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Abstract

Common systemic risk measures focus on the instantaneous occurrence of triggering and
systemic events. However, systemic events may also occur with a time-lag to the triggering
event. To study this contagion period and the resulting persistence of institutions’ systemic risk
we develop and employ the Conditional Shortfall Probability (CoSP), which is the likelihood
that a systemic market event occurs with a specific time-lag to the triggering event. Based on
CoSP we propose two aggregate systemic risk measures, namely the Aggregate Excess CoSP
and the CoSP-weighted time-lag, that reflect the systemic risk aggregated over time and average
time-lag of an institution’s triggering event, respectively.

Our empirical results show that 15% of the financial companies in our sample are signifi-
cantly systemically important with respect to the financial sector, while 27% of the financial
companies are significantly systemically important with respect to the American non-financial
sector. Still, the aggregate systemic risk of systemically important institutions is larger with
respect to the financial market than with respect to non-financial markets. Moreover, the aggre-
gate systemic risk of insurance companies is similar to the systemic risk of banks, while insurers
are also exposed to the largest aggregate systemic risk among the financial sector.
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1 Introduction

According to the Committee on Capital Markets Regulation (2009, p. ES-3) systemic risk is

”the risk of collapse of an entire system or entire market, exacerbated by links and interdepen-

dencies, where the failure of a single entity or cluster of entities can cause a cascading failure”.

This definition was also adopted by the Financial Stability Board (2011, p. 5) in the sense, that an

institution or market is considered as being systemic if its ”failure or malfunction causes widespread

distress, either as a direct impact or as a trigger for broader contagion”. Thus, systemic risk is

usually connoted with the risk of contagion and spillover effects.1 These effects may result from

direct linkages between firms, i.e. counterparty contagion. Additionally, contagion may evolve

from indirect linkages due to the exposure to common risk factors (see Chan-Lau et al. (2009)),

for example asset prices, or (over-)reactions of market participants like fire sales of securities, bank

runs, or insurance runs, in particular through mass surrenders in life insurance.2

As Harrington (2009) points out, contagious reactions typically evolve over time and, thus,

responses to shocks may be delayed: Since systemic distress is a result of triggering events that

cause (the lack of) cash-flows - or the information about (the lack of) cash-flows -, systemic risk

migrates from institution to institution through their interconnectedness.3 Still, the efficient mar-

kets hypothesis seems to provide a reason against the occurrence of delayed responses to shocks: In

(semi-)strongly efficient markets, all (publicly available) information are reflected in current prices

(see Fama (1969)). Thus, markets would react immediately to the information about shock events.

However, not all information about the (own) exposure to shock events may be available immedi-

ately, such that a proper market reaction may be delayed. This idea is similarly to the concept of

1In this article we solely focus on contagion and spillover effects of adverse effects, which is in contrast to other
articles incorporating both positive and negative spillovers (for example see International Monetary Fund (2016) and
references therein).

2Harrington (2009) finds that the economics literature mainly distinguishes between four sources of systemic risk:
asset price contagion, counterparty contagion, contagion due to uncertainty and opacity of information, and irrational
contagion. Another classification is given by Arregui et al. (2013), who differentiate between contagion caused by
direct bilateral exposure across institutions and contagion caused by indirect exposure to common risk factors. Vital
features of systemic crises are also described by Marshall (1998).

3This effect is often referred to as domino or cascade effect (for example see Committee on Capital Markets
Regulation (2009) or Smaga (2014)).
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information contagion studied by Acharya and Yorulmazer (2002), and is also partly described by

Harrington (2009) as contagion due to uncertainty and opacity of information, where the informa-

tion about shocks creates uncertainty about the effects on counterparties. Similarly, there may be

uncertainty about the effects on the own institution: The high complexity and opaqueness of inter-

connected markets and institutions, particularly in the financial services sector (see Adrian et al.

(2014), Arora et al. (2009) or Moghadam and Viñals (2010)), but also complex products like hybrid

debt (e.g. CoCo-Bonds), reinsurance, specific forms of parent-subsidiary relationships, captives and

other forms of capital transfer mechanisms make it difficult to fully assess the impact of external

events immediately. Thus, also wake-up call effects, i.e. contagion caused by the reassessment of

assets in response to trouble in one country or sector (see Ahnert and Bertsch (2015)), may not

happen simultaneously.

Moreover, in inefficient markets not all information about shocks are reflected immediately,

which provides another reason for the occurrence of time-lags between triggering and systemic

events. As Fama (1969) already points out, markets are clearly not efficient in the strong form, i.e.

not all private information is immediately reflected in market prices. There exist several findings

challenging the efficient market hypothesis also in its weak and semi-strong form. For example,

Dong et al. (2013) find persistent price patterns for several global markets that violate the weak-

form efficient market hypothesis. Similarly, Billio et al. (2010) find that stock returns exhibit large

autocorrelations with a lag of one month particularly during the 2007-2009 crisis. Non-zero auto-

correlations indicate that market frictions prevent arbitrage opportunities from being completely

exploited (see for example Farmer and Lo (1999), Grossmann and Stiglitz (1980) or Lo (2004) and

references therein). These frictions may be caused by regulation, transaction costs or borrowing

constraints, but also by the high complexity and opaqueness of interconnected markets and insti-

tutions, as outlined above.

We conclude that systemic contagion effects have an inherent time dimension. They start with

one or multiple triggering events and result in the infection of capital markets and even the whole

economy.4 For this reason, one might expect that systemic risk measures incorporate the timing

4Such contagion cascades with time-lags are also recognized by Pericoli and Sbracia (2003) and are similar to
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of triggering and subsequent systemic events, i.e. the buildup component of systemic risk. In-

terestingly, all recently proposed cross-sectional risk measures that play an important role in the

discussion about the measurement of systemic risk do not take such time-lags into consideration

(for an overview see Bisias et al. (2015)).5 The most prominent method that, in contrast, considers

a time-lag between return series is the Granger causality test (see Granger (1969)). This test is for

example employed by Chen et al. (2013) and Billio et al. (2010), who both find that the influence of

banks on insurers is more persistent than vice versa. Nonetheless, the Granger causality test does

not assess the magnitude of spillover effects between triggering and systemic events. In contrast,

it focuses on a model for the whole time series distribution of market returns.

Hence, the major part of the literature focuses on simultaneous movements of returns, i.e. cor-

relation. This observation motivates our article, in which we develop measures for systemic risk

that explicitly take the time-lag between triggering and systemic events into account. Hereby, we

aim to describe the timing dimension of systemic risk. In our approach we build on recent literature

aiming to measure systemic risk by using stock returns (see, e.g. Acharya et al. (2012), Adrian and

Brunnermeier (2014) or Black et al. (2016)), which reflect market participants’ expectations on the

future firm policy and policy-decisions (like, e.g., bailouts), but also, e.g., herding behavior.

To conclude, a thorough analysis of the contagion period between triggering and systemic events

is still missing. We address this issue by proposing and employing the Conditional Shortfall Prob-

ability (CoSP), which is the likelihood of a systemic event occurring with a specific time-lag to

a triggering event. The underlying rationale of CoSP is very similar to ∆CoVaR of Adrian and

Brunnermeier (2014). However, CoSP has several advantages over ∆CoVaR, in particular a sub-

stantially smaller estimation error and, thus, a larger reliability in the sense of Danielsson et al.

(2015). Moreover, it is independent from market volatility. Motivated by its properties, we use

CoSP to define measures of the systemic risk aggregated over time and the systemic time-lag,

the phenomenon of mutual excitation in financial modeling, for example see Aı̈t-Sahalia et al. (2015) and references
therein.

5Our understanding of a time-lag between trigger and systemic events is different from forward-measures as e.g.
the Forward-∆CoVaR: Forward-measures focus on a forecast of future values of a systemic risk measure (in the case
of Forward-∆CoVaR the future value of ∆CoVaR is forecasted, see Adrian and Brunnermeier (2014)), whereas the
risk measure itself still focuses on simultaneous movements of market’s and institution’s returns.
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namely the Aggregate Excess CoSP and the CoSP-weighted time-lag.

In addition to identifying systemically relevant institutions, the need for considering the infor-

mativeness of systemic risk measures (e.g. with confidence bounds) is stressed by many authors

and regulatory authorities (for example see Danielsson et al. (2016)). However, only few articles

deal with the estimation error of employed systemic risk measures.6 A reason might be given by

the additional computational effort for estimating confidence intervals. In contrast, we present a

closed-form for the lower bound of significance for the CoSP, which is valid under rather weak as-

sumptions. Thus, by applying CoSP one is able to distinguish between institutions with significant

and non-significant systemic importance.

We conduct an empirical analysis of the proposed risk measures that focuses on the structural

differences between the systemic risk of banks, brokers, insurance and non-financial companies. The

systemic relevance of (life) insurance institutions, in particular, has recently caused massive dis-

putes. Due to the long-term investments on the one hand, and the insurers’ core business activities

being fundamentally different from the banking business on the other hand, many authors argue

that (life) insurers are less systemically relevant than banks (for example see Haefeli and Liedtke

(2012), Harrington (2009), or Thimann (2014)). This view is also supported by the econometric

analysis of Acharya et al. (2010), but it is not generally agreed on. In particular, Billio et al. (2010)

and Adrian and Brunnermeier (2014) find that the systemic risk in the insurance sector is generally

not smaller than in the banking sector, whereas Weiß and Mühlnickel (2014) conclude that the

systemic risk triggered by insurance institutions is mainly driven by the insurer’s size. Clearly, the

specific systemic role of insurance institutions is still not clear and is causing controversial discus-

sions between academics, regulators and insurance institutions.7

By considering the timing dimension of systemic risk, our article provides a broader perspective

on the systemic riskiness of financial and non-financial companies. We find that systemic shocks

6Exceptions include Benoit et al. (2013), Danielsson et al. (2015), Danielsson et al. (2016), Danielsson and Zhou
(2015), Guntay and Kupiec (2014), and Löffler and Raupach (2013).

7For example, MetLife filed a lawsuit against its systemic-risk label, which MetLife also won in 2016, see Harris
and Chiglinsky (2016).
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are often spread among institutions and markets with a time-lag significantly different from zero.

Approximately 15% of the financial institutions in our sample are significantly systemically im-

portant with a non-zero time-lag for the financial sector and 27% of the financial institutions are

significantly systemically important with a non-zero time-lag for the American non-financial sector.

In particular, the systemic risk of insurance institutions is similar to banks, whereas their exposure

to systemic risk is larger than the exposure of banks and brokers.8

The remainder of the paper is organized as follows. Section 2 gives an overview of existing

systemic risk measures. In Section 3 we introduce new systemic risk measures that incorporate

time-lags. Section 4 describes the data sample which we use for our empirical analysis in Section

5. The final Section 6 concludes and gives an outlook to future research directions.

2 Traditional Measures for Systemic Risk

Bisias et al. (2015) report four main cross-sectional systemic risk measures: distress insurance

premium (see Huang et al. (2009)), marginal expected shortfall (see Acharya et al. (2010)), co-risk

(see Chan-Lau et al. (2009)) and ∆CoVaR (see Adrian and Brunnermeier (2014)).9 The distress

insurance premium (DIP) is a hypothetical insurance premium against catastrophic losses in the

financial/banking system and is estimated by using CDS spreads (see Huang et al. (2009)). As

Black et al. (2016) show in an empirical analysis, the DIP is mainly driven by risk-neutral prob-

abilities of default, thus, mainly reflects the firm-specific risk. The Marginal Expected Shortfall

(MES) quantifies the immediate exposure of a financial institution to the market’s risk. Co-Risk is

very similar to CoVaR, but examines CDS spreads instead of returns.

In the following, we will review ∆CoVaR in more detail to motivate our own approach. ∆CoVaR

measures the change in the market’s risk conditional on a financial institution being in distress.

Hereby, the market’s risk conditional on a specific event E, CoVaRE(q), is defined as the Value-at-

8Throughout the article we refer to depository institutions as banks and security and commodity brokers as
brokers.

9Danielsson et al. (2016) give a general classification of these measures.
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Risk (VaR) of the conditional distribution of the market return rM , i.e.

P
(
rM ≤ CoVaRE(q) | E

)
= q. (1)

Then, ∆CoVaR is the difference between the market’s CoVaR conditional on a triggering event

TEI and a benchmark event BM I , i.e.

∆CoVaR = CoVaRTEI (q)− CoVaRBMI (q). (2)

Adrian and Brunnermeier (2014) define the triggering event as the institution’s return being at the

V aR(q), i.e. TEI =
{
rI = V aRI(q)

}
, and the benchmark event as the institution’s return being

at the median state, i.e. BM I =
{
rI = V aRI(0.5)

}
, which yields

∆CoVaR=(q) = CoVaRrI=V aRI(q)(q)− CoVaRrI=V aRI(0.5)(q). (3)

However, with this definition more severe losses than V aRI(q) are not considered as triggering

event. Hence, it may be appropriate to study a more general version of the triggering event. For

this purpose, Ergün and Girardi (2013) propose

∆CoVaR≤(q) = CoVaRrI≤V aRI(q)(q)− CoVaRrI∈[µI±σI ](q), (4)

where µI and σI are the mean and standard deviation for the return of the institution, respec-

tively. The change in the triggering event definition from being exactly at the VaR to being at

or below the VaR also effects the consistency of CoVaR: Mainik and Schaanning (2014) show that

CoVaRrI≤V aRI(q)(q) is a continuous and increasing function of the dependence parameter between

rI and rM , while CoVaRrI=V aRI(q)(q) is not.

By conditioning on the triggering event, on first sight it seems that ∆CoVaR is based on a

causal relationship between institution and market. However, a series of theoretical results indicate

that ∆CoVaR is the result of the co-movement of (tail-)returns: For example, this can directly

be verified for ∆CoVaR= in case of bivariate normally distributed returns, for which Adrian and
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Brunnermeier (2014) show that

∆CoVaR= = σM (−Φ−1(q))ρI,M , (5)

where σM is the standard deviation of market returns, Φ−1 is the inverse of the cumulative density

function of the standard normal distribution, and ρI,M is the correlation coefficient between market

and institution returns.

More generally, Benoit et al. (2013) find that ∆CoVaR= is proportional to the institution’s

firm-specific risk if the dependence between financial asset returns is linear. In this case, the pro-

portionality coefficient depends on the market’s volatility and the correlation between market’s and

institution’s returns. In other words, ∆CoVaR= is not able to identify a causal relationship between

systemic and triggering event since it solely focuses on simultaneous events with exceptionally high

losses of both the market and institution. Any contagion effects in the sense that a high loss of an

institution can trigger losses of a market with a time-lag are, therefore, not captured. Thereupon,

in Section 3 we develop measures of systemic contagion periods by including time-lags into systemic

risk measures.

Moreover, several studies indicate that the estimation error of ∆CoVaR= makes it a rather

unreliable systemic risk measure (for example see Castro and Ferrari (2012), Danielsson et al.

(2015) or Guntay and Kupiec (2014)). As a consequence, we develop a risk measure that exhibits

a smaller estimation error and that is, thus, more reliable.

3 Measuring Lagged Systemic Risk

3.1 The Conditional Shortfall Probability

The Conditional Shortfall Probability (CoSP) is a systemic risk measure that explicitly accounts

for time-lags between triggering and systemic events. Consistent with ∆CoVaR≤, we interpret the

occurrence of one of the qI · 100% smallest institution returns as a proxy for a triggering event
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and one of the qM · 100% smallest returns as a proxy for a systemic market event.10 To assess the

time-lagged influence of an institution’s triggering event on the market, we define the Conditional

Shortfall Probability (CoSP) by

ψτ (qM , qI) = P
(
SEMτ | TEI

)
= P

(
rMτ ≤ V aRM (qM ) | rI ≤ V aRI(qI)

)
. (6)

In this definition rMτ is the market return τ days after the institution’s return rI , while SEMτ is

the systemic market event τ days after the triggering event TEI . Thus, ψτ is the likelihood of

an exceptionally small market return occurring τ days after an exceptionally small return of an

institution.

The identification of the VaR-levels qM and qI is both necessary and challenging: For one ex-

emplary market the 1% smallest market returns may relate to a systemic event, e.g. market failure.

In contrast, all 5% smallest market returns may be systemic for a different market, for example

due to a larger market capitalization. For other markets that exhibit no systemic risk qM would

equal zero. Thus, qM reflects a market’s systemic risk probability. Analogously, qI reflects the

institution’s distress probability.

Eventually, the choice of qM and qI depends on the respective definition of systemic risk and trig-

gering events, as well as the respective market’s and institution’s properties. However, presently

there is no common agreement on the definition and level of market-specific systemic risk and

institution-specific distress probabilities. For this reason, we set qM = qI = q in line with ∆CoVaR≤

and denote ψτ (q) = ψτ (q, q) in the empirical analysis.

The idea behind CoSP is very similar to the idea of the distress spillover measure by Chan-Lau

et al. (2012). However, Chan-Lau et al. (2012) base their measure on Merton’s model for defaults

and, thus, by their definition stress events only depend on balance sheet data and the model’s

assumptions about the evolution of assets and liabilities but not on market behavior. Moreover,

the authors do not consider different time-lags between triggering and systemic events. The idea

10Note that the definition of CoSP also allows for different definitions of triggering and systemic events.

9



behind CoSP is also similar to the idea of ∆CoVaR≤. In fact, one might also define a time-lagged

CoVaRτ
E by

P
(
rMτ ≤ CoVaRτ

E(q) | E
)

= q. (7)

Then, CoVaRτ
rI≤V aRI(q) and ψτ are properties of the same conditional distribution, namely the

q-quantile and tail probability. When considering the same market, CoSP and ∆CoVaR≤ also

generate the same order of institutions according to systemic risk if the conditional market returns

stochastically dominate each other.11 However, the interpretation for the two measures is different:

CoSP captures the likelihood of a predefined stress event (i.e. the size of the conditional distribu-

tion’s tail), while ∆CoVaR reflects the additional tail risk of a triggering event (i.e. the difference

between quantiles).

Clearly, ∆CoVaR depends on market volatility: If market returns are more volatile, the change

in tail risk, as measured by ∆CoVaR, is larger.12 Consequently, the systemic risk implied by

∆CoVaR is larger on more volatile markets, ceteris paribus. Therefore, the understanding of sys-

temic risk by ∆CoVaR does not only involve the occurrence of systemic events, as e.g. market

failure. It goes one step further and also quantifies the results of these events in terms of the

change in tail returns. Hence, an institution may impose a very large threat towards one specific

market in terms of spillover effects, while the resulting systemic risk implied by ∆CoVaR may be

very small due to a small overall market volatility.

Still, systemic events like market distress or failure have important implications, not only in

terms of lost return. For example, a small return loss on a largely capitalized market may be

more adverse than a large return loss on a less capitalized market. In addition, implications of a

market’s distress may involve the interconnectedness with other markets and industries, but also

affect political and socioeconomic dimensions. For example, Chan-Lau (2010) suggests to regulate

too-connected-to-fail institutions based on societal losses. Consequently, it may not be sufficient to

11We discuss this property in Appendix A.3.
12For the Gaussian case the results of spillover effects measured by ∆CoVaR= are solely driven by market volatility,

as Equation (5) shows.
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assess the implications of market distress solely by changes in tail returns, as ∆CoVaR does. Alter-

natively, we suggest to disentangle the threat of a systemic market event, i.e. market distress, from

its implications. This idea is reflected by CoSP, which is independent from market volatility since

systemic events are assumed to depend on the market’s return quantile. More specifically, CoSP

quantifies the risk of a systemic market event without already incorporating the impact of such an

event. Thus, with CoSP it is possible to compare different markets in terms of their fragility to-

wards spillover effects. As a prerequisite for financial regulation, one may then assess the impact of

systemic events in terms of the change in tail risk, but also other socioeconomic and political factors.

CoSP has several advantages from a statistical point of view: Firstly, the standard error of

CoSP is smaller.13 Thus, less data is needed to estimate CoSP. Consequently, CoSP exhibits a

larger reliability than ∆CoVaR≤ in the sense of Danielsson et al. (2015) as we show in Appendix

C.2 and in Figure 1. Secondly, asymptotic confidence bounds for CoSP are available in closed form,

which permits to assess the statistical significance of CoSP in a straightforward manner.
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Figure 1: Estimation Error and Reliability of CoSP and ∆CoVaR≤ for a sample size of 2500 (a
description of the error and reliability measure can be found in Appendix C.2).

It is worthwhile to take a second look at the interpretation of CoSP, since ψτ , at first sight,

seems to be the probability that a triggering event takes exactly τ days to affect the market. How-

ever, one specific triggering event may contribute to several lags.

13In Section C.1 we compare the standard error and reliability of CoSP and ∆CoVaR.

11



08/20 08/25 08/30 09/04 09/09 09/14 09/19 09/24 09/29 10/04

AMERICANINTLGP

FIN A B C D

E F

Figure 2: Returns of the FIN index and AIG during the Financial Crisis from August 20, 2008 to
October 10, 2008. Vertical lines indicate that the respective return is below the VaR(0.01), i.e.

triggering and systemic events.

Figure 2 depicts an exemplary sequence of events: E and A as well as F and B occur simul-

taneously, thus, with lag τ = 0 (straight arrows). These are the only two events the ∆CoVaR or

ψ0 would capture. But there seems to be no compelling reason, why E and F should not also

contribute to subsequently occurring systemic events B, C and D. We capture these effects by

ψτ . Should a triggering event TEI , instead, contribute utmost to one special lag τ̃? To answer

this question, consider the definition of systemic risk by the Financial Stability Board (2011, p.

5), who argue that an institution is also considered as systemically important if it triggers broader

contagion. Clearly, broader contagion may result in several systemic market events caused by one

(or more) triggering events. Hence, triggering events may generally contribute to the buildup and

broader contagion of systemic risk, thereby affecting all subsequent systemic events. Moreover,

different triggering and systemic events might also be caused by a common factor, even if there was

no causal relationship between the events. This phenomenon is described by Adrian and Brunner-

meier (2014) as being systemic as part of a herd and, also, captured by CoSP.

Still, observations for different time-lags may also occur randomly and without any structural

relationship or common risk factor of institution and the market. The reference level of CoSP allows

to differentiate between these randomly occurring events and unusually often occurring time-lags.
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This reference level is given by the VaR-level qM , since TEI and SEMτ are independent if, and only

if,

ψτ (qM , qI) = qM . (8)

In Appendix A.2 we derive this property and give an example with independent student-distributed

returns. Also, in Appendix A we discuss several other properties of CoSP.

The reference level qM allows to identify time-lags that occur unusually often, i.e. observations

that are not caused by independent events. Therefore, we identify an institution as systemically

important at lag τ , if ψτ (qM , qI) > qM . Furthermore, for very large lags one would intuitively

presume that the influence of the institution’s return rI on the market return rMτ diminishes, i.e.

that TEI and SEMτ become independent.14 Hence, we conjecture (and find this confirmed in the

empirical analysis) that

lim
τ→∞

ψτ (qM , qI) = qM . (9)

In conclusion, we interpret CoSP as a measure for the systemic influence an exceptionally small

return of a institution has on the market: If ψτ (qM , qI) declines slowly, more systemic events occur

with larger lags and, thus, the influence of the institution’s triggering events lasts longer. However,

not only the speed of decline but also the size of ψτ (qM , qI) is important to consider, since larger

values for ψτ (qM , qI) indicate a larger risk.

3.2 Aggregate Systemic Risk and the CoSP-weighted Time-Lag

Since both the speed of decline and amplitude of CoSP reflect the persistence of an institution’s

triggering event, we suggest to compute the size of the area between the reference level qM and

CoSP ψτ (qM , qI) as a measure for the aggregate systemic risk, i.e.

ψ̄ =

∫ ∞
0

ψτ (qM , qI)− qM dτ. (10)

14This behavior may for example result from arbitrage opportunities being exploited in the long-run.
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We call ψ̄ the Aggregate Excess CoSP and employ this systemic risk measure two assess the

total systemic impact of triggering events. In Section B.3 we propose an estimation procedure for

ψ̄. A second measure is the CoSP-weighted time-lag, which is given as

τ̄ =
1

ψ̄

∫ ∞
0

τ
(
ψτ (qM , qI)− qM

)
dτ. (11)

This measure is an average of all time-lags, which are weighted with their contribution to the

Aggregate Excess CoSP.15 Hence, it is essentially a measure for the (weighted) time-lag between

triggering and systemic event. A major advantage of τ̄ is that it is measured in time units (e.g.

days). In Section B.4 we propose an estimation procedure for τ̄ .

3.3 The Contagion Period

Another quantity of interest is the contagion period τ∗ that lies between a triggering event

and the first systemic market reaction. We study a discrete approximation of the probability

distribution of the contagion period τ∗, which is16

Fτ∗(x) = P(τ∗ = x) = P
(
rMx ≤ V aRM (qM ) and rM0 , ..., r

M
x−1 > V aRM (qM ) | rI ≤ V aRI(qI)

)
.

(13)

To examine the properties of Fτ∗ one can apply the whole toolbox of statistics. For example, one

may study the mean, standard deviation, quantiles, etc. However, the estimation of Fτ∗ may lead

to substantial outliers and, thus, we do not study the mean contagion period. Instead, we focus on

the median value τ∗0.5, i.e. the median contagion period between triggering and first systemic event.

15Note that τ̄ exhibits analogies to the duration concept of Macaulay (1938).
16Note that Fτ∗ is indeed a probability distribution if almost surely at some point in time a systemic market event

occurs, which seems reasonable. In this case,

1 = P

⋃
x≥0

{
rMx ≤ V aRM (qM ) and rM0 , ..., rMx−1 > V aRM (qM ) | rI ≤ V aRI(qI)

} =
∑
x

Fτ∗(x). (12)
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3.4 Estimation of CoSP

To estimate ψτ (qM , qI) we employ historical simulation (HS).17 The use of this simplified ap-

proach is particularly motivated by the fact that, as to our knowledge, this is the first study about

the interdependence of lagged tail-returns. Thus, it seems unreasonable to impose distributional

or modeling assumptions.18 Additionally, it seems intuitive that systemic market events mostly

occur in times with large volatility. In other words, the maximum return level that corresponds

to systemic market distress, V aRM (qM ), should not depend on the current volatility level but on

the (time-)unconditional volatility. Therefore, we employ the (time-)unconditional Value-at-Risk

to estimate CoSP.

The estimation procedure is similar to Acharya et al. (2010) and described in Section B.1 in

more detail. The smaller the VaR-levels qM and qI are, the less observations there are and, thus,

the smaller is the estimation precision. To isolate significantly large values from noise, we compute

a lower bound of significance for ψ̂τ (qM , qI) in Appendix B.2, which is given by

k∗τ (qM , qI) =
1

nτqI

(
F−1
Bin(nτ ,qM qI)

(1− α) + 1
)
, (14)

for a significance level α ∈ (0, 1). Due to the estimation error of ψ̂τ (q), we suggest to fit ψ̂τ (q) for

τ = 1, 2, .... to the following function:

H(τ) = qM + e−aτ
2+bτ+c, with a > 0, b, c ∈ R. (15)

In other words, we assume that ψτ declines exponentially and find this confirmed in the empirical

analysis. Note that we do not include co-movements at the time-lag τ = 0 in the fitting procedure,

since these do not reflect persistence and, particularly, do not steadily continue ψτ , as the results

in Section 5 suggest. The choice of H has several advantages: Since H is always larger than qM

but converges to qM , we only capture systemically important lags, i.e. fit the part of ψ̂τ (qM , qI)

17There exist several studies discussing and improving the statistical properties of HS and other estimation ap-
proaches for time series of returns, for example Danielsson and Zhou (2015), Hendricks (1996), Hull and White (1998),
Kuester et al. (2006) or Pritsker (2001). However, these focus on quantile or moment estimation and do not consider
a time-lag and, thus, cannot be applied for the estimation of CoSP.

18Note, that by employing HS we do not need to assume that the full bivariate return distribution is stationary.
In contrast, it is sufficient to assume that solely the dependence between lagged tail returns is stationary over time.
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that lies above qM . However, if ψ̂τ (qM , qI) < qM for many lags τ , we have H ≈ qM , indicating

that the systemic risk is zero.

We employ the fitted CoSP,H(τ), instead of ψ̂τ to assess the significance of systemic importance.

This is particularly motivated by the reason that the significance bound k∗τ is only an asymptotic

bound (see Appendix B.2). Therefore, an institution is classified as significantly systemically im-

portant if H(τ) ≥ k∗τ for at least one time-lag τ > 0. As before, we do not include co-movements at

τ = 0, since these do not necessarily reflect a causal relationship between triggering and systemic

events. In contrast, for non-zero time-lags triggering events cannot be caused by systemic events.

4 Data and Descriptive Statistics

Our data sample includes all historical daily returns of 917 publicly traded financial institutions

that are classified as banks (i.e. depository institutions), brokers (i.e. security and commodity bro-

kers), or insurers in Datastream.19 Moreover, we examine the returns of 36 non-financial companies

that are selected according to market capitalization.20 All returns are daily for the period from

November 21, 1995 to November 20, 2015. To avoid endogeneity, we compute our own market in-

dices that exclude the currently considered institution. The computational procedure is described

in Appendix D.1. In Appendix D.2 in Figure 12 (a) we show the resulting indices for banks (BAN),

brokers (BRO), insurers (INS) and the whole financial market (FIN) if no institution is excluded

from the index. Furthermore, we consider three continent-specific indices for non-financial compa-

nies, namely indices for the Americas (AMC), Asia (ASIA), and Europe (EU), which are shown in

Appendix D.2 in Figure 12 (b).

For the firm-specific analysis we exclude institutions with less than 1750 observations. Then,

725 institutions remain in the sample.21 In Appendix D.2 we report the descriptive statistics for

the returns of all institutions included in the data sample. To this end, we estimate the mean and

standard deviation of returns for all single institutions and report the distribution of these estimates

19The names of the 10 largest institutions in each subsector included in the sample are reported in Table 3.
20The non-financial companies’ names are reported in Table 2.
21After excluding institutions with too few observations 442 banks, 106 broker, 141 insurer and 36 non-financial

companies remain in the sample. Still, we compute the sector-specific indices with all available institutions.
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among the subsectors banks (BAN), brokers (BRO), insurers (INS), and non-financial companies

(NoFIN) in Figure 13. Moreover, Table 4 shows the mean, standard deviation and quantiles for

different indices. Hereby, all financial indices are computed as described in Appendix D.1 without

excluding any institution.

The mean institution returns are approximately zero for all institutions, whereas 95% of the

institutions exhibit a standard deviation of returns between 1% and 4%. Finally, in Figure 13(c)

we show the distribution of empirical correlation coefficients between single institutions and the

financial market index. Interestingly, the correlation between the returns of non-financial companies

and the financial market is substantially larger than the correlation between the returns of banks

and the financial market.

5 Empirical Findings

We apply the methodology as described in Section 3 and examine the aggregated systemic risk

and time-lag of systemic risk for the data sample described in Section 4. As described in Section

3.1 for the systemic risk and institution distress probability we set qM = qI = q and use q = 1%

as reference level, which seems reasonable to capture exceptionally small returns. To compute the

lower bound of significance we use the significance level α = 1%.

In Figure 3 we show the CoSP with respect to the financial index for several institutions that

exhibit a typical pattern. More examples are shown in Appendix E and can be provided by the

authors on request. As described in Section 3.1, the fitted CoSP is declining and converges to

the reference level q for τ → ∞. Furthermore, for Wells Fargo, Blackrock, and Metlife the CoSP

is significantly larger than the reference level for several lags τ > 0. Thus, there is statistically

significant influence between triggering events and systemic events with a time-lag. However, there

are substantial differences between the institutions: For the exemplary non-financials the CoSP

declines relatively fast and is rather small, whereas the CoSP for financial institutions seems to be

larger and of slowly declining shape.

17



0 50 100 150 200 250
Time-Lag (in days)

0

0.05

0.1

0.15

0.2

0.25

CoSP

Fitted CoSP

Lower Confidence Bound

Reference Level q

(a) Wells Fargo (BAN)
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(b) Blackrock (BRO)
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(c) Metlife (INS)
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(d) Amazon.com (NoFIN)

Figure 3: CoSP triggered by exemplary institutions w.r.t. the FIN index.

We begin our analysis by examining the dependence between the measures of co-movement, in

particular the CoSP without time-lag, i.e. ψ0, MES, and ∆CoVaR≤.22 Across all observations with

respect to the financial index the correlation between ψ0 and MES is −81.92%, and between ψ0

and ∆CoVaR≤ it is −79.17%.23 The levels of correlation are very similar with respect to other in-

dices. Thus, all three measures ψ0, MES and ∆CoVaR≤ result in very similar levels of systemic risk.

However, the correlation is substantially smaller if considering the Aggregated Excess CoSP ψ̄

instead of ψ0. For the aggregate systemic risk with respect to the financial index the correlation

with MES is −48.92% and the correlation with ∆CoVaR≤ is −57.21%. For other indices the val-

ues are similar. We conclude that the Aggregate Excess CoSP is able to capture a dimension of

systemic risk that traditional systemic risk measures of co-movement like MES or ∆CoVaR≤ are

22For all measures we set the VaR-levels equal to 1%. The results can be found in Table 5 in Appendix E.
23Note that, by definition, the larger MES and ∆CoVaR≤ are the smaller is the anticipated systemic risk, whereas

for ψ0 a large value indicates a large systemic risk. Therefore, a negative correlation of the measures’ values indicates
a positive relationship with respect to the level of systemic risk.
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not able to fully reflect.

Secondly, we exclude the number of institutions that do not exhibit significant lagged systemic

risk. As described in Section 3.4, an institution is classified as significantly systemically important

(s.s.i.) if H(τ) ≥ k∗τ for at least one lag τ ∈ {1, 2, 3, ...}. According to this criterion, roughly 15%

of the financial institutions in the sample are significantly systemically important for the financial

sector. Interestingly, more financial institutions are s.s.i. for the American non-financial sector

(27%) and the European non-financial sector (18%), while less of the financial institutions are s.s.i.

for the Asian non-financial sector (13%). Moreover, a substantially larger fraction of insurance

institutions is classified as significantly systemically important for the financial sector (34%) than

of brokers (21%) and banks (15%). The fraction of significantly systemically important institutions

for each (sub-)sector with respect to the different indices is shown in Appendix E in Figure 17.

Thirdly, we focus on the measures for the aggregate systemic risk, the contagion period, and

systemic time-lags. In Figure 4 we show the distribution of the Aggregate Excess CoSP for all sig-

nificantly systemically important institutions with respect to the indices for banks (BAN), brokers

(BRO), insurers (INS), and the American non-financial index. No subsector exhibits an Aggregate

Excess CoSP that is significantly different from the others. However, the Aggregate Excess CoSP

triggered by non-financial companies is slightly smaller with respect to all indices. Moreover, the

Aggregate Excess CoSP triggered by systemically important brokers is slightly larger, while the

Aggregate Excess CoSP triggered by insurance institutions is similar to that of banks.

This finding corresponds to the results of Billio et al. (2010) and Adrian and Brunnermeier

(2014). However, it is in contrast with the results of Cummins and Weiss (2014), who argue that

systemic risk within the insurance industry is considerably smaller than between insurance and

banking industry. Still, similar to Chen et al. (2013) we find that the Aggregate Excess CoSP

triggered by systemically important banks with respect to the insurance market is slightly larger

than vice versa.24 Interestingly, the ranking of subsectors is substantially different if studying the

24The median Aggregate Excess CoSP triggered by systemically important banks w.r.t. the insurance market is
5.86, whereas the median Aggregate Excess CoSP triggered by systemically important insurers w.r.t. the banking
market is 5.14.
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(a) Aggregate Excess CoSP w.r.t. the BAN index.
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(b) Aggregate Excess CoSP w.r.t. the BRO index.
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(c) Aggregate Excess CoSP w.r.t. the INS index.
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(d) Aggregate Excess CoSP w.r.t. the American NoFIN
index.

Figure 4: Aggregate Excess CoSP w.r.t. the BAN, BRO, INS and American NoFIN indices
triggered by significantly systemically important institutions of the subsectors BAN, BRO, INS

and NoFIN. For each box, the central mark is the median, the edges are the 25th and 75th
percentiles, q1 and q3, and the maximum whiskers’ length is 1.5(q3 − q1).

∆CoVaR≤ instead of the Aggregate Excess CoSP, as shown in Figure 18 in Appendix E. In this

case, non-financial companies are found to trigger the largest systemic risk, particularly on the

financial market. In contrast, banks are found to trigger the smallest risk w.r.t. the American

non-financial market, while insurer trigger the smallest risk w.r.t. the financial market.

To study a market’s exposure towards systemic risk (i.e. its susceptibility), Figure 5 depicts

the distribution of the Aggregate Excess CoSP among systemically important institutions by com-

paring the systemic risk triggered by one subsector with respect to different indices. In general, we

find that the systemic risk with respect to non-financial markets is smaller than for the financial
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sector. Clearly, the Aggregate Excess CoSP with respect to the Asian non-financial market is the

smallest for all subsectors, whereas the Aggregate Excess CoSP with respect to the American and

European non-financial market is approximately equal if triggered by financial institutions. How-

ever, the Aggregate Excess CoSP triggered by non-financials is slightly larger with respect to the

European non-financial market than with respect to the American non-financial market. Regarding

the financial sector, the Aggregate Excess CoSP with respect to the banking sector is the smallest

among the financial subsectors while it is particularly large with respect to the insurance sector.
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(a) Aggregate Excess CoSP triggered by banks.
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(b) Aggregate Excess CoSP triggered by brokers.
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(c) Aggregate Excess CoSP triggered by insurance insti-
tutions.
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(d) Aggregate Excess CoSP triggered by non-financial
companies.

Figure 5: Aggregate Excess CoSP w.r.t. different financial indices BAN, BRO, INS, FIN and
non-financial indices AMC, ASIA, EU, triggered by significantly systemically important banks,

brokers, insurers, and non-financial companies. For each box, the central mark is the median, the
edges are the 25th and 75th percentiles, q1 and q3, and the maximum whiskers’ length is

1.5(q3 − q1).
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Next, we examine the contagion period and CoSP-weighted time-lag. To this end, we start

with studying the median contagion period between all stress (triggering) events of systemically

important institutions and the first (subsequently or simultaneously) occurring systemic market

event. Figure 6 clearly shows that the median contagion period is different from zero for more

than 75% of all systemically important institutions with respect to all indices. In general, the

banking, insurance, and overall financial markets show systemic distress after a median time of

approximately 5 days, subsequently to a triggering event of systemically important financial insti-

tutions. In contrast, the median contagion period for these institutions is approximately 10 days

for systemic events on the brokerage, American, or European non-financial market, and 15 days

for the Asian non-financial market. For triggering events of systemically important non-financial

companies the median contagion period is larger, particularly for systemic events on the brokerage,

insurance, American, or Asian non-financial market.
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(a) Median contagion period triggered by financials.
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(b) Median contagion period triggered by non-financials.

Figure 6: Median contagion period w.r.t. different financial indices BAN, BRO, INS, FIN and
non-financial indices AMC, ASIA, EU triggered by significantly systemically important financials
and non-financials. For each box, the central mark is the median, the edges are the 25th and 75th

percentiles, q1 and q3, and the maximum whiskers’ length is 1.5(q3 − q1).

The median contagion period measures the time-lag between stress events of an institution and

a market, but the respective stress events might also occur randomly. Therefore, we also study

the CoSP-weighted time-lag, i.e. the weighted average time-lag between triggering and systemic

events, whereby the weighting factors are the contribution of the single time-lags to the Aggregated

Excess CoSP. In Figure 7 we show the distributions of the CoSP-weighted time-lag for systemically
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important institutions. In contrast to the median contagion period, the CoSP-weighted time-lag is

smaller with respect to non-financial markets than for financial markets. Thus, it takes longer to

observe a systemic event on non-financial markets after a triggering event, whereas the systemic risk

associated with these large time-lags is rather small. Regardless of the triggering institution, the

CoSP-weighted time-lag is particularly large for systemic risk with respect to the insurance market.

Most interestingly, the CoSP-weighted time-lag indicates a systemic risk cascade: If systemic

risk is triggered by financial institutions, firstly brokers are systemically affected, then banks, and,

lastly, insurance companies. In contrast, if systemic risk is triggered by non-financial companies,

firstly banks are systemically affected, then brokers, and, lastly, insurance companies. A rationale

for this cascade may be the investment behavior of the three types of financial institutions: Since

brokers tend to invest on a shorter time horizon than insurance companies, the distress of other

institutions might also affected brokers earlier than insurers. Banks are particularly exposed to the

distress of non-financial companies due to loans to non-financial companies, which might explain

why the CoSP-weighted time-lag is the smallest for banks if triggered by non-financial companies.
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(a) CoSP-weighted time-lag triggered by banks.
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(b) CoSP-weighted time-lag triggered by brokers.
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(c) CoSP-weighted time-lag triggered by insurers.
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(d) CoSP-weighted time-lag triggered by non-financials.

Figure 7: CoSP-weighted time-lag w.r.t. different financial indices BAN, BRO, INS, FIN and
non-financial indices AMC, ASIA, EU, triggered by significantly systemically important banks,

brokers, insurers, and non-financial companies. For each box, the central mark is the median, the
edges are the 25th and 75th percentiles, q1 and q3, and the maximum whiskers’ length is

1.5(q3 − q1).
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6 Conclusion

Since cash-flows and information may take time to spread within and across (financial) markets,

systemic risk is not only the risk of simultaneously occurring extreme events. It is also the risk of

systemic market (participants’) reactions that occur with a time-lag to the triggering event. To our

knowledge, this is the first article that explicitly studies the properties of this systemic contagion

period, i.e. the timing dimension of systemic risk. We review the most common systemic risk mea-

sure, ∆CoVaR, and propose a new systemic risk measure that exhibits a smaller estimation error

and a larger reliability than ∆CoVaR. This new systemic risk measure is the Conditional Short-

fall Probability (CoSP), ψτ (qM , qI), which is the likelihood that a systemic market event occurs τ

days after a triggering event of the institution. If CoSP equals its reference level qM , triggering

and systemic events are independent. In typical cases, ψτ (qM , qI) is exponentially declining and

converges to the reference level. The significance bound of CoSP allows to identify institutions that

are significantly systemically important.

Motivated by the properties of CoSP, we define two aggregate risk measures: The Aggregate

Excess CoSP, ψ̄, and the CoSP-weighted time-lag, τ̄ . Aggregate Excess CoSP is the area be-

tween ψτ (qM , qI) and the reference level qM . Thus, it reflects the overall systemic influence of

an institution on the market, i.e. the aggregate systemic risk triggered by this institution. The

CoSP-weighted time-lag is the weighted average of all time-lags. The weighting factors are the rel-

ative contributions of the time-lags to the Aggregate Excess CoSP. Both measures are constructed

from CoSP but represent different dimensions of systemic risk. Together, the measures capture the

overall persistence of systemic risk triggered by an institution.

In the empirical analysis we study all significantly systemically important institutions in the

global subsectors banks, brokers, insurance, and non-financial companies. Hence, we are among

the first to differentiate between spillover effects between and within the financial sector and the

real industry. In particular, we find that 27% of the financial institutions in our sample are signifi-

cantly systemically important for the American non-financial sector, whereas 15% of the financial

institutions in our sample are significantly systemically important for the (global) financial sector.
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However, the results show that the Aggregate Excess CoSP triggered by systemically important in-

stitutions is larger for financial markets than for non-financial markets. In particular, the Aggregate

Excess CoSP is very small with respect to the Asian non-financial market and particularly large

with respect to the insurance market. Brokers tend to trigger a slightly larger Aggregate Excess

CoSP than banks or insurers. Interestingly, the Aggregate Excess CoSP of insurance institutions

is comparable to that of banks.25 Still, we find that banks trigger a larger systemic risk on the

insurance market than vice versa.

By studying the systemic contagion period we find that approximately 10 days after a stress

event of systemically important financial institutions we can observe a systemic event on the broker-

age or non-financial markets. This time-lag is only approximately 5 days for the banking, insurance,

and overall financial market. In contrast, the systemic risk associated with large time-lags with re-

spect to the non-financial market is rather small, as the CoSP-weighted time-lag shows. Moreover,

the CoSP-weighted time-lag reveals a systemic cascade effect for the financial sectors: Systemic risk

triggered by financial institutions tends to influence brokers firstly, secondly banks, and, thirdly,

insurance institutions. The different investment behavior of the different types of institutions may

serve as a reason for this observation.

In conclusion, we find significant evidence that triggering events systemically affect the market

with different time-lags. Further research on this topic can take various forms. For example, a

more detailed analysis of the relationship between measures for lagged systemic risk and measures

for instantaneous systemic risk (e.g. ψ0, MES or ∆CoVaR) may shed light on the relationship

between systemic contagion and (the tail of) co-movements of returns. Also, further differentiating

between the types of institutions and geographic differences may make differences in their systemic

importance more clear. Moreover, the drivers for systemic risk and contagion periods may be

fundamentals like leverage ratios, asset duration, firm size, or financial interconnectedness structures

that need to be identified in order to understand the underlying rationale of the timing dimension

of systemic risk.

25This result is similar to Adrian and Brunnermeier (2014) and Billio et al. (2010), but is contrary to Berdin and
Sottocornola (2015) and Cummins and Weiss (2014).
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Appendix

A Properties of CoSP

The conditional shortfall probability (CoSP) is given as

ψτ (qM , qI) = P
(
rMτ ≤ V aRM (qM ) | rI ≤ V aRI(qI)

)
. (16)

Thus, ψτ (q) = ψτ (q, q) is very similar to the coefficient of lower tail dependence. In particular, the

latter is the limit of ψτ (q) as q approaches 0, i.e.

λτ = lim
q→0+

ψτ (q), (17)

where λτ is the coefficient of lower tail dependence between rI and rMτ (see McNeil et al. (2015,

p.247)).

A.1 Symmetry

In general, we have

ψτ (qM , qI) = P
(
SEMτ | TEI

)
= P

(
rMτ ≤ V aRM (qM ) | rI ≤ V aRI(qI)

)
(18)

=
P
(
SEMτ , TE

I
)

qI
=
qM

qI
P
(
TEI | SEMτ

)
. (19)

Thus, ψτ (qM , qI) and P
(
TEI | SEMτ

)
are proportional, whereas ψτ (q, q) is equal to P

(
TEI | SEMτ

)
.

If τ > 0, the latter probability, P
(
TEI | SEMτ

)
, cannot be interpreted in a causal sense, i.e. SEMτ

can not have caused TEI since it happened later in time. Still, P
(
TEI | SEMτ

)
is the likelihood

that the institution exhibits an extraordinarily small return τ days before a systemic market event

SEMτ . From this perspective, ψτ (q) may also be interpreted as the likelihood of a triggering event

of a specific institution given a systemic market event.

In contrast, the symmetry of ψ0(q) is very reasonable, since it is the result of co-movements

between rM and rI . In other words, one can in general not identify a causal relationship between the
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events. This co-movement is also reflected in other systemic risk measures like MES or ∆CoVaR=

in the sense that these are proportional to the institution’s firm-specific risk if the dependence

between financial asset returns is linear.26

A.2 Independence

By definition, the triggering event TEI =
{
rI ≤ V aRI(qI)

}
and systemic event SEMτ ={

rMτ ≤ V aRM (qM )
}

are stochastically independent if, and only if,

P
(
SEMτ , TE

I
)

= P
(
SEMτ

)
P
(
TEI

)
, (20)

which is equivalent to

ψτ (qM , qI) =
P
(
SEMτ , TE

I
)

P (TEI)
= P

(
SEMτ

)
= qM . (21)

Hence, we have ψτ (qM , qI) = qM if, and only if, triggering event TEI and systemic event SEMτ are

stochastically independent.

In Figure 8 we show the estimate for CoSP with qM = qI = q = 1% for 5219 independent

observations for rM and rI that were drawn from a student-t(5) distribution.27 Clearly, there exist

numerous observations of events SEMτ and TEI for all lags τ . However, ψ̂τ fluctuates around the

reference level q and is almost always below the confidence bound. In this case one would reason

that rI is not systemically important for rM for any lag. This conclusion is also supported by the

fitted CoSP, which stays constant at the reference level q = 1%.

26This is a main finding of Benoit et al. (2013).
275219 is the maximum number of available observations in our data sample.
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Figure 8: Estimated CoSP, ψ̂τ (0.01), for independent student-t(5) distributed returns.

A.3 Systemic Risk Rankings of CoSP and ∆CoVaR

In the following we examine the relationship between two different returns rI1 and rI2 and a

market return rM . For simplicity, we focus on the case with qM = qI = q. Under the assumption

that rMτ | rI1 ≤ V aRI1(q) first-order stochastically dominates rMτ | rI2 ≤ V aRI2(q), i.e. for all

x ∈ R

P
(
rMτ ≤ x | rI1 ≤ V aRI1(q)

)
≤ P

(
rMτ ≤ x | rI2 ≤ V aRI2(q)

)
, (22)

we have ψI1τ (q) ≤ ψI2τ (q). Moreover, for CoVaRτ we have

CoVaRτ
rI1≤V aRI1 (q)(q) ≥ CoVaRτ

rI2≤V aRI2 (q)(q). (23)

Hence, with respect to both risk measures I2 is more systemically important than I1. Also, if the

market risk conditional on the benchmark events is approximately equal, i.e. CoVaRτ
BMI1

(q) ≈

CoVaRτ
BMI2

(q), for ∆CoVaR≤τ we have

∆CoVaR≤,I1τ (q) ≥ ∆CoVaR≤,I2τ (q). (24)

The condition that rMτ | rI1 ≤ V aRI1(q) first-order stochastically dominates rMτ | rI2 ≤

V aRI2(q) can often be observed for financial return series. In Figure 9 we show two exemplary

empirical cumulative density functions (ecdf) for lag τ = 0 for the unconditional and conditional

returns of the financial index. Particularly in the lower tail rM |rI1 ≤ V aRI1(0.01) stochastically
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dominates rM |rI2 ≤ V aRI2(0.01).28
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Figure 9: Empirical CDF of returns from the financial index conditional on institutions’ financial
distress.

B Estimation Procedure

B.1 Estimation of CoSP

The Maximum-Likelihood estimator for ψτ is given as

ψ̂(ml)
τ =

1∑n−τ
t=1 1

{
rIt≤V̂ aR

I
(qI)

}
n−τ∑
t=1

1{
rMt+τ≤V̂ aR

M
(qM ), rIt≤V̂ aR

I
(qI)

}, (25)

where the Value-at-Risk estimate is the [nqx]-th smallest observation for return rx, V̂ aR
x
(qx) =

rx([qxn]). If the triggering events {rIt ≤ V̂ aR
I
(qI)} are independently distributed with the same

probability of occurrence, it follows from the strong law of large numbers that almost surely

n−τ∑
t=1

1{
rIt≤V̂ aR

I
(qI)

} →
n→∞

qI(n− τ). (26)

However, the actual number of observed triggering events for t ∈ {1, n − τ} may be very small or

large in comparison to qI(n− τ), which may lead to large estimation errors. Therefore, we smooth

28Note that stochastic dominance in the lower tail is sufficient to obtain the same order of the institutions.
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the estimator for CoSP with the asymptotic number of observed triggering events, i.e.

ψ̂τ =
1

1
2

(∑n−τ
t=1 1

{
rIt≤V̂ aR

I
(qI)

} + qI(n− τ)

) n−τ∑
t=1

1{
rMt+τ≤V̂ aR

M
(qM ), rIt≤V̂ aR

I
(qI)

}. (27)

Similar to ψ̂(ml), this estimator is also asymptotically unbiased.

B.2 Lower Bound of Significance for ψ̂τ

Denote by nτ = n − τ the number of available observations for lag τ . Since almost surely we

have

nτ∑
t=1

1{
rIt≤V̂ aR

I
(qI)

} →
n→∞

qInτ , (28)

we use the following approximation for ψ̂τ in this section:

ψ̂τ ≈

∑nτ
t=1 1

{
rMt+τ≤V̂ aR

M
(qM ), rIt≤V̂ aR

I
(qI)

}
nτqI

. (29)

Thus, the lower bound of significance will be an asymptotic bound. Under the assumption that

1{rMt+τ≤V aRM (qM ), rIt≤V aRI(qI)} are iid for t = 1, .., nτ , it follows

nτ∑
t=1

1{
rMt+τ≤V̂ aR

M
(qM ), rIt≤V̂ aR

I
(qI)

} ∼ Bin(nτ , ψτq
I), (30)

where Bin(n, p) is the Binomial distribution. Hence, under the null hypothesis H0 : ψτ = qM , i.e.

that systemic event SEMτ and triggering event TEI are independent, we have

nτq
I ψ̂τ ∼ Bin(nτ , q

MqI). (31)
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The null hypothesis if ψ̂τ ≥ k∗τ is rejected with a significance level of α ∈ (0, 1). Thus, an asymptotic

lower bound for the rejection area, k∗τ , can be computed as follows:

α = PH0

(
ψ̂τ ≥ k∗τ

)
= PH0

(
nτ∑
t=1

1{
rMt+τ≤V̂ aR

M
(qM ), rIt≤V̂ aR

I
(qI)

} ≥ nτqIk∗τ
)

(32)

= 1− FBin(nτ ,qM qI)(nτq
Ik∗τ − 1) (33)

⇔ 1− α = FBin(nτ ,qM qI)(nτq
Ik∗τ − 1) (34)

⇔ nτq
Ik∗τ − 1 = F−1

Bin(nτ ,qM qI)
(1− α) (35)

⇔ k∗τ =
1

nτqI

(
F−1
Bin(nτ ,qM qI)

(1− α) + 1
)
, (36)

where F−1
Bin(nτ ,qM qI)

is the (lower) inverse cumulative distribution of the Binomial distribution.

B.3 Estimation of the Aggregate Excess CoSP

To account for estimation errors, we employ the fitted CoSP H (as described in Section 3.4)

for lags τ ≥ 1 to estimate the Aggregate Excess CoSP. For the CoSP at lag τ = 0 we include ψ̂0.

Then, the estimator for the Aggregate Excess CoSP is given as

ψ̄ = ψ̂0(q
M , qI)− qM +

∫ ∞
1

H(τ)− qM dτ. (37)

Firstly, note that

∫
H(τ)− qM dτ =

∫
e−aτ

2+bτ+c dτ = ec+
b2

4a

√
π

4a
erf

(
2aτ − b

2
√
a

)
. (38)

Therefore, if a > 0,

∫ T

1
e−aτ

2+bτ+c dτ = ec+
b2

4a

√
π

4a

(
erf

(
2aT − b

2
√
a

)
− erf

(
2a− b
2
√
a

))
(39)

and

ψ̄ =
(
ψ̂0(q

M , qI)− qM
)

+ ec+
b2

4a

√
π

4a

(
1− erf

(
2a− b
2
√
a

))
, (40)

32



since limx→∞ erf(x) = 1. However, if a = 0, we have

∫
H(τ)− qM dτ =

∫
ebτ+c dτ =

1

b
ebτ+c, (41)

thus, if b < 0,

∫ T

1
ebτ+c dτ =

1

b

(
ebT+c − eb+c

)
(42)

and

ψ =
(
ψ̂0(q

M , qI)− qM
)
− eb+c

b
. (43)

B.4 Estimation of the CoSP-weighted time-lag

To account for estimation errors, we employ the fitted CoSP H (as described in Section 3.4) for

lags τ ≥ 1 to estimate the CoSP-weighted time-lag. Then, the estimator for the CoSP-weighted

time-lag is given as

τ̄ =
1

ψ̄

∫ ∞
1

τ (H(τ)− qM ) dτ. (44)

Firstly, note that

∫
τ(H(τ)− qM ) dτ =

∫
τe−aτ

2+bτ+c dτ =
1

4a3/2

(√
πbe

b2

4a
+cerf

(
2aτ − b

2
√
a

)
− 2
√
aeτ(b−aτ)+c

)
.

(45)

Therefore,

τ =
1

ψ̄
lim
L→∞

1

4a3/2

(√
πbe

b2

4a
+cerf

(
2aL− b

2
√
a

)
− 2
√
aeL(b−aL)+c

)
(46)

− 1

ψ̄4a3/2

(√
πbe

b2

4a
+cerf

(
2a− b
2
√
a

)
− 2
√
aeb−a+c

)
(47)

=
1

4a3/2ψ̄

(√
πbe

b2

4a
+c

(
1− erf

(
2a− b
2
√
a

))
+ 2
√
aeb−a+c

)
. (48)
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However, if a = 0, we have

∫
τ(H(τ)− qM ) dτ =

∫
τebτ+c dτ =

(
τ

b
− 1

b2

)
ebτ+c, (49)

thus, if b < 0,

τ =
1

ψ̄

∫ ∞
1

τebτ+cdτ (50)

=
1

ψ̄

[
lim
L→∞

(
L

b
− 1

b2

)
ebL+c −

(
1

b
− 1

b2

)
eb+c

]
=

1− b
ψ̄b2

eb+c. (51)

C Standard Errors and Reliability of ∆CoVaR and CoSP

In this section we examine the standard errors and reliability of HS estimators for ∆CoVaR≤

and ψτ . For simplicity, we focus on lag τ = 0 (i.e. co-movements), since the computation and

results for all other lags are equivalent. As in the previous sections, the VaR-level is set to 1% for

both measures.

C.1 Standard Errors

Firstly, we perform a Monte-Carlo analysis in two steps: In the first step, we study the mean

absolute percentage errors (MAPE) of the risk measures for returns that are student t-distributed.

To this end, we estimate the covariance matrix of the firm’s and financial index’ returns from our

data sample by means of the method of moments (see Section D.2).29 Then, we draw samples from

the student-distribution by employing the Cholesky composition of the resulting covariance matrix.

The number of samples per iteration of the Monte-Carlo algorithm is set to the maximum number

of observations in our data set, which is n = 5219, but we also study the implications of a smaller

sample size of n = 2500. For N realizations (Monte-Carlo iterations) for the estimator ϑ the mean

absolute percentage error (MAPE) of the estimator is given as (for example see Tsay (2010, p.217))

MAPE =
1

N

N∑
i=1

∣∣∣∣∣ ϑ̂(n)i − ϑ̄(n)

ϑ̄(n)

∣∣∣∣∣ , (52)

29In line with Section D.2 we set
√

var(rI) = 0.0236,
√

var(rM ) = 0.013 and the correlation to 0.25.
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where ϑ̂
(n)
i is the i-th realization of the estimator (either ̂∆CoVaR≤ or ψ̂0) and ϑ̄(n) the average

realized value of the estimator. The MAPE can be interpreted as the average absolute deviation

relative to the true value of ϑ. Since the latter is not known, we approximate this true value by ϑ̄(n).
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Figure 10: MAPE of ̂∆CoVaR≤ and ψ̂0 for student-distributed returns.

We show the resulting MAPE for different degrees of freedom (which correspond to the tail-size

of the distribution) in Figure 10. Clearly, the MAPE of ψ̂ is substantially smaller than the MAPE

of ̂∆CoVaR≤. Interestingly, for very small degrees of freedom (i.e. a very heavy tail) the estimation

error for ̂∆CoVaR≤ is particularly large and decreases with increasing degrees of freedom, while

the estimation error for ψ̂0 is particularly small for small degrees of freedom.

As a second step, we apply a nonparametric bootstrap algorithm to draw samples from the

historical returns of exemplary institutions and the financial index. As before, the sample size

in each bootstrap step is set to n = 5219 and we take N = 100000 bootstrap samples. In Ta-

ble 1 we show the resulting MAPE for ̂∆CoVaR≤, ̂CoVaRrI≤V aR(0.01), ̂CoVaRrI∈[µI±σI ] and ψ̂0.

Clearly, the estimation error of ψ̂0 is substantially smaller for all considered institutions. Moreover,

̂CoVaRrI≤V aR(0.01) has an enormously large estimation error: For some institutions the mean ab-

solute error is 100 times as large as the mean value of the systemic risk measure. This result highly

questions the use of ̂CoVaRrI≤V aR(0.01) and, thus, is in line with the findings of Castro and Ferrari

(2012), Danielsson et al. (2015) and Guntay and Kupiec (2014).
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̂∆CoVaR≤ ̂CoVaRrI≤V aR(0.01)
̂CoVaRrI∈[µI±σI ] ψ̂0

WELLSFARGOCO 1.227 41.073 1.963 1.002

JPMORGANCHASECO 1.214 47.543 2.022 1.003

BANKOFAMERICA 1.235 96.071 1.942 0.996

CITIGROUP 1.236 182.269 1.818 0.998

COMMERZBANK 1.208 71.541 1.607 0.995

BANKOFGREECE 1.261 23.876 1.297 0.990

AMERICANINTLGP 1.261 95.391 1.725 0.994

METLIFE 1.222 164.295 1.919 1.001

AXA 1.194 54.827 1.850 1.000

ALLIANZ 1.204 126.014 1.876 0.997

ZURICHINSURANCEGROUP 1.217 110.828 1.832 0.996

GOLDMANSACHSGP 1.206 116.844 1.977 0.999

MORGANSTANLEY 1.214 74.781 1.854 1.000

BLACKROCK 1.207 31.515 1.745 0.999

CHARLESSCHWAB 1.205 59.548 1.668 1.002

CMEGROUP 1.209 29.375 1.718 1.005

Table 1: MAPE of ̂∆CoVaR≤, ̂CoVaRrI≤V aR(0.01), ̂CoVaRrI∈[µI±σI ] and CoSP for bootstrap
samples of size n = 5219.

C.2 Reliability

In this section we compare the reliability of ∆CoVaR≤ and ψ0. For this purpose we employ the

framework proposed by Danielsson et al. (2015). In this framework an institution is classified as

causing systemic risk if its probability to be among the most risky institutions is larger than 90%

according to a given systemic risk measure. Then, the reliability of this risk measure is given as

the fraction of institutions identified as guilty among all most risky institutions. More specifically,

in the baseline calibration 10% of the institutions are assumed to be most risky. Thus, the relia-

bility is given as the fraction of institutions identified to be among the most 10% risky institutions

with a probability larger than 90%. For a motivation for this framework and details regarding the

computational implementation we refer to Danielsson et al. (2015).

To compare the reliability of ∆CoVaR≤ and CoSP we mainly follow the calibration of Daniels-

son et al. (2015): The reliability is computed for returns in rolling windows of 5 years, for each

window we only consider the 200 firms with the highest market capitalization at the end of the
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window, and 10% of the institutions are assumed to be guilty. However, for our bootstrap algo-

rithm we use a simple non-parametric bootstrap with 100000 iterations and blocks with sample

sizes of 2500 or 5219 observations. The resulting reliability of the risk measures is shown in Figure

11. Clearly, CoSP is substantially more reliable than ∆CoVaR≤, particularly in the case of less data.
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Figure 11: Reliability of CoSP and ∆CoVaR≤.

D Data and Methodology

D.1 Market Indices

To account for endogeneity of publicly available market indices, i.e. the issue that institutions

may already be incorporated in the index, we compute own market indices similarly to Chan-Lau

(2010). To this end, we denote by MC
(i)
t the market capitalization of institution i at time t, i.e.

MC
(i)
t = P

(i)
t · Shares

(i)
t , where P

(i)
t is the stock price and Shares

(i)
t the number of shares at time

t. Moreover, by TR
(i)
t we denote the total (dividend-adjusted) return index of institution i.30 A

market is denoted by a subset S ⊆ {1, ...,M}, i.e. the institutions that are included in the market.

Then, the index for market S excluding institution j is given as the weighted average of the total

30The total return index reflects the evolution of the stock price assuming that dividends are re-invested to purchase
additional units of equity.
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return indices:

INDEX
S|j
t = INDEX

S|j
t−1

∑
s∈S\{j}

MC
(s)
t−1∑

s∈S\{j}MC
(s)
t−1

TR
(s)
t

TR
(s)
t−1

. (53)

To adjust for different currencies, we calculate the market capitalization in US dollar. Therefore,

the time t price of institution s is given by

P
(s)
t = P̃

(s)
t /ER

(s)
t , (54)

where P̃
(s)
t is the time t price in currency C̃ and ER

(s)
t is the exchange rate from currency C̃ to US

Dollar at time t. Finally, the market return is computed as

rMt = r
S|j
t = log

(
INDEX

S|j
t

INDEX
S|j
t−1

)
. (55)

D.2 Data and Descriptive Statistics
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Figure 12: Financial and non-financial indices.
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Banks Insurance Companies Brokers

WELLSFARGOCO BERKSHIREHATHAWAYB GOLDMANSACHSGP

JPMORGANCHASECO BERKSHIREHATHAWAYA MORGANSTANLEY

BANKOFAMERICA ALLIANZ BLACKROCK

CHINACONBANKH AMERICANINTLGP CHARLESSCHWAB

CITIGROUP AXA CMEGROUP

HSBCHOLDINGS METLIFE HONGKONGEXSCLEAR

COMMONWEALTHBKOFAUS ZURICHINSURANCEGROUP INTERCONTINENTALEX

MITSUBISHIUFJFINLGP PRUDENTIALFINL FRANKLINRESOURCES

ROYALBANKOFCANADA ACE NOMURAHDG

BANCOSANTANDER SWISSRE MACQUARIEGROUP

Table 3: Names of the ten largest institutions (by market capitalization in November 2015) in
each subsector.

Index No. of institutions r
√

var(r) r0.1 r0.5 r0.9
BAN 567 2.29e-05 0.013 -0.015 0.000 0.014
BRO 151 2.85e-04 0.014 -0.015 0.001 0.015
INS 199 6.36e-05 0.015 -0.015 0.000 0.015

FIN 917 4.17e-05 0.013 -0.014 0.001 0.014

AMC NoFIN 1265 2.56e-04 0.012 -0.013 0.001 0.012
ASIA NoFIN 1514 9.42e-05 0.011 -0.013 0.000 0.013
EU NoFIN 1902 1.99e-04 0.012 -0.013 0.001 0.013

Table 4: Mean, standard deviation and quantiles of different index returns.
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(a) Empirical mean return for different subsectors
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(b) Empirical standard deviation for different subsectors
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(c) Empirical correlation between rI and rFIN

Figure 13: Distribution of mean and standard deviation of returns, and correlation between
institution returns and returns of the financial index.
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E Additional Figures
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(a) Bank of America (BAN)
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(b) JP Morgan Chase (BAN)
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(c) Citigroup (BAN)

0 50 100 150 200 250
Time-Lag (in days)

0

0.05

0.1

0.15

0.2

0.25

CoSP

Fitted CoSP

Lower Confidence Bound

Reference Level q

(d) Bank of Greece (BAN)
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(e) Goldman Sachs (BRO)
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(f) Morgan Stanley (BRO)

Figure 14: CoSP triggered by exemplary banks and brokers w.r.t. the FIN index.
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(a) Charles Schwab (BRO)
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(b) CME Group (BRO)
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(c) AIG (INS)
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(d) Allianz (INS)
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(e) AXA (INS)
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(f) Zurich Group (INS)

Figure 15: CoSP triggered by exemplary brokers and insurance institutions w.r.t. the FIN index.
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(a) General Electric (NoFIN)
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(b) Apple (NoFIN)
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(c) BP (NoFIN)
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(d) Coca Cola (NoFIN)

Figure 16: CoSP triggered by exemplary non-financial companies w.r.t. the FIN index.
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Figure 17: Fraction of significantly systemically important institutions among the subsectors FIN,
BAN, BRO, INS w.r.t. the BAN, BRO, INS, FIN, American, Asian and European non-financial

index.
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-MES −∆CoVaR AggExcCoSP ψ̄

ψ0 81.92% 79.17% 60.79%

-MES 67.81% 48.92%

-∆CoVaR 57.21%

Table 5: Empirical correlation between different systemic risk measures with respect to the FIN
index across the full sample.
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(a) ∆CoVaR≤ w.r.t. the FIN index.
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(b) ∆CoVaR≤ w.r.t. the American NoFIN index.

Figure 18: ∆CoVaR≤ w.r.t. the FIN and American NoFIN indices triggered by significantly
systemically important institutions of the subsectors BAN, BRO, INS and NoFIN. For each box,
the central mark is the median, the edges are the 25th and 75th percentiles, q1 and q3, and the

maximum whiskers’ length is 1.5(q3 − q1).
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