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Within the statistical model, the net strangeness conservation and incomplete total strangeness
equilibration lead to the suppression of strange particle multiplicities. Furthermore, suppression effects
appear to be stronger in small systems. By treating the production of strangeness within the canonical
ensemble formulation we developed a simple model which allows to predict the excitation function of
K +/π+ ratio in nucleus–nucleus collisions. In doing so we assumed that different values of K +/π+,
measured in p + p and Pb + Pb interactions at the same collision energy per nucleon, are driven by
the finite size effects only. These predictions may serve as a baseline for experimental results from
NA61/SHINE at the CERN SPS and the future CBM experiment at FAIR.

© 2014 The Authors. Published by Elsevier B.V. Open access under CC BY license. Funded by SCOAP3.
1. Introduction

The multiplicity of pions per participating nucleon is known to
be similar in nucleus–nucleus (A + A) and in inelastic proton–
proton (p + p) interactions at the same collision energy per nu-
cleon. This is in line with the Wounded Nucleon Model [1] (WNM)
in which the final states in A + A collisions are treated as a su-
perposition of independent nucleon-nucleon collisions. Similar pic-
ture emerges from the hadron statistical models within the grand
canonical ensemble (GCE) formulation. At fixed temperature and
chemical potentials all hadron multiplicities are proportional to the
system volume V . Taking V to be proportional to the number of
wounded nucleons NW in A + A collisions, one restores the WNM
results for hadron multiplicities.

Production of strange hadrons appears to be quite different in
p + p and heavy-ion collisions. In particular, the ratio of K + to
π+ multiplicities is significantly larger in collisions of heavy ions.
It was advocated to interpret this strangeness enhancement as a
possible signature for the quark–gluon plasma creation [2]. A non-
monotonic dependence of the K + to π+ ratio as function of the
collision energy (the horn) was predicted [3] as a fingerprint of
the deconfinement phase transition. The predicted behavior was
indeed observed by the NA49 Collaboration in central Pb + Pb col-
lisions [4] at the SPS energies (for more details cf. Ref. [5]). More-
over, these findings have been recently confirmed by the RHIC and
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LHC data [6]. The experimental data on K +/π+ ratio in p + p and
Pb + Pb (Au + Au in the AGS energy range) collisions are pre-
sented in Fig. 1 as function of the center-of-mass energy of the
nucleon pair

√
sNN (for details see [7] and references therein).

Numbers of strange quarks Ns and antiquarks Ns in a final
state of p + p or A + A collisions are equal to each other due
to the net strangeness conservation in strong interactions. In the
SPS energy range strange quarks are essentially carried by K − , K 0

mesons and Λ hyperons. On the other hand, almost all Ns created
in the collision process are finally revealed in K + and K 0 parti-
cles. For the event averages one obtains an approximate relation
〈K +〉 ∼= 0.5〈Ns̄〉. This explains the choice of the K + multiplicity as
an estimator for the total strangeness [5].

Conservation of strangeness in large statistical systems can be
treated within the GCE formulation, in which all hadron multiplic-
ities are proportional to the system volume V . In small systems,
however, one has to follow the canonical ensemble (CE) treat-
ment [8]. The multiplicities of (anti)strange hadrons in CE decrease
with decreasing volume faster than the GCE multiplicities.

A comparison of the statistical model results with hadron mul-
tiplicity data, within both CE and GCE, evidences an incomplete
strangeness equilibration. For reasonable fit of the data one has to
introduce the strangeness suppression factor γS [9]. Note that in
p + p interactions the γS factor is smaller than in central Pb + Pb
collisions [10].

In the present study the difference of the K +/π+ ratio in
p + p and Pb + Pb collisions is considered within the CE
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statistical model as a consequence of two strangeness suppres-
sion effects: (a) net strangeness conservation and (b) incomplete
total strangeness equilibration. Our model assumes that both sup-
pression effects depend on the system size and collision energy.
Other physical differences between statistical systems created in p
+ p and Pb + Pb collisions which are not reduced to ‘a’ and ‘b’
are not considered. The finite-size strangeness suppression is then
calculated in terms of two model parameters which are extracted
from existing data on p + p and Pb + Pb collisions. This opens a
possibility to make the model predictions for the K +/π+ ratio in
A + A collisions with light and intermediate ions. Such estimates
are timely in view of experimental program of the NA61/SHINE
at the CERN SPS [11]. The NA61/SHINE Collaboration has already
recorded Be + Be data with projectile momenta of 13A, 20A, 30A,
40A, 80A, 158A GeV/c. The energy scans with p + Pb, Ar + Ca
and Xe + La collisions will be completed up to 2016. In addition, a
beam energy scan of Pb + Pb collisions, with much higher statis-
tics than that performed by the NA49 Collaboration, is planned.
We hope that the atomic number dependence of the K +/π+ ra-
tio from p + p to Pb + Pb collisions in the SPS energy range may
reveal new and important physical information.

The Letter is organized as follows. In Section 2 the strangeness
suppression effects in the statistical systems are considered in the
CE formulation. In Section 3 the model parameters are extracted
from the data on p + p and Pb + Pb collisions. The model pre-
dictions of the K +/π+ ratio for light and intermediate nucleus–
nucleus collisions are calculated. Finally, Section 4 summarizes the
Letter. Appendix A includes details of the calculations.

2. Strangeness suppression

We first introduce the following notations:

Rp ≡ 〈K +〉pp

〈π+〉pp
, RA ≡ 〈K +〉AA

〈π+〉AA
, RPb ≡ 〈K +〉PbPb

〈π+〉PbPb
, (1)

ηp ≡ Rp

RPb
, ηA ≡ RA

RPb
, (2)

where 〈· · ·〉pp and 〈· · ·〉AA, or 〈· · ·〉PbPb correspond to the event av-
erages in inelastic p + p and A + A or Pb + Pb collisions, respec-
tively. Thereafter the symbol A + A refers to collisions of light and
intermediate size nuclei. The data on Rp and RPb are presented in
Fig. 1 as function of the center-of-mass energy of a nucleon pair√

sNN. In the left and right panels of Fig. 2 the energy dependence
of ηp and 〈K +〉pp are depicted. To calculate the ηp we use the RPb
data presented in Fig. 1 and a function a + b · (

√
sNN )c fitted to

the p + p data and shown by the solid line. The parameters of the
function are: a = −3.397, b = 3.384 and c = 0.009.

The net strangeness conservation requires equal number of
strange quarks and antiquarks, Ns − Ns = 0, in each event. The
statistical model calculations take into account global conserva-
tion of the net strangeness. In the CE formulation a zero value of
the net strangeness is fixed in each microscopic state of the sta-
tistical system. In GCE the chemical potential regulates only the
average value of the net strangeness, i.e. the net strangeness is
not necessarily vanishing in each microscopic state. Both statistical
ensembles become equivalent in the thermodynamical limit when
the system volume goes to infinity. This is discussed in detail in
Appendix A.

The π+ multiplicity and the quantity z (see Appendix A,
Eq. (15)) can be presented as:
〈
π+〉

ii = V inπ+ , zi = V ins, (3)

where i = p, A, or Pb. The 〈π+〉ii and zi correspond, respec-
tively, to the GCE π+ multiplicity and 〈Ns〉gce = 〈Ns〉gce in i + i
Fig. 1. (Color online.) The K +/π+ ratio in central Pb + Pb and Au + Au, and in-
elastic p + p collisions as a function of the center-of-mass energy

√
sNN [7] .

collisions. Note that strange (anti)quark multiplicity 〈Ns〉gce cor-
responds to the complete strangeness equilibration and does not
yet take into account the CE suppression effects. We assume that
the values of the pion number density nπ+ = 〈π+〉/V and the
strange (anti)quark number density ns = 〈Ns〉gce/V are not sen-
sitive to the type of reactions, i.e. they have the same values in
p + p, A + A, and Pb + Pb collisions at the same collision energy.
The volumes V i are, however, different in each of these i + i reac-
tions, and they are assumed to be proportional to the number of
wounded nucleons NW (NW = 2 in inelastic p + p collisions). The
GCE formulation will be adopted for pion multiplicity in all types
of i + i collisions. The total number of negatively charged parti-
cles is larger than one (even in p + p collisions) at the SPS energies.
Therefore, the CE effects of electric charge conservation are small
and can be neglected. To calculate 〈Ns〉 = 〈Ns〉 both the CE effects
and the incomplete strangeness equilibration are considered. This
is discussed in Appendix A (see Eq. (18)). For the K + multiplicity
it then follows:

〈
K +〉

ii = 1

2
γ i

S zi
I1(2γ i

S zi)

I0(2γ i
S zi)

, (4)

where the relation 〈K +〉 ∼= 0.5Ns has been used.
Finally, we obtain the following expressions for 〈K +〉pp and ηp

in p + p collisions:

〈
K +〉

pp = 1

2
γ

p
S zp

I1(2γ
p
S zp)

I0(2γ
p
S zp)

, (5)

ηp = γ
p
S

γ Pb
S

I1(2γ
p
S zp)

I0(2γ
p
S zp)

. (6)

The above equations assume: (i) the same ns and nπ+ GCE values
of the particle number densities, as defined in Eq. (3) in p + p,
A + A, and Pb + Pb collisions; (ii) the incomplete strangeness
equilibration regulated by γ i

S in i + i collisions (i = p, A, and Pb);
(iii) the relation I1/I0 ∼= 1 is adopted in central Pb + Pb collisions,
as γ Pb

S zPb � 1.

3. Predictions for light ion collisions

The left-hand sides of Eqs. (5) and (6) involve quantities which
have been experimentally measured. The energy dependences of
〈K +〉pp and ηp are shown in Fig. 2. For the 〈K +〉pp we used the
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Fig. 2. (Color online.) The strangeness suppression factor ηp (left panel) and the multiplicity 〈K +〉pp [12] (right panel) as functions of
√

sNN.

Fig. 3. (Color online.) The energy dependence of the solutions X and Y of Eqs. (8), (9). Left panel: X = γ
p
S zp. Right panel: Y = γ

p
S /γ Pb

S . The dashed line represents the fit
with the Eq. (11), yielding α = 1.015 and β = 0.189.
fit function a · (
√

sNN )b with a = 0.028 and b = 0.736 presented
by the solid line in the right panel of Fig. 2. All in all there are
3 unknowns, γ

p
S , zp, and γ Pb

S , entering to the right-hand sides of
Eqs. (5) and (6). However, they can be combined as

X = γ
p
S zp, Y = γ

p
S /γ Pb

S . (7)

Together with Eq. (7), Eqs. (5) and (6) represent the system of two
equations with two unknown quantities:

〈
K +〉

pp = 1

2
X

I1(2X)

I0(2X
, (8)

ηp = Y
I1(2X)

I0(2X)
. (9)

The solution of the transcendental Eq. (8), X = X(
√

sNN ), is shown
in the left panel of Fig. 3. On the other hand, Eq. (9) gives the value
of Y = ηp I0(2X)/I1(2X) presented in the right panel of Fig. 3.

Assuming now zA = zp · NW /2, where NW is the average num-
ber of wounded nucleons in A + A collisions, one can calculate the
K + to π+ ratio as:
RA ≡ 〈K +〉AA

〈π+〉AA
= RPb × γ A

S

γ Pb
S

· I1(2γ A
S zp · NW /2)

I0(2γ A
S zp · NW /2)

= RPb × γ A
S

γ Pb
S

· I1[(γ A
S /γ

p
S )X · NW ]

I0[(γ A
S /γ

p
S )X · NW ] . (10)

Next, following the prescription of Ref. [13], we used the fol-
lowing expression for the dependence of γ A

S on NW and
√

sNN:

γ A
S = 1 − α exp

[
−β

√
NW

√
sNN

]
(11)

with α = 1.015 and β = 0.189, which were obtained by fitting the
γ

p
S /γ Pb

S ratio (see the right panel of Fig. 3).
Furthermore, taking γ A

S = γ
p
S and γ A

S = γ Pb
S , we obtain the

lower (R low
A ) and upper (Rup

A ) limits for RA defined in Eq. (10):

R low
A = RPb × Y · I1[X · NW ]

I0[X · NW ] , (12)

Rup
A = RPb × I1[Y −1 X · NW ]

−1
. (13)
I0[Y X · NW ]
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Fig. 4. (Color online.) The energy dependence of RA as calculated by Eq. (10) for
NW = 6 (upper panel) and NW = 10 (lower panel) are presented with green boxes.
The dashed lines represent measurements in p + p (lower line) and Pb + Pb (upper
line) collisions. The lower (open circles) and upper (full circles) limits are calculated
using Eqs. (12) and (13), respectively.

In Fig. 4 and Fig. 5 the energy dependence of R A for A + A
collisions with different numbers of wounded nucleons NW are
presented. The green boxes are calculated using Eqs. (10) and (11).
The lower and upper dashed lines correspond to the K +/π+ ratios
in p + p and Pb + Pb collisions, respectively. The open and full
circles are calculated using Eqs. (12) and (13), correspondingly.

In Fig. 6 we illustrate with green boxes the system size
dependence (expressed in terms of wounded nucleons) of the
〈K +〉/〈π+〉 ratio at fixed energy of

√
sNN = 7.6 GeV. The up-

per limit (full circles) corresponds to γ A
S = γ Pb

S and the lower
limit (open circles) to γ A

S = γ
p
S . Interestingly, the 〈K +〉/〈π+〉 ratio

becomes approximately independent of the number of wounded
nucleons for NW > 40.

4. Summary

In summary, the K +/π+ ratio in p + p and Pb + Pb colli-
sions is considered within the statistical model. The model takes
into account the net strangeness conservation within the canonical
ensemble formulation and the incomplete total strangeness equi-
libration regulated by the parameter γS . Both effects are assumed
to depend on the system size only. The two model parameters are
Fig. 5. (Color online.) The same as in Fig. 4 but for NW = 20 (upper panel) and
NW = 40 (lower panel).

Fig. 6. (Color online.) The dependence of 〈K +〉/〈π+〉 on the number of wounded
nucleons NW in A + A collisions at fixed energy of

√
sNN = 7.6 GeV are presented

with green boxes. The lower (open circles) and upper (full circles) limits are calcu-
lated using Eqs. (12) and (13), respectively.
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extracted from the existing data in p + p and Pb + Pb collisions.
We present the model estimates for the lower and upper limits
of RA, defined in Eq. (10), for A + A collisions which correspond
to γ A

S = γ
p
S and γ A

S = γ Pb
S , respectively. Assuming a functional

dependence of γ A
S on NW and

√
sNN in the form of Eq. (11) we

managed to make definite predictions for the K +/π+ ratio in col-
lisions of light and intermediate nuclei at the SPS energy region.
We hope that our estimates will be helpful for the NA61 SHINE
program with collisions between light and intermediate size nu-
clei. In particular, the deviations of the future experimental results
from our predictions, if there will be any, will clearly underline
important physics differences between p + p and A + A collisions.
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Appendix A

The GCE partition function for strange quarks and antiquarks
reads

Zgce(T , V , γS ;λ,λ) =
∞∑

Ns=0

∞∑
Ns=0

(γSλz)Ns

Ns!
(γSλz)Ns

Ns!
= exp(γSλz + γSλz) → exp(2γS z), (14)

where the quantity z is the so-called one-particle partition func-
tion

z = V

π2
T m2

s K2

(
ms

T

)
≡ V · ns. (15)

In Eqs. (14), (15), V and T are the system volume and temperature,
respectively, ms is the mass of strange (anti)quark and K2 is the
modified Bessel function. Furthermore, the Boltzmann approxima-
tion is used because the quantum statistics effects are negligible.
The λ and λ in Eq. (14) are auxiliary parameters introduced to cal-
culate Ns and Ns averages:

〈Ns〉gce =
[

∂ ln Zgce

∂λ

]
λ=λ=1

= 〈Ns〉gce

=
[

∂ ln Zgce

∂λ

]
λ=λ=1

= γS z. (16)

The parameter γS regulates the strangeness equilibration [9]. It is
used to fit the average value of the total strangeness measured
by experiments: γS < 1 corresponds to an incomplete strangeness
equilibration, whereas γS = 1 means a complete chemical equilib-
rium.

The GCE partition function (see Eq. (14)) leads to the equal
average values of Ns and Ns . However, the terms with Ns �= Ns
contribute to Zgce . On the other hand, the CE partition function
requires Ns = Ns in each microscopic state of the system:

Zce(T , V , γS ;λ,λ) =
∞∑

Ns=0

∞∑
Ns=0

(γSλz)Ns

Ns!
(γSλz)Ns

Ns! δ(Ns − Ns)

= 1

2π

2π∫
0

dφ exp
[
γS z

(
λeiφ + λe−iφ)]

→ I0(2γS z). (17)
The average numbers of strange quarks and antiquarks become:

〈Ns〉ce =
[

∂ ln Zce

∂λ

]
λ=λ=1

= 〈Ns〉ce

=
[

∂ ln Zce

∂λ

]
λ=λ=1

= γS z · I1(2γS z)

I0(2γS z)
. (18)

The ratio of Bessel functions I1 and I0 in Eq. (18) describes the
suppression effect due to conservation of the net strangeness in
each microscopic state of the CE. The CE suppression factor I1/I0
is a function of γS z. Thus, only this quantity defines the CE effects,
the specific values of ms , T , and V are irrelevant. For γS z � 1 it
follows that I1(2γS z)/I0(2γS z) ∼= 1. Therefore, for large systems,
the CE suppression effects are negligible, i.e., the CE and GCE mul-
tiplicities become identical.
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