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We study the phase structure of QCD at finite temperature within a Polyakov-loop extended quark–meson
model. Such a model describes the chiral as well as the confinement-deconfinement dynamics. In the
present investigation, based on the approach and results put forward in [1–4], both matter and glue
fluctuations are included. We present results for the order parameters as well as some thermodynamic
observables and find very good agreement with recent results from lattice QCD.
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1. Introduction

The study of strongly interacting matter under extreme condi-
tions is a very active field of research. Experiments conducted at
CERN, RHIC and the future FAIR and NICA facilities aim at probing
the phase structure of Quantum Chromodynamics (QCD).

From the theoretical side, calculating the phase structure from
first principles is a hard task which requires the use of non-
perturbative methods. Over the recent years a lot of progress has
been made in this direction. In particular it has been shown that,
apart from lattice QCD, also continuum methods, such as the Func-
tional Renormalisation Group (FRG) [5–12], are well suited to study
the QCD phase diagram. This has been demonstrated in, e.g., [1,3,
13–16] at vanishing as well as finite temperature and chemical po-
tential. Complementary to first-principles studies, low-energy QCD
has been studied successfully within effective models. Especially
the use of Polyakov-loop extended chiral models makes it pos-
sible to study the interrelation of the chiral and deconfinement
phase transitions, e.g., [2,3,17–39]. However, the confinement sec-
tor in these models is not fully constrained, resulting in various
parametrisations of the corresponding order-parameter potential,
the glue or Polyakov-loop potential. Furthermore, the important
unquenching effects on the glue potential are usually not included.
Ideally, this potential is derived from QCD directly, leaving no am-
biguity. This has recently been accomplished with the FRG for
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two-flavour QCD in the chiral limit [1] and for 2 + 1 flavours in
[16] and puts us in the position to make use of these results to
improve the effective description of the gauge sector. In summary,
these effective models can be systematically improved towards full
QCD, using input from the lattice and other first-principles studies,
see, e.g., [1–3,10]. In [3,40] this approach has already been tested
in a mean-field approximation.

In the present work we aim at quantitative results for the ther-
modynamics of QCD. To achieve this goal, we combine the previous
efforts of [2,4] and include quantum and thermal fluctuations with
the FRG in an effective Polyakov-quark–meson (PQM) model with
2 + 1 flavours. Furthermore, we apply the augmentation of the
gauge sector by QCD results as in [3]. In combination, this gives
us a good handle on the chiral and confinement-deconfinement
transitions and thermodynamics of QCD.

This work is structured as follows. In Section 2 we briefly re-
view the FRG approach to QCD and its connection to low-energy
effective models. In particular, we discuss how to augment low-
energy effective models with first-principles results from QCD. In
Section 3 we provide the details of our truncation and present the
resulting flow equation in Section 3.2. Results for the order pa-
rameters and thermodynamic observables for 2 + 1 flavours are
presented in Section 4.1 and Section 4.3, respectively. Section 4.2
contains our prediction for the thermodynamics in the two-flavour
case. Concluding remarks and a summary are presented in Sec-
tion 5. We discuss the dependence of our results on various pa-
rameters in Appendix A.
 Funded by SCOAP3.
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Fig. 1. Partially hadronised version of the FRG flow for QCD. The loops denote the
gluon, ghost, quark and meson contributions, respectively. The crosses mark the FRG
regulator term.

2. Functional renormalisation group approach
to low-energy QCD

The mapping of QCD degrees of freedom to low-energy effective
models is discussed in depth in, e.g., [1–3,10]. Here, we only briefly
recapitulate the main points.

Fig. 1 shows the pictorial representation of the FRG flow of
QCD, where the first two loops represent the gluon and ghost con-
tributions, respectively, whereas the third loop denotes the quark
degrees of freedom. The fourth loop corresponds to mesonic de-
grees of freedom which have been introduced via the dynamical
hadronisation technique [7,41–43].

It is well established that the ghost-gluon sector decouples
from the matter dynamics below the chiral and deconfinement
temperatures, see, e.g., [44]. In terms of the flow equation, Fig. 1,
this means that in this regime we are only left with the dynamical
matter sector given by the last two loops, explicitly

∂t�Γk[ Ā;φ] = −Tr
(
Gq[ Ā;φ]∂t Rq

)
+ 1

2
Tr

(
G H [ Ā;φ]∂t R H

)
. (1)

The full field content is collected in φ = (a, c, c̄,q, q̄, H). In the
non-perturbative domain of QCD the spectrum is gapped and only
light constituent quarks (q, q̄) and the corresponding hadrons (H)
do not decouple, whereas the ghost (c, c̄) and gluon (A = Ā + a)
fields, as well as the heavy matter sector act as spectators at low
densities. Here we have decomposed the gauge fields into a con-
stant background Ā and a fluctuating part a.

The effective action of full QCD can then be written as

Γk = βVV [A0] + �Γk[ Ā0, φ], (2)

where V is the spatial volume and β = 1/T the inverse tem-
perature. In Eq. (2), the first term denotes the QCD glue poten-
tial, encoding the ghost-gluon dynamics in the presence of matter
fields. The second term contains the matter contribution coupled
to a background gluon field Ā0. This contribution is well described
in terms of low-energy chiral models, such as the Nambu–Jona-
Lasinio (NJL) and quark–meson (QM) models, coupled to Polyakov
loops. In this work we make use of a Polyakov-quark–meson (PQM)
truncation [25,29,31] for the matter sector at low energies. It is
important to notice that the glue potential V [A0] in full QCD is
different from its Yang–Mills counterpart due to unquenching ef-
fects, see, e.g., the discussion in [2,3]. The glue potential used in
effective models, on the other hand, is usually fitted to pure Yang–
Mills lattice results [18,21,23,27,45,46].

To approximate unquenching effects we formulate the glue po-
tential in terms of the reduced temperature

t = T − Tcr

Tcr
, (3)

and write V YM/glue[A0; t]. To be more precise, there are also two
reduced temperatures, defined in terms of the critical temperatures
Tcr = T YM

cr and Tcr = T glue
cr . One important effect of dynamical mat-

ter fields is to lower the scale T glue
cr as compared to T YM

cr , which
can be used to model the unquenching effects [25,29]. In the
present work we remedy the scale mismatch with the help of first-
principles QCD results, see [3] for a detailed discussion. There, the
FRG results for the glue potential in YM theory [13,15,47] and QCD
with two massless quark flavours [1] have been compared, see also
[16] for results with 2 + 1 flavours. It was found that, apart from
a rescaling, the shape of the glue potential in both theories is very
similar close to Tcr, see Figs. 5 and 7 in [3]. The simple linear re-
lation

tYM(tglue) ≈ 0.57tglue, (4)

is already capable of connecting the scales of both theories. In this
manner, a potential V glue[Φ,Φ̄; t] = V YM[Φ(A0), Φ̄(A0); tYM(t)] is
defined, where Φ,Φ̄ denote the Polyakov loop and its conjugate.
Note that the relation Eq. (4) holds only for small and moderate
temperatures, as the slope saturates at high scales, where the per-
turbative limit is reached.

In the following, Eq. (4) is used to account for the scale mis-
match introduced by the fit of the PQM glue potential to YM lattice
data. The only quantity left to fix is then the critical temperature
of the glue sector, T glue

cr . This value can in principle also be de-
duced from the QCD glue potential, see [1], and yields T glue

cr (N f =
2) = 203 MeV. Since the absolute scale in [1] was not computed
in a chiral extrapolation of the theory with physical quark masses,
we consider T glue

cr as an open parameter in the range

180 MeV � T glue
cr � T YM

cr = 270 MeV, (5)

constrained by the estimates in [25,29].

3. Polyakov-quark–meson model

In the following we provide some details of the Polyakov-
quark–meson (PQM) model [25,29,31] and discuss the correspond-
ing FRG flow equation at leading order in an expansion in deriva-
tives.

The chiral sector of this model is given by the well-known
quark–meson model [48–52]. The integration of the gluonic de-
grees of freedom results in a potential for the Polyakov-loops
(Φ(A0), Φ̄(A0)). They are coupled to the matter sector via the
quark fields.

3.1. Setup

The Euclidean Lagrangian for the PQM model reads

LPQM = q̄
(
/D + h T a(σa + iγ5πa) + μγ0

)
q

+ Lm + V glue(Φ, Φ̄; t), (6)

with a flavour-blind Yukawa coupling h and the covariant deriva-
tive /D(Φ) = γμ∂μ − igγ0 A0(Φ) coupling the quark fields to the
Polyakov loop. In this work we assume isospin symmetry in the
light sector and use a flavour-blind chemical potential μ. The
mesonic Lagrangian is given by [4,53,54]

Lm = Tr
(
∂μΣ∂μΣ†) + U (ρ1, ρ̃2) + cξ

− Tr
[
C
(
Σ + Σ†)]. (7)

Here, the field Σ is a complex (3 × 3)-matrix

Σ = Σa T a = (σa + iπa)T a, (8)

where σa denotes the scalar and πa the pseudoscalar meson
nonets and the Hermitian generators of the flavour U (3) symmetry
are defined via the Gell-Mann matrices as T a = λa/2. It is advan-
tageous to rotate into the non-strange–strange basis via
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(
σx

σy

)
= 1√

3

(√
2 1

1 −√
2

)(
σ0

σ8

)
, (9)

with σx the non-strange and σy the strange condensate. Then, the
explicit symmetry breaking term consistent with isospin symmetry
takes the simple form Tr[C(Σ + Σ†)] → cxσx + c yσy , with cx, c y

governing the bare light and strange quark masses, respectively.
The meson potential U can be expressed via the chiral invari-

ants ρi = Tr[(ΣΣ†)i], i = 1, . . . , N f [55]. In the (2 + 1)-flavour
approximation, where σ3 = 0, ρ3 can be expressed in terms of the
other invariants and we use the set {ρ1, ρ̃2, ξ} with

ρ1 = 1

2

(
σ 2

x + σ 2
y

)
,

ρ̃2 = ρ2 − 1

3
ρ2

1 = 1

24

(
σ 2

x − 2σ 2
y

)2
,

ξ = det(Σ) + det
(
Σ†) = σ 2

x σy

2
√

2
. (10)

Here, ξ represents the ’t Hooft determinant [56,57], rewritten in
the mesonic language [58,59], and as such implements the chi-
ral U A(1) anomaly. The strength of its coupling, c, determines the
mass splitting between the η, η′ and pions, see, e.g., [4,54,60] for
a detailed discussion.

Furthermore, the quasi-particle energies of the quarks and

mesons are given by Ei =
√

k2 + m2
i , i ∈ {l, s, j} with j ∈ {σ ,a0, κ,

f0,π, K , η,η′}. The masses themselves are defined as

ml = h
〈σx〉

2
,

ms = h
〈σy〉√

2
, (11)

for the light and strange quarks, respectively, and{
m2

j

} = eig
{

HΣ

(
U (ρ1, ρ̃2) + cξ

)}
(12)

for the mesons. Here, HΣ(·) denotes the Hessian w.r.t. Σ and eig{.}
denotes the set of eigenvalues of the given operator. For further
details on this model we refer the reader to [4,53,54]. The two-
flavour case considered in Section 4.2 is obtained by omitting the
strange quark sector as well as all mesons except the sigma and
pions.

What is now left is to specify the glue potential V glue. We have
argued above that we can use the YM-based parametrisations U
of the glue potential and modify the scale according to QCD FRG
results, Eq. (4). Several parametrisations of the Polyakov-loop po-
tential have been put forward in the recent years [18,21,23,27,36,
45,46]. In the main text we only show results for a polynomial
version, introduced in [18,21]

Upoly(Φ, Φ̄; t)

T 4
= −b2(t)

2
ΦΦ̄ − b3

6

(
Φ3 + Φ̄3)

+ b4

4
(ΦΦ̄)2. (13)

The temperature-dependent coefficient, expressed in terms of the
reduced temperature, is given by

b2(t) = a0 + a1

1 + t
+ a2

(1 + t)2
+ a3

(1 + t)3
. (14)

The parameters ai, bi of Eqs. (13) and (14) have been determined
in [21] by a fit to pure Yang–Mills lattice results to be

a0 = 6.75, a1 = −1.95,

a2 = 2.625, a3 = −7.44 (15)
and

b3 = 0.75, b4 = 7.5. (16)

We use the lattice result for the pressure to fix the open parameter
T glue

cr = 210 MeV in U(Φ, Φ̄; t). A discussion of the dependence of
our results on this choice and on the parametrisation of U can be
found in Appendix A.

3.2. Fluctuations in the PQM model

In the present work we go beyond the mean-field approxima-
tion used in [3] and apply the FRG to include quantum and thermal
fluctuations of the PQM model. This provides us with a more real-
istic description of the chiral and deconfinement phase transitions.
In fact it has been shown previously, see, e.g., [52], that fluctua-
tions smear out the phase transition, yielding smoother transitions
that are in better agreement with lattice results.

The flow equation for the two-flavour PQM model has been de-
rived previously in [29,31] while the flow of the (2 + 1)-flavour
quark–meson model is discussed in depth in [4]. It is then straight-
forward to deduce the flow equation of the full (2+1)-flavour PQM
model

∂tΩk = k5

12π2

{2N2
f∑

i=1

1

Ei
coth

(
Ei

2T

)

− 8Nc

El

[
1 − Nl(T ,μ;Φ,Φ̄) − Nl̄(T ,μ;Φ,Φ̄)

]

− 4Nc

Es

[
1 − Ns(T ,μ;Φ,Φ̄) − Ns̄(T ,μ;Φ,Φ̄)

]}
. (17)

The Polyakov-loop extended quark/antiquark occupation numbers
are given by

Nq(T ,μ;Φ,Φ̄)

= 1 + 2Φ̄e(Eq−μ)/T + Φe2(Eq−μ)/T

1 + 3Φ̄e(Eq−μ)/T + 3Φe2(Eq−μ)/T + e3(Eq−μ)/T
, (18)

and Nq̄(T ,μ;Φ,Φ̄) ≡ Nq(T ,−μ; Φ̄,Φ) for q = l, s.
Note that we restrict ourselves to leading order in a deriva-

tive expansion and neglect the running of any couplings involving
quark interactions. The RG running of the mesonic couplings, on
the other hand, is encoded in the scale-dependent effective poten-
tial Ωk .

In order to solve the flow Eq. (17), we have to specify an ini-
tial potential at the cutoff scale Λ. In this work we have chosen
Λ = 1 GeV, in accordance with our interpretation of the quark–
meson model as a low-energy effective description. We keep only
renormalisable terms in the mesonic potential at the cutoff scale
and restrict ourselves to only two chiral invariants ρ1, ρ̃2, cf. the
discussion in [4]

UΛ(ρ1, ρ̃2) = a10ρ1 + a01ρ̃2 + a20

2
ρ2

1 . (19)

The parameters are fixed to a10 = (972.63 MeV)2,a01 = 50,a20 =
2.5 which, together with the choices h = 6.5 for the Yukawa
coupling, c = −4807.84 MeV for the ’t Hooft–determinant cou-
pling and explicit breaking strengths cx = (120.73 MeV)3 and
c y = (336.41 MeV)3, reproduces the physical spectrum as well as
the pion and kaon decay constants in the vacuum [61]. In partic-
ular, we have chosen a sigma-meson mass of mσ = 400 MeV. In
Appendix A.3 we discuss the dependence of our results on this
choice.
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At temperatures 2π T � Λ, thermal fluctuations become impor-
tant also at scales above the cutoff k > Λ. These thermal fluctua-
tions are, however, not taken into account in the solution to the
flow Eq. (17) with finite cutoff Λ. Therefore, the initial potential
ΩΛ is not fully independent of temperature, which is quantita-
tively important in the region 2π T � Λ. On the other hand, this
temperature dependence of the initial potential ΩΛ is also gov-
erned by the flow Eq. (17) and can be obtained by integrating the
vacuum flow from the cutoff Λ up to a scale Λ̄ � 2π T and sub-
sequently integrating the finite temperature flow down to Λ again

�ΩΛ(T ,μ) =
Λ̄∫

Λ

dk

k

(
∂tΩk(T ,μ) − ∂tΩk(0,0)

)
. (20)

This procedure is equivalent to a change of the initial scale from Λ

to Λ̄, while keeping the infrared physics fixed, i.e. a change in the
renormalisation scale. However, as we expect mesonic fluctuations
to be less important at scales k > Λ = 1 GeV, we approximate the
difference by the purely fermionic contribution to Eq. (17). Since
the fermionic contribution to the flow is independent of Ωk , the
approximate temperature dependence of ΩΛ is given by the sim-
ple integral [29,62]

�ΩΛ =
∞∫

Λ

dk
k4

12π2

{
8Nc

El

[
Nl(T ,μ;Φ,Φ̄) + Nl̄(T ,μ;Φ,Φ̄)

]

+ 4Nc

Es

[
Ns(T ,μ;Φ,Φ̄) + Ns̄(T ,μ;Φ,Φ̄)

]}
. (21)

Here, we have chosen Λ̄ = ∞, since the fermionic difference flow
is finite. Finally we obtain

ΩΛ(T ,μ;σx,σy,Φ, Φ̄) = UΛ(ρ1, ρ̃2) + U(Φ, Φ̄; t)

+ �ΩΛ(T ,μ;σx,σy,Φ, Φ̄), (22)

for the initial potential at the cutoff scale Λ, including fermionic
temperature corrections.

4. Results

4.1. QCD crossover

From the solution to the flow Eq. (17) we can determine the
phase structure and thermodynamics of the PQM model. For the
time being, we restrict ourselves to vanishing chemical potential.
This has the advantage that in this limit the Polyakov loop and its
conjugate coincide, Φ̄ = Φ . Hence, the numerical effort to solve
the equations of motion (EoM)

∂Ωk→0

∂σx

∣∣∣∣
χ0

= ∂Ωk→0

∂σy

∣∣∣∣
χ0

= ∂Ωk→0

∂Φ

∣∣∣∣
χ0

= 0, (23)

which determine the order parameters χ0 = (σx, σy,Φ) for given
temperature and chemical potential, is drastically reduced. A dis-
cussion of the numerical method used to solve this multi-dimen-
sional system of partial differential equations can be found in
[4,64].

In Fig. 2 our result for the subtracted chiral condensate,

Δl,s =
(σx − cx

c y
σy)T

(σx − cx
c y

σy)T =0
(24)

is shown in comparison with the lattice result by the Wuppertal–
Budapest Collaboration [63]. Due to the finite quark masses, we
Fig. 2. Temperature dependence of the subtracted chiral condensate: the FRG curve
is compared to the lattice result by the Wuppertal–Budapest Collaboration [63].

find a smooth crossover and there is no exact definition of the
transition temperature. Nevertheless, it is customary to associate a
transition temperature with the peak position of the temperature
derivative of the order parameter, dΔl,s/dT . Using this definition,
we obtain Tχ = 172 MeV for the chiral crossover temperature, and
similarly Td = 163 MeV for the Polyakov-loop related transition via
dΦ/dT . Both values agree roughly with the transition region on
the lattice 147–165 MeV [63] and the pseudocritical temperatures
Tχ = 157 ± 3 MeV [63] and Tχ = 154 ± 9 MeV [67].

Note that, apart from a shift along the temperature axis,the
slope of our FRG result for the subtracted condensate coincides
with the lattice one, cf. Figs. 2 and 3. This indicates that the rela-
tive strength of the relevant dynamics is included properly. How-
ever, there is a difference in the absolute scale, Tχ , in our calcu-
lation and the lattice. This is to some extent related to our choice
of the sigma meson mass. From experiment it is known that the σ
( f0(500)) is a broad resonance, (400–550) − i(200–350) MeV [68].
It has been shown previously, see, e.g., [54], that a lower sigma
mass results in a lower chiral transition temperature, while the
slope of the condensate is only changed marginally. For the curve
shown in Fig. 2 the value mσ = 400 MeV has been used. We have
checked that for lower values, entailing stronger mesonic fluctua-
tions, the result is shifted even closer to the lattice one. However,
the value of mσ = 400 MeV is already at the lower experimental
boundary, hence we refrain from using a lower mass in the follow-
ing. The impact of this mass parameter on thermodynamics is also
discussed in Appendix A.3.

The axial anomaly similarly influences the transition. It has
been demonstrated in [4] that the transition temperature is re-
duced for vanishing anomaly coupling, c = 0. In fact, with our
choice of mσ = 400 MeV and c = 0, the resulting condensate lies
almost exactly on top of the lattice points. Note that in this case
the η′ meson would be an additional pseudo-Goldstone boson,
again leading to enhanced fluctuations. However, this choice is
unphysical and results in, e.g., a too high pressure at low tem-
peratures. The use of a temperature-dependent anomaly coupling,
c(T ), is expected to resolve this issue. In summary, we have found
that for a correct description of the absolute scale, further mesonic
fluctuations need to be included. Within our FRG treatment this
would correspond to higher mesonic operators in our cutoff poten-
tial, ΩΛ . In full QCD such contributions are dynamically generated
at higher scales, but we have omitted them in the present work
since we restrict our cutoff action to contain renormalisable oper-
ators only.

We conclude that while the absolute scale, Tχ , differs from
the lattice one by about 10% in our FRG calculation, the relative
strength of the relevant dynamics of the transition is captured
well. This is due to the inclusion of unquenching effects as well as
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Fig. 3. Temperature dependence of the subtracted chiral condensate (left) and Polyakov loop (right). The FRG result is compared to the lattice result of the Wuppertal–Budapest
Collaboration [63], as well as to the mean-field result. See text for comments on the Polyakov loop in continuum approaches.
matter fluctuations. We postpone the improvement of our scale-
setting procedure to future work and concentrate on the discus-
sion of the dynamics of the transition in the following. To this
end, all results are expressed in terms of the reduced tempera-
ture t = (T − Tχ )/Tχ . This choice allows us to compare the overall
shape – and thereby the proper inclusion of the relevant dynamics
– of the observables, while a mismatch of the critical temperatures
is scaled out.

Fig. 3 shows the subtracted chiral condensate (left) as well as
the Polyakov loop (right) in terms of the reduced temperature. As
argued above, we observe excellent agreement between the FRG
(solid line) and lattice (symbols) result for the chiral condensate,
especially at temperatures below Tχ . In turn, for temperatures
above the transition the present model overestimates the impor-
tance of mesonic fluctuations, and the FRG result for the order
parameter is above the lattice result. The use of dynamical hadro-
nisation, [7,41–43], should compensate this effect.

For comparison, in Fig. 3 we also show results from a PQM
mean-field calculation without (“MF”, dotted line) and with
(“eMF”, dashed line) the fermionic vacuum loop contribution [32,
69–71]. Note that we fix the remaining parameters of the model,
mσ and T glue

cr , by comparing the pressure to the lattice pressure,
cf. discussion in Appendix A.2. In this manner, the effect of fluctu-
ations is partially included in the model parameters. This results in
different parameter values for the mean-field and FRG calculations.
We use mσ = 500 MeV and T glue

cr = 210 MeV for the standard
mean-field calculation, as discussed in [3,40] and mσ = 400 MeV,
T glue

cr = 260 MeV for the extended mean-field calculation. However,
it is clear from, e.g., Fig. 3, that a modification of the parameters
is not sufficient to describe the full dynamics of the transition. The
inclusion of fluctuations, as done in our FRG setup, is crucial to
reproduce the slope of the order parameter as well as thermody-
namic observables correctly.

In fact, the pseudocritical temperature of the standard mean-
field approximation is closer to the lattice one than our FRG re-
sult, Tχ = Td = 158 MeV. However, this approach neglects mesonic
fluctuations, and the transition comes out too steep, see Fig. 3. In-
cluding the fermionic vacuum fluctuations yields too high pseudo-
critical temperatures, Tχ = 181 MeV and Td = 173 MeV. Compared
to the standard MF result, on the other hand, the slope of the con-
densate is reduced.

A word of caution needs to be added concerning the Polyakov
loop, Fig. 3 (right). It is well known that the definitions of this
quantity used on the lattice, 〈Φ〉, and the present continuum for-
mulation, Φ[〈A0〉], differ and a direct comparison is not possible.
In view of this, we do not expect agreement of these two ob-
servables. However, it can be shown that the continuum definition
serves as an upper bound for the lattice one, Φ[〈A0〉] � 〈Φ〉, up
to renormalisation issues, cf. [13,72]. Hence, an approximate co-
incidence of the respective crossover regions is still anticipated.
Indeed, we find that our transition temperature, defined by the
inflection point of the Polyakov loop, roughly agrees with the tran-
sition region found on the lattice.

4.2. Thermodynamics: N f = 2

Within the FRG framework, the full quantum effective potential
is defined by the effective average potential Ωk in the infrared,
evaluated on the solution of the EoM,

Ω(T ,μ) = Ωk→0(T ,μ)|χ0 . (25)

The pressure of the system is then given by the negative of the
effective potential, normalised in the vacuum

P = −Ω(T ,μ) + Ω(0,0), (26)

and serves as a thermodynamic potential, from which we can de-
duce other bulk thermodynamic quantities in the standard way. In
particular, we are interested in the free energy density

ε = −P + T s +
∑

f

μ f n f , (27)

with the entropy density s = ∂ P/∂T and the quark number densi-
ties n f = ∂ P/∂μ f for f = u,d, s. Moreover, we consider the inter-
action measure

Δ = ε − 3P , (28)

which quantifies the deviation from the equation of state of an
ideal gas, ε = 3P .

We compare these quantities to results of the HotQCD Collabo-
ration, [65], using the HISQ action and temporal lattice extents of
Nτ = 8,12 as well as to the continuum extrapolated results of the
Wuppertal–Budapest Collaboration [66].

We start our discussion of thermodynamic quantities by study-
ing the two-flavour case. The flow equation of the two-flavour
PQM model has previously been discussed in [29,31]. Here, we use
the parameter set given in [2], with mσ = 540 MeV. To our knowl-
edge, there are no recent two-flavour lattice results for thermo-
dynamics available. This entails that we cannot fix the remaining
parameter, T glue

cr , to, e.g., the lattice pressure. Instead we have cho-
sen the same value as for 2 + 1 flavours, T glue

cr = 210 MeV, see
also our discussion in Section 4.3 below. This value is close to the
phenomenological HTL estimate, T glue

cr (N f = 2) = 208 MeV put for-

ward in [25,29] and the FRG estimate, T glue
cr = 203 MeV of [1].

Furthermore, this choice results in almost degenerate chiral and
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Fig. 4. FRG result for the pressure (left) and interaction measure (right) for two quark flavours, compared to the (2 + 1)-flavour lattice results [65,66]. See text for details.

Fig. 5. (2 + 1)-flavour FRG results for the pressure (left) and interaction measure (right) compared to the lattice, [65,66], and mean-field results. See text for details. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
Polyakov-loop critical temperatures. Having fixed all parameters,
the results of the present section serve as a prediction for the ther-
modynamics of two-flavour QCD.

In Fig. 4 we show the pressure (left) and interaction measure
(right), both normalised by T 4. For comparison we also show the
lattice results for 2 + 1 flavours. Despite the fact that we only
consider two quark flavours here, the overall agreement is rather
good. At low temperatures, the lightest mesonic degrees of free-
dom, the pions, are expected to dominate the pressure. These are
already included in the two-flavour model. At high temperatures,
on the other hand, the two-flavour FRG result underestimates the
(2 + 1)-flavour lattice value. This is expected due to the addi-
tional third quark species contributing to the lattice pressure at
high T .

The right panel of Fig. 4 shows the interaction measure. Devia-
tions from the lattice are more pronounced in this quantity due to
the presence of derivatives in its definition. Of course we do not
expect perfect agreement between our two-flavour computation
and the N f = 2 + 1 lattice result. However, the strongest modifi-
cations are expected around the phase transition, where there are
more light degrees of freedom contributing to the thermodynam-
ics for 2 + 1 flavours. In the low and high temperature regimes
the quarks and mesons are heavy, respectively, and hence con-
tribute less to the thermodynamic observables. This explains the
surprisingly good agreement between the two- and three-flavour
results. In fact, we find reasonable agreement with the lattice data
below the phase transition, t � 0. While the peak height is un-
derestimated, the increase in Δ/T 4 around Tc is similar to the
lattice. Above Tc , the two-flavour curve lies below the lattice re-
sult.
4.3. Thermodynamics: N f = 2 + 1

Next, we turn to the (2 + 1)-flavour model. Here, we can di-
rectly compare to the available (2 + 1)-flavour lattice results and
fix our open parameter, T glue

cr by comparison of the pressure. Fig. 5
(left, solid line) then shows our result for the pressure, normalised
by T 4, which agrees very well with the lattice result in the contin-
uum limit. Near t = 0 this is a consequence of our choice of T glue

cr .
The nice agreement with lattice data away from Tχ , on the other
hand, indicates that we have included all relevant degrees of free-
dom, especially below the transition temperature. The grey band
gives an error estimate of our FRG result, which is obtained from
the change of the threshold functions with respect to the temper-
ature, at vanishing mass at the ultraviolet cutoff Λ. This results
in

P ± �P (Λ, T ) = P

(
1 ± 2

eΛ/T − 1

)
. (29)

The propagation of uncertainty in the interaction measure as a de-
rived quantity has been taken into account via

d(P ± �P (Λ, T ))

dT
= dP

dT
± d(P 2

eΛ/T −1
)

dT
. (30)

Also shown in Fig. 5 are the mean-field results. To achieve a
better description of the thermodynamics at low T , we have aug-
mented the MF and eMF results by the contribution of a thermal
pion gas, where the pion in-medium mass is determined by the
mean-field potential. Our two flavour FRG calculation, see Sec-
tion 4.2, confirms that these are the relevant degrees of freedom
below the phase transition. To highlight the impact of this pion
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contribution, we also show results for the pure eMF calculation in
Fig. 5 (yellow, solid line). Strictly speaking, this contribution picks
up a field-dependence via the in-medium pion mass, which would
modify the equations of motion. Here, however, we consider it as
a correction to the thermodynamic potential only, and hence ne-
glect its backcoupling on the equations of motion. For consistency,
we also neglect all terms containing field derivatives, ∂ Pπ/∂φi , in
higher thermodynamic observables.

While the pressure of the mean-field approximation including
pions (dotted line) lies above the FRG and lattice ones, the in-
clusion of the vacuum term (dashed line) results in an additional
increase in P at low t and a decrease at high t . As expected, the
omission of the pion contribution in the eMF calculation (solid,
yellow line) yields a pressure that is too low, especially below the
phase transition, where pions are expected to dominate the ther-
modynamics.

The interaction measure is displayed in the right panel of Fig. 5.
Similarly to the other observables, also the interaction measure is
too steep within the standard mean-field approximation. Including
the vacuum term, the transition is smoothened out and already
agrees quite well with the Wuppertal–Budapest results. Turning
to our FRG result (red, solid curve), we find remarkably good
agreement with the continuum extrapolated lattice result from the
Wuppertal–Budapest Collaboration. There is a stronger deviation
from the HotQCD data, but we attribute this to the lacking contin-
uum limit of their data. In fact it is observed that the peak height
of Δ/T 4 goes down as the continuum is approached, cf. [65,66].
Although not shown explicitly, we want to stress that the drastic
reduction of the peak height in the interaction measure towards
the lattice results is due the inclusion of tYM(tglue) in both the FRG
and mean-field approaches, see also [3,40].

In comparison to our two-flavour result, we see that the in-
clusion of the heavier strange quark and especially the full scalar
and pseudoscalar meson nonets increases the peak height of the
interaction measure and puts our curve right on top of the lat-
tice result. At high temperatures we find that Δ/T 4 decreases too
slowly in our calculation. However, this is the region where our
scale matching procedure, Eq. (4), ceases to be valid and correc-
tions are expected.

5. Conclusion and outlook

We have investigated order parameters and thermodynamic ob-
servables of two and 2 + 1 flavour QCD within effective Polyakov-
quark–meson models. This type of models can be systematically
related to full QCD, as, e.g., discussed in [2,3]. Thus far, the glue
sector of these models is badly constrained. One often resorts to a
Ginzburg–Landau-like ansatz for the glue potential obtained from
fits to lattice Yang–Mills theory.

Recently, first-principles continuum results for the unquenched
glue potentials have become available. These have been used to
augment the glue sector considerably in a mean-field approach to
the PQM model [3]. It was shown that by a simple rescaling of
the temperature in the standard Yang–Mills based Polyakov-loop
potentials one can already capture the essential glue dynamics of
the unquenched system.

In the present work, we have extended the previous investi-
gation [3] by additionally including thermal and quantum fluctu-
ations via the functional renormalisation group. A comparison to
lattice QCD simulations with 2 + 1 flavours shows excellent agree-
ment up to temperatures of approximately 1.3 times the critical
temperature. Therefore, we conclude that most of the relevant dy-
namics for the QCD crossover can already be captured within the
PQM model. Additionally, we have put forward a prediction for the
pressure and interaction measure for two quark flavours, where no
recent lattice results with physical masses are available.

The present work serves as a benchmark of our system at van-
ishing chemical potential, which allows us to conclude that we
have all relevant fluctuations included. Since our approach is not
restricted to the zero chemical potential region we can now aim at
the full phase diagram, μ � 0.
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Appendix A. Parameter dependence

In this appendix we estimate the parameter dependence of our
results. In particular, we discuss the influence of the Polyakov-loop
potential chosen, our choice of the glue critical temperature T glue

cr
and the sigma-meson mass.

A.1. Polyakov-loop potential

In the Polyakov-loop extended chiral models one is free to
choose a parametrisation of the Polyakov-loop potential. It is cus-
tomary to employ a Landau–Ginzburg-like ansatz and fit the pa-
rameters to available lattice data. However, in this manner only the
region close to the minimum is constrained, not the overall shape.
This is the reason why several different functional forms have been
chosen in the past. In practise, when the Polyakov-loop is coupled
to the matter sector, regions away from the minimum are probed
and one should not expect to find exactly the same results with
different versions of the potential.

In the main text we have presented results for a polynomial
parametrisation [21]. Here, we want to compare these results to
those using a logarithmic version of the potential [23]

Ulog(Φ, Φ̄; t)

T 4

= −1

2
a(t)Φ̄Φ + b(t) ln

[
1 − 6Φ̄Φ + 4

(
Φ3 + Φ̄3) − 3(Φ̄Φ)2],

(31)

In this variant, the logarithmic form arises from the integration of
the Haar measure and constrains the Polyakov-loop variables Φ, Φ̄

to values smaller than one.
Furthermore, we show results with the parametrisation recently

proposed in [46]

Ulog-II(Φ, Φ̄; t)

T 4

= Ulog(Φ, Φ̄; t)

T 4
+ c(t)

2

(
Φ3 + Φ̄3) + d(t)(Φ̄Φ)2. (32)

The parameters of Eqs. (31) and (32) have been fixed in [23] and
[46], respectively.

Table 1 summarises our FRG results for the transition tem-
peratures using the initial values given in Section 3.2 and these
different Polyakov-loop potentials. Using the polynomial Polyakov-
loop potential, the chiral and deconfinement transitions lie closer
to each other than with the logarithmic ones.
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Fig. 6. (2 + 1)-flavour FRG results for the pressure (left) and interaction measure (right) with polynomial (solid, red) [21], logarithmic (dashed, blue) [23] and enhanced
logarithmic (dotted, green) [46] Polyakov-loop potential with T glue

cr = 210 MeV. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Fig. 7. Pressure for different values of T glue
cr (left) and interaction measure for different choices of mσ with the corresponding optimal T glue

cr (right).
Table 1
Chiral and deconfinement crossover temperatures for differ-
ent parametrisations of the Polyakov-loop potential, all with
T glue

cr = 210 MeV.

Tχ [MeV] Td [MeV]

poly 172 163
log 170 146
log-II 172 156

In Fig. 6, the pressure (left) and interaction measure (right) are
shown for N f = 2 + 1 and the three parametrisations. The pres-
sure for the two logarithmic versions lies below the lattice result at
low temperature, while the overall agreement is quite good also in
this case. In the interaction measure, however, differences are seen
more clearly. The trace anomaly resulting from the standard log-
arithmic potential rises much steeper than the one obtained with
the polynomial version. The peak height, on the other hand, agrees
well with the results of the Wuppertal–Budapest Collaboration, in-
dependent of the parametrisation of the potential.

A.2. Glue critical temperature

Next, we discuss the impact of the glue critical temperature,
T glue

cr . In the main text we have chosen T glue
cr = 210 MeV for 2 + 1

flavours with physical anomaly strength. This value has been ob-
tained by a comparison of the resulting pressure to the lattice
results of the Wuppertal–Budapest Collaboration. Fig. 7 (left) sum-
marises the dependence of the pressure on T glue

cr . In terms of the
reduced temperature t , the effect of the glue critical temperature
is to stretch the transition region, i.e. the transition becomes less
steep for larger T glue

cr .
Table 2
Chiral crossover temperatures for different values of the
sigma-meson mass. In every calculation, the corresponding
optimal value for T glue

cr as obtained from fixing the pressure
has been used.

mσ [MeV] Tχ [MeV] T glue
cr [MeV]

355 163 200
400 172 210
500 190 230

A.3. Sigma-meson mass

The sigma meson, f0(500) is a rather broad resonance, (400 −
550) − i(200 − 350) MeV, which leaves us some freedom to fix
this mass in our setup. The choice of this mass influences, e.g.,
the position of the phase transition and the location of a possible
critical endpoint in the phase diagram [54]. For 2 + 1 flavours we
have fixed mσ = 400 MeV, see also our discussion in Section 4.1.
In Table 2 we show the critical temperatures for different choices
of the sigma-meson mass. Although the absolute value Tχ is quite
susceptible to mσ , we find that the thermodynamic observables in
terms of the reduced temperature are not. This is demonstrated
for the interaction measure in the right panel of Fig. 7. We have to
stress, however, that this mσ independence is partially due to the
fact that a change in the sigma-meson mass can be compensated
to some degree by a change in T glue

cr , see also [3,40].
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