increased the 
expression of SLC7A11 and thus, appears to regulate 
two major anti-ferroptotic proteins. ATF4 in turn was 
reported to be a target of miR-214 [39]. Further, iron 
storage and release are altered by miRNAs which 
target FTH or FPN, respectively [6,40,41]. These 
changes likely enhance redox-reactive intracellular 
iron and Fenton chemistry. Ferroptosis was reported 
to be increased by mitochondrial ROS production, 
which was increased by a microRNA-dependent 
decrease in Mfn2 expression. Mfn2 is a regulator of 
mitochondrial fusion and fission and thus, likely al
ters ROS production [6]. Cellular oxidative stress is 
strictly regulated by the Nrf2 system, one of the main 
anti-oxidative systems in cells. A reduction of Nrf2 by 
miRNAs is associated with decreased target gene 
expression, increased oxidative stress, and 
ferroptosis.   
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Although incompletely understood so far, it appears logical that oxygen 
or its decrease, i.e. hypoxia modulates ferroptosis (Fig. 4). When the 
demand of oxygen exceeds its availability, hypoxic signaling affects 
canonical and non-canonical pathways to orchestrate the anti-oxidative 
machinery and/or iron homeostasis, which comprises among others the 
activity of hypoxia inducible factors (HIF) and nuclear factor erythroid 
2-related factor 2 (Nrf2). Logically, the lack of oxygen will diminish 
Fenton chemistry and lipoxygenase activity, two critical systems 
involved in ferroptosis induction. Based on extensive research over the 
last years, we now can choose between a variety of ferroptosis inducers 

and inhibitors that target many of those systems described in Figs. 1–3 
(Fig. 5). Each cell contains many building blocks that, when properly 
arranged, regulate ferroptosis. This knowledge will hopefully be useful 
to enhance or attenuate ferroptosis for therapeutic use (Fig. 6). During 
heart and brain injury or organ transplantation, conditions often linked 
to ischemic conditions, inhibition of ferroptosis could be beneficial, 
while induction of ferroptosis in tumor cells might be helpful to over
come chemotherapy resistance. This graphical review visualizes basal 
mechanisms of ferroptosis and integrates more specialized topics such as 
iron regulation, microRNAs and hypoxia. 

ACSL4: long-chain-fatty-acid-CoA ligase 4, AIFM2: apoptosis 
inducing factor mitochondria associated 2 or ferroptosis suppressor 
protein 1 (FSP1), ALOX: polyunsaturated fatty acid lipoxygenase, 
AMPK: 5′-AMP-activated protein kinase, CoQ: coenzyme Q, COQ2: 4- 
hydroxybenzoate polyprenyltransferase, cPLA2: cytosolic phospholi
pase A2, FA-CoA: fatty acyl-CoA, FA-PL: 1-acyl phospholipid, Fe2þ: 
reduced iron, yGCS: glutamate-cysteine ligase, GPX4: glutathione 
peroxidase 4, GRX: glutaredoxin, GSSG: glutathione disulfide/oxidized 
glutathione, GSH: glutathione, GS: glutathione synthetase, LPCAT3: 
lysophospholipid acyltransferase 3, Nf2: merlin, •OH: hydroxyl radical, 
PDSS: all trans-polyprenyl-diphosphate synthase, PUFA: poly unsatu
rated fatty acid, PLOH: hydroxy phospholipid, PLOO•: phospholipid 
hydroperoxyl radical, PLOOH: phospholipid hydroperoxide, SLC7A11: 
cystine/glutamate transporter, TfR: transferrin receptor, YAP: Yes1 
associated transcriptional regulator. 

α-KG: alpha-ketoglutarate, ACO1: aconitase1, CISD1: CDGSH iron- 
sulfur domain-containing protein 1, CP: ceruloplasmin, DMT1: diva
lent metal transporter 1, ETC: electron transport chain, Fe2þ: reduced 
iron, Fe3þ: oxidized iron, Fe–S cluster: iron sulfur cluster, FPN: ferro
portin, FTH: ferritin heavy chain, FTMT: mitochondrial ferritin, GLS: 
glutaminase, Gln: glutamine, Glu: glutamate, GLUD: glutamate dehy
drogenase, HO-1: heme oxygenase-1, LIP: labile iron pool, MFRN: 
mitoferrin, NCOA4: nuclear receptor coactivator 4, •OH: hydroxyl 
radical, PLOO•: phospholipid hydroperoxyl radical, PLOOH: phospho
lipid hydroperoxide, ROS: reactive oxygen species, SLC1A5: neutral 
amino acid transporter B, STEAP3: metalloreductase STEAP3, TCA: 
tricarboxylic acid, Tf: transferrin, TfR: transferrin receptor. 

ACSL4: long-chain-fatty-acid-CoA ligase 4, ALOX15: poly
unsaturated fatty acid lipoxygenase 15, ATF4: activating transcription 
factor 4, α-KG: alpha-ketoglutarate, FA-PL: 1-acyl phospholipid, Fe2þ: 
reduced iron, Fe3þ: oxidized iron, FPN: ferroportin, FTH: ferritin heavy 
chain, GLS: glutaminase, Gln: glutamine, GOT1: aspartate aminotrans
ferase, cytoplasmic, GPX4: glutathione peroxidase 4, Glu: glutamate, 
HSPA5: heat shock protein family A member 5, Keap1: Kelch-like ECH- 
associated protein 1, miR: microRNA, Mfn2: mitofusin 2, Nrf2: nuclear 
factor erythroid 2-related factor 2, •OH: hydroxyl radical, PLOO•: 
phospholipid hydroperoxyl radical, PLOOH: phospholipid hydroperox
ide, PUFA: poly unsaturated fatty acid, ROS: reactive oxygen species, 
SLC1A5: neutral amino acid transporter B(0), SLC7A11: cystine/gluta
mate transporter, TCA: tricarboxylic acid cycle, Tf: transferrin, TfR: 
transferrin receptor. 

CA9: carbonic anhydrase 9, Fe2þ: reduced iron, Fe3þ: oxidized iron, 
FTMT: mitochondrial ferritin, HIF: hypoxia inducible factor, HILPDA: 
hypoxia-inducible lipid droplet-associated protein, HO-1: heme 
oxygenase-1, LIP: labile iron pool, MUFA: monounsaturated fatty acid, 
NCOA4: nuclear receptor coactivator 4, Nrf2: nuclear factor erythroid 2- 
related factor 2, PLIN2: perilipin 2, PLOO•: phospholipid hydroperoxyl 
radical, SCD1: stearoyl-CoA desaturase 1, SLC7A11: cystine/glutamate 
transporter. 

Fig. 4. Hypoxia and ferroptosis. 
Hypoxia is a hallmark of the tumor microenvironment and thereby a relevant 
factor when considering ferroptosis for tumor therapy. Major regulators of 
hypoxia are the HIF transcription factors. HIF-1 increases transcription of 
SLC7A11 and HO-1, which both protect from ferroptosis [42,43]. In contrast, 
HIF-2 was shown to increase the expression of PLIN2 and HILPDA, which 
elevate lipid accumulation, oxidative stress, and finally enhance ferroptosis 
[44]. Besides HIF, hypoxia is known to increase the activity of Nrf2, which is a 
major regulator of the anti-oxidative system. Increased Nrf2 activity under 
hypoxia facilitates HO-1 expression and thus, protects from ferroptosis [45,46]. 
The HIF- and Nrf2-pathways are known to interact with each other and thus, 
facilitate target gene expression [47]. Besides activation of these major regu
latory mechanisms, expression of proteins such as SCD1 increases under hyp
oxia. This increase might compensate for the lack of O2, which is a substrate of 
SCD1. Nevertheless, SCD1 was shown to protect hypoxic cells from ferroptosis 
by generating MUFAs [48]. In addition, SCD1 has a ferroxidase activity, which 
potentially attenuates ferroptosis by limiting intracellular Fe2+. Another 
mechanism which reduces Fe2+ and, thus, the LIP is the storage of iron by 
ferritins. NCOA4-mediated degradation of ferritins and the release of iron into 
the LIP is facilitated by ferritinophagy. This process is inhibited by decreased 
NCOA4 expression under hypoxia, which increases iron storage and in turn 
protects cells from ferroptosis [12,49]. Furthermore, inhibition of CA9 blocked 
ferritin-mediated iron storage and increased transferrin receptor abundance, 
which sensitized cells towards ferroptosis. An induction of CA9 under hypoxia 
reduces oxidative stress and thus ferroptosis [50]. 
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Fig. 5. Inhibitors and inducers of ferroptosis. 
A variety of inducers (red) and inhibitors (green) of ferroptosis and their targets have been identified [51]. These compounds are instrumental in interrogating several 
distinct pathways that either promote or protect from ferroptosis. 
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