Photoelektronenspektren von Verbindungen der V. Hauptgruppe, VI¹ Methyl- und Trifluormethyl-Cyanphosphine, $Me_nP(CN)_{3-n}$ und $(CF_3)_nP(CN)_{3-n}$ (n = 0, 1, 2, 3)

Photoelectron Spectra of Group V Compounds, VI¹ Methyl- and Trifluoromethyl-Cyanophosphines, $Me_nP(CN)_{3-n}$ and $(CF_3)_nP(CN)_{3-n}$ (n = 0, 1, 2, 3)

SUSANNE ELBEL, HEINDIRK TOM DIECK

Institut für Anorganische Chemie der Universität Frankfurt/M.

und

Reinhard Demuth

Institut für Anorganische Chemie I der Technischen Universität Braunschweig

(Z. Naturforsch. 31b, 1472-1479 [1976]; eingegangen am 3. August 1976)

PE Assignment, Substituent Effects, MO Models, Electronic Structures, Symmetry Properties

The He I photoelectron spectra of the series $R_nP(CN)_{3-n}$ (R = Me, CF₃; n = 0, 1, 2, 3) and of Me₂ECN (E = N, P, As) are interpreted. The PE assignments are based on the comparison with the PE data of analogous halogeno and hydrogen derivatives as well as related cyano compounds and on simple MO considerations (composite molecule-approach). Hyperconjugative and inductive effects of the substituents CN, Me, F, Cl, and especially CF₃ are assessed. The various effects of changing substituents or central atoms within the series are used to confirm the interpretation. The differing electronic structures of halogeno and cyano (pseudohalogeno) compounds are discussed on the basis of their PE spectra.

1. Einleitung

Mit der Zuordnung der He I Photoelektronenspektren von Methylhalogenphosphinen² MePHal₂ und Me₂PHal gelang eine Beschreibung ihrer Bindungsverhältnisse durch Separierung typischer Halogenorbitale vom hypothetischen Rumpfmolekül MeP bzw. Me₂P (,,composite molecule"-Modell). Dieses Vorgehen erlaubt eine Anwendung höherer Lokalsymmetrien und ist besonders nützlich für die Beurteilung der chemischen Eigenschaften von Phosphinen, z. B. in Komplexchemie und Komplexkatalyse.

In der folgenden Arbeit setzen wir mit den Reihen der Methyl- und Trifluormethyl-cyanphosphine die Untersuchungen an Phosphorverbindungen und analogen Verbindungen der V. Hauptgruppe mit elektronegativen Substituenten fort. Die chemische Ähnlichkeit von Halogeniden und Pseudohalogeniden findet sich vordergründig in ihrer Elektronenstruktur nicht wieder – sie sind nicht isoelektronisch. Bei vereinfachter Betrachtung unterscheiden sie sich durch ein zusätzliches Nitril- σ -Orbital.

2. Experimentelle Daten und ihre allgemeine Deutung

Photoelektronenspektroskopische Untersuchungen an den wichtigsten cyansubstituierten Verbindungsklassen durch STAFAST³ haben bereits gezeigt, daß keine direkte Korrelation von Cyan- mit Halogen-Molekülorbitalen möglich ist. In Abb. 1 sind die komplexen Orbitaltypen von Cyanwasserstoff denen von Chlorwasserstoff gegenübergestellt und zugleich die in der Arbeit verwendeten Kurzbezeichnungen* der R-CN-Orbitale angegeben. MO-Diagramme und Orbitalenergien wurden CNDO-Rechnungen entnommen.

* Die hier verwendeten Orbitalsymbole unterscheiden sich von der STAFAST-Nomenklatur (Lit. 3).

Sonderdruckanforderungen an Dr. S. ELBEL, Institut für Anorganische Chemie, Theodor-Stern-Kai 7, D-6000 Frankfurt/M. 70.

Abb. 1. Korrelation von CNDO-Orbitalenergien und -Eigenfunktionen für HCN und HCl zur Illustration der im Text verwendeten Bezeichnungen für CN-Molekülorbitale.

Alle bislang PE-spektroskopisch untersuchten Cyanverbindungen weisen ähnliche σ - und π -Ionisierungsenergien auf (ca. 11–14 eV), die zudem bei Phosphinen mit σ_{P-Me} - bzw. σ_{As-Me} -Ionisierungen zusammenfallen. Ihre Zuordnung wird erleichtert durch die Korrelation der Ionisierungsenergien von Verbindungsreihen Me_nP(CN)_{3-n} und (CF₃)_nP(CN)_{3-n} ($n = 0 \rightarrow 3$), die zusammen mit den Werten isoelektronischer und anderer Vergleichsverbindungen tabelliert sind (Tabelle). Die He I PE-Spektren von Me_nP(CN)_{3-n} und (CF₃)_nP(CN)_{3-n} sind in den Abbn. 2 und 3 wiedergegeben. Die PE- Spektren der Wasserstoffanaloga RPH_2 und R_2PH ($R = Me, CF_3$) sind zu Vergleichszwecken gestrichelt eingezeichnet.

Abb. 2. PE-Spektren der Reihe $Me_nP(CN)_{3-n}$ sowie von MePH₂ und Me₂PH (gestrichelt; wahrscheinliche Zahl der Ionisierungen in Klammern).

Tabelle. Vertikale Ionisierungsenergien IE_n (eV) (Bandenmaxima) von Verbindungsreihen $R_n P(CN)_{3-n}$ (R = Me, CF₃; n = 0, 1, 2, 3) und von Vergleichsverbindungen.

					and the second se	_				
	IE_1	IE_2	IE3	IE_4	$1E_5$	IE ₆	IE7	IE8	IE9	IE10
Me ₃ P ⁶	8,67	11,50	13,69	19,7						
Me ₂ PCN	9,80	11,85	12,15	12,72	13,98					
$MeP(CN)_2$	10,85	12,13	13,39	13,51	13,62	14,75	17,74			
$P(CN)_3$	12,04	13,5	14,13	14,42	15,44	~18,9				
$CF_3P(CN)_2$	11,81	13,43	13,53	14,05	14,25 ?	14,48	15,30	15,98	16,62	17,68
$(CF_3)_2 PCN$	11,72	13,1	13,59	14,02	15,8	17,48	,			
(CF ₃) ₃ P 4, 7	11,60	13,46	15,8	17,3						
Mo NON 3	(9,32	(11,80	12,54	12,79	$\sim 14,0$	14,58	16,45	18,25		
Me ₂ NCN v	19,40	111,93								
Me_2AsCN ⁴	9,82	11,4	11,99	12,48	13,74					
F ₂ PCN ⁵	11,9	13,5	14,0	16,6	18,2	19,2				
$S(CN)_2$ ³	11,32	13,27	13,50	13,59	14,02	14,22	15,02	16,5		
$ m CF_3PH_2$ ^{4,7}	11,15	13,3	14,12	15,08	15,82	16,83	18,15	19,96		
$MePH_2$ ^{4,10}	9,63	12,5	14,6							
(CF ₃) ₂ PH ^{4, 7}	11,43	13,25	13,92	15,6	17,0	19,65				
Me ₂ PH ^{2, 4, 10}	9,08	11,87	13,65	(14,0)	17,45 ?	19,3-2	0,0			
HCF ₃ ⁹	14,8	15,5	16,16	17,24	20,8					

1474

Abb. 3. PE-Spektren der Reihe $(CF_3)_n P(CN)_{3-n}$ sowie CF_3PH_2 und $(CF_3)_2PH$ (gestrichelt; wahrscheinliche Zahl der Ionisierungen in Klammern).

Semiempirische Rechnungen haben sich bei Cyanverbindungen als wenig verläßlich erwiesen^{3,4}, daher wird die Diskussion auf einen qualitativen Vergleich experimenteller Ergebnisse beschränkt.

Die "freien" Elektronenpaare am Phosphor $n_{\rm P}$ (IE₁) werden ähnlich wie bei Methylhalogenphosphinen² mit zunehmendem CN-Substitutionsgrad etwa linear stabilisiert. Der sehr starke Abfall von Trimethylphosphin⁶ ($n_{\rm P}$ 8,67 eV) zu Tricyanophosphin ($n_{\rm P}$ 12,04 eV) um 3,4 eV deutet auf einen dominanten —I-Effekt bei vergleichsweise geringer Hyperkonjugation hin. Deshalb übertrifft die Stabilisierung der $n_{\rm P}$ -Orbitale in Methylcyanophosphinen sogar die von Methylfluorphosphinen (Me₂PF ¹⁰ 9,35 eV; MePF₂ ^{2,10} 10,33 eV; allerdings PF₃ ⁸ 12,31 eV). Dies ist bemerkenswert und sollte Cyanphosphine in besonderem Maße zur Stabilisierung niederwertiger Metalle befähigen.

Die CH-Banden und die typischen, vorgelagerten CN-Banden wandern mit wachsender CN-Anzahl stetig zu größeren Potentialen (Abb. 2). Letzterer Effekt fehlt dagegen in der CF₃-Reihe (Abb. 3), bei der die CN-Ionisierungsenergien etwa konstant bleiben. Der ebenfalls stark elektronegative CF₃-Substituent ändert beim gegenseitigen Austausch mit CN die Ladungsverteilung offenbar nur wenig, dokumentiert auch durch die geringe $\Delta n_{\rm P}$ -Energiedifferenz von nur 0,45 eV der beiden Endglieder P(CN)3 und (CF₃)₃P. Daß dennoch die Cyanogruppe induktiv wirksamer ist als die Trifluormethylgruppe, läßt sich an dem Verlauf der $n_{\rm F}$ -Energien in Abb. 3 ablesen: Bei sukzessiver Substitution von CF3 gegen CN wird die $n_{\rm F}$ -Bande bei 17,3 eV von Tris(trifluormethyl)-phosphin auf 17,5 eV im Mono- und auf 17,7 eV im Dicyanophosphin CF₃P(CN)₂ abgesenkt. Die in Abb. 3 enthaltene Reihe $(CF_3)_n PH_{3-n}$ ^{4,7} zeigt den gegenläufigen Effekt!

Vergleicht man HCF₃-Energien⁹ mit denen der beiden Phosphine H₂P-CF₃ und (NC)₂P-CF₃, in denen die C_{3v}-Symmetrie der CF₃-Gruppe praktisch ungestört ist (was durch die relativ zu HCF₃ parallele Verschiebung der drei $n_{\rm F}$ -Banden und die Entartung der ursprünglichen $e(n_{\rm F})$ -Orbitale auch bei beiden C_s-Systemen nahegelegt wird), wird der starke induktive Einfluß der Cyansubstituenten besonders deutlich. Das als interner induktiver Standard fungierende und nur im CF₃-Teil lokalisierte $n_{\rm F}$ -Orbital der Symmetrie a₂ (HCF₃ 15,5 eV) wird im H₂P-Derivat auf 15,0 eV angehoben, im (NC)₂P-Derivat auf *ca*. 16,0 eV abgesenkt (Abb. 3).

Eine dritte Korrelationsmöglichkeit bietet die Molekülreihe Me₂NCN, Me₂PCN und Me₂AsCN in Abb. 4. Ähnlich wie bei den kürzlich beschriebenen entsprechenden Chloriden² nimmt die erste Ionisierungsenergie IE₁ des "lone pair"-Orbitals $n_{\rm E}$ nicht

Abb. 4. PE-Spektren der Reihe Me₂NCN, Me₂PCN, Me₂AsCN.

in der Reihe zunehmender Elektronegativität des Zentralatoms As \rightarrow P \rightarrow N zu, sondern ab! Das ist einmal wesentlich auf die abnehmende Wechselwirkung bei zunehmender Bindungslänge E–CN zurückzuführen (vgl. dagegen Me₃F, E = N \rightarrow Sb⁶), zum anderen auf die energetische Abfolge bestimmter Coulombenergien

$$\alpha_{\rm N-Me} > \alpha_{\rm CN} \approx \alpha_{\rm P/As-Me}$$

sowie auf Geometrieänderungen in dieser Reihe (vgl. 3.3.). Jedenfalls enthielte eine Korrelation der ersten Ionisierungsenergien mit Eigenschaften wie Basizität und Komplexbildungsvermögen^{10, 11} ein erhebliches Maß an Spekulation.

3. PE – Bandenzuordnung einzelner Verbindungen, MO – Modelle

3.1. Tricyanphosphin $P(CN)_3$

Für Tricvanphosphin wird hier der Einfachheit halber C_{3v}-Symmetrie angenommen, ist aber nicht notwendige Konsequenz seiner Strukturdaten¹² $(< CPC = 93^{\circ}; < PCN = 172^{\circ})$. Geht man davon aus, daß bei Cyanphosphinen $R_n P(CN)_{3-n}$ wie auch bei Chlorphosphinen drei Orbitale vom s-Typ außerhalb des He I-Bereiches liegen (1e, 1a1 bzw. 2a', 1a'', 1a' in Cs), verbleiben für die Zuordnung des bandenarmen P(CN)₃-Spektrums (Abb. 2 und 3) dreizehn MOs bei vier Entartungen $(5a_1...2a_1, 5e...2e, 1a_2)$. Die Zuordnung erfolgt anhand der PE-Daten von Phosphortrichlorid (vgl. dazu auch Abb. 1) mit folgender Begründung: Ein Vergleich dieser nicht isoelektronischen Moleküle erscheint möglich, wenn (a) unterschiedliche Energieschwerpunkte für Substituentenorbitale $(a_{Cl} < a_{CN})$, (b) ein geringerer induktiver Effekt für Chlor, aber vergleichbare hyperkonjugative Effekte für Cl und CN, sowie (c) die sehr viel größeren Valenzionisierungspotentiale der s-Orbitale von Kohlenstoff und Stickstoff berücksichtigt werden. Mit (a) und (b) erhält man für tangentiale (T) und vertikale (V) Orbitale^{1,2} der Symmetrie a₁, a₂ und e (s. Abb. 5) beider Verbindungen ähnlich große Aufspaltungen. Außerdem wäre $\Delta a \approx \Delta a_2$, was in Abb. 5 durch Verschiebung der Energieskalen gegeneinander ausgedrückt ist. Der o-Charakter der "lone pair"-Orbitale am Stickstoff (σ_N) macht eine eindeutige Zuordnung und Korrelation aller σ -Orbitale zunichte. Wegen (c) entziehen sich auch 2e- und 2a1-Orbitale von P(CN)3 der Zuordnung; sie besitzen sowohl hohe Cs-Ns- als auch σ_{P-CN} -Anteile. Ob die schwache Bande im Bereich 18–19 eV dem 2e-Orbital zugeschrieben werden kann, bleibt fraglich.

Eine mögliche Zuordnung der PE-Banden von Tricyanphosphin impliziert Abb. 5, die den komplexen Einfluß reiner Substituentenorbitale auf Zentralatomorbitale ($P_s, P_{p_{x,y,z}}$) in einem "composite molecule"-Modell^{1, 2} veranschaulichen soll. Die gezeichneten MO-Bilder entsprechen CNDO/EHMO-Eigenfunktionen für eine hypothetische (CN)₃-Einheit und P(CN)₃. Um die verschiedenen Orbitaltypen (**R**, **T**, V, σ_{P-C} , σ_N) besser kenntlich zu machen, wurde ein planares Molekülgerüst gezeichnet. Geometrieerniedrigung D_{3h} \rightarrow C_{3v} löscht dann die im planaren Fall noch existente σ/π -Separation der a₁und e-Orbitale. Bei Annahme nichtlinearer P-C-N-Valenzen¹² geht darüber hinaus die vorhandene Differenzierung von σ_{N} - und V-Orbitaltypen verloren (Unterschied zu PHal₃!). Da die Zuordnung in Abb. 5 mit einer Intensitätsverteilung

1:3:2:3:1:(2)

nur qualitativ fundiert ist, können auch alternative Vorschläge nicht ausgeschlossen werden, z. B.

$$1:3:3(2):3(4):2(2e):1(2a_1).$$

Vor allem ist die Sequenz der a_1 -Orbitale $V \ddagger \sigma_{P-C}$ ($\triangleq \sigma_N$) unsicher (s. Abb. 5) und damit auch die Zuordnung einer entsprechenden Bande bei 15,3 eV im PE-Spektrum von Trifluormethyl(dicyan)-phosphin, die zwischen n_{F^-} und CN-Bereich liegt (vgl. 3.2.).

Der Energieschwerpunkt für Nitrilgruppen $a_{\rm CN}$ schwankt für die bislang bekannten Cyanide zwischen 13,5 und 14,6 eV³. Im MO-Schema besitzt er die Energie eines Orbitals geringster "through space/through bond"-Wechselwirkung, z.B. in C_{2v} die 1a₂-, in D_{3h}/C_{3v} die 1e"(V)-Energie. Mit $a_{\rm CN}$ ~14 eV ist unter Berücksichtigung der bis jetzt bekannten "through space"-Aufspaltungen ΔT geminaler Cyangruppen (ca. 0,7-1,0 eV)³ das 1a₂-MO der bei 13,5 eV zentrierten P(CN)₃-Bande zuzuordnen. Dies folgt auch aus dem Vergleich mit Phosphortrichlorid.

3.2. Methyl- und Trifluormethyl-dicyanphosphin, $MeP(CN)_2$ und $CF_3P(CN)_2$

Für die CN-Bandenfolge in beiden PE-Spektren (Abbn. 2 und 3) sollte das MO-Modell geminaler Nitrilgruppen herhalten³, das dem der T- und V-Orbitale bei den Dihalogeniden^{1,2} entspricht. Für die pseudo- π -Orbitale T und V ist gemäß 3.1. ($\beta_{P/CN} \sim \beta_{P/C1}$) eine den Dichloriden MePCl₂ analoge "through space"-Aufspaltung zu erwarten. Die σ_N -MOs einer zentralatomentkoppelten (CN)₂-Einheit ("composite molecule") erhalten bei eingeschalteter Wechselwirkung mit dem PR-Rest $\sigma(a')$ oder $\pi(a'')$ -P-C-N- und P-R-Anteile. Beide σ_N -Orbitale werden dem π_{CN} -Energiebereich zugeordnet, für den eine Bandenverteilung 3:3 u.a. durch den *Perfluormethyl*-Effekt² nahegelegt wird.

Der Perfluormethyl-Effekt wurde bewußt als Gegensatz zum Perfluor-Effekt¹³ definiert. Sein Einfluß auf σ - und π -Orbitale ist undifferenziert, da eine dem starken –I-Effekt entgegengerichtete Hyperkonjugation vernachlässigbar ist. Darin besteht der Unterschied zur Wirkung des Fluorsubstituenten. Der Perfluormethyl-Effekt bietet wichtige Zuordnungskriterien für PE-Spektren analoger

Abb. 5. Korrelation der experimentellen Ionisierungsenergien PCl₃ und P(CN)₃ sowie ein ,,composite molecule^{(·-} Modell für P(CN)₃, nachvollzogen mit relativen CNDO/EHMO-Energien und -Eigenfunktionen. (Alternative Zuordnungen sind durch Pfeile gekennzeichnet; das C_{3v}-Molekülskelett ist in die Papierebene projiziert.)

Methylverbindungen, wenn Bandenüberlagerungen die Interpretation erschweren, vgl. z. B. Methyl- und Methylhalogenphosphine^{2,4} mit ihren CF₃-Derivaten^{4,7}. Wegen $\alpha_{CF_3} \gg \alpha_{Me,C1,Br,J/CN}$ wird bei CF₃-Derivaten häufig eine deutliche Separation charakteristischer Zentralatom- und Substituentenbanden beobachtet. Der dominante σ -Effekt kann bei Substituentenaustausch Me \rightarrow CF₃ eine zufällige Entartung von a'/a''-Banden aufheben; vgl. z. B. die zweiten und dritten Ionisierungsenergien der Methylphosphine und ihrer CF₃-Analoga RPH₂ und R₂PH (Abbn. 2 und 3; a"-Orbitale erfahren eine geringere Stabilisierung als entsprechende a'-Species vom σ -Typ)^{4,7}.

Für die Dicyanphosphine bedeutet dies, daß bei Austausch von Methyl gegen Trifluormethyl eine parallele Stabilisierung typischer CN-Banden zu erwarten ist. Änderungen im Bandenmuster sollten auf die energetische Lage von Orbitalen mit nennenswerten σ_{P-C} -Anteilen hinweisen. Ungeachtet

einer Veränderung durch "through space/through bond"-Aufspaltungen werden sechs CN-Banden entsprechend je einer \pm -Kombination für V-, T- und $\sigma_{\rm N}$ -Orbitale erwartet. Ein siebentes Orbital mit hohen σ_{P-R} - und $\sigma_{P-C(N)}$ -Anteilen sollte wegen $a_{P-C} \sim a_{CN}$ vergleichbare Energie besitzen. Es wird der MeP(CN)₂-Bande bei 14,75 eV, der CF₃P(CN)₂-Bande bei 15,3 eV zugeordnet und bietet ein besonders durchsichtiges Beispiel für den Perfluormethyl-Effekt. Daß es sich hierbei weder um eine typische $R(Me, n_F)$ - noch CN-Bande handeln kann, wird erst durch den Austausch von Methyl gegen Trifluormethyl offenbar. Aus energetischen Gründen sollte auch eine gewisse Korrespondenz im Orbitalcharakter mit einem $P(CN)_3$ -Orbital bestehen, das nach Abb. 2 und 3 einer Bande bei 15,4 eV zugeordnet wurde und nach Abb. 5 die bindende σ_{N} -Kombination oder das V-Orbital (a1) respräsentiert. Weniger aussagekräftig ist der Vergleich mit Dicyansulfid 3a, c (Tabelle), das – abgesehen von überzähligen R-Orbitalen - mit R-P(CN)2 isoelektronisch ist.

Dicyansulfid zeigt fünf Banden im typischen Bereich der CN-Energien, eine sechste bei 15,02 eV. Diese wurde der symmetrischen V-Kombination zugeordnet ^{3a, c}, was starke hyperkonjugative Wechselwirkung von Zentralatom (Sp)- und V-Substituenten-Orbitalen (b1) voraussetzt (ca. 1 eV)^{3a, c}. Dies spräche beim Dicyanphosphin für eine analoge Zuordnung zum bindenden V-Orbital. Allerdings ist insgesamt nur eine geringe Korrespondenz zwischen den Cyan-Banden von R-P(CN)2 und S(CN)2 vorhanden; ob Folge unterschiedlicher Molekülpunktgruppen ($C_{2v} \leftrightarrow \tilde{C}_s$ oder C_1), bleibt dahingestellt.

Für beide Dicyanphosphine wird folgende PE-Zuordnung vorgeschlagen:

 $n_{\rm P} - \sigma_{\rm N}^+$; $\sigma_{\rm N}^-$; $T(a^{\prime\prime}) - V(a^{\prime\prime})$; $T(a^{\prime})$; $V(a^{\prime}) - \sigma_{\rm P-R} / \sigma_{\rm C}$ oder $\sigma_{P-R}/\sigma_N n_F$ bzw. ch.

Nicht zwingend ist die Sequenz innerhalb der allen Cyanphosphinen eigenen zwei CN-Bandengruppen. Eine Differenzierung der Orbitaltypen erscheint mit den in 3.1. genannten Einschränkungen für σ-MOs und trotz niedriger Symmetrie durch die unterschiedlichen Bandenformen für CN- und CH-Energien gerechtfertigt.

3.3. Dimethylelementcyanide Me₂ECN

(E = N, P, As) und Bis(trifluormethyl)cyanphosphin $(CF_3)_2 PCN$

Die PE-Spektren der Reihe Me₂NCN ^{3b}, Me₂PCN und Me₂AsCN ⁴ sind in Abb. 4 wiedergegeben, das von (CF₃)₂PCN in Abb. 3.

Für Cyanorbitale von Me2NCN wurde die Sequenz $\pi(T) \rightarrow \sigma_N \rightarrow \pi(V)$ diskutiert^{3b}. Tauscht man die Zentralatome aus $(N \rightarrow P, As)$, sind (a) wegen der Inversion bestimmter Coulombenergien

 $a_{\rm N-Me} > a_{\rm CN} \sim a_{\rm P-Me}, a_{\rm As-Me}, a_{\rm P-CF}$ und (b) wegen der kleineren Wechselwirkung von CN- und P/As-Zentralatomorbitalen gegenüber $\beta_{N/CN}$ charakteristische Veränderungen in den PE-Spektren dieser Verbindungsreihe zu erwarten. Legt man das experimentelle^{14a, b}, nichtplanare $C_2P/AsCN$ -Gerüst zugrunde, geht die σ/π -Separation für CN-Orbitale der Darstellung a' verloren $(\cong \sigma_N, V)$. Für Me₂NCN wurde dagegen ein weitgehend planares Molekülskelett experimentell^{14c} bestätigt und gestattet die Zuordnung nach C2v-Darstellungen.

Wegen $a(n_{\rm F}) \gg a_{\rm CN} \sim a_{\rm P-C}$ ist Punkt (a) analog auf F₂PCN⁵ (Tabelle) übertragbar. Es sollte ein ähnliches CN-Bandenmuster wie Me2NCN besitzen. Bei gleicher CN-Bandenzahl (3) ist allerdings wegen der noch größeren Energieseparation von Substituenten-Orbitalschwerpunkten bei F2PCN die Sequenz π , π , σ_N bei fast entarteten π -Orbitalen wahrscheinlich. Sie entspräche damit der bei R-CN und Derivaten ^{3a, b, e} gefundenen Reihenfolge.

Anwendung von (a) auf Alkyl- und CF₃-Cyanphosphine und -Cyanarsine legt nahe, daß das zweite σ -Orbital (σ_{P-Me} bzw. σ_{P-CF} , a'') auch in den CN-Bereich fällt. Zur Illustration sind nachstehend CNDO/EHMO-Eigenfunktionen der wichtigsten σ und CN-Orbitaltypen von Me₂PCN und z.T. von Me2NCN (vgl. auch Lit. 3b) wiedergegeben und bezeichnet. Das Molekülgerüst ist in die Papierebene projiziert:

Das ursprüngliche σ_{P-Me} (a'')-MO von Me₂EH, zu-fällig entartet mit $\sigma_{(Me)P-H}$ (a', 11,86 eV^{2,4}; Abb.2) erhält beim Austausch von H durch CN π_{CN} -antibindende Beiträge (Typ A). Da diese hyperkonjugative Destabilisierung vom -I-Effekt der Cyangruppe überlagert ist, sollte eine etwa konstante Energie resultieren. Die $\sigma_{E-Me}(a'')$ -Energie wird deshalb bei Me₂P/AsCN mit der zweiten PE-Bande identifiziert (11,85 bzw. 11,4 eV). Gestützt wird diese Interpretation durch die deutliche Verschiebung vornehmlich dieser Bande zu kleineren Energien beim Übergang $P \rightarrow As$ und so Orbitale mit hohen E-Beiträgen anzeigt. Während dieses MO beim Phosphin und Arsan primär σ -Charakter besitzt, gilt es beim Amin als oberstes π_{CN} -MO (s.o., Typ A).

Typ C repräsentiert die zugehörige bindende P/As-C-N-Kombination T(a") und wird Energien von 12,75 eV (E = P) bzw. 12,43 eV (E = As) zugeordnet. Beim Amin weist dieses MO dagegen große σ_{N-Me} und kleine π^+_{N-C-N} -Anteile auf und fällt damit energetisch (wie auch die σ_{N-Me} -MOs der Methylamine^{2,6,15}) in den Bereich der CH-Bandenkomplexe. Dies bedingt die geringe Korrespondenz zwischen den PE-Spektren des Dimethylcyanamids und des analogen Cyanphosphins bzw. -arsans und insbesondere die differierende Bandenzahl im CN-Bereich.

Das $\sigma_{\rm N}$ -MO (Typ B), ein Orbital mit ausgepräg-

tem "lone pair"-Charakter n_N , korreliert mit dem ursprünglichen $\sigma_{(Me)E-H}(a')$ -Orbital von Me₂EH und sollte wegen des größeren σ -Effekts über σ_{P-Me} (Typ A) hinaus stabilisiert sein. Es wird den Peaks bei 12,11 eV (E=P) bzw. 11,99 eV (E=As) zugeschrieben.

Wegen der sehr ähnlichen Bandengruppierung für $(CF_3)_2PCN$ gilt eine identische Zuordnung im CN-Bereich:

13,1 eV $\sigma_{P-C'}$ T(a''); 13,6 eV $\sigma_{N/P-C}$ (a'); 14,0 eV π_{CN} (T, V).

Die PE-Bande von Me₂PCN bei 12,75 eV zeigt auf seiten höherer Energie eine schwache Schulter, die dem V(a')-MO (Typ D) zugesprochen wird. Im Idealfall C_{2v} (vgl. Me₂NCN ^{3a, b}) ist dieses $\pi_{\rm CN}$ -Orbital zu hyperkonjugativer Wechselwirkung mit dem $n_{\rm E}$ -Orbital fähig und bildet wie das T-Orbital eine \pm -Kombination. Im pyramidalen System könnte es wegen zusätzlicher σ -Beiträge über T⁺ (Typ C) hinaus abgesenkt sein.

MOs vom Typ E werden dem $n_{\rm F}$ - bzw. CH-Bereich zugeordnet (vgl. die Zuordnung der PE-Bande bei 15,3 eV von CF₃P(CN)₂, 3.2.).

Besondere Beachtung verdienen die durch Cyanierung verursachten Verschiebungen der CH-Banden von Me₂EH. Diese sind für Me₂NCN unerwartet groß. Während Halogenierung^{2,4} einen shift von ca. 0,5 eV verursacht, beträgt die Stabilisierung beim Cyanamid ~1,4 eV (!), bei Me₂P/AsCN aber nur ca. 0,5 eV. Vergleichsweise gering ist dagegen die Stabilisierung des "lone pair"-Orbitals $n_{\rm N}$ (IE₁), die durch erhöhte Hyperkonjugation in C_{2v} bei gegenläufigem –I-Effekt von CN gedeutet wurde ^{3a, b}. Dies sollte aber einen entsprechend energieerhaltenden Effekt auf CH-MOs haben - wie es auch für Me2NCl diskutiert wurde² - wird hier jedoch nicht bestätigt. Inwieweit der Geometrieeffekt ($C_s \leftrightarrow C_{2v}$) wirksam ist oder die hier nicht zugeordneten $\sigma_{\rm C}$ ($\Delta \sigma_{\rm E-CN}$)MOs (vgl. Abbn. 1 und 5) das ursprüngliche CH-Bandenmuster entstellen, bleibt ungeklärt. Dieser Effekt wird auch in den semiempirischen Rechnungen⁴

- ¹ V. Mitteilung: S. ELBEL und H. TOM DIECK, J. C. S. Dalton 1976, im Druck.
- ² S. ELBEL und H. TOM DIECK, Z. Naturforsch. **31b**, 178 [1976].
- ³ a H. STAFAST, Dissertation, Universität Frankfurt/ M. 1974;
- b H. STAFAST und H. BOCK, Chem. Ber. 107, 1882 [1974];
- c H. STAFAST und H. BOCK, Z. Naturforsch. 28b, 746 [1973];
- d H. STAFAST und H. BOCK, Chem. Ber. 105, 1158 [1972];
- e E. HEILBRONNER, V. HORNUNG und K. A. MUSZ-KAT, Helv. Chim. Acta 53, 347 [1970].
- ⁴ S. ELBEL, Dissertation, Universität Frankfurt/M. 1974.
- ⁵ S. CRADOCK und D. W. H. RANKIN, Faraday Transact. 68, 940 [1972].
- ⁶ S. ELBEL, H. BERGMANN und W. ENSSLIN, J. C. S. Faraday II 70, 555 [1974].

nicht widergespiegelt. Doch zeigen diese für Cyanphosphine, daß $\sigma_{\rm C}$ -MOs mit symmetriebedingt hohen $\sigma_{\rm E-Me,E-CN}$ -Beiträgen (s.o. z. B. Typ E; oder 2e- und 2a₁-Eigenfunktionen in Abb. 5) solchen Banden zuzuordnen sind, die bei Methylcyanverbindungen gerade im niederenergetischen CH-Bereich verschwinden. Solche Banden könnten dann die induktive Verschiebung der ursprünglichen CH-Banden speziell bei alkylierten Phosphinen und Arsanen wegen $\sigma_{\rm C} \sim \sigma_{\rm CH}$ verschleiern. Damit wäre die scheinbar große Diskrepanz zwischen induktiven Effekten bei Aminen und P/As-Analoga geklärt.

Experimenteller Teil

Die He I-Photoelektronenspektren wurden von PE-Spektrometern PS 16 der Fa. Perkin Elmer Ltd. registriert und mit Argon, z.T. auch Argon/Xenonoder Argon/MeJ-Gemischen geeicht. Für Tricyanphosphin wurde der heizbare Einlaß verwendet (Aufnahmetemperatur: 70 °C). Die Fehlergrenze für vertikale Ionisierungsenergien beträgt ± 0.05 bis 0.08 eV.

Die Darstellungen der Verbindungen $P(CN)_3$, Me $P(CN)_2$, Me $_2PCN$ sowie analog für Me $_2AsCN$ (vgl. ¹⁶) erfolgte nach Literaturvorschriften ¹⁷ durch Umsetzen der analogen Chloride oder Bromide mit Silbercyanid in absolutem Acetonitril. Die Trifluormethyl-cyanphosphine CF $_3P(CN)_2$ und (CF $_3$) $_2PCN$ wurden durch Aufkondensieren der analogen Jodide CF $_3PJ_2$ und (CF $_3$) $_2PJ$ auf überschüssiges Hg(CN) $_2$ im Hochvakuum dargestellt, ihre Identität und Reinheit NMR¹⁸- und IR-spektroskopisch überprüft.

Herrn Direktor Dr. H. HARNISCH (Höchst AG, Werk Knapsack) sind wir für die Überlassung wertvoller Phosphorverbindungen, u.a. der hier als Ausgangsprodukte verwendeten Methylchlorphosphine, zu besonderem Dank verpflichtet. Frau M. POHLENZ half dankenswerterweise bei der Aufnahme der PE-Spektren.

- ⁷ A. H. COWLEY, M. J. S. DEWAR und D. W. GOODMAN, J. Amer. Chem. Soc. 97, 3653 [1975].
- ⁸ a A. W. POTTS, H. J. LEMPKA, D. G. STREETS und W. C. PRICE, Phil. Trans. Roy. Soc. London A 268, 59 [1970]; b B. L. Recommund D. P. Leoup, L. C. S. Delton
- b P. J. BASSETT und D. R. LLOYD, J. C. S. Dalton 1972, 248.
- ⁹ Z.B. C. R. BRUNDLE, M. B. ROBIN und H. BASCH, J. Chem. Phys. **53**, 2196 [1970].
- ¹⁰ G. K. BARKER, M. F. LAPPERT, J. B. PEDLEY, G. J. SHARP und N. P. C. WESTWOOD, J. C. S. Dalton 1975, 1765.
- ¹¹ M. GRAFFEUIL, J.-F. LABARRE, M. F. LAPPERT, C. LEI-BOVICI und O. STELZER, J. Chim. Phys. 71, 799 [1975].
- ¹² K. EMERSON und D. BRITTON, Acta Crystallogr. 17, 1134 [1964].
- ¹³ C. R. BRUNDLE, M. B. ROBIN, N. A. KUEBLER und H. BASCH, J. Amer. Chem. Soc. 94, 1451 [1972].
- ¹⁴ a J. R. DURIG, A. W. Cox und Y. S. LI, Inorg. Chem. **13**, 2302 (1974);

b N. CAMERMAN und J. TROTTER, Canad. J. Chem. 41, 460 [1963]; c Y. S. Li und J. R. DURIG, J. Mol. Struct. 16, 433

- [1973].
- ¹⁵ a K. KIMURA und K. OSAFUNE, Mol. Phys. 29, 1073 [1975];
 b V. I. VOVNA und F. I. VILESOV, Opt. Spectrosc.
 - 36, 251 [1974].
- ¹⁶ C. K. BANKS, J. F. MORGAN, R. L. CLARK, E. B. HATLELID, F. H. KAHLER, H. W. PANTON, E. J. CRAGOE, R. J. ANDRES, B. ELPERN, R. F. COLES, J. LAWHEAD und C. S. HAMILTON, J. Amer. Chem. C. 202025 EL04521 Soc. 69, 927 [1947].
- ¹⁷ K. J. COSKRAN und C. E. JONES, Inorg. Chem. 10, 1536 [1971].
 ¹⁸ K. J. PACKER, J. Chem. Soc. **1963**, 960.