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Abstract

Through the lens of market participants’ objective to minimize counterparty risk, we provide
an explanation for the reluctance to clear derivative trades in the absence of a central clearing
obligation. We develop a comprehensive understanding of the benefits and potential pitfalls
with respect to a single market participant’s counterparty risk exposure when moving from a
bilateral to a clearing architecture for derivative markets. Previous studies suggest that central
clearing is beneficial for single market participants in the presence of a sufficiently large number
of clearing members. We show that three elements can render central clearing harmful for a
market participant’s counterparty risk exposure regardless of the number of its counterparties:
1) correlation across and within derivative classes (i.e., systematic risk), 2) collateralization of
derivative claims, and 3) loss sharing among clearing members. Our results have substantial
implications for the design of derivatives markets, and highlight that recent central clearing
reforms might not incentivize market participants to clear derivatives.
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Counterparty credit risk is the risk that counterparties do not fulfill their future obligations, e.g.,

when they default. Counterparty credit risk has emerged as one of the most important factors

affecting risk in financial markets and amplifying the 2007-08 financial crisis (Duffie et al. (2010),

Acharya et al. (2011), Arora et al. (2012), Financial Stability Board (FSB) (2017a)). Lehman

Brothers’ default during the 2007-08 financial crisis in particular demonstrated that the failure

of an entity with large derivative positions can easily result in substantial loss spillovers to its

counterparties, creating contagion and externalities to the economy.

Derivatives markets are a natural habitat for counterparty risk. Worldwide over-the-counter

(OTC) derivative markets had a notional outstanding amount of $542 trillion in 2017, according

to the Bank for International Settlements (BIS). Before the 2007-08 financial crisis, the derivatives

market architecture has been largely dominated by bilateral trades (Financial Stability Board (FSB)

(2017a)). Bilateral trades are executed directly between two market participants and thus directly

expose them to each other’s default risk. To mitigate counterparty risk and increase transparency

in derivative markets, the G20 leaders initiated a fundamental change in the architecture of these

markets, leading to the Dodd-Frank Wall Street Reform and Consumer Protection Act (DFA) in

2010, and the European Market Infrastructure Regulation (EMIR) in 2012. A key element of

the new regulation is the mandatory central clearing of standardized OTC derivatives through

central clearing counterparties (CCPs). Indeed, the cleared share of Lehman’s derivative trades

was hedged and closed out by within three weeks after Lehman’s failure, suggesting that central

clearing stabilizes derivative markets (Cunliffe (2018)).

However, market participants are reluctant to centrally clear derivative contracts in practice,

unless forced (Financial Stability Board (FSB) (2018)). Central clearing is currently mandatory

for standardized interest rate swaps (IRS) contracts and index CDS in the U.S. and EU. Instead,

clearing is still optional for single name CDS, foreign exchange forwards, commodity and equity

derivatives, which largely remain uncleared (Abad, Aldasorol, Aymanns, D’Errico and Rousová

(2016), Office of the Comptroller of the Currency (2016), Financial Stability Board (FSB) (2017a)).1

1The Financial Stability Board (FSB) (2017a) reports that only 28% of outstanding CDS notionals were cleared in
December 2016 (compared to 5% in June 2009). The fraction of notionals cleared is even smaller than 20% for foreign
exchange, commodity, and equity derivatives in 2016. In contrast, 61% of all interest rate swap notionals outstanding
were cleared in December 2016 (compared to 24% in December 2008), and 80% of new index CDS transactions in
the U.S. are cleared as of April 2017.
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In this paper we provide an intuition for low clearing rates based on the impact of clearing

on counterparty risk. We show in a theoretical model that market participants do not necessarily

reduce their counterparty risk exposure by moving from bilateral to centrally cleared trades, in

particular (a) during market-wide extreme events, (b) if clearing margins are low compared to

bilateral margins, or (c) if the exposure is positively correlated with systematic risk.2 Our results

emerge in particular by examining the impact of systematic risk, which we define as co-movement of

derivative prices. High systematic risk aggravates the benefits of multilateral netting since it reduces

the likelihood that losses to one counterparty can be offset with gains to another counterparty. It

also creates wrong way risk since entity defaults naturally occur in bad states with low asset prices.

The Financial Stability Board (FSB) (2018) stresses that counterparty risk management as well

as directional positions are indeed important factors for market participants’ decision to centrally

clear derivative trades.3 Duffie and Zhu (2011) argue that counterparty risk exposure is also

a reasonable measure for the risk of loss from counterparty defaults, and thus is a first-order

consideration for systemic risk analysis. We share this approach and consider our analysis as one of

the relevant elements that (1) market participants (should) consider in their evaluation of bilateral

vs. multilateral netting, and (2) regulators (should) consider as one of the elements of a cost-benefit

analysis of central clearing.4

Central clearing has been proposed to reduce counterparty risk exposure especially during the

times of extreme events. However, although central clearing might stabilize derivative markets

as a whole, we provide theoretical support that CCPs are not a panacea. Instead, during rea-

sonable conditions, counterparty risk exposure with central clearing is actually larger than with

bilateral clearing from the viewpoint of a single market participant’s counterparty risk exposure.

Our analysis therefore supports policymakers’ efforts to revise the current implementation of mar-

ket infrastructure regulation (as put forward, e.g., by the European Systemic Risk Board (ESRB)

(2017) and the Financial Stability Board (FSB) (2018)) and their attempt to carefully evaluate the

pros and cons of central clearing.

2A market participant’s counterparty risk exposure is defined as the expected loss given default of its counter-
parties.

3Other important factors for the decision to centrally clear are preferential capital treatment of centrally cleared
derivatives and market liquidity.

4Other important benefits of central clearing are reduced complexity, increased transparency in the derivative
market, and reducing payment flows.
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Our analysis builds on the model of Duffie and Zhu (2011) who show that central clearing of one

derivative class reduces counterparty risk exposure if the number of counterparties is sufficiently

large and contract values are uncorrelated. Our contribution is an analysis of (1) systematic risk

of derivatives, resulting in correlation across derivative classes (e.g., between interest rate swaps

(IRS) and credit default swaps (CDS)) and within derivative classes (e.g., among CDS with different

reference entity or different maturity), (2) collateralization of derivative claims, and (3) sharing of

CCP losses among non-defaulting clearing members. We show that, from the viewpoint of a single

market participant, these three elements can render central clearing harmful for counterparty risk

exposure regardless of the number of its counterparties. Hence, in a number of realistic situations,

market participants do not lower their counterparty risk exposure with central clearing and thus

might prefer bilateral trades. This insight provides an explanation for the reluctance of market

participants to clear derivative trades in the absence of a central clearing obligation. It also suggests

that central clearing might not always contribute to financial stability but, instead, can amplify

financial contagion by increasing counterparty risk.

Central clearing was introduced to mitigate counterparty risk primarily by means of two mech-

anisms: multilateral netting and loss sharing. Multilateral netting allows market participants to

net, i.e., offset gains and losses, across different counterparties at the CCP. Loss sharing is a CCP’s

main recovery tool and prescribes liquidity injections from non-defaulting clearing members if a

CCP’s losses exceed the sum of margin and default contribution of the defaulting clearing member

as well as the CCP’s own funds (Elliott (2013), Duffie (2015), Financial Stability Board (FSB)

(2017b), Armakolla and Laurent (2017)).

We begin with an analysis of multilateral netting. Netting agreements aggregate outstanding

positions into one single claim (Bergman et al. (2004)). Bilateral netting offsets positions across

different derivative classes (e.g., IRS and CDS) with a single counterparty. Multilateral netting

offsets positions within one derivative class across different counterparties. For example, in Figure

1, A can reduce its total counterparty risk exposure from $100 to $40 with multilateral netting, as

the exposure of $100 to B is offset with a loss of $60 to C. Multilateral netting results from the

CCP becoming a counterparty in the middle of each trade.

In our framework, systematic risk reflects market-wide shocks that affect all derivative contracts

and thus induces correlation among and within derivative classes. Market-wide shocks are vital to
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(a) Bilateral netting. (b) Multilateral netting.

Figure 1. Illustration of bilateral and multilateral netting.
(a) Bilateral netting and (b) multilateral netting across counterparties. Arrows illustrate the flow of profits and

losses, e.g., B owes $ 100 to A.

gauge the effectiveness of central clearing during economic crises. For example, the recent financial

crisis of 2007-08 resulted in a sharp price decline in several derivative classes, such as mortgage

credit default swaps. However, even during non-crisis periods derivative prices are correlated. For

example, we empirically find that index CDS prices are highly correlated: In a single factor model,

S&P 500 returns exhibit a correlation of 43% with a basket of U.S. on-the-run index CDS returns,

and explain 19% of their variation. This finding is in line with other studies: Pan and Singleton

(2008) find that over 96% of the variation in sovereign CDS spreads for one reference country,

differing, e.g., by maturity, is explained by a single factor. Longstaff et al. (2011) find that 64% of

variation in sovereign CDS spreads for different reference countries is explained by a single global

factor.

We show that higher systematic risk results in an increase in counterparty risk exposure with

multilateral netting relative to bilateral netting. As a result, with a reasonable calibration of our

model, a market with more than 121 clearing members is needed for multilateral netting to reduce

counterparty risk exposures compared to a bilateral market. This is substantially more than the

typical number of clearing members and dealers in derivative markets in practice.5

We also explore times of extreme negative events such as financial crises. These are extremely

adverse shocks to the systematic risk component in our model. During such extreme events, coun-

terparty risk exposures substantially increase. We show that, if events are sufficiently extreme,

5For example, Bellia et al. (2017) document that there are only 26 clearing members in the sovereign CDS market
(in a sample of transactions with at least one European counterparty), accounting for 96.5% of total gross notional
amount. Getmansky et al. (2016) find that the largest 5 buyers and sellers in the single-name CDS market (in a
sample of transactions with at least one U.S. reference entity or counterparty) account for more than 40% of all
bought and sold CDS contracts, respectively.
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then multilateral netting leads to larger counterparty risk exposures than bilateral netting for any

number of counterparties. The intuition is that large expected portfolio losses or gains dominate

potential diversification benefits from netting during extreme events. As a consequence, during ex-

treme events, multilateral netting is not beneficial compared to a bilateral market for any number

of clearing members.

The failure of multilateral netting to reduce counterparty risk exposures in all states of the world

might be addressed by netting across both counterparties and derivative classes (cross-netting). We

show that, before considering collateral, only central clearing with a single CCP that clears across

all derivative classes and counterparties, i.e., a Mega CCP, can unambiguously reduce counterparty

risk exposures compared to a bilateral market. Thus, a higher concentration in the CCP market

seems beneficial for counterparty risk exposures, which is in line with the result of Duffie and Zhu

(2011) that counterparty risk exposure decreases with the total number of CCPs. Derivative market

participants already seem to have recognized the benefit of clearing concentration, with the result

that a small number of CCPs dominate specific derivative classes.6 However, the impact of con-

centration on competition among CCPs and concerns that a single CCP might be too systemically

relevant highlight the tension between reducing counterparty risk exposure and reducing systemic

risk.

We further introduce margin requirements in our model.7 Current regulation requires smaller

margins for cleared than for non-cleared derivative transactions (Bank for International Settlements

(BIS) (2015, 2014), Duffie et al. (2015), Financial Stability Board (FSB) (2018)). The main reasons

for this discrepancy are (1) to increase incentives to clear and (2) the expectation that CCPs are

faster in auctioning the portfolios of defaulted clearing members.8 We show that discrepancies in

margin requirements for cleared derivatives (clearing margin) and non-cleared derivatives (bilat-

eral margin) substantially affect counterparty risk exposures. If clearing margins are sufficiently

smaller than bilateral margins, then multilateral netting always results in a higher counterparty

6As of 2018 there are 49 CCPs authorized to offer services in the European Union, of which 32 are authorized
to clear equity derivatives, and 24 to clear interest rate derivatives (see European Securities and Markets Authority
(ESMA) (2018a,b)). However, clearing IRS and CDS concentrates on two CCPs: London Clearing House (LCH) has
a market share of 90% in clearing Euro- and USD-denominated interest rate swaps as of February 2018, while ICE
Clear Credit clears the vast majority of USD-denominated CDS, and CDX, and Euro-denominated CDS and iTraxx.

7We use the terms margin and collateral interchangeably.
8Discrepancies in margin requirements might also result from CCP funding. Huang (2018) links margin require-

ments to the capitalization of for-profit CCPs, and shows that better-capitalized CCPs require higher margins.
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risk exposure than bilateral netting - regardless of the number of clearing members.9 We derive

the corresponding lowest acceptable difference between clearing and bilateral margin such that

multilateral netting is beneficial compared to bilateral netting for a sufficiently large number of

counterparties - from the viewpoint of market participants. This threshold is primarily driven by

systematic risk: The higher the systematic risk, the smaller is the acceptable difference between

clearing and bilateral margin. Indeed, we show that the degree of netting is only of minor im-

portance if the clearing margin is not sufficiently large. We show that, as a consequence, current

margin practices are unlikely to result in a benefit of multilateral netting from the perspective of a

market participant’s counterparty risk exposure.

Importantly, even a Mega CCP is not able to make up for any discrepancy between clearing

and bilateral margin, and has a small impact on the benefit of multilateral netting if margins

differ. Therefore, aligning margins for cleared and non-cleared derivatives is of primary importance

to achieve a reduction of counterparty risk exposure via central clearing. Otherwise, to reduce

counterparty risk exposure from a market participant’s perspective, it would be more effective to

just increase margin requirements in a bilateral market than to introduce central clearing at all.

As mentioned before, the infrastructure of central clearing does not rely solely on multilateral

netting. It also includes loss sharing among surviving clearing members if losses exceed a defaulting

clearing member’s margin and default fund contributions as well as the CCP’s own funds (Elliott

(2013), Duffie (2015), Financial Stability Board (FSB) (2017b), Armakolla and Laurent (2017)).10

For example, in September 2018 a clearing member’s default triggered losses of the Swedish clearing

house Nasdaq Clearing AB in excess of the member’s margin and default fund contribution as well

as the CCP’s own default fund (Finansinspektionen (Financial Supervisory Authority Sweden)

(2018)). As a consequence, the excess loss (EUR 107 million) was entirely born by remaining

clearing members (Stafford and Sheppard (2018)).

9Note that low margins however result in smaller total margin cost, which can also be beneficial for market
participants. Thus, a market participant’s decision whether to clear derivatives might ultimately depend on a trade-
off between smaller margin cost and higher counterparty risk. In this paper, we, however, entirely focus on the effect
on counterparty risk exposure. For an analysis of clearing cost, we refer to Ghamami and Glasserman (2017) and
Financial Stability Board (FSB) (2018).

10Indeed, there have been several instances of clearinghouse failures in recent decades, for example the failure of
the Korean exchange clearinghouse KRX (2014), the French Caisse de Liquidation in Paris (1974), Kuala Lumpur
Commodities Clearing House (1983), Hong Kong Futures Exchange (1987), and the New Zealand Futures and Options
Exchange (1989) (see Hills et al. (1999), Budding et al. (2016), and Bignon and Vuillemey (2018)). For a detailed
discussion of the use of a CCP’s funds to cover realized exposure we refer to Armakolla and Laurent (2017) and
Elliott (2013).
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Loss sharing mutualizes the idiosyncratic part of counterparty risk (Biais et al. (2016)). In the

presence of systematic risk, however, buyers and sellers of derivative contracts benefit differently

from clearing their trades. We show that, on average, clearing members with net portfolio gains

during bad times, e.g., due to a short position in the S&P 500, benefit from loss sharing. Instead,

those with net portfolio losses during bad times, e.g., due to a long position in the S&P 500, face a

larger counterparty risk exposure when clearing their trades compared to not-clearing. The reason

is correlation between market participants’ bilateral counterparty risk exposure and default risk.

Market participants with gains (losses) in bad (good) times have a high bilateral counterparty risk

exposure exactly when counterparties are most likely to default. They benefit from sharing this large

exposure with other clearing members. Then, they post wrong way risk to the CCP, meaning that

their counterparty risk exposure is positively correlated with default risk.11 In contrast, clearing

members with losses (gains) during bad (good) times have a right way risk, i.e., a small bilateral

counterparty risk exposure when defaults are most likely. Thus, they are worse off with central

clearing, as they carry the large exposure of other clearing members with only a small exposure to

share themselves.

As a consequence, market participants with a net position that is positively correlated with

systematic risk likely do not reduce their counterparty risk by centrally clearing derivative trades.

This bifurcation between clearing members with different directions of positions is worsened during

extreme negative events. The finding is consistent with the reluctance of asset managers and,

particularly, hedge funds to become clearing members at CCPs, as Siriwardane (2018) reports

that these are the largest net sellers of CDS protection and, thus, have a positive correlation with

systematic risk.

We argue that the only way to reduce the heterogeneity across clearing members’ positions is to

account for the direction of their positions when distributing a CCP’s losses. This can be achieved,

e.g., by demanding higher ex-post or ex-ante default fund contributions from clearing members

with a negative correlation with systematic risk compared to those with a positive correlation. For

example, with variation margin haircutting, a CCP allocates losses by reducing variation margin

payments to clearing members whose portfolio values have increased (Elliott (2013)). Then, losses

11See Bank for International Settlements (BIS) and International Organization of Securities Commissions (IOSCO)
(2018) for a discussion on wrong way risk.
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are mainly allocated to those clearing members with gains in bad times, offsetting their net benefit

from loss sharing. Otherwise, the bifurcation among clearing members might lead to distorted

incentives to clear derivative transactions.

In summary, our results strongly suggest that central clearing does not have an unambiguously

positive effect on counterparty risk exposure. In contrast, we identify a large number of realistic

situations in which central clearing does not reduce but increase counterparty risk exposure in

comparison to bilateral clearing. This result provides a rationale for the observation that market

participants are reluctant to centrally clear derivative contracts, unless forced. Particularly during

financial crises, central clearing might lead to higher counterparty risk exposures from the view-

point of single market participants, particularly for those with a positive exposure to systematic

risk. In this study we take the perspective of a single market participant’s to develop a compre-

hensive understanding of the effect of central clearing on counterparty risk exposure. Although

this perspective is only partial, i.e., from market participants’ point of view conditional on exist-

ing trades, it provides important insights that support policymakers in specifying financial market

infrastructure regulation to enhance financial stability.12

The remainder of this paper is structured as follows. Section 1 describes the related literature.

Section 2 presents a stylized model of a derivatives market extending the one from Duffie and

Zhu (2011) by introducing systematic risk. In Section 3 we study the impact of multilateral vs.

bilateral netting on counterparty risk exposures; while Section 4 focuses on the impact of loss

sharing. Section 5 concludes. Propositions and proofs are provided in Appendix A.

1 Literature Review

We contribute to a growing strain of research on the role of central clearing for financial stability.

Duffie and Zhu (2011) and Lewandowska (2015) study the impact of multilateral vs. bilateral

netting on counterparty risk exposure when derivative prices are independently distributed. Their

main result is that central clearing decreases counterparty risk exposure if there is a sufficient

number of clearing members. Duffie and Zhu (2011) also provide an intuition about the impact

12The ultimate effect of central clearing on financial stability also depends on its contribution to the transparency
of derivative markets, as highlighted by Acharya and Bisin (2014), a potential reduction in loss concentration, as
highlighted by Lewandowska (2015), and its effect on risk management practices of financial market infrastructures.

9



of correlation across (but not within) derivative classes: The more correlated different derivative

classes are, the lower is the reduction in exposures that is achieved by bilateral netting across

these classes. Therefore, with higher correlation across contract classes, bilateral netting becomes

relatively less beneficial compared to multilateral netting. Cont and Kokholm (2014) follow this

rationale and study the effect of correlation across derivative classes on the benefit of multilateral

netting. They conclude that multilateral netting is likely to reduce counterparty risk exposures

compared to bilateral netting, in practice.

We extend these two studies on multilateral vs. bilateral netting by (1) the introduction of

systematic risk that results in correlation across and within derivative classes,13 (2) the analysis of

central clearing during extreme market events, and (3) the introduction of margin requirements.

Our results show that these elements can render central clearing harmful for counterparty risk ex-

posure under very reasonable and empirically justifiable circumstances. Importantly, we show that

the presence of systematic risk results in situations in which market participants face higher coun-

terparty risk exposure in centrally cleared than bilateral markets for any number of counterparties,

which contrasts previous results.

Jackson and Manning (2007) also study central clearing in the presence of margins and correlated

derivative positions. They however focus on the effect of correlation on the counterparty risk

exposure with a multi-product CCP compared to that with a CCP that clears only one derivative.

We extend this study by examining the effect of correlation on the benefit of clearing (either one

or several) derivative classes compared to a bilateral market. We also vary margin levels and show

that even a Mega CCP is not beneficial compared to a bilateral market if the clearing margin is too

small. Huang and Menkveld (2016) and Menkveld (2017) identify concentration of cleared trades

in a small number of risk factors as a major risk to the stability of CCPs. We add to their study

by showing that such concentration also reduces the benefit of multilateral netting with respect to

counterparty risk.

Ghamami and Glasserman (2017) study the capital and collateral costs of central clearing, and

13Correlation across derivative classes results, e.g., when the CDS and interest rate swap price of either one or
several market participants are correlated. For example, during the 2007-08 financial both interbank interest rates
and CDS spreads for banks increased rapidly (Brunnermeier (2009)), implying correlation between IRS and CDS
derivatives. Correlation within derivative classes results, e.g., when CDS with different reference entities or different
maturities are correlated. For example, Longstaff et al. (2011) find a high correlation among sovereign CDS spreads
for different countries.
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find that there is no cost incentive for single market participants to centrally clear derivatives.

Their result is contrasted by the Financial Stability Board (FSB) (2018)’s assessment that central

clearing reforms create an overall incentive to clear. We complement these studies by providing an

in-depth analysis of the impact of systematic risk and margins on counterparty risk exposure, and

its sensitivity towards margin requirements, the number of counterparties, and systematic risk.

Moreover, we extend the previous studies by considering loss sharing, namely that CCPs pro-

vide an implicit insurance against counterparty defaults by allocating non-pre-funded losses to

non-defaulting clearing members. Biais, Heider, and Hoerova (2016) study the optimal design of

loss sharing and margins in the presence of moral hazard, stressing that loss sharing via central

clearing can only provide insurance against idiosyncratic but not against systematic risk. Without

considering systematic risk or comparing long and short positions, Lewandowska (2015) shows in a

simulation study that loss sharing reduces loss concentration compared to bilateral clearing. Arns-

dorf (2012) studies counterparty risk exposure resulting from loss sharing. Similar to our model,

his model includes wrong way risk and Value-at-Risk based margin requirements. However, he

does neither compare the counterparty risk exposure with central clearing to the case with bilateral

netting nor does he study the effect of systematic risk, different margin requirements, or different

long and short positions of clearing members. We show that loss sharing is beneficial compared

to a bilateral market mostly for market participants that are short in the economy or hedged

against systematic risk but not for those that are long in the economy. These differences grow with

increasing systematic risk.

Empirical evidence on the impact of central clearing on counterparty risk has been growing

only recently, fueled by the increasing availability of granular data. Loon and Zhong (2014) find

that central clearing increases CDS spreads and attribute this effect to a reduction in counterparty

risk. Their results are contrasted by those of Du et al. (2016) who find no empirical evidence

that CDS spreads are positively affected by central clearing. In any case, CDS spreads only reflect

market participants expectations and, thus, not necessarily the actual impact of central clearing

on counterparty risk exposure. Instead, we characterize situations in which central clearing can

actually reduce counterparty risk exposure, and show that its effect might also change over time

since it is highly sensitive towards the current market environment as well as margin requirements.

Menkveld et al. (2015) provide empirical evidence that the introduction of central clearing reduced
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price volatility in equity markets. Bellia et al. (2017) study the determinants for market partic-

ipants’ decision to clear CDS contracts. Their empirical evidence suggests that dealers typically

clear contracts with counterparties that would otherwise pose a large counterparty risk exposure.

This result highlights the relevance of counterparty credit risk considerations for decisions to cen-

trally clear, which supports the importance of our in-depth analysis of the impact of central clearing

on counterparty risk.

2 A model of central clearing with systematic risk

Analogously to Duffie and Zhu (2011) and Cont and Kokholm (2014) we compare a central clear-

ing architecture with a bilateral over-the-counter market from a market participant’s perspective

for a given set of derivative trades. We allow for K classes of derivative contracts. The classifica-

tion might result from grouping common derivatives according to the type of underlying, such as

interest rate, credit, commodities, or equities. One could also, more granularly, distinguish between

derivatives that are sufficiently standardized for central clearing and those that are not. This will

be relevant as we will later assume that a central clearing counterparty clears all derivatives within

a specific derivative class.

Counterparty credit risk mainly arises from replacement costs during the time between opening

and settling a derivative contract (Bank for International Settlements (BIS) (1998)). These costs

typically result from changes in contract values during the settlement period, which is the time

period between the latest exchange of collateral (i.e., variation margin) and the liquidation (i.e.,

settlement) of a contract portfolio. Clearly, the length of the settlement period depends on the

liquidity of the contracts as well as the frequency of margin exchange. It typically ranges from 2

to 5 days for centrally cleared products, as these tend to be very liquid and margins are exchanged

daily (Arnsdorf (2012)), but might be larger in non-centrally cleared and less liquid positions.

Without loss of generality, we consider a one period model. At time t = 0, contracts are exchanged

(or, equivalently, all contracts are marked to market by the exchange of variation margin) and,

subsequently, counterparties might default. At time t = 1, contracts are settled.

As illustrated in Figure 2, we assume that, during the settlement period, the absolute value

change of contracts that market participant i traded with market participant j in derivative class

12



Figure 2. Timeline of the model.
Losses due to counterparty default occur between time t = 0, the most recent date where contracts have been

marked to market and counterparties might default, and time t = 1, at which time the portfolio is settled.

k is given by Xk
ij = vkijr

k
ij . v

k
ij reflects the contract size, i.e., the quantity traded, and the position

of the counterparties. Market participants are called entities or counterparties hereafter.

rkij is the contract return (at market value scaled by the contract size v) during the settlement

period. By following Duffie and Zhu (2011), for simplicity we assume that all contract returns

are normally distributed with zero mean. Symmetry substantially reduces the dimension of our

model and seems to be a reasonable assumption, particularly in arbitrage-free and informationally

(weakly) efficient markets. The assumption of normally distributed bilateral exposures might not

be justified for individual contracts, since these often exhibit heavily skewed and fat-tailed market

values. However, due to diversification arising from aggregating across underlying names as well

as long and short positions within a specific derivative class, it is reasonable that exposures are

substantially less skewed or fat-tailed, particularly for large dealers.

The stochastic return rkij consists of an idiosyncratic and systematic component and is given by

rkij = βkijM + σkijε
k
ij , (1)

where εkij ∼ N (0, 1) is the idiosyncratic risk component and βkij is the market exposure of the

contract. Due to symmetry, the gain of i is the loss of j, i.e., rkij = −rkji. The systematic risk

component M ∼ N (0, σ2
M ) serves as a latent variable that reflects the state of the economy and

financial market. Large positive (negative) values of M reflect good (bad) states of the economy

with high asset gains. It will be useful to reparametrize rkij in terms of the total contract volatility,

σkX,ij =
√

var(rkij), and correlation with M , ρX,M,ij = cor
(
rkij ,M

)
, such that βkij = ρkX,M,ij

σkX,ij
σM
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and σkij = σkX,ij

√
1−

(
ρkX,M,ij

)2
. The correlation between two contracts in classes k and m, traded

between i and j, and h and l, then equals cor
(
Xk
ij , X

m
hl

)
= sgn

(
vkij v

m
hl

)
ρkX,M,ijρ

m
X,M,hl, where

sgn(x) = |x|/x is the signum function. The correlation is positive if i and h have either both long

or both short positions, and is negative otherwise. In the following, we will take the viewpoint of

one counterparty i’s contract portfolio
{
Xk
ij : j ∈ {1, ..., γ}\{i}, k ∈ {1, ...,K}

}
.

Throughout the paper, we assume a positive correlation between contract returns rkij and the

state of the economy M , βkij > 0. This comes without loss of generality, since the final profit

and loss of X ultimately depends on the long and short position of entities. For example, the

profit and loss of market participants that are long in the S&P 500 is positively correlated with

the economy, cor(X,M) > 0. Vice versa, market participants being short in the S&P 500 are

negatively correlated with the economy, cor(X,M) < 0. Thus, the sign of correlation between X

and M ultimately depends on an entity’s position in the contract.

As we assume symmetric idiosyncratic risk, E[εkij ] = 0, the sign of vkij determines an entity’s

long/short position in the state of the economy: vkij > 0 denotes a long-position of entity i, i.e.,

the value of the contract for i increases with M , and vice versa. For simplicity, we will call entity

i long in systematic risk if vkij > 0, and short in systematic risk if vkij < 0. The absolute size |vkij |

determines the size of the contract and thus reflects the notional. In the absence of systematic risk

(ρkX,M,ij ≡ 0) and with homogeneous positions (vkij ≡ 1) our model is equivalent to the one of Duffie

and Zhu (2011).

First, we begin with the model of a bilateral OTC market. We assume that all entity-pairs have

bilateral (close-out) netting agreements with each other. Netting agreements reduce counterparty

risk exposures: For example, suppose that counterparty i trades two contracts with counterparty

j and the value of these contracts is X1
ij = −100 and X2

ij = 100. Without bilateral netting,

counterparty j owes 100 to i on contract 2 and, thus, counterparty i looses 100 if j defaults.

Moreover, i is still obligated to pay 100 to j for contract 1. With a bilateral netting agreement, the

value of the two contracts is canceled out prior to default. In this example, neither counterparty i

or j would suffer a loss if one of them defaults. Thus, in general, the total counterparty loss of i

given default of j, i.e., its exposure in all derivative classes k = 1, ...,K, equals the positive value

of the sum of contract value changes, max
(∑K

k=1X
k
ij , 0

)
.
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Second, we introduce central clearing. If derivative class K is cleared by a central clearing

counterparty (CCP), then all positions in this derivative class are netted across counterparties.

Thus, the loss of i given default of the CCP, i.e., its exposure, equals max
(∑γ

j=1,j 6=iX
K
ij , 0

)
, where

γ is the total number of clearing members.

3 Bilateral vs. Multilateral Netting

3.1 Systematic risk and counterparty risk exposures

We will stepwise increase the complexity of our model in order to isolate the impact of different

components. For this purpose, we distinguish between counterparty risk exposure before considering

collateral, called collateralized counterparty risk exposure, and counterparty risk exposure exceeding

collateral, called uncollateralized counterparty risk exposure. We start by studying an entity’s

collateralized counterparty risk exposure, which corresponds to the metric in Duffie and Zhu (2011)

and Cont and Kokholm (2014). For simplicity, we sometimes just refer to it as exposure. Our

model differs from the previous two studies mainly by the systematic component M that induces

correlation across and within derivative classes.

For simplicity, we consider a market that is as homogeneous as possible, which ensures that

our baseline results are not driven by heterogeneity of market participants.14 For this purpose, we

follow Duffie and Zhu (2011) and assume that all contracts are homogeneous in that they exhibit

the same distributional properties. We skip entity-specific indices where possible: β ≡ βkij and

σ ≡ σkij for all i 6= j and k = 1, ...,K. This assumption substantially reduces the complexity of

our model. Moreover, as in Duffie and Zhu (2011) and Cont and Kokholm (2014), all positions are

assumed to equal unity, v ≡ 1.15 In this case, entities do not hedge systematic risk across or within

derivative classes, i.e., are long in systematic risk with each position.16

To assess the benefit of multilateral netting (and central clearing in general), we focus on the

counterparty risk exposure of a given entity i. As argued by Duffie and Zhu (2011), counterparty

risk exposure is a reasonable measure for the risk of loss from counterparty defaults and thus for

14We conduct sensitivity analyses with regard to the heterogeneity of position sizes v after establishing our baseline
results.

15Note that due to the unconditional symmetry of X, unconditional results also hold if v ≡ −1.
16We will conduct a sensitivity analysis towards this assumption.
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a first-order consideration for systemic risk analysis.17 In a homogeneous market, entity i’s total

counterparty risk exposure with bilateral netting of K derivative classes with γ − 1 counterparties

is given by

E[EBN,Ki ] = (γ − 1)ϕ(0)
√
σ2
MK

2β2 +Kσ2. (2)

Proof: See Proposition 1 in Appendix A.

If derivative class K is multilaterally netted, then i’s total counterparty risk exposure is given by

E[EBN+MN
i ] = ϕ(0)(γ − 1)

√
σ2
M (K − 1)2β2 + (K − 1)σ2︸ ︷︷ ︸

=E[EBN,K−1
i ] (bilaterally netted)

+ϕ(0)
√
σ2
M (γ − 1)2β2 + (γ − 1)σ2︸ ︷︷ ︸

=E[EMN
i ] (multilaterally netted)

.

Proof: See Proposition 2 in Appendix A.

The first term of E[EBN+MN
i ] gives entity i’s counterparty risk exposure resulting from bilateral

netting agreements with γ − 1 counterparties in K − 1 derivative classes, which is E[EBN,K−1
i ].

The second term is the counterparty risk exposure in the multilaterally netted derivative class K,

which is E[EMN
i ].

The bilateral and multilateral netting pools are illustrated in Figure 3. Multilateral netting

of derivative class K has two opposing effects: On one hand, it shrinks all bilateral netting pools

with different counterparties by taking out derivative class K. This reduces diversification in these

pools. On the other hand, it creates a new pool across all counterparties, i.e., the multilateral

netting pool. Clearly, if there is a very large number of counterparties γ compared to the number

of derivative classes K, a high degree of diversification in the multilateral netting pool can offset

the reduction in diversification in the bilateral pools.

3.1.1 Calibration

In this subsection, we calibrate our model to evaluate the effect of central clearing on counter-

party credit risk exposure. The model is calibrated in order to realistically reflect the characteristics

of derivative markets. The baseline number of counterparties is γ = 16, which corresponds to the

17The inverse of the collateralized counterparty risk exposure is called netting efficiency by Duffie and Zhu (2011).
They note that essentially any other risk measure is increasing in counterparty risk exposure under the assumption
of normality and symmetry.
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(a) Full bilateral netting. (b) Multilateral netting of derivative class K.

Figure 3. Bilateral and multilateral netting pools in our model.
K is the number of derivative classes and γ the number of counterparties trading with each other. The illustration

is from the perspective of entity i that trades with γ − 1 counterparties.

G16 dealers that trade more than 50% (in terms of outstanding notional) of uncleared interest

rate derivatives, 60% of uncleared credit default swaps, and 37% of uncleared foreign exchange

derivatives in the European market (Abad, Aldasorol, Aymanns, D’Errico and Rousová (2016)).18

It is also close to the actual number of clearing members at U.S. and European CCPs.19 The

concentration is even higher among dealers that clear for their clients, as Woodall (2018) reports

that only 5 dealers hold 75% of all clients’ positions at the London Clearing House (LCH). We

will vary the number of counterparties γ as one of the main parameters of interest. We assume a

total number of K = 10 derivative classes. Note that K mainly reflects the degree of diversification

within bilateral pools.

We calibrate the volatility of contract values based on index CDS, since these are already

subject to clearing obligations in the U.S. and EU. For this purpose, we retrieve data about the

performance of the North American family of CDS indices, the CDX family, from January 2006

to 2010 from Markit. We choose this period because it covers the 2007-08 financial crisis. Table 1

reports the names of CDS indices included in our sample. Starting with the assumption of a 5-day

settlement period, the descriptive statistics in Table 2 show that the average standard deviation of

18According to Abad, Aldasorol, Aymanns, D’Errico and Rousová (2016), the group of G16 dealers includes
Bank of America, Barclays, BNP Paribas, Citigroup, Credit Agricole, Credit Suisse, Deutsche Bank, Goldman Sachs,
HSBC, JPMorgan Chase, Morgan Stanley, Nomura, Royal Bank of Scotland, Societe Generale, UBS, and Wells Fargo.

19ICE Clear Europe has 22 members for CDS clearing, 38 for U.S. futures, 72 for EU futures, and 24 for Endex clear-
ing as of March 2018 (https://www.theice.com/clear-europe/membership). ICE Clear U.S. has 38 clearing mem-
bers in different derivative classes as of March 2018 (https://www.theice.com/clear-us/membership). The CDS
clearing service of LCH Clearnet (CDSClear) has 13 members, and its cash equities and cash equities equivalent clear-
ing service (EquityClear) has 33 members as of January 2018 (https://www.lch.com/membership/member-search).
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5-day log returns of index CDS prices roughly equals σX = 0.01, which we use as an estimate for

total contract volatility. During the same time period, the standard deviation of 5-day log returns

of the S&P 500 is roughly σM = 0.03, which we use as an estimate for the volatility of the state of

the economy, i.e., systematic risk component.

CDX name Description

CDX NA.HY North American High Yield CDSs
CDX NA.HY.B Rating sub-index of CDX NA.HY
CDX NA.HY.BB Rating sub-index of CDX NA.HY
CDX NA.HY.HB Sub-index of CDX NA.HY (high beta)
CDX NA.IG North American investment-grade CDSs
CDX NA.IG.CONS Sub-index of CDX NA.IG (consumer cyclical)
CDX NA.IG.ENRG Sub-index of CDX NA.IG (energy)
CDX NA.IG.FIN Sub-index of CDX NA.IG (financials)
CDX NA.IG.TMT Sub-index of CDX NA.IG (telecom, media and technology)
CDX NA.IG.INDU Sub-index of CDX NA.IG (industrial)
CDX NA.IG.HVOL Sub-index of CDX NA.IG (high volatility)
CDX NA.XO Sub-index of CDX NA.IG (crossover between grade and junk)
CDX.EM Emerging market CDSs
CDX EM.DIV Emerging market CDSs (diversified)

Table 1. Names, and description of CDX indices included in our data sample. Source: Markit
(2015).

Statistic N Min Pctl(25) Median Pctl(75) Max Mean St. Dev.

S&P 500 1,021 −0.203 −0.013 0.002 0.015 0.175 −0.001 0.031
CDX (all) 590,706 −0.288 −0.002 0.0003 0.004 0.291 0.001 0.012
CDX (CDX.NA.HY) 131,945 −0.096 −0.004 0.002 0.010 0.095 0.003 0.015
CDX (CDX.NA.HY.B) 27,921 −0.090 −0.003 0.0005 0.005 0.146 0.002 0.013
CDX (CDX.NA.HY.BB) 19,474 −0.064 −0.003 0.0004 0.003 0.056 0.0005 0.009
CDX (CDX.NA.HY.HB) 38,254 −0.163 −0.005 0.002 0.011 0.215 0.005 0.024
CDX (CDX.NA.IG) 83,264 −0.288 −0.001 0.0001 0.002 0.291 0.0002 0.006
CDX (CDX.NA.IG.CONS) 29,007 −0.046 −0.001 0.000 0.001 0.027 −0.0001 0.005
CDX (CDX.NA.IG.ENRG) 29,007 −0.039 −0.001 −0.00001 0.001 0.032 −0.00003 0.004
CDX (CDX.NA.IG.FIN) 47,653 −0.095 −0.003 0.0003 0.005 0.045 0.0003 0.011
CDX (CDX.NA.IG.TMT) 31,953 −0.056 −0.002 0.00001 0.002 0.078 0.0001 0.006
CDX (CDX.NA.IG.INDU) 35,790 −0.049 −0.002 0.0001 0.002 0.037 0.00002 0.005
CDX (CDX.NA.IG.HVOL) 56,996 −0.073 −0.002 0.0001 0.002 0.048 0.0001 0.008
CDX (CDX.NA.XO) 30,508 −0.081 −0.005 0.001 0.006 0.067 0.001 0.012
CDX (CDX.EM) 14,372 −0.180 −0.003 −0.00001 0.004 0.192 −0.0002 0.018
CDX (CDX.EM.DIV) 14,562 −0.144 −0.002 0.0002 0.003 0.149 0.0002 0.014

Table 2. Descriptive statistics of 5-day log returns of CDX indices and the S&P 500.
The statistics are based on date-tenor-series-version observations for different index CDX families (see Table 1 for
descriptions), all family-date-tenor-series-version observations for CDX (all), and date observations for S&P 500

from January 2006 to December 2009. Source: Markit.

To calibrate the correlation between contract returns and the state of the economy, we employ

a one-factor model, regressing CDS index returns on 5-day S&P 500 log-returns during 2006 to
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Dependent variable: 5-day CDX return

Full On-the-run Off-the-run

(1) (2) (3)

S&P 500 0.148 0.235 0.148
t = 370.284∗∗∗ t = 23.845∗∗∗ t = 369.824∗∗∗

Observations 590,706 856 589,850
R2 0.188 0.400 0.188
Adjusted R2 0.188 0.399 0.188
Residual Std. Error 0.011 (df = 590704) 0.007 (df = 854) 0.011 (df = 589848)

Implied correlation ρX,M 0.43 0.63 0.43

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3. Calibration of the correlation of contract values with the state of the economy.
OLS regression of 5-day CDX log returns on 5-day returns of the S&P500 during January 2006 to December 2009:
CDXname,t,tenor,series,version = α+ βSPt + εname,t,tenor,series,version for all CDX at days t. The methodology is
equivalent to estimating a single-factor model for an equally-weighted basket of all index CDX. The correlation

between CDX and S&P 500 returns, ρX,M , is implied by the estimated coefficient, ρX,M = βσS&P500/σCDX .
Source: Markit and own calculations.

2010,

CDXname,tenor,series,version,t = α+ βSPt + εname,tenor,series,version,t, (3)

where CDXname,tenor,series,version,t is the 5-day CDS index log-returns for different family names,

tenors, series, and versions at day t and SPt is the 5-day log-return of the S&P 500 at day t. The

estimated OLS coefficients are in Table 3. The implied correlation between CDX and S&P 500

returns roughly equals ρX,M = 0.43, which we use as a baseline calibration. It is larger for indices

on-the-run (0.63) and slightly smaller for indices being off-the-run (0.4).20 The methodology is

equivalent to estimating the correlation between an equally weighted basket of CDS indices and

the S&P 500. We do not allow for different factor loadings β for different indices, since we are

interested in only one parameter for the correlation ρX,M . The level of correlation is similar when

estimating the single-factor model for individual CDS indices for the baseline period from 2006 to

2010 as well as for the period from 2010 to 2018, confirming the robustness of our estimate.21 Table

20CDS indices are frequently updated. The most recently updated index is called on-the-run and typically exhibits
the highest liquidity. Older versions of the indices are called off-the-run and are often still traded but exhibit lower
liquidity.

21Correlation estimates are available on request. The correlation can be substantially smaller for single reference
entities, as these do not diversify across idiosyncratic default risk of entities. For example, the correlation of the S&P
500 with 5-year tenor spreads of Wells Fargo is -0.06, with that of Goldman Sachs -0.12, with that of Deutsche Bank
-0.1, with that of General Electric -0.18, with that of AIG -0.16, and with that of Metlife -0.42. The correlation is
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4 reports the final baseline calibration.

Variable Value Description

γ 16 Number of counterparties
K 10 Number of derivative classes
σX 0.01 Total contract volatility
ρX,M 0.43 Correlation between contract value and state of the economy M
σM 0.03 Systematic volatility
β 0.1433 Implied beta-factor contracts
σ 0.009 Implied idiosyncratic contract volatility
v 1 Initial market value

cor
(
rkij , r

m
hl

)
0.185 Implied pair-wise correlation of contracts

Table 4. Baseline calibration. We assume the same calibration for each entity and derivative
class.

3.1.2 What is the minimum number of counterparties that makes multilateral netting

preferable to bilateral netting?

In the following we examine the impact of systematic risk on the minimum number of coun-

terparties such that multilateral netting is beneficial compared to bilateral netting, i.e., such that

E[EBN+MN
i ] < E[EBN,Ki ]. In Proposition 2 in Appendix A we show that there exists a positive

lower bound for the multilateral netted class-K exposure if, and only if, entities are exposed to sys-

tematic risk. Thus, a large number of counterparties cannot guarantee any arbitrarily low level of

multilateral exposure in the presence of systematic risk, which is the main distinction from previous

models (such as the one from Duffie and Zhu (2011)) and will drive most of our results.

Figure 4 (a) illustrates the relative change in counterparty risk exposures by moving from

bilateral to multilateral netting of derivative class K, which is given by ∆E = E[EBN+MN
i −

EBN,Ki ]/E[EBN,Ki ].22 If ∆E < 0, then multilateral netting results in smaller counterparty risk

exposure than bilateral netting. In Figure 4 (a), ∆E is positive for a small number of counterparties

γ and negative for large γ. Thus, multilateral netting reduces counterparty risk only for a large

number of counterparties. Indeed, it is straightforward to show that at least γ = K+2 homogeneous

entities are needed such that multilateral netting of derivative class K may reduce counterparty

almost identical with a 3-year tenor. Note that the negative sign of the correlation coefficient reflects the protection
buyer’s perspective in spreads, while we account for the difference between buyer and seller with the sign of the
contract size v. Thus, we use the absolute value of the correlation.

22In the terminology of Duffie and Zhu (2011), multilateral netting efficiency relative to bilateral netting efficiency
is measured by −∆E.
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risk exposures in a homogeneous market (see Proposition 3 in Appendix A).

The reason is that a larger number of counterparties leads to more diversification in the mul-

tilaterally netted contract pool, i.e., the average volatility decreases, while diversification in the

bilateral pools is unaffected by the number of counterparties. The diversification benefit in the

multilateral pool is reflected by the average multilaterally netted exposure per counterparty in

derivative class K, E[EBN+MN
i ]/(γ − 1) = ϕ(0)

√
σ2
Mβ

2 + σ2/(γ − 1), which is decreasing with the

number of clearing members. As a consequence, multilateral netting leads to a reduction in expo-

sures (∆E < 0) if the number of counterparties γ is sufficiently large, which is also a central insight

from Duffie and Zhu (2011).
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(a) Change in exposure due to multilateral netting.
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Figure 4. Impact of systematic risk.
(a) Change in collateralized counterparty risk exposure due to multilateral netting of derivative class K,

∆E = E[EBN+MN
i −EBN,Ki ]/E[EBN,Ki ] with respect to systematic risk, correlation between contract values and the

state of the economy ρX,M . If ∆E < 0, multilateral netting reduces counterparty risk exposure compared to
bilateral netting. (b) Minimum number of counterparties γmin such that multilateral netting of derivative class K

reduces collateralized counterparty risk exposure compared to bilateral netting with respect to systematic risk
ρX,M . The baseline calibration is described in Table 4.

The minimum number of counterparties such that multilateral netting is preferable to bilateral

netting in terms of counterparty risk exposure is given by γmin = inf{γ > 0 : ∆E < 0}. γmin is

shown in Figure 4 (b). Without systematic risk (ρX,M = 0), multilateral netting is only beneficial

when at least 39 counterparties are present. As Figure 4 (b) shows, systematic risk radically changes

the minimum number of counterparties: γmin is steeply increasing with systematic correlation

ρX,M .23

23This result differs from previous studies: As Duffie and Zhu (2011) and Cont and Kokholm (2014) examine
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Not surprising, systematic correlation reduces the diversification benefit within all netting pools.

In the multilateral pool, an additional entity reduces the average multilaterally netted exposure in

derivative class K by

d

dγ

E[EMN
i ]

γ − 1
=

ϕ(0)σX

(
1− ρ2

X,M

)
2(γ − 1)2

√
ρ2
X,M (1− (γ − 1)−1) + (γ − 1)−1

< 0, (4)

while that in bilateral pools is unaffected by γ. Systematic correlation ρX,M reduces the benefit

of more counterparties in the multilateral pool, since Equation (4) converges to zero if |ρX,M |

approaches unity. Thus, it requires a larger number of counterparties γ such that diversification

within the multilateral netting pool offsets the reduction in diversification in bilateral pools from

removing class K. Therefore, the higher the systematic exposure is, the smaller is the benefit

of multilaterally netting with an additional counterparty and, hence, the minimum number of

counterparties γmin is increasing with multilateral netting.24

RESULT 1. Systematic risk increases the minimum number of counterparties γmin needed such

that multilateral netting of one derivative class leads to lower counterparty risk exposure than bi-

lateral netting.

For our baseline calibration, ρX,M = 0.43, multilateral netting only reduces exposures in a

market with at least 121 counterparties. This is unrealistically large, compared to the high con-

centration among a small number of dealers, e.g., in the CDS market (Brunnermeier et al. (2013),

Peltonen et al. (2014), Getmansky, Girardi, and Lewis (2016)), and the current number of clearing

members at CCPs (see Armakolla and Laurent (2017) and Footnote 19). It also largely exceeds the

minimum number of counterparties in the absence of systematic risk (as in Duffie and Zhu (2011)),

which is 39 with our calibration. At the most extreme, with perfect correlation across contracts

(ρX,M = 1), there is no diversification and thus no difference between bilateral and multilateral

netting for any number of counterparties (as proven in Proposition 4 in Appendix A).

correlation exclusively across derivative classes, more correlation in their models reduces diversification in bilateral
but not multilateral netting pools. This reduces the minimum number of counterparties, while correlation across and
within derivative classes increases the minimum number of counterparties in our model.

24Nonetheless, note that a higher systematic correlation also reduces the inefficiency of multilateral netting, i.e.,
∆E, for a small number of counterparties, as Figure 4 (a) shows. The reason is that systematic correlation does not
only impact multilateral but also bilateral netting pools. The higher the correlation, the smaller is the difference in
diversification between multilateral and bilateral netting and thus the difference between exposures. However, this
effect does not make multilateral netting more beneficial than bilateral netting if γ < γmin.
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3.2 Multilateral netting in extreme events

One primary purpose of central clearing is to enhance financial stability during crisis times

(Financial Stability Board (FSB) (2017a)). In these times, where counterparty defaults are more

likely than in normal times, central clearing counterparties should ideally absorb losses arising from

counterparty defaults and thereby decrease the spillover of losses within the overall financial system.

Thus, it is of prevalent importance to examine the impact of central clearing on counterparty risk

exposure in exactly these times.

Our model makes it possible to study counterparty risk exposure conditional on specific eco-

nomic states, i.e., realizations of the state of the economy M . We are particularly interested in

adverse realizations of M and parametrize M = σMΦ−1(q), where q is the quantile (i.e., Value-

at-Risk) level and Φ−1 is the inverse cumulative distribution function of the standard normal

distribution. The smaller q, the more adverse is the economic state.

Conditional on extreme economic states, we compute the counterparty risk exposure with bilat-

eral and multilateral netting. The rationale and approach of the resulting extreme event exposures

is similar to the (marginal) expected shortfall of Acharya et al. (2012) and Acharya et al. (2017):

While their studies address the capital shortfall of financial institutions during crises, we study

the counterparty risk exposure during crises. The total counterparty risk exposure with bilateral

netting conditional on a specific state M is given by

E[EBN,Ki |M ] = (γ − 1)
√
K

(
M
√
KβΦ

(
M
√
K
β

σ

)
+ σϕ

(
−M
√
K
β

σ

))
(5)

and with multilaterally netting derivative class K it is given by

E[EBN+MN
i |M ] = E[EBN,K−1

i |M ] +M(γ − 1)βΦ

(
M
√
γ − 1

β

σ

)
+ σ

√
γ − 1ϕ

(
−M

√
γ − 1

β

σ

)
. (6)

Proof: See Proposition 6 in Appendix A.

Most notably, while we assume that the unconditional expected return of individual contracts is

zero, E[Xk
ij ] = 0, conditional on a specific state M 6= 0 the expected return is non-zero, E[Xk

ij |

M ] = vβM 6= 0. The reason is that, in more extreme (good or bad) economic states, one can
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expect larger absolute contract values.

As a result, the interplay between the volatility and expected value of netting pools’ contracts

now governs the effectiveness of multilateral netting. The overall effect crucially depends on the

state of the economy. Figure 5 (a) depicts the change in exposure due to moving from bilateral to

multilateral netting of class K. Clearly, in adverse economic states M , multilateral netting is less

beneficial for counterparty risk exposures compared to bilateral netting. If the economic state M

is too extreme, then multilateral netting increases counterparty risk exposure relative to bilateral

netting regardless of the number of counterparties. In our example in Figure 5 (b), this already

holds for q < 0.34, i.e., the 34% worst economic states.25 Our result thus implies that counterparty

risk exposures in bad economic states are smaller without multilateral netting for any number of

counterparties. Note that this result does not only hold in very extreme states (such as the q = 10%

worst possible states) but already in relatively moderate states.
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Figure 5. Impact of extreme events.
(a) Change in collateralized counterparty risk exposures due to multilateral netting of derivative class K,

∆E = E[EBN+MN
i − EBN,Ki |M ]/E[EBN,Ki |M ] conditional on extreme event M = σMΦ−1(q). The smaller q, the

more adverse is the event. If ∆E < 0, multilateral netting reduces counterparty risk exposures compared to
bilateral netting. (b) Minimum number of counterparties γmin such that multilateral netting of derivative class K

reduces collateralized counterparty risk exposure compared to bilateral netting with respect to the severity of
extreme events. The baseline calibration is described in Table 4.

The reason for this result is the dominance of extremely large expected contract values during

extreme events. By rearranging Equation (5), the counterparty risk exposure with bilateral netting

25To produce Figure 5 (b), we calculate whether multilateral netting reduces counterparty risk exposures compared
to bilateral netting for any number of counterparties smaller than 108.
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can be represented as

E[EBN,Ki |M ] = (γ − 1)E
[
max

(
MKβ +

√
Kσε̃, 0

)]
, (7)

with ε̃ ∼ N (0, 1). Clearly, E[EBN,Ki | M ] is increasing with the number of derivative classes K

if M = 0, since then it is proportional to
√
K. Thus, when one derivative class-K is taken out

from bilateral pools, the bilaterally netted counterparty risk exposure decreases due to a smaller

volatility in the remaining pool. This leaves room for the total counterparty risk exposure to be

smaller after multilaterally netting derivative class K, i.e., that E[EBN+MN
i | M ] = E[EBN,K−1

i |

M ] + E[EMN
i | M ] < E[EBN,Ki | M ]. In contrast, if contracts have sufficiently large negative

expected returns in extreme events (i.e., if M < 0), then the bilateral exposure in Equation (7)

is decreasing with K. The reason is that the effect of the number of derivative classes K on the

expected value MKβ (making it very negative) dominates the effect on total volatility
√
Kσ. In this

case, excluding class-K from bilateral pools increases the counterparty risk exposure in these pools,

i.e., E[EBN,K−1
i |M ] > E[EBN,Ki |M ]. As a result, there is no room for the total counterparty risk

exposure to be smaller after additionally multilaterally netting class-K. Thus, counterparty risk

exposure is smaller in a bilateral market than with multilateral netting of one derivative class.26

RESULT 2. During sufficiently severe extreme events, multilateral netting of one derivative class

does not reduce counterparty risk exposures compared to bilateral netting for any number of coun-

terparties.

Extreme events make it particularly unfavorable to exclude a derivative class from bilateral

netting due to the dominance of large absolute contract values. By hedging systematic risk across

derivative classes in bilateral pools, entities may thus reduce the unfavorable effect of extreme

events. However, hedging across derivative classes seems particularly difficult in practice, as dif-

ferent derivative classes, e.g., CDS and IRS derivatives, exhibit a different exposure to systematic

26A similar rationale holds for market participants that are short in systematic risk, i.e., with vβ < 0. In this
case, for small γ, the small diversification benefit in the multilateral pool makes multilateral netting less beneficial,
analogously to our baseline analysis in Section 3.1.2. For large γ and (−M), the expected value of contracts in the
multilateral pool is very large, such that there is a negligible benefit of diversification. However, removing class-K
contracts from the bilateral pools reduces diversification in these pools (since there are only K contract classes in
bilateral pools compared to γ >> K contract classes in the multilateral pool), increasing the per contract bilateral
counterparty risk exposure. As a result, if M is sufficiently large and negative and vβ < 0, then multilateral netting
is also not beneficial compared to bilaterally netting all contracts.

25



risk, i.e., different levels of β. It seems more likely that market participants hedge within derivative

classes (or even the same instruments), thus reducing their exposure to systematic risk within each

derivative class, i.e., within the multilateral pool.27 However, even by perfectly hedging systematic

risk within one derivative class, multilateral netting is still not beneficial for a reasonable number of

counterparties during extreme economic events, as Figure 6 shows. The reason is that such hedged

dealers are still exposed to systematic risk in bilateral pools.
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Figure 6. Impact of extreme events for dealers.
Minimum number of counterparties γmin such that multilateral netting of derivative class K reduces collateralized

counterparty risk exposure compared to bilateral netting conditional on extreme event M = σMΦ−1(q). The smaller
q, the more adverse is the event. We assume that |vkij | = 1 for all i, j, k, and that dealers are hedged against

systematic risk within derivative classes k = 1, ...,K,
∑
j v

k
ij = 0, and that

∑
k v

k
ij = K with (γ − 1)/2

counterparties and
∑
k v

k
ij = −K with (γ − 1)/2 counterparties. The baseline calibration is described in Table 4.

3.3 Cross-netting and the Mega CCP

To address the failure of multilateral netting to reduce counterparty risk exposures in sufficiently

extreme events, one might increase the overall degree of netting. A natural extension is to net across

not only one but several derivative classes. We refer to such netting across all γ − 1 counterparties

and κ > 1 derivative classes as cross-netting. It occurs when one CCP offers clearing of several

derivative classes within one legal entity.28

The counterparty risk exposure in κ cross-netted derivative classes with γ − 1 counterparties is

27For example, Abad, Aldasorol, Aymanns, D’Errico and Rousová (2016) find that the largest 16 dealers in the
European derivatives market maintain roughly a net zero position within interest rate swap as well as credit default
swap portfolios.

28For example, Eurex offers clearing for several derivative classes such as money-market and interest rate deriva-
tives, including margining for a clearing member’s entire portfolio. Cross-netting is promoted by interoperability
arrangements that create linkages between different CCPs (Garvin (2012)).
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during an extreme event given by

E[ECNi |M ] = M(γ − 1)κβΦ

(
M
√

(γ − 1)κβ

σ

)
+
√

(γ − 1)κσϕ

(
−
M
√

(γ − 1)κβ

σ

)
. (8)

Proof: See Proposition 7 in Appendix A.

Figure 7 illustrates the benefit of cross-netting for counterparty risk exposures in extreme events.

In Figure 7 (a), the CCP nets across all counterparties and κ = 5 derivative classes, where the total

number of derivative classes is K = 10. The figure shows that even with cross-netting of κ = 5

derivative classes the counterparty risk exposure is larger in sufficiently extreme states (such as

q = 0.25 or q = 0.1) than with bilateral netting.

Figure 7 (b) depicts the minimum number of counterparties for cross-netting to be beneficial

compared to bilateral netting. We find that cross-netting essentially needs to net across all K

derivative classes and γ − 1 counterparties, i.e., κ = K, in order to be beneficial in all economic

environments M , a case we refer to as Mega CCP. In other words, only a Mega CCP that clears with

all counterparties in all derivative classes can unambiguously reduce counterparty risk exposures in

all economic states compared to bilateral netting.
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(a) Change in exposure due to cross-netting κ = 5
classes.
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Figure 7. Impact of cross-netting during extreme events.
(a) Effect of netting across counterparties and κ = 5 derivative classes on collateralized counterparty risk exposure

in an extreme event M = σMΦ−1(q), ∆E = E[EBN+CN
i − EBN,Ki |M ]/E[EBN,Ki |M ]. The smaller q, the more

adverse is the event. If ∆E < 0, cross-netting reduces counterparty risk exposure compared to bilateral netting. (b)
Minimum number of counterparties γmin such that cross-netting of κ derivative classes reduces counterparty risk

exposure. In case κ = K = 10, we refer to the CCP as Mega CCP. The baseline calibration is described in Table 4.

RESULT 3. Only a Mega CCP, netting across all derivative classes and counterparties, reduces
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counterparty risk exposures in all economic states compared to bilateral netting.

3.4 Margin requirements and counterparty risk exposures

In the following, we examine the impact of collateral, i.e., margin requirements, on the bene-

fit of multilateral netting. Collateralizing exposures (also called margining) is a primary measure

to reduce credit risk in derivative transactions (International Swaps and Derivatives Association

(2017)). Typically, one distinguishes between initial and variation margins: Initial margin is collat-

eral available to the (central clearing) counterparty and posted at the beginning of a trade to cover

potential future counterparty risk exposure. Variation margins are frequently (typically daily) ex-

changed to compensate for changes in market values. For simplicity, we assume in our model that

initial margins were exchanged before the settlement period and contracts are marked to market,

i.e., variation margin is exchanged, at the beginning of the settlement period. Then, the remain-

ing collateral available to compensate for losses from counterparty defaults is given by the initial

margin.29

Regulation for non-centrally cleared derivatives requires initial margins to account for a 99

percent confidence interval over at least a 10-day horizon of market price changes (Bank for In-

ternational Settlements (BIS) (2015)). CCPs are required to establish a single-tailed confidence

interval level of at least 99 percent of future exposure, while the margin period is typically 5 days

(Bank for International Settlements (BIS) (2012), Bank for International Settlements (BIS) (2014),

Duffie, Scheicher and Vuillemey (2015), Ghamami and Glasserman (2017)). These requirements

result in a smaller margin for cleared than for non-cleared trades, which is intended by policymakers

to incentivize market participants to make use of central clearing (Duffie, Li and Lubke (2010)).

In line with recent regulation, we assume that the collateral that j posts to i based on a

bilateral netting agreement (referred to as bilateral margin) is given by the Value at Risk at the

29Note that CCPs also have pre-funded resources that can be employed in case of a loss. However, these are small
compared to the collateral posted by clearing members. For example, for CDS clearing, pre-funded resources are
0.5% of initial margins at CME Clearing US, 2.8% at LCH Clearnet SA, and 8% ICE Clear Credit; for IRS clearing,
pre-funded resources are 3.2% of initial margin at LCH Ltd. as of March 2016 (Armakolla and Laurent (2017)).
Thus, we do not expect that accounting for pre-funded resources would substantially alter our results.
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αBN confidence level of the portfolio value of their trades,

CBN,Kij = V aRαBN

(
K∑
k=1

Xk
ij

)
= Φ−1(αBN )

√
σ2
MK

2β2 +Kσ2. (9)

We refer to αBN as the bilateral margin confidence level.

The uncollateralized counterparty risk exposure is the exposure in excess of collateral, and given

by

E
[
ẼBN,Ki

]
= E

 γ∑
j=1,j 6=i

max

(
K∑
k=1

Xk
ij − C

BN,K
j , 0

) (10)

= (γ − 1)
√
σ2
MK

2β2 +Kσ2ξ(αBN ), (11)

where ξ(α) = (1−α)Φ−1(1−α)+ϕ
(
Φ−1(α)

)
adjusts the counterparty risk exposure for collateral.30

Proof: See Proposition 8 in Appendix A.

If derivative class K is multilaterally netted, then j posts collateral (referred to as clearing

margin) as given by the Value at Risk at the αMN confidence level,

CMN
j = V aRαMN

 γ∑
i=1,i 6=j

Xk
ij

 = Φ−1(αMN )
√
σ2
M (γ − 1)2β2 +K(γ − 1)σ2. (12)

To compute the uncollateralized counterparty risk exposure of entity i in the multilaterally

netted derivative class K, we assume that the collateral provided by clearing member j is available

to i proportionally to the size of j’s trades with i. Thus,
vKij∑γ

h=1,h6=j v
K
hj

CMN
j is assigned to entity i.

With homogeneous entities, the uncollateralized exposure of entity i is then given by

E
[
ẼBN+MN
i

]
=
√
σ2
M (γ − 1)2β2 + (γ − 1)σ2ξ(αMN ) + E[ẼBN,K−1

i ] (13)

Proof: See Proposition 8 in Appendix A.

30If α = 0.5, then Φ−1(α) = Φ−1(1 − α) = CBN,K = 0, and uncollateralized counterparty risk exposure is equal
to collateralized counterparty risk exposure.
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Comparing the collateralized and uncollateralized counterparty risk exposure E[EBN+MN
i ] and

E[ẼBN+MN
i ] in Equations (6) and (13), respectively, it becomes apparent that the only difference

is the adjustment factor ξ. Hence, margins have an impact on the benefit of multilateral netting

only if clearing and bilateral margins differ. The larger (smaller) the confidence level of the clearing

margin αMN relative to that of the bilateral margin αBN , the larger (smaller) is the reduction of

exposures due to multilateral netting of derivative class K. In other words, with a higher clearing

margin it is more likely that multilateral netting is beneficial compared to bilateral netting (for a

proof see Proposition 9 in Appendix A).31 We illustrate this result in Figure 8. Figure 8 (a) depicts

the change in uncollateralized exposures due to multilateral netting. Clearly, a small clearing

margin confidence level αMN relative to a bilateral margin confidence level of αBN = 0.99 leads to

an increase in uncollateralized counterparty risk exposure.

RESULT 4. The larger the margin for cleared derivatives relative to that for non-cleared deriva-

tives, the lower is the counterparty risk exposure with multilateral netting relative to that with

bilateral netting.
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(a) Change in exposure due to multilateral netting.
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Figure 8. Impact of margins.
(a) Change in uncollateralized counterparty risk exposure due to multilateral netting,

∆Ẽ = E[ẼBN+MN
i − ẼBN,Ki ]/E[ẼBN,Ki ], of class K with respect to the multilateral margin confidence level (αMN ).

If ∆Ẽ < 0, multilateral netting reduces uncollateralized counterparty risk exposure compared to bilateral netting.
(b) Minimum number of counterparties γmin such that multilateral netting of derivative class K reduces

uncollateralized exposure with respect to the clearing margin level. The baseline calibration is described in Table 4
and the bilateral margin confidence level is αBN = 0.99.

Moreover, if the clearing margin is sufficiently small, then multilateral netting does not reduce

31Note that the bilateral and clearing margins only differ in the confidence level α, and that there is a one-to-one
and strictly monotone correspondence between confidence level α and total collateral C.
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counterparty risk exposures for any number of counterparties (e.g., with αMN = 0.98). Figure

8 (b) supports this observation, as we do not find any number of counterparties γ that reduces

uncollateralized exposures for αMN ≤ 0.9898 compared to the bilateral margin confidence level

αBN = 0.99. Hence, uncollateralized exposures are extremely sensitive towards small discrepancies

between margins for cleared and non-cleared derivatives.

The reason is systematic risk: The average uncollateralized multilateral exposure per coun-

terparty is bounded from below by E[ẼMN
i ]/(γ − 1) > |ρX,M |σXξ(αMN ) (see Proposition 2 in

Appendix A). Higher systematic risk (ρX,M ) and lower margins (αMN ) increase the lower bound

for the multilateral exposure, which is illustrated in Figure 9. This results resembles the finding of

Menkveld (2017) who stresses that current CCP margin practices are inefficient since they do not

account for correlation across clearing members. Eventually, if |ρX,M | is sufficiently large (or αMN

is too low compared to αBN ), then the lower bound for the exposure with multilaterally netting K

exceeds the additional exposure from bilaterally netting K.32
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Figure 9. Impact of margins on average uncollateralized exposure per counterparty.
Average uncollateralized multilaterally netted counterparty risk exposure in class K, E[ẼMN

i ]/(γ − 1), for different
levels of the clearing margin confidence level, and change in the uncollateralized bilateral exposure from including
class K, E[ẼBN,Ki − ẼBN,K−1

i ]/(γ − 1). If E[ẼMN
i ]/(γ − 1) < E[ẼBN,Ki − ẼBN,K−1

i ]/(γ − 1), multilateral netting
reduces uncollateralized counterparty risk exposure compared to bilateral netting. The dashed horizontal lines
illustrate the lower bound for the average multilateral exposure, |ρX,M |σXξ(αMN ). The baseline calibration is

described in Table 4.

32Note that this general result does not change with accounting for the cost of margin. If there is a
cost of h for each dollar of collateral, then the sum of margin cost and total counterparty risk exposure
with bilateral netting is (γ − 1)

√
σ2
MK

2β2 +Kσ2
[
ξ(αBN ) + Φ−1(αBN )h

]
and that with multilateral netting is√

σ2
M (γ − 1)2β2 + (γ − 1)σ2

[
ξ(αMN ) + Φ−1(αMN )h

]
+ (γ − 1)

√
σ2
MK

2β2 +Kσ2
[
ξ(αBN ) + Φ−1(αBN )h

]
. Thus,

margin cost is mainly a scaling factor that reduces the benefit of higher margins but does not necessarily alter
our general results.
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Based on this observation, in the following, we derive a condition for the clearing confidence

level αMN such that, for given αBN , multilateral netting leads to a reduction in uncollateralized

counterparty risk exposure compared to bilateral netting. From the lower bound of E[ẼMN
i ]/(γ−1),

we derive the following threshold for the clearing margin: Multilateral netting does not reduce

uncollateralized exposures for any finite number of counterparties γ <∞ if αMN ≤ HMN with

HMN = ξ−1

(
ξ(αBN )

|ρX,M |

(√
K
√

1 + ρ2
X,M (K − 1)−

√
K − 1

√
1 + ρ2

X,M (K − 2)
))

. (14)

It is straightforward to show thatHMN is increasing with systematic correlation |ρX,M |, dHMN
d|ρX,M | > 0,

which mainly results from ξ and thus ξ−1 being monotone decreasing (see Proposition 9 in Appendix

A). Hence, the more extreme (positive or negative) the systematic correlation ρX,M is, the larger

must the clearing margin be for multilateral netting to reduce counterparty risk exposure. Moreover,

HMN is bounded from above by αBN , HMN ≤ αBN , since

lim
ρ2X,M→1

HMN = ξ−1(ξ(αBN )) = αBN , (15)

and bounded from below by zero, 0 ≤ HMN , since

lim
ρX,M→0

HMN = ξ−1 (∞) = 0. (16)

Thus, in the case of no systematic risk (ρX,M = 0), for any confidence levels αBN and αMN

there exists a number of counterparties γ such that multilateral netting is beneficial, which is the

result of Duffie and Zhu (2011). However, the larger the systematic correlation, the smaller is the

acceptable difference between the margin for cleared and non-cleared derivatives. For example, in

our baseline calibration, multilateral netting is not beneficial compared to bilateral netting for any

number of counterparties if the bilateral margin is αBN = 0.99 and the clearing margin is below

αMN ≤ 0.98, as Figure 8 (a) shows. This is in line with the upper bound we derived above, which

is HMN = 0.9897 for our baseline calibration.

RESULT 5. For every bilateral margin confidence level αBN ∈ (0, 1) there exists a threshold

HMN ≤ αBN such that the counterparty risk exposure is larger with multilateral netting than with bi-

lateral netting for any number of counterparties if the clearing margin CMN ≤ V aRHMN
(
∑γ

i=1,i 6=j X
k
ij).
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The threshold HMN is increasing with the absolute value of systematic correlation |ρX,M |, such

that a higher clearing margin is necessary for more extreme systematic correlation.

Analogously, one can show that a sufficiently large clearing margin results in an unambiguously

smaller counterparty risk exposure with multilateral netting: If αMN ≥ UMN , then the counterparty

risk exposure is smaller with multilateral than bilateral netting for any number of counterparties

γ ≥ 2, where33

UMN = ξ−1
(
ξ(αBN )

(√
K
√

(K − 1)ρ2
X,M + 1−

√
K − 1

√
(K − 2)ρ2

X,M + 1
))

. (17)

This is the case, e.g., with αBN = 0.99 and αMN = 0.995 in Figure 8 (a), since UMN = 0.995 for

our baseline calibration. From Equation (17) it is clear that UMN is decreasing with systematic

correlation |ρX,M | and converging to αBN for |ρX,M | → 1. Hence, the larger the absolute value of

systematic correlation, the smaller is the necessary clearing margin V aRUMN
such that multilateral

netting is beneficial for any number of counterparties. The necessary clearing margin is always

larger than the bilateral margin, V aRUMN
> V aRαBN for |ρX,M | < 1.

RESULT 6. For every bilateral margin level αBN ∈ (0, 1) there exists a threshold UMN ≥ αBN

such that the counterparty risk exposure is lower with multilateral netting than with bilateral netting

for any number of counterparties if the clearing margin CMN > V aRUMN
(
∑γ

i=1,i 6=j X
k
ij).

The threshold UMN is decreasing with the absolute value of systematic correlation ρX,M , such

that a smaller clearing margin is sufficient for more extreme systematic correlation.

Eventually, our results divide possible margin confidence levels into three disjunct intervals:

1. αMN ∈ (0,HMN ] with HMN ≤ αBN : Multilateral netting is not beneficial for any number of

counterparties γ.

2. αMN ∈ (HMN , αBN ] ∪ (αBN ,UMN ): Multilateral netting is beneficial if the number of coun-

terparties γ is sufficiently large.

3. αMN ∈ [UMN , 1) with UMN > αBN : Multilateral netting is beneficial for any number of

counterparties γ ≥ 2.

33This results from ξ(α) being strictly positive for any α ∈ (0, 1) and ξ−1 having full support on the positive real
line.
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As outlined above, current regulation requires margins to account for a 99 percent confidence

interval over a 10-day margin period for non-cleared contracts and a 5-day margin period for

cleared contracts. The difference of 10 and 5 days in calculation horizon for the margin relates to a

volatility ratio of
√

2, such that
√

2CMN = CBN,K , where we assume the same settlement period.

Letting αBN = 0.99, the clearing margin confidence level is αMN = Φ(Φ−1(αBN )/
√

2) = 0.88, i.e.,

αMN = 0.88 reflects the 99% Value-at-Risk for a 5-day margin period and αBN = 0.99 that for a

10-day margin period.

In our baseline calibration, multilateral netting with αMN = 0.88 never leads to a reduction in

uncollateralized counterparty risk exposures but increases exposures for any number of counterpar-

ties γ. Indeed, αMN is in the first interval, αMN ∈ (0,HMN ], as HMN = 0.9897 and UMN = 0.995.

Thus, a confidence level αMN of more than 98.97% is needed for multilateral netting to be able

to achieve a reduction in counterparty risk exposure with a sufficient number of clearing mem-

bers. If the clearing margin confidence level was at least 99.5%, then multilateral netting would be

beneficial for any number of clearing members.

Can a Mega CCP compensate for the adverse effect of a small clearing margin? The uncollat-

eralized exposure in cross-netted κ derivative classes is given by

E[ẼCN ] =
√
σ2
Mκ

2(γ − 1)2β2 + κ(γ − 1)σ2ξ(αCN ), (18)

where ξ(α) is defined as above and αCN is the margin level for cross-netting.

Proof: See Proposition 11 in Appendix A.

In Figure 10 (a) we show that a Mega CCP underlies the same dynamics as multilateral netting

of one derivative class with respect to margins: The smaller (larger) the clearing margin, the

larger (smaller) is the uncollateralized exposure. If the clearing margin is sufficiently small, then

cross-netting is not beneficial for any number of counterparties, and vice versa.

Analogously to multilateral netting, we derive the smallest acceptable margin confidence level
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(a) Change in exposure due to cross-netting across κ = 10
derivative classes.
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Figure 10. Impact of cross-netting on uncollateralized counterparty risk exposure.
(a) Change in uncollateralized counterparty risk exposure due to netting across κ = 10 derivative classes and across
counterparties on uncollateralized counterparty risk exposure, ∆Ẽ = E[ẼBN+CN

i − ẼBN,Ki ]/E[ẼBN,Ki ], for bilateral
margin confidence level αBN = 0.99, and γ = 16 entities. If ∆Ẽ < 0, cross-netting reduces uncollateralized exposure

compared to bilateral netting. (b) Minimum number of counterparties γmin such that cross-netting reduces
uncollateralized exposure compared to bilateral netting. The baseline calibration is described in Table 4 and the

bilateral margin is αBN = 0.99.

HCN such that cross-netting is not beneficial for any number of counterparties if αCN ≤ HCN :

HCN = ξ−1

ξ(αBN )

|ρX,M |

√
1 + ρ2

X,M (K − 1)
√
K

 . (19)

Similarly to HMN , HCN is increasing with the absolute value of systematic correlation |ρX,M |.

A Mega CCP is however associated with a larger degree of netting. This reduces the smallest

acceptable clearing margin compared to multilateral netting of one derivative class: It is straight-

forward to show that HCN < HMN for any ρX,M ∈ (0, 1). As Figure 10 (b) illustrates, this effect

however is very small. For example, with αBN = 0.99, the smallest acceptable confidence level is

reduced only by 0.15 percentage points: from HMN = 98.97% with multilateral netting of class K

to HCN = 98.82% with cross-netting of all classes k = 1, ...,K.34 This effect seems still negligi-

ble in light of the large difference of 11 percentage points, in practice, between αBN = 99% and

αMN = 88%. We conclude that the degree of netting is only of minor importance if the margin for

cleared derivatives is not sufficiently large.

RESULT 7. For every bilateral margin confidence level αBN ∈ (0, 1) there exists a threshold

34The calculation is based on evaluating the counterparty risk exposure for all number of counterparties γ ≤ 108.
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HCN ≤ αBN such that the counterparty risk exposure is larger with a Mega CCP than with bilateral

netting for any number of counterparties if the clearing margin CCN ≤ V aRHCN (
∑γ

i=1,i 6=j X
k
ij).

The threshold HCN is increasing with the absolute value of systematic correlation ρX,M , such

that a higher clearing margin is necessary for more extreme systematic correlation.

4 Loss sharing

In the previous section, we analyzed the counterparty risk exposure of one entity given default

of all other entities and of the CCP. However, in practice a CCP is less likely to default than to

enter a recovery process that recapitalizes the CCP by exploiting the resources of surviving clearing

members (Elliott (2013), Duffie (2015)). Thus, the benefit of central clearing does not depend only

on multilateral netting, but also largely on the extent of CCP recovery and resolution procedures

and how CCPs allocate losses to clearing members. In the following, we study the resulting realized

exposure incurred by each counterparty from both loss sharing and multilateral netting.

We specify a complete network structure among entities’ positions, which in particular requires

that vkij = −vkji.35 To refrain from further assumptions about the heterogeneity of entities, we

assume the same structure for each derivative class vkij ≡ vij for all k = 1, ...,K that includes one

entity that is long in systematic risk with each trade, one that is short with each trade, and entities

in-between. For example, the network with 5 entities is as follows:

(vij)i,j∈{1,...,γ} =



1 1 1 1 (long)

−1 1 1 1

−1 −1 1 1 (hedged)

−1 −1 −1 1

−1 −1 −1 −1 (short)


. (20)

In the following, we study whether the combination of loss sharing and multilateral netting

35Duffie and Zhu (2011) argue that notionals (and positions) cannot be known ex ante from the perspective of a
market designer setting up a clearing infrastructure. Nevertheless, as our results highlight, we find it important to
examine the effect of central clearing in the presence of a particular market structure. For this purpose, we choose a
network structure of positions that seems to be realistic, for example in the CDS market (Getmansky et al. (2016)).
Then, it may well be that it is unknown today which entity will be long or short, while the general market structure
is fixed. Moreover, Siriwardane (2018) finds that the positions in the CDS market are very sticky, e.g., that CDS
sellers are typically asset managers.
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reduces the realized counterparty risk exposure compared to a bilateral market. The impact of

central clearing will depend on the direction of a market participant’s positions, for which we focus

on three specific entities that are illustrated in Equation (20):

(a) Market participant i = 1 is long in systematic risk since the value of all its trades is positively

correlated with systematic risk (with vkij = 1). Thus, its portfolio value is low (and negative)

in bad states of the economy, e.g., due to long positions in the S&P 500. In these times,

the market participant owes its counterparties, and faces a small counterparty risk exposure

itself. This reflects right way risk in the sense that the default of counterparties is negatively

correlated with counterparty risk exposure.

(b) Market participant i = 5 is short in systematic risk since the value of all its trades are

negatively correlated with systematic risk (with vkij = −1). Thus, its portfolio value increases

in bad states of the economy, e.g., due to short positions in the S&P 500. In these times, it

faces a large bilateral counterparty risk exposure. This reflects wrong way risk in the sense

that the default of counterparties are positively correlated with counterparty risk exposure.

(c) Market participant i = 3 is a hedged dealer since it is hedged against systematic risk within

each derivative class k as
∑γ

j=1,j 6=i v
k
ij ≈ 0. Thus, the hedged dealer’s counterparty risk

exposure in a multilateral pool exhibits a small (absolute) correlation with defaults.

We employ a default model that is based on Merton (1974)’s credit risk model and described in

Appendix B in detail. Since default clustering and systematic exposure are important to study the

effect of clearing, we adjust Merton (1974)’s original model such that the random value of entity

i’s assets at the settlement period begin is given by

Ai = exp

(
µAi −

β2
Ai
σ2
M + σ2

Ai

2
+ βAiM + σAiWi

)
, (21)

where (W1, ...,Wγ) are jointly standard normally distributed and correlated with correlation matrix

(ρAi,Aj )i,j∈{1,...,γ}. βAi > 0 is the exposure of entity i’s log asset value to the state of the economy

M , i.e., its β-factor.36 µAi and σAi are the drift and volatility of the asset value process.

36We assume that the state of the economy, M , impacts both asset values at time t = 0 and contract value changes
between t = 0 and t = 1. Hence, we interpret the state of the economy as a sticky variable that might, e.g., reflect
the business cycle.
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The pairwise correlation of entity i and j’s log assets is given by

ρ̃Ai,Aj =
βAiβA,jσ

2
M√

β2
Ai
σ2
M + σ2

Ai

√
β2
A,jσ

2
M + σ2

Aj︸ ︷︷ ︸
Correlation with M

+
σAiσAjρAi,Aj√

β2
Ai
σ2
M + σ2

Ai

√
β2
A,jσ

2
M + σ2

Aj︸ ︷︷ ︸
Default clustering

(22)

and consists of two layers: First, as a small (large negative) value of M decreases the value of assets,

entities are more likely to default in bad states of the economy. This correlation will lead to wrong

way risk in our model, since it implies correlation between entities’ defaults and contract values

(Bank for International Settlements (BIS) and International Organization of Securities Commissions

(IOSCO) (2018)). It will be useful to reparametrize βAi in terms of correlation, such that βAi =

ρAi,M
σ̄Ai
σM

and σ̄2
Ai

= var(log(Ai)). Then, ρAi,M is the correlation between entity i’s assets Ai and

the state of the economy M , and σ̄2
Ai

is the log asset value’s variance.

Second, given a specific state of the economy, the cross-sectional correlation ρAi,Aj leads to

clustered defaults. Clustered defaults might result from interconnectedness between (financial)

institutions, like interbanking liabilities, such that the financial distress of one entity spills over

to other entities. A prime example has been the default of Lehman Brothers during the 2007-08

financial crisis, that triggered substantial losses at other financial institutions. For simplicity, in

the following we will assume that all entities’ assets have the same distributional parameters and,

thus, drop the parameter indices.

We define by Di a binary random variables that equals one if entity i defaults, i.e., if Ai

breaches an exogenous debt value Bi. Analogously to Lewandowska (2015), if all derivative classes

are bilaterally traded (i.e., non-cleared), then the realized counterparty risk exposure is given by

E
[
E∗i

BN,K
]

= E

 γ∑
j=1,j 6=i

Dj max

(
K∑
k=1

Xk
ij − C

BN,K
ij , 0

) , (23)

where the bilateral collateral CBN,Kij is given as in Section 3.4. Note that a loss realizes only in

case a counterparty’s default coincides with an adverse price movement in exceedance of collateral.

Now consider the case with derivative class K being centrally cleared. In line with loss-allocation

rules (Arnsdorf (2012), Elliott (2013), Duffie (2015), Lewandowska (2015)), we assume that the
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realized counterparty risk exposure at the CCP is shared among all surviving clearing members.37

Clearing members suffer losses with the CCP only in case at least one clearing member j defaults

and the multilaterally netted contract value of j exceeds the collateral provided by j.38 The

aggregate loss of the CCP is given by

L̄CCP =

γ∑
j=1

Dj max

 γ∑
g=1,
g 6=j

XK
gj − CMN

j , 0

 . (24)

As suggested by Duffie (2015), the aggregate loss is shared among surviving clearing members

proportionally to the risk of their investments as reflected by their collateral, CMN
i . Then, the

realized counterparty risk exposure of clearing member i to the CCP is given by39

E[E∗i
MN ] = E

 (1−Di)C
MN
i∑γ

g=1(1−Dg)CMN
g

L̄CCP |
γ∑
g=1

(1−Dg) > 0

 . (25)

Clearly, it is driven by a) multilateral netting and b) loss sharing.

If derivative class K is centrally cleared, then the remaining K − 1 derivative classes are bilat-

erally netted and the realized exposure is given by Equation (23). The total realized counterparty

risk exposure of entity i is then given by

E[E∗i
BN+MN ] = E

[
E∗i

MN + E∗i
BN,K−1

]
. (26)

We use the baseline calibration from Tables 4 and 5 for all market participants and suppress

37From a financial stability point of view, sharing of CCP losses among clearing members can be seen as a form
of contagion of realized exposure. Therefore, as highlighted by the Financial Stability Board (FSB) (2017b), a CCP
should settle (part of) its contracts at potential losses (called partial or full tear up) only if no other option is likely
to result in a better outcome for financial stability. In this sense, the Financial Stability Board (FSB) (2017b) does
not consider loss sharing to be contagion if it does not cause adverse financial stability consequences. For the sake
of simplicity, we do not include such feedback effects in our model but focus only on the first-order counterparty risk
exposure.

38In practice, the default of clearing members is absorbed by additional measures of a CCP’s so-called risk waterfall
before additional funds are called from surviving members: After exhausting variation and initial margins, the CCP’s
equity and clearing members’ ex ante contributions to the default fund serve as a buffer against realized exposure
(Arnsdorf (2012)). As these additional layers of protection have a similar effect as a higher margin confidence level
in our model, we do not model them explicitly. Instead, realized exposures in our model might be interpreted as
ex-post default fund contributions.

39We condition on at least one entity surviving since 1) it is extremely unlikely that all entities default at the
same time, and 2) in practice it seems likely that a government would bail out a CCP in the case that all clearing
members default.
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entity indices where possible.40 We assume, in particular, that the CCP and bilateral margin

levels both based on a 99% confidence level but will assess the sensitivity of our results towards

differences in margins. The correlation between defaults and contract values as well as the loss

sharing mechanisms at the CCP does not allow for closed-form solutions for realized counterparty

risk exposures. Instead, we are able to derive the bilateral realized counterparty risk exposure

conditional on the state of the economy M and the expected loss at the CCP conditional on the

state of the economy M and defaults D in closed-forms in Propositions 12 and 13 in Appendix

A. The following results are based on a Monte-Carlo analysis with 3.75 million realizations of

contract values and defaults, where we smooth the Monte-Carlo estimates for realized counterparty

risk exposure by employing the conditional closed-form solutions from Propositions 12 and 13 in

Appendix A.41

Variable Value Description

pd 0.05 Individual probability of default
ρA,A 0.05 Correlation of log assets conditional on M
σ̄A 1 Total log asset volatility
ρA,M 0.1 Correlation between log asset and state of the economy M
βA 3.33 Implied beta-factor of log assets
σA 0.2 Implied idiosyncratic log asset volatility
αBN 0.99 Bilateral margin level
αMN 0.99 Multilateral (clearing) margin level

Table 5. Baseline calibration of the default model described in Appendix B. We assume the
same calibration for each entity and derivative class.

Systematic risk has two effects on realized counterparty risk exposures: On one hand, it reduces

the benefit of multilateral netting, as shown in Section 3. On the other hand, it correlates contract

values with defaults. A clearing member that is long in systematic risk has a small counterparty risk

exposure in times when counterparties are likely to default (and vice versa). Hence, this participant

has to bear losses of the CCP in bad states while it actually faces a small bilateral counterparty

risk exposure. Consequently, high systematic risk reduces the benefit of central clearing for clearing

members that are long in systematic risk. As can be seen from Figure 11 (a), if contract values are

sufficiently positively correlated with systematic risk (e.g., ρX,M ≥ 0.4), then central clearing does

40In Appendix C, we assess the sensitivity of our results towards heterogeneity of market participants.
41More specifically, we employ the unweighted mean between (1) the pure Monte-Carlo estimate and (2) the

Monte-Carlo estimate evaluating the closed-form solutions from Propositions 12 and 13 in Appendix A.
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not reduce realized counterparty risk for any reasonable number of counterparties.
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(a) Entity that is long in systematic risk (vkij = 1).
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(b) Entity that is short in systematic risk (vkij = −1).
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(c) Hedged dealer (
∑
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k
ij ≈ 0).

Figure 11. Impact of systematic risk (ρX,M ) on realized counterparty risk exposure.
Change in realized counterparty risk exposure due to central clearing of derivative class K,

∆E∗ = E[E∗i
BN+MN − E∗i BN,K ]/E[E∗i

BN,K ], for different levels of systematic risk ρX,M . If ∆E∗ < 0, then central

clearing reduces the realized exposure compared to bilateral clearing. The baseline calibration is described in Tables

4 and 5.

In contrast, contract values of clearing members that are short in systematic risk are large

in bad states of the economy, reflecting positive profits. Thus, such a clearing member’s large

counterparty risk exposure coincides with a large probability of default of its counterparties. It is

then beneficial to share the counterparty exposure with other clearing members (that may have

less exposure) particularly if systematic correlation ρX,M is large, as Figure 11 (b) shows.

For large levels of systematic risk (e.g., ρX,M = 0.4), central clearing is even more beneficial for

hedged dealers, as Figure 11 (c) shows. The reason is that hedged dealers have a zero net exposure

to systematic risk only within but not across derivative classes, i.e., dealers hedge across counter-
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parties within the same derivative class, implying
∑

j v
k
ij ≈ 0 but

∑
k v

k
ij 6= 0 (cf. Equation (20)).

Thus, hedged dealers are exposed to systematic risk primarily in bilateral netting pools but not

multilateral netting pools. Therefore, multilateral netting substantially reduces their counterparty

risk exposure compared to bilateral netting. As a consequence, multilateral netting is substantially

more beneficial for hedged dealers than for other entities. In summary, these results show that the

benefit of central clearing highly depends on the direction of an entity’s position (buy versus sell

positions).

RESULT 8. a) Market participants that are long in systematic risk benefit less from central

clearing than those that are short.

b) The more a market participant is hedged within one contract class, the more it benefits from

central clearing.

The correlation between defaults (i.e., entities’ asset values) and the state of the economy, ρA,M ,

has a similar effect as ρX,M . ρA,M essentially controls the wrong way risk : With larger positive

ρA,M , market participants that are long in systematic risk have larger contract values and thus a

larger counterparty risk exposure in times with high default probabilities (M < 0). The reversed

effect occurs for market participants that are short in systematic risk. As Figures 12 (a) and (b)

show, particularly for a large correlation between defaults and the state of the economy, ρA,M ,

central clearing then increases realized counterparty risk exposure for market participants that are

long in systematic risk but decreases exposure for those that are short. The higher ρA,M , the larger

is the bifurcation between market participants that are long and short. ρA,M does, however, not

substantially affect the benefit of central clearing for hedged dealers, as Figure 12 (c) shows. The

reason is that dealers diversify their portfolio’s exposure to systematic risk across counterparties (by

being long and short within the same derivative class), effectively isolating them from correlation

between their portfolio value and counterparty defaults. Consequently, ρA,M has a small impact

on a dealer’s benefit from central clearing.

Moreover, our simulation results show that default clustering conditional on the state of the

economy (ρA,A) has virtually no effect on the benefit of central clearing.42 Large default clustering

(ρA,A) makes it more likely that clearing members default together, resulting in large CCP losses.

42The results are available on request.
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(a) Entity that is long in systematic risk (vkij = 1).
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(b) Entity that is short in systematic risk (vkij = −1).
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Figure 12. Impact of default correlation with the state of the economy on realized counterparty
risk exposure.

Change in realized counterparty risk exposure due to central clearing of derivative class K,
∆E∗ = E[E∗i

BN+MN − E∗i BN,K ]/E[E∗i
BN,K ], for different levels of correlation between entities’ asset values and the

state of the economy, ρA,M . If ∆E∗ < 0, then central clearing reduces the realized exposure compared to bilateral
clearing. The baseline calibration is described in Tables 4 and 5.

At the same time, it becomes more likely that clearing member i defaults itself in which case i does

not pay a share of the CCP’s losses. The first effect offsets the second, resulting in a small effect

of ρA,A on the benefit of clearing.43

Stressing the importance of wrong way risk, the previous results are even more pronounced

during extreme events. For our baseline calibration, market participants that are short in systematic

risk or hedged dealers only benefit from clearing in extreme events occurring with probability less

than q = 0.05, while the counterparty risk exposure of those that are long increases by more

43If we instead conditioned on a specific entity surviving, it would always bear part of the CCP’s losses. From this
perspective, default clustering would substantially increase realized counterparty risk exposure from central clearing
and thus reduce its benefit for an entity. The results are available upon request.
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than 2000% in these times. Indeed, the latter do not benefit at all from clearing in events more

severe than q ≤ 0.4. Strikingly, during sufficiently extreme events (such as the 1% quantile of the

state of the economy), the realized counterparty risk exposure of market participants that are long

in systematic risk increases with the number of counterparties γ. In these times, the additional

exposure shared by additional clearing members outweighs any benefit of central clearing. This

underlines that imbalances between clearing members with different position directions manifest

particularly in crises.

RESULT 9. Differences in the benefit of central clearing between market participants with different

directions of net positions are more pronounced (a) when systematic risk ρX,M is larger, (b) wrong

way risk ρA,M is larger, or (c) in extreme adverse economic states.

The impact of margin requirements on the realized counterparty risk exposure is similar to the

impact on uncollateralized exposure: The smaller the clearing margin level (αMN ) relative to the

bilateral one (αBN ), the larger is the realized exposure with central clearing relative to a bilateral

market, implying a smaller (or no) benefit of central clearing. For αBN = 0.99, if αMN < 0.95, then

central clearing does not lead to a reduction of realized counterparty risk exposures for any market

participant and a reasonable number of counterparties γ ≤ 80 (see Figure 13). As in Section 3.4, the

benefit of central clearing is highly sensitive towards the clearing margin level: Counterparty risk

exposure increases by roughly 90% (30%) for market participants that are long (short) in systematic

risk if moving from bilateral netting with αBN = 0.99 to multilateral netting with αMN = 0.95.

This result suggests that it is unlikely that the current regulation, that imposes a smaller margin

for cleared than non-cleared trades, results in a benefit of central clearing for counterparty risk

exposure.

The previous results qualitatively also hold for a Mega CCP.44 While the effect of loss sharing

is qualitatively the same with a Mega CCP, the additional degree of netting leads to an additional

benefit of central clearing. As a result, a market participant that is short in systematic risk or

hedged always benefits from central clearing with a Mega CCP. A market participant that is long

then also benefits from clearing if the systematic correlation ρX,M is sufficiently small. With our

calibration, such a market participant benefits from a Mega CCP for any level of correlation ρX,M

44The results are available on request.
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(a) Entity that is long in systematic risk (vkij = 1).
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(b) Entity that is short in systematic risk (vkij = −1).
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Figure 13. Impact of margins on realized counterparty risk exposure.
Change in realized counterparty risk exposure due to central clearing of derivative class K,

∆E∗ = E[E∗i
BN+MN − E∗i BN,K ]/E[E∗i

BN,K ], for different clearing margin confidence levels αMN and a fixed
bilateral confidence level αBN = 0.99. If ∆E∗ < 0, then central clearing reduces realized exposure compared to

bilateral clearing. The baseline calibration is described in Tables 4 and 5.

lower than 20%.

5 Conclusion and policy implications

We present a theoretical analysis of the impact of central clearing on counterparty risk exposure

in the presence of systematic risk. Our main result is that the effect of central clearing is highly

sensitive towards different levels of systematic risk, margin requirements, extreme market events,

and the direction of clearing members’ positions. We show that, in many realistic situations, central

clearing actually results in counterparty risk exposures that are larger than with bilateral netting.

Central clearing impacts counterparty risk exposure through two channels: multilateral netting
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and loss sharing. Multilateral netting allows entities to net counterparty risk exposure across

multiple counterparties; while bilateral netting allows netting across multiple derivative classes with

each single counterparty. Based on empirical estimates for systematic risk among CDS indices,

we show that in the presence of systematic risk it requires at least 121 clearing members for

multilateral netting to reduce counterparty risk exposure and provide diversification benefits, which

is unrealistically high for CCPs in practice. In the absence of systematic risk (as studied by Duffie

and Zhu (2011)), only 39 entities are required. Thus, the presence of systematic risk greatly

undermines the benefit of CCPs. Even more concerning, if the collateral provided for cleared

contracts is slightly smaller than for non-cleared derivatives, then central clearing does not reduce

counterparty risk exposure for any number of counterparties compared to the case of a bilateral

market.

The recent financial crises exposed vulnerabilities in the derivatives market architecture which

was dominated by bilateral trades. The introduction of mandatory central clearing clearly increased

the transparency of derivative markets, but would it increase financial stability in crises? We show,

for a realistic calibration, that during extreme (but still reasonable) negative market events, central

clearing of some assets is less beneficial compared to a bilateral market. Thus, central clearing

increases counterparty risk exposure in times when a reduction is most needed. Following this result

suggests to suspend central clearing during crises to reduce counterparty risk exposure - although

central clearing was originally proposed to mitigate counterparty risk exposure particularly in

crises (Financial Stability Board (FSB) (2017a)). Interestingly, the European Commission (2016)

and Council of the European Union (2017, Article 6b) have proposed an emergency mechanism

to suspend mandatory central clearing of one or more derivative classes in special circumstances.

However, it seems unlikely that this regulation will be used to suspend all derivative classes from

central clearing when entering a crisis; instead it is more likely that it only affects new derivative

trades (European Systemic Risk Board (ESRB) (2017)).

We show that, in the absence of margins, only a Mega CCP that clears across derivative

classes can reduce counterparty risk exposure in extreme events. However, there are substantial

operational hurdles to achieving a single Mega CCP including competition among current CCPs,

political constraints, and country jurisdictions. Also, creating a single Mega CCP might lead to

concentration of risk in one such entity making it more systemically important and vulnerable,
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e.g., to cybersecurity attacks. Derivatives market participants, however, seem to be aware of the

beneficial impact of a higher degree of netting at large CCPs. As a consequence, clearing markets

are heavily concentrated (e.g., according to an industry analysis, the London Clearing House (LCH)

clears more than 90% of the Euro interest rate derivatives market notional as of September 2017).

Nonetheless, even a Mega CCP does not unambiguously reduce counterparty risk exposure: We

show that, if the margin requirement for cleared derivatives is sufficiently small compared to that

for non-cleared derivatives, the degree of netting is only of minor importance. In this case, even a

Mega CCP does not reduce counterparty risk exposure compared to the bilateral netting case. We

conclude that, to reduce counterparty risk, a first-order objective of regulation must be to align

margin requirements for cleared and non-cleared derivatives.

We also show that the sharing of a CCP’s non pre-funded losses among clearing members creates

substantial heterogeneity: Clearing members that are short in systematic risk (e.g., protection

buyers) benefit from central clearing, as they build up large counterparty risk exposure exactly

when their counterparties exhibit large probabilities of default. In contrast, clearing members that

are long in systematic risk (e.g., protection sellers) do not gain any additional benefits from central

clearing as they have a small counterparty risk exposure when counterparties are likely to default,

and then bear the losses of other clearing members.

Our results thus explain why many market participants choose not to clear contracts if it is

not mandatory. For example, less than 20% of single name CDS are cleared as of June 2016

(Financial Stability Board (FSB) (2017a)). The heterogeneity in terms of systematic risk exposure

also explains why many financial institutions do not become clearing members, e.g., asset managers,

that typically exhibit a positive exposure to systematic risk (Siriwardane (2018)).

To circumvent the heterogeneity resulting from loss sharing, CCP recovery tools might account

for the direction of positions (long versus short) when allocating losses. One suitable mechanism

might be variation margin haircutting, allocating losses mainly to clearing members whose coun-

terparty risk exposure is negatively correlated with systematic risk. However, even with no hetero-

geneity arising from loss sharing, we describe numerous reasonable situations in which multilateral

netting is not beneficial from the viewpoint of a market participant’s counterparty risk exposure,

compared to bilateral netting. We are not considering in our analysis other benefits regarding

central clearing as capital requirements benefits and market liquidity. However, as soon as these
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effects are not so large to change our results, our analysis suggests that the ultimate regulatory

tool to move to centrally cleared derivative markets is indeed an obligation to clear.
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A Proofs

PROPOSITION 1 (Collateralized bilateral counterparty risk exposure). The collateralized coun-

terparty risk exposure with bilateral netting is given by

E[EBN,Ki ] = ϕ(0)

γ∑
j=1,j 6=i

σ̄BN,Kij , (27)

where

(
σ̄BN,Kij

)2
= σ2

M

(
K∑
k=1

vkijβ
k
ij

)2

+
K∑
k=1

(
vkij

)2 (
σkij

)2
. (28)

If vkij ≡ 1 or vkij ≡ −1, βkij ≡ β, and σkij ≡ σ for all j = 1, ..., γ, k = 1, ..,K, then the collat-

eralized counterparty risk exposure is E[EBN,Ki ] = ϕ(0)(γ − 1)
√
σ2
Mβ

2K2 +Kσ2 or, equivalently,

E[EBN,Ki ] = ϕ(0)(γ − 1)σX
√
K
√

1 + (K − 1)ρ2
X,M .

If entity i is a dealer across derivative classes (i.e.,
∑K

k=1 v
k
ij = 0) and |vkij | ≡ 1, βkij ≡ β, and

σkij ≡ σ, then
(
σ̄BN,Kij

)2
= Kσ2, and thus E[EBN,Ki ] = ϕ(0)(γ − 1)

√
Kσ2.

Proof of Proposition 1:

Proof. The counterparty risk exposure equals

E
[
EBN,Ki

]
=

γ∑
j=1,j 6=i

E

max

(
K∑
k=1

Xk
ij , 0

)
︸ ︷︷ ︸

=EBN,Kij

 (29)
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Define

µ̄BN,Kij = E

[
K∑
k=1

Xk
ij

]
=

K∑
k=1

E
[
Xk
ij

]
= 0 (30)

(
σ̄BN,Kij

)2
= var

(
K∑
k=1

Xk
ij

)
= var

(
K∑
k=1

vkij(β
k
ijM + σkijε

k
ij)

)
(31)

= var

(
M

K∑
k=1

vkijβ
k
ij +

K∑
k=1

vkijσ
k
ijε

k
ij

)
(32)

= σ2
M

(
K∑
k=1

vkijβ
k
ij

)2

+
K∑
k=1

(
vkij

)2 (
σkij

)2
. (33)

For Y ∼ N (µ, σ2) we have that E[Y | Y > 0] = µ + σϕ(−µ/σ)
Φ(µ/σ) and thus E[max(Y, 0)] = E[Y | Y >

0]Φ(µ/σ) = µΦ(µ/σ) + σϕ(−µ/σ). With this in mind, the counterparty risk exposure of i to j is

given by

E[EBN,Kij ] = µ̄BN,Kij Φ
(
µ̄BN,Kij /σ̄BN,Kij

)
+ σ̄BN,Kij ϕ(−µ̄BN,Kij /σ̄BN,Kij ) (34)

= σ̄BN,Kij ϕ(0) = σ̄BN,Kij

1√
2π

(35)

and the total counterparty risk exposure is given by

E[EBN,Ki ] = ϕ(0)

γ∑
j=1,j 6=i

σ̄BN,Kij . (36)

Assume that β ≡ βkij , and σ ≡ σkij . Then,

(
σ̄BN,Kij

)2
= σ2

Mβ
2

(
K∑
k=1

vkij

)2

+ σ2
K∑
k=1

(
vkij

)2
(37)

= σ2
Mβ

2

(
K∑
k=1

vkij

)2

+Kσ2. (38)

If vkij ≡ −1 or vkij ≡ 1, then E[EBN,Ki ] = ϕ(0)(γ − 1)
√
σ2
Mβ

2K2 +Kσ2.

PROPOSITION 2 (Collateralized multilateral counterparty risk exposure). The collateralized
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counterparty risk exposure with multilateral netting of derivative class K is given by

E[EBN+MN
i ] = ϕ(0)

(
γ∑

j=1,j 6=i

√√√√σ2
M

(
K−1∑
k=1

vkijβ
k
ij

)2

+

K−1∑
k=1

(vkij)
2(σkij)

2 (39)

+

√√√√√σ2
M

 γ∑
j=1,j 6=i

vKij β
K
ij

2

+

γ∑
j=1,j 6=i

(vKij )2(σKij )2

)
.

If vkij ≡ −1 or vkij ≡ 1, σkij ≡ σ, and βkij ≡ β for all j = 1, ..., γ, k = 1, ..,K, then

E[EBN+MN
i ] =ϕ(0)

(
(γ − 1)

√
σ2
Mβ

2(K − 1)2 + (K − 1)σ2 (40)

+
√
σ2
Mβ

2(γ − 1)2 + (γ − 1)σ2

)
, (41)

or, equivalently,

E[EBN+MN
i ] =ϕ(0)

(
(γ − 1)σX

√
K − 1

√
1 + ρ2

X,M (K − 2) (42)

+ σX
√
γ − 1

√
1 + ρ2

X,M (γ − 2)

)
. (43)

If ρX,M > 0, then there exists a lower bound such that E[EMN
i ] > (γ−1)|ρX,M |σXϕ(0) for all γ > 0.

If entity i is a dealer across counterparties and |vkij | ≡ 1, βkij ≡ β, and σkij ≡ σ, then it holds

that
∑γ

j=1,j 6=i v
k
ij = 0 and thus

E[EBN+MN
i ] = ϕ(0)

(
(γ − 1)

√
σ2
Mβ

2(K − 1)2 + (K − 1)σ2 +
√

(γ − 1)σ2

)
, (44)

Proof. If derivative class K is multilaterally netted, then the collateralized counterparty risk expo-

sure is

E[EBN+MN
i ] = E

 γ∑
j=1,j 6=i

max

(
K−1∑
k=1

Xk
ij , 0

)
+ max

 γ∑
j=1,j 6=i

XK
ij , 0

 . (45)

The first summand is given by the bilateral exposure for the first K − 1 derivative classes as in
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Proposition 1,

E[EBN,K−1
i ] =ϕ(0)

γ∑
j=1,j 6=i

√√√√σ2
M

(
K−1∑
k=1

vkijβ
k
ij

)2

+

K−1∑
k=1

(
vkij

)2
(σkij)

2. (46)

The second summand is the exposure in derivative class K with multilateral netting, where

µ̄MN
i = E

 γ∑
j=1,j 6=i

XK
ij

 = 0 (47)

(σ̄MN
i )2 = var

 γ∑
j=1,j 6=i

XK
ij

 (48)

= var

 γ∑
j=1,j 6=i

vKij (βKijM + σKij ε
K
ij )

 (49)

= var

M γ∑
j=1,j 6=i

vKij β
K
ij +

γ∑
j=1,j 6=i

vKij σ
K
ij ε

K
ij )

 (50)

= σ2
M

 γ∑
j=1,j 6=i

vKij β
K
ij

2

+

γ∑
j=1,j 6=i

(vKij )2(σKij )2. (51)

Analogously to Proposition 1, the exposure in the multilaterally netted derivative class K is given

by

E

max

 γ∑
j=1,j 6=i

XK
ij , 0

 = σ̄MN
i ϕ(0) (52)

= ϕ(0)

√√√√√σ2
M

 γ∑
j=1,j 6=i

vKij β
K
ij

2

+

γ∑
j=1,j 6=i

(vKij )2(σKij )2. (53)

Thus, the total counterparty risk exposure is given by

E[EBN+MN
i ] = ϕ(0)

(
γ∑

j=1,j 6=i

√√√√σ2
M

(
K−1∑
k=1

vkijβ
k
ij

)2

+
K−1∑
k=1

(vkij)
2(σkij)

2 (54)

+

√√√√√σ2
M

 γ∑
j=1,j 6=i

vKij β
K
ij

2

+

γ∑
j=1,j 6=i

(vKij )2(σKij )2

)
.
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If vkij ≡ −1 or vkij ≡ 1, σkij ≡ σ, and βkij ≡ β, then

E[EBN+MN
i ] = ϕ(0)

(
(γ − 1)

√
σ2
Mβ

2(K − 1)2 + (K − 1)σ2 (55)

+
√
σ2
Mβ

2(γ − 1)2 + (γ − 1)σ2

)
. (56)

Since E[EMN
i ]/(γ − 1) is monotonically decreasing in γ for all γ > 0 and

lim
γ→∞

E[EMN
i ]/(γ − 1) = ϕ(0)σM |β|, (57)

it holds that E[EMN
i ]/(γ − 1) > ϕ(0)σM |β| = |ρX,M |σXϕ(0) for all γ > 0.

PROPOSITION 3 (γ = K). Assume that vkij ≡ 1, β = βkij, and σ = σkij for all j = 1, ..., γ,

k = 1, ..,K. Then, E[EBN+MN
i ] > E[EBN,Ki ] if K + 1 = γ.

Proof. Assume that γ = K + 1. Then,

E[EBN,Ki ] < E[EBN+MN
i ] (58)

⇔ (γ − 1)
√
σ2
Mβ

2K2 +Kσ2 < (γ − 1)
√
σ2
Mβ

2(K − 1)2 + (K − 1)σ2 (59)

+
√
σ2
Mβ

2(γ − 1)2 + (γ − 1)σ2 (60)

⇔ K
√
σ2
MK

2β2 +Kσ2 < K
√
σ2
M (K − 1)2β2 + (K − 1)σ2 +

√
σ2
MK

2β2 +Kσ2 (61)

⇔ (K − 1)2σ2
MK

2β2 + (K − 1)2Kσ2 < K2σ2
M (K − 1)2β2 +K2(K − 1)σ2 (62)

(K − 1)2Kσ2 < K2(K − 1)σ2 (63)

⇔ K − 1 < K. (64)

PROPOSITION 4 (Impact of correlation). Assume that vkij ≡ 1, σkij ≡ σ, and βkij ≡ β for all

j = 1, ..., γ, k = 1, ..,K.

a) If ρX,M = 0, then multilateral netting is more beneficial than bilateral netting if, and only if,

K < γ2

4(γ−1) .
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b) If ρX,M = 1, then E[EBN+MN
i ] = E[EBN,Ki ] for all γ > 0 and K > 0.

Proof. a) Assume that ρX,M = 0. Then,

E[EBN+MN
i ] < E[EBN,Ki ] (65)

⇔ (γ − 1)σX
√
K − 1 + σX

√
γ − 1 < (γ − 1)σX

√
K (66)

⇔
√
γ − 1

√
K > 1 +

√
γ − 1

√
K − 1 (67)

⇔ (γ − 1)K > 1 + 2
√
γ − 1

√
K − 1 + (γ − 1)(K − 1) (68)

⇔ γ − 2 > 2
√
γ − 1

√
K − 1 (69)

⇔ (γ − 2)2 > 4(γ − 1)(K − 1) (70)

⇔ K <
γ2

4(γ − 1)
. (71)

or, equivalently (for γ > 1),

E[EBN+MN
i ] < E[EBN,Ki ] (72)

⇔ K <
γ2

4(γ − 1)
(73)

⇔ 0 < γ2 − 4γK + 4K (74)

⇒ γ > 2
√
K(
√
K +

√
K − 1). (75)

b) Assume that ρ2
X,M = 1. Then,

E[EBN+MN
i ] = E[EBN,Ki ] (76)

⇔ (γ − 1)σX(K − 1) + σX(γ − 1) = (γ − 1)σXK (77)

⇔ (γ − 1)(K − 1) + (γ − 1) = (γ − 1)K (78)

⇔ 0 = 0. (79)

PROPOSITION 5 (Impact of volatility.). Assume that vkij ≡ 1, σkij ≡ σ, and βkij ≡ β for all

j = 1, ..., γ, k = 1, ..,K. The relative reduction of exposures due to multilateral netting of derivative
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class K is independent from contract volatility σX as well as systematic volatility σM .

Proof. The relative reduction of exposures due to multilateral netting of derivative class K is given

by

E[EBN+MN
i ]− E[EBN,Ki ]

E[EBN,Ki ]
(80)

=

ϕ(0)

(
(γ − 1)σX

√
K − 1

√
1 + ρ2

X,M (K − 2) + σX
√
γ − 1

√
1 + ρ2

X,M (γ − 2)

)
ϕ(0)(γ − 1)σX

√
K
√

1 + ρ2
X,M (K − 1)

− 1 (81)

=

√
γ − 1

√
K − 1

√
1 + ρ2

X,M (K − 2) +
√

1 + ρ2
X,M (γ − 2)

√
γ − 1

√
K
√

1 + ρ2
X,M (K − 1)

− 1, (82)

which clearly is independent from σX and σM .

PROPOSITION 6 (Collateralized exposure in extreme events). If vkij ≡ 1, σkij ≡ σ, and βkij ≡ β

for all j = 1, ..., γ, k = 1, ..,K, then the collateralized counterparty risk exposure in extreme events

with bilateral netting is given by

E[EBN,Ki |M ] = (γ − 1)

(
MKβΦ

(
M

√
Kβ

σ

)
+
√
Kσϕ

(
−M
√
Kβ

σ

))
(83)

and if class K is multilaterally netted, then the collateralized counterparty risk exposure is given by

E[EBN+MN
i |M ] (84)

= E[EBN,K−1
i |M ] +M(γ − 1)βΦ

(
M
√
γ − 1β

σ

)
+
√

(γ − 1)σϕ

(
−M
√
γ − 1β

σ

)
.

Proof. For the collateralized counterparty risk exposure with bilateral netting in extreme events
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we define

µ̄BNij|M = E

[
K∑
k=1

Xk
ij |M

]
= M

K∑
k=1

vkijβ
k
ij (85)

(
σ̄BNij|M

)2
= var

(
K∑
k=1

Xk
ij

)
= var

(
K∑
k=1

(vkij)
2((βkij)

2M + (σkij)
2(εkij)

2)

)
(86)

= var

(
K∑
k=1

(vkij)
2(σkij)

2(εkij)
2

)
=

K∑
k=1

(
vkij

)2 (
σkij

)2
. (87)

Then, the collateralized exposure to j in an extreme event is given by

E[EBNij |M ] = µ̄ij|MΦ(µ̄ij|M/σ̄ij|M ) + σ̄ij|Mϕ(−µ̄ij|M/σ̄ij|M ) (88)

= M

K∑
k=1

vkijβ
k
ijΦ

M ∑K
k=1 v

k
ijβ

k
ij√∑K

k=1(vkij)
2(σkij)

2

+

√√√√ K∑
k=1

(vkij)
2(σkij)

2ϕ

−M ∑K
k=1 v

k
ijβ

k
ij√∑K

k=1(vkij)
2(σkij)

2

 .

The total counterparty risk exposure is given by

E[EBN,Ki |M ] =

γ∑
j=1,j 6=i

E[EBNij |M ]. (89)

The counterparty risk exposure in extreme events if class K is multilaterally netted is given by

E[EBN+MN
i |M ] = E

 γ∑
j=1,j 6=i

max

(
K−1∑
k=1

Xk
ij , 0

)
+ max

 γ∑
j=1,j 6=i

XK
ij , 0

 |M
 . (90)

The expectation of the first term is given by E[EBN,K−1
i | M ], as defined above. For the second

term we have that

µ̄MN
i|M = E

 γ∑
j=1,j 6=i

XK
ij

 = M

γ∑
j=1,j 6=i

vKij β
K
ij (91)

(σ̄MN
i|M )2 = var

 γ∑
j=1,j 6=i

XK
ij

 = var

 γ∑
j=1,j 6=i

vKij σ
K
ij ε

K
ij

 =

γ∑
j=1,j 6=i

(vKij )2(σKij )2. (92)
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Thus, the expectation of the second term is given by

E[EMN
i ] = µ̄MN

i|M Φ(µ̄MN
i|M /σ̄MN

i|M ) + σ̄MN
i|M ϕ(−µ̄MN

i|M /σ̄MN
i|M ) (93)

= M

γ∑
j=1,j 6=i

vKij β
K
ij Φ

 M
∑γ

j=1,j 6=i v
K
ij β

K
ij√∑γ

j=1,j 6=i(v
K
ij )2(σKij )2

 (94)

+

√√√√ γ∑
j=1,j 6=i

(vKij )2(σKij )2ϕ

− M
∑γ

j=1,j 6=i v
K
ij β

K
ij√∑γ

j=1,j 6=i(v
K
ij )2(σKij )2

 . (95)

If vkij ≡ 1, σkij ≡ σ, and βkij ≡ β, then

E[EBN,Ki |M ] = (γ − 1)

(
MKβΦ

(
M

√
Kβ

σ

)
+
√
Kσϕ

(
−M
√
Kβ

σ

))
(96)

and

E[EBN+MN
i |M ] (97)

= E[EBN,K−1
i |M ] +M(γ − 1)βΦ

(
M
√
γ − 1β

σ

)
+
√

(γ − 1)σϕ

(
−M
√
γ − 1β

σ

)
.

PROPOSITION 7 (Cross-netting in extreme events). If vkij ≡ 1, σkij ≡ σ, and βkij ≡ β for all

j = 1, ..., γ, k = 1, ..,K, then the collateralized counterparty risk exposure with cross-netting across

counterparties and κ ≤ K derivative classes is in extreme events given by

E[ECNi |M ] = M(γ − 1)κβΦ

(
M
√

(γ − 1)κβ

σ

)
+
√

(γ − 1)κσϕ

(
−
M
√

(γ − 1)κβ

σ

)
. (98)

Proof. If derivative classes K − κ + 1, ...,K, κ ≤ K, are netted across classes and counterparties,

then the collateralized exposure in an extreme event is given by

E[ECNi |M ] = E

max

 γ∑
j=1,j 6=i

K∑
k=K−κ+1

XK
ij , 0

 |M
 . (99)
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Let

µ̄CNi|M = E

 γ∑
j=1,j 6=i

K∑
k=K−κ+1

XK
ij

 = M

γ∑
j=1,j 6=i

K∑
k=K−κ+1

vkijβ
k
ij (100)

(σ̄CNi|M )2 = var

 γ∑
j=1,j 6=i

K∑
k=K−κ+1

XK
ij

 (101)

= var

 γ∑
j=1,j 6=i

K∑
k=K−κ+1

vkijσ
k
ijε

K
ij

 =

γ∑
j=1,j 6=i

K∑
k=K−κ+1

(vkij)
2(σkij)

2. (102)

Thus, the expectation is given by

E[ECNi |M ] = µ̄CNi|MΦ(µ̄CNi|M/σ̄
CN
i|M ) + σ̄CNi|Mϕ(−µ̄CNi|M/σ̄

CN
i|M ) (103)

= M

γ∑
j=1,j 6=i

K∑
k=K−κ+1

vkijβ
k
ijΦ

 M
∑γ

j=1,j 6=i
∑K

k=K−κ+1 v
k
ijβ

k
ij√∑γ

j=1,j 6=i
∑K

k=K−κ+1(vkij)
2(σkij)

2

 (104)

+

√√√√ γ∑
j=1,j 6=i

K∑
k=K−κ+1

(vkij)
2(σkij)

2ϕ

− M
∑γ

j=1,j 6=i
∑K

k=K−κ+1 v
k
ijβ

k
ij√∑γ

j=1,j 6=i
∑K

k=K−κ+1(vkij)
2(σkij)

2

 . (105)

If vkij ≡ 1, σkij ≡ σ, and βkij ≡ β, then

E[EMN
i |M ] (106)

= M(γ − 1)κβΦ

(
M
√

(γ − 1)κβ

σ

)
+
√

(γ − 1)κσϕ

(
−
M
√

(γ − 1)κβ

σ

)
. (107)

PROPOSITION 8 (Uncollateralized counterparty risk exposure). Assume that vkij ≡ 1, β ≡ βkij,

and σ ≡ σkij for all j = 1, ..., γ, k = 1, ..,K. Then, the uncollateralized counterparty risk exposure

with bilateral netting equals

E
[
ẼBN,Ki

]
= (γ − 1)

√
σ2
MK

2β2 +Kσ2ξ(αBN ), (108)
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and with class-K multilateral netting it is

E
[
ẼBN+MN
i

]
=
√
σ2
M (γ − 1)2β2 + (γ − 1)σ2ξ(αMN ) (109)

+ (γ − 1)
√
σ2
M (K − 1)2β2 + (K − 1)σ2ξ(αBN ), (110)

where ξ(α) = (1− α)Φ−1(1− α) + ϕ
(
Φ−1(α)

)
.

Proof. First, we consider the bilateral case. Define ẼBN,Kij = max
(∑K

k=1X
k
ij − CBN,K , 0

)
. It is

σ̄2
ij = var

(
K∑
k=1

Xk
ij

)
= σ2

M

(
K∑
k=1

vkijβ
k
ij

)2

+
K∑
k=1

(vkijσ
k
ij)

2, (111)

and

µ̄ij = −CBN,Kij = −Φ−1(αBN )σ̄ij , (112)

and thus

E
[
ẼBN,Ki

]
=

γ∑
j=1,j 6=i

(
−Φ−1(αBN )σ̄ijΦ

(
−Φ−1(αBN )σ̄ij

σ̄ij

)
+ σ̄ijϕ

(
−−Φ−1(αBN )σ̄ij

σ̄ij

))
(113)

=

γ∑
j=1,j 6=i

(
−Φ−1(αBN )σ̄ijΦ

(
Φ−1(1− αBN )

)
+ σ̄ijϕ

(
Φ−1(αBN )

))
. (114)

If entities are homogeneous, then the exposure equals

E
[
ẼBN,Ki

]
= (γ − 1)σ̄

(
(1− αBN )Φ−1(1− αBN ) + ϕ

(
Φ−1(αBN )

))
(115)

= (γ − 1)
√
σ2
MK

2β2 +Kσ2
(
(1− αBN )Φ−1(1− αBN ) + ϕ

(
Φ−1(αBN )

))
. (116)

Second, we consider the multilateral case, where derivative class K is multilaterally netted. It
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is ẼBN+MN
i = max

(∑γ
j=1,k 6=iX

K
ij −

vKij∑γ
h=1,h 6=j v

K
hj

CMN
j , 0

)
the exposure in derivative class K. Let

σ̄2
i = var

 γ∑
j=1

XK
ij

 = σ2
M

 γ∑
j=1,j 6=i

vKij β
K
ij

2

+

γ∑
j=1,j 6=i

(vKij σ
K
ij )2, (117)

and

µ̄i = −
γ∑

j=1,j 6=i

vKij∑γ
h=1,h 6=j v

K
hj

CMN
j , (118)

and

CMN
j = Φ−1(αMN )

√√√√√σ2
M

 γ∑
i=1,j 6=i

vKij β
K
ij

2

+

γ∑
i=1,j 6=i

(vKij σ
K
ij )2. (119)

Assuming that vkij ≡ 1, β ≡ βkij , and σ ≡ σkij , the collateral is given by

CMN
j = Φ−1(αMN )

√
σ2
M (γ − 1)2β2 + (γ − 1)σ2 = Φ−1(αMN )σ̄j , and the uncollateralized exposure

is

E
[
ẼBN+MN
i

]
= µ̄iΦ (µ̄i/σ̄i) + σ̄iϕ (−µ̄i/σ̄i) (120)

= −
γ∑

j=1,j 6=i

1

γ − 1
Φ−1(αMN )σ̄jΦ

(
−
∑γ

j=1,j 6=i
1

γ−1Φ−1(αMN )σ̄j

σ̄i

)
(121)

+ σ̄iϕ

(
−
−
∑γ

j=1,j 6=i
1

γ−1Φ−1(αMN )σ̄j

σ̄i

)
(122)

= σ̄
(
Φ−1(1− αMN )(1− αMN ) + ϕ

(
Φ−1(1− αMN )

))
(123)

=
√
σ2
M (γ − 1)2β2 + (γ − 1)σ2

(
Φ−1(1− αMN )(1− αMN ) + ϕ

(
Φ−1(1− αMN )

))
.

(124)

As before E[ẼBN+MN
i ] = E

[
ẼBN,K−1
i

]
+ E

[
ẼMN
i

]
.

PROPOSITION 9. Assume that counterparties are homogeneous.

1) If α = αBN = αMN , the benefit of multilateral netting is independent from the margin level

α.
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2) The smaller margin requirements for multilateral compared to bilateral netting are, the smaller

is the benefit of multilateral netting, and vice versa.

Proof.

1) Assume that α = αBN = αMN . Then,

E
[
ẼBN+MN
i

]
− E

[
ẼBN,Ki

]
E
[
ẼBN,Ki

] (125)

=

√
σ2
M (γ − 1)2β2 + (γ − 1)σ2 + (γ − 1)

√
σ2
MK

2β2 +Kσ2

(γ − 1)
√
σ2
MK

2β2 +Kσ2
− 1. (126)

2) As Figure 14 shows, ξ(α) is decreasing with the margin requirement α. Thus, the smaller

αMN
αBN

, the larger are ξ(αMN )
ξ(αBN ) and

E
[
ẼBN+MN
i

]
E
[
ẼBN,Ki

] =

√
σ2
M (γ − 1)2β2 + (γ − 1)σ2 ξ(αMN )

ξ(αBN ) + (γ − 1)
√
σ2
MK

2β2 +Kσ2

(γ − 1)
√
σ2
MK

2β2 +Kσ2
, (127)

and, thus, the smaller is the benefit of multilateral netting.
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Figure 14. Margin adjustment factor ξ(α) = (1− α)Φ−1(1− α) + ϕ(−Φ−1(α)).

PROPOSITION 10 (Uncollateralized counterparty risk exposure in extreme events.). If vkij ≡ 1,

σkij ≡ σ, and βkij ≡ β for all j = 1, ..., γ, k = 1, ..,K, then the uncollateralized counterparty risk
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exposure with bilateral netting extreme event is given by

E[ẼBN,Ki |M ] = (γ − 1)

[ (
MβK − CBN,K

)
Φ

(
MβK − CBN,K

σ
√
K

)
(128)

+ σ
√
Kϕ

(
−MβK − CBN,K

σ
√
K

)]
(129)

and with multilateral netting of class K it is given by

E[ẼBN+MN
i |M ] = E[ẼBN,K−1

i |M ] (130)

+ (M(γ − 1)β − CMN )Φ

(
M(γ − 1)β − CMN

σ
√
γ − 1

)
+ σ

√
(γ − 1)ϕ

(
−M(γ − 1)β − CMN

σ
√
γ − 1

)
,

(131)

where CBN,K = Φ−1(αBN )
√
β2σ2

M +Kσ2 and CMN = Φ−1(αMN )
√
β2σ2

M + (γ − 1)σ2.

Proof. Define the bilateral collateral CBN,Kij = Φ−1(αBN )

√(∑K
k=1 v

k
ijβ

k
ij

)2
σ2
M +

∑K
k=1

(
vkijσ

k
ij

)2
.

For the uncollateralized exposure in an extreme event with bilateral netting we define

µ̄BNij|M = E

[
K∑
k=1

Xk
ij − C

BN,K
ij |M

]
= M

K∑
k=1

vkijβ
k
ij − C

BN,K
ij (132)

(
σ̄BNij|M

)2
= var

(
K∑
k=1

Xk
ij

)
= var

(
K∑
k=1

(vkij)
2((βkij)

2M + (σkij)
2(εkij)

2)

)
(133)

= var

(
K∑
k=1

(vkij)
2(σkij)

2(εkij)
2

)
=

K∑
k=1

(
vkij

)2 (
σkij

)2
. (134)

Then, the uncollateralized exposure of entity i with j is given by

E[ẼBNij |M ] = µ̄ij|MΦ(µ̄ij|M/σ̄ij|M ) + σ̄ij|Mϕ(−µ̄ij|M/σ̄ij|M ) (135)

=

(
M

K∑
k=1

vkijβ
k
ij − C

BN,K
ij

)
Φ

M∑K
k=1 v

k
ijβ

k
ij − C

BN,K
ij√∑K

k=1(vkij)
2(σkij)

2

 (136)

+

√√√√ K∑
k=1

(vkij)
2(σkij)

2ϕ

−M∑K
k=1 v

k
ijβ

k
ij − C

BN,K
ij√∑K

k=1(vkij)
2(σkij)

2

 .
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The total uncollateralized exposure is given by

E[ẼBN,Ki |M ] =

γ∑
j=1,j 6=i

E[ẼBNij |M ]. (137)

The uncollateralized counterparty risk exposure in derivative class K if it is multilaterally netted

is given by

E[ẼMN
i |M ] = E

max

 γ∑
j=1,j 6=i

XK
ij − CMN

j , 0

 |M
 , (138)

where the multilateral collateral is given by

CMN
j = Φ−1(αMN )

√√√√√σ2
M

 γ∑
i=1,i 6=j

vkijβ
k
ij

2

+

γ∑
i=1,i 6=j

(
vkijσ

k
ij

)2
. (139)

Define

µ̄MN
i|M = E

 γ∑
j=1,j 6=i

XK
ij − CMN

j

 = M

γ∑
j=1,j 6=i

vKij β
K
ij − CMN

j (140)

(σ̄MN
i|M )2 = var

 γ∑
j=1,j 6=i

XK
ij

 = var

 γ∑
j=1,j 6=i

vKij σ
K
ij ε

K
ij

 =

γ∑
j=1,j 6=i

(vKij )2(σKij )2. (141)

Thus,

E[ẼMN
i |M ] = µ̄MN

i|M Φ(µ̄MN
i|M /σ̄MN

i|M ) + σ̄MN
i|M ϕ(−µ̄MN

i|M /σ̄MN
i|M ) (142)

=

M γ∑
j=1,j 6=i

vKij β
K
ij − CMN

j

Φ

M∑γ
j=1,j 6=i v

K
ij β

K
ij − CMN

j√∑γ
j=1,j 6=i(v

K
ij )2(σKij )2

 (143)

+

√√√√ γ∑
j=1,j 6=i

(vKij )2(σKij )2ϕ

−M∑γ
j=1,j 6=i v

K
ij β

K
ij − CMN

j√∑γ
j=1,j 6=i(v

K
ij )2(σKij )2

 . (144)

For v∗i =
∑K

k=1 v
k
ij , v

K
i∗ =

∑γ
j=1,j 6=i v

K
ij and (vkij)

2 = 1, σkij ≡ σ, and βkij ≡ β, the exposure is given
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by

E[ẼBN,Ki |M ] = (γ − 1)

[ (
Mβv∗i − CBN,K

)
Φ

(
Mβv∗i − CBN,K

σ
√
K

)
(145)

+ σ
√
Kϕ

(
−Mβv∗i − CBN,K

σ
√
K

)]
(146)

and

E[ẼBN+MN
i |M ]

= E[ẼBN,K−1
i |M ] (147)

+ (MvKi∗β − CMN )Φ

(
MvKi∗β − CMN

σ
√
γ − 1

)
+ σ

√
(γ − 1)ϕ

(
−MvKi∗β − CMN

σ
√
γ − 1

)
. (148)

If vkij ≡ 1, then vi∗ = γ − 1 and v∗i = K.

PROPOSITION 11 (Uncollateralized exposure with cross-netting.). Assume that vkij ≡ 1, β ≡

βkij, and σ ≡ σkij for all j = 1, ..., γ, k = 1, ..,K. Then, the uncollateralized counterparty risk

exposure with cross-netting across γ − 1 counterparties and derivative classes K − κ + 1 to K is

given by

E[ẼCN,κi ] =
√
σ2
Mκ

2(γ − 1)2β2 + κ(γ − 1)σ2ξ(αCN ) (149)

where ξ(α) = (1− α)Φ−1(1− α) + ϕ
(
Φ−1(α)

)
is the margin adjustment.

Proof. The counterparty risk exposure in (cross-netted) derivative classesK−κ+1, ...,K is ẼCN,κi =

max

(∑γ
j=1,j 6=i

∑K
k=K−κ+1X

k
ij −

∑K
k=K−κ+1 v

k
ij∑K

k=K−κ+1

∑γ
h=1,h6=j v

k
hj

CCN,κj , 0

)
, where the collateral is given by

CCN,κj = Φ−1(αCN )

√√√√√σ2
M

 K∑
k=K−κ+1

γ∑
i=1,j 6=i

vkijβ
k
ij

2

+

K∑
k=K−κ+1

γ∑
i=1,j 6=i

(vkijσ
k
ij)

2 (150)
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Let

σ̄2
i = var

 K∑
k=K−κ+1

γ∑
j=1

Xk
ij

 (151)

= σ2
M

 K∑
k=K−κ+1

γ∑
j=1,j 6=i

vkijβ
k
ij

2

+
K∑

k=K−κ+1

γ∑
j=1,j 6=i

(vkijσ
k
ij)

2, (152)

and

µ̄i = −
γ∑

j=1,j 6=i

∑K
k=K−κ+1 v

k
ij∑γ

h=1,h 6=j
∑K

k=K−κ+1 v
k
hj

CCN,κj . (153)

Assuming that vkij ≡ 1, β ≡ βkij , and σ ≡ σkij , the collateral equals

CCN,κj = Φ−1(αMN )
√
σ2
Mκ

2(γ − 1)2β2 + κ(γ − 1)σ2 = Φ−1(αCN )σ̄j and the uncollateralized ex-

posure is

E
[
ẼCN,κi

]
= µ̄iΦ (µ̄i/σ̄i) + σ̄iϕ (−µ̄i/σ̄i) (154)

= −
γ∑

j=1,j 6=i

1

γ − 1
Φ−1(αCN )σ̄jΦ

(
−
∑γ

j=1,j 6=i
1

γ−1Φ−1(αCN )σ̄j

σ̄i

)
(155)

+ σ̄iϕ

(
−
−
∑γ

j=1,j 6=i
1

γ−1Φ−1(αCN )σ̄j

σ̄i

)
(156)

= σ̄
(
Φ−1(1− αCN )(1− αCN ) + ϕ

(
Φ−1(1− αCN )

))
(157)

=
√
σ2
Mκ

2(γ − 1)2β2 + κ(γ − 1)σ2

(
Φ−1(1− αCN )(1− αCN ) (158)

+ ϕ
(
Φ−1(αCN )

))
.

PROPOSITION 12 (Bilateral realized counterparty risk exposure). Assume that σkij ≡ σ, βkij ≡

β, σAi ≡ σA, and βAi ≡ βA. Conditional on the state of the economy M , the realized counterparty
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risk exposure of counterparty i with bilateral netting is given by

E[E∗i
BN,K |M ] =

γ∑
j=1,j 6=i

Φ

(√
σ2
A + β2

Aσ
2
MΦ−1(pdj)− βAM

)
(159)

×

(
(Mβv∗ij − CBN,K)Φ

(
βMv∗ij − CBN,K√

Kσ

)
+
√
Kσϕ

(
−
βMv∗ij − CBN,K√

Kσ

))
,

where v∗ij =
∑K

k=1 v
k
ij and total collateral provided by j to i is given by

CBN,K = Φ−1(α)
√
σ2
MK

2β2 +Kσ2.

Proof. Conditional on M , Dj and max
(∑K

k=1X
k
ij − C

BN,K
ij , 0

)
are independent. The uncondi-

tional default intensity is given by

d̄j =
logBj√

σ2
Aj

+ β2
A,jσ

2
M

+

√
σ2
Aj

+ β2
A,jσ

2
M

2
= Φ−1(pdj) (160)

⇔ logBj = bj =
√
σ2
Aj

+ β2
A,jσ

2
MΦ−1(pdj)−

σ2
Aj

+ β2
A,jσ

2
M

2
. (161)

The conditional probability of default is given by

P(Dj = 1 |M) = P
(
Wj(1) < d̄j|M

)
= Φ(d̄j|M ), (162)

where

d̄j|M = logBj +
σ2
Aj

+ β2
A,jσ

2
M

2
− βA,jM (163)

=
√
σ2
Aj

+ β2
A,jσ

2
MΦ−1(pdj)− βA,jM. (164)

Conditional on M , it holds that
∑K

k=1X
k
ij − C

BN,K
ij ∼ N (µkij|M , (σ

k
ij|M )2) with

µkij|M = M

K∑
k=1

vkijβ
k
ij − C

BN,K
ij (165)

(σkij|M )2 =

K∑
k=1

(vkijσ
k
ij)

2. (166)
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Thus,

E
[
max

(
Xk
ij − C

BN,K
ij , 0

)]
= µkij|MΦ

(
µkij|M

σkij|M

)
+ σkij|Mϕ

(
−
µkij|M

σkij|M

)
. (167)

Assuming that βkij ≡ β, σAi ≡ σA, βAi ≡ βA, σkij ≡ σ, and |vkij | = 1, it holds that CBN,Kij ≡ CBN,K ,

µkij|M ≡ Mβv∗ij − CBN,K , and (σkij|M )2 ≡ Kσ2, where v∗ij =
∑K

k=1 v
k
ij . Eventually, the realized

counterparty risk exposure with bilateral clearing conditional on M is given by

E[E∗i
BN,K |M ] =

γ∑
j=1,j 6=i

Φ

(√
σ2
A + β2

Aσ
2
MΦ−1(pdj)− βAM

)
(168)

×

(
(Mβv∗ij − C

BN,K
ij )Φ

(
βMv∗ij − C

BN,K
ij√

Kσ

)
+
√
Kσϕ

(
−
βMv∗ij − C

BN,K
ij√

Kσ

))
,

where the total collateral provided by each counterparty j to counterparty i is

CBN,Kij = Φ−1(αBN )

√
β2σ2

M

(
v∗ij

)2
+Kσ.

PROPOSITION 13 (Multilateral realized counterparty risk exposure.). Assume that σkij ≡ σ,

βkij ≡ β, and |vij | = 1. Conditional on the state of the economy M and default states D1, ..., Dγ the

realized counterparty risk exposure in the centrally cleared derivative class K is given by

E[L̄CCP |M,D] =

γ∑
j=1

Dj

(
µj|MΦ

(
µj|M

σj|M

)
+ σj|Mϕ

(
−
µj|M

σj|M

))
, (169)

where µj|M = MβvK∗j−Φ−1(αMN )
√
σ2
M (vK∗j)

2β2 + (γ − 1)σ2, σ2
j|M = σ2(γ−1), and vK∗j =

∑γ
g=1,g 6=j v

K
gj

is the net position of j’s trades in derivative class K.

Proof. The expected total loss of the CCP given the state of the economy and conditional on

defaults D = (D1, ..., Dγ) of clearing members is given by

E[L̄CCP |M,D] =

γ∑
j=1

DjE

max

 γ∑
g=1,
g 6=j

XK
gj − CMN

j , 0

 |M,D

 , (170)
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where the collateral is defined as previously. Define by

µj|M = E

 γ∑
g=1,
g 6=j

XK
gj − CMN

j

 = M

γ∑
g=1,
g 6=j

vKgjβ
K
gj − CMN

j (171)

σ2
j|M = var

 γ∑
g=1,
g 6=j

XK
gj − CMN

j

 = var

 γ∑
g=1,
g 6=j

XK
gj

 (172)

= var

 γ∑
g=1,
g 6=j

vKgjσ
k
gjε

k
gj

 =

γ∑
g=1,
g 6=j

(
vKgjσ

k
gj

)2
. (173)

Denote by vK∗j =
∑γ

g=1,g 6=j v
K
ij and assume that βkij ≡ β, |vij | = 1, and σkij ≡ σ. Then, CMN

j =

Φ−1(αMN )
√
σ2
M (vK∗j)

2β2 + (γ − 1)σ2,

µj|M = MβvK∗j − Φ−1(αMN )
√
σ2
M (vK∗j)

2β2 + (γ − 1)σ2, σ2
j|M = σ2(γ − 1), and

E[L̄CCP |M,D] =

γ∑
j=1

Dj

(
µj|MΦ

(
µj|M

σj|M

)
+ σj|Mϕ

(
−
µj|M

σj|M

))
. (174)
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B Model for correlated defaults

In order to allow for correlation of entity defaults, we employ a credit model based on the

Merton model (Merton (1974)). In particular, we assume that each counterparty i defaults at the

settlement period begin if the random value of its assets is below a given bankruptcy threshold,

Ai < Bi.

The value of assets at settlement period begin is given by

Ai = exp

(
µAi −

β2
Ai
σ2
M + σ2

Ai

2
+ βAiM + σAiWi

)
, (175)

where (W1, ...,Wγ) are jointly standard normally distributed and correlated with pairwise correla-

tion ρAi,Aj . The log value of assets is normally distributed with

logAi ∼ N
(
µAi −

β2
Ai
σ2
M+σ2

Ai
2 , σ2

Ai
+ β2

Ai
σ2
M

)
. The pairwise correlation of two entities’ log assets

is given by

ρ̃Ai,Aj = cor (logAi, logAj) =
βAiβA,jσ

2
M + σAiσAjρAi,Aj√

β2
Ai
σ2
M + σ2

Ai

√
β2
A,jσ

2
M + σ2

Aj

. (176)

The individual (unconditional) default probability of entity i is given by

pdi = P (Ai < Bi) = Φ

 logBi − µAi +
β2
Ai
σ2
M+σ2

Ai
2√

β2
Ai
σ2
M + σ2

Ai

 . (177)

Without loss of generality, we assume that µAi ≡ 0. Then, the default intensity is given by

d̄i = logBi√
σ2
Ai

+β2
Ai
σ2
M

+

√
σ2
Ai

+β2
Ai
σ2
M

2 . We define by D = (D1, ..., Dγ) a vector of binary random

variables Di = δAi<Bi that signal the default of entity i ∈ {1, ..., γ}. The joint distribution of two

entities’ default state is determined by

P (Di = 1, Dj = 1) = P
(
Z̄i < d̄i, Z̄j < d̄j

)
= Φ2,Σ(d̄i, d̄j), (178)

where (Zi, Zj) are multi-normally distributed with zero mean, unit variance, and correlation matrix
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Σ, with Σij = ρ, i 6= j, and Σii = 1, and

P (Di = 1, Dj = 0) = P
(
Zi < d̄i, Zj ≥ d̄j

)
= P

(
Zi < d̄i,−Zj < −d̄j

)
(179)

= P
(
Zi < d̄i, Z̃j < −d̄j

)
= Φ2,Σ̃(d̄i,−d̄j) (180)

where (Zi, Z̃j) is multi-normally distributed, (Zi, Z̃j) ∼ N2(0, Σ̃) with correlation matrix Σ̃ij = −ρ̃,

i 6= j and Σ̃ii = 1, i, j ∈ {1, 2}. Iteration yields the general distribution of default states as

P(D = d) = Φγ,Σ̃

(
d̃
)
, (181)

where d̃i =


d̄i, di = 1

−d̄i, di = 0

, Σ̃ii = 1, and Σ̃ij =


ρ̃, di = dj

−ρ̃, di 6= dj

, i 6= j. Thus, Σ̃ has a unit diagonal

and 4 blocks of ρ̃ and −ρ̃:

Σ̃ =



1 ρ̃ ... ρ̃ −ρ̃ ... ... −ρ̃

ρ̃ 1 ρ̃ ρ̃ −ρ̃ ... ... −ρ̃
. . . −ρ̃ ... ... −ρ̃

ρ̃ ... ρ̃ 1 −ρ̃ ... ... −ρ̃

−ρ̃ ... ... −ρ̃ 1 ρ̃ ... ρ̃

−ρ̃ ... ... −ρ̃ ρ̃ 1 ... ρ̃

−ρ̃ ... ... −ρ̃ . . .

−ρ̃ ... ... −ρ̃ ρ̃ ... ρ̃ 1



(182)

Assuming homogeneous counterparties (i.e., d̄ ≡ d̄i), the number of defaulting counterparties,

ND =
∑γ

i=1Di, is distributed as

P (ND = k) =

(
γ

k

)
Φγ,Σ̃(d̄, ..., d̄︸ ︷︷ ︸

k

,−d̄, ...,−d̄︸ ︷︷ ︸
γ−k

), (183)

where d̄ > 0 is the individual default intensity, and Σ̃ defined as before.

As a benchmark case, consider independent defaults, i.e., ρ̃ = 0. Then,the distribution of joint
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defaults is given by

Φγ,Σ̃(d̄, ..., d̄︸ ︷︷ ︸
k

,−d̄, ...,−d̄︸ ︷︷ ︸
γ−k

) = Φ(d̄)kΦ(−d̄)γ−k = Φ(d̄)k(1− Φ(d̄))γ−k. (184)

Thus, if defaults are independent, the number of defaults is binomially distributed,

ND ∼ Binom(γ,Φ(d̄)). As Figure 15 shows, increasing the correlation ρ̃ yields larger tails of the

distribution of ND. Then, it is more likely that counterparties default together, i.e., a large or small

number of counterparties defaults.
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Figure 15. Probability distribution of the number of defaults, ND, for γ = 10 entities and
individual probability of default pd = 0.5 if defaults are uncorrelated (triangles) or correlated with

ρ̃ = 0.25 (filled dots).

Figure 15 depicts the distribution of ND for exemplary parameters. Clearly, increasing the total

correlation ρ̃ yields larger tails of the distribution. Then, it is more likely that entities default in

clusters, i.e., that either a small or large number of counterparties defaults together.
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C Heterogeneity in positions

Our baseline results are based on the assumption of equal trade sizes. Here, we assess the

sensitivity of our baseline results towards the case with one particularly large entity. Figure 18

depicts the impact of systematic correlation on realized counterparty risk exposure if the positions

of the market participant that is short in systematic risk are ten times larger than those of other

entities, i.e., vkγj ≡ −10. As one might expect, central clearing then becomes slightly more beneficial

for this large market participant, as its exposure is larger than that of other clearing members and

thus loss sharing is more attractive. For the same reason, central clearing becomes less beneficial

for other market participants.

Similarly, in the presence of a large market participant that is long in systematic risk, central

clearing is more beneficial for this participant and less beneficial for others, as can be seen in Figure

19. We conclude that larger market participants benefit relatively more from central clearing than

in a market with equal trade sizes. These effects are qualitatively the same in the presence of a

Mega CCP.
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(a) Entity that is long in systematic risk (vkij = 1).
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(b) Large entity that is short in systematic risk (vkij =
−10).
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ij ≈ 0).

Figure 16. Impact of systematic risk on realized counterparty risk exposure in the presence of
one large market participant that is short in systematic risk (with vkγj = −10) with a Mega CCP.
Change in realized counterparty risk exposure due to central clearing of all derivative classes 1, ...,K, on realized
counterparty risk exposure, ∆E∗ = E[E∗i

CN − E∗i BN,K ]/E[E∗i
BN,K ], for different levels of systematic risk ρXM . If

∆E∗ < 0, then central clearing reduces realized counterparty risk exposure compared to bilateral clearing. The
baseline calibration is described in Tables 4 and 5.
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(a) Large entity that is long in systematic risk (vkij = 10).
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(b) Entity that is short in systematic risk (vkij = −1).
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(c) Hedged dealer (
∑
j v

k
ij ≈ 0).

Figure 17. Impact of systematic risk on realized counterparty risk exposure in the presence of
one large market participant that is long in systematic risk (with vk1j = 10) with a Mega CCP.
Change in realized counterparty risk exposure due to central clearing of all derivative classes 1, ...,K, on realized
counterparty risk exposure, ∆E∗ = E[E∗i

CN − E∗i BN,K ]/E[E∗i
BN,K ], for different levels of systematic risk ρXM . If

∆E∗ < 0, then central clearing reduces realized counterparty risk exposure compared to bilateral clearing. The
baseline calibration is described in Tables 4 and 5.
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(a) Entity that is long in systematic risk (vkij = 1).
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(b) Large entity that is short in systematic risk (vkij =
−10).

0 10 20 30 40 50 60 70 80

-10%

-5%

0%

5%

10%

15%

20%

25%

(c) Hedged dealer (
∑
j v

k
ij ≈ 0).

Figure 18. Impact of systematic risk on realized counterparty risk exposure in the presence of
one large market participant that is short in systematic risk (with vkγj = −10).
Change in realized counterparty risk exposure due to central clearing of derivative class K,

∆E∗ = E[E∗i
BN+MN − E∗i BN,K ]/E[E∗i

BN,K ], for different levels of systematic risk ρX,M . If ∆E∗ < 0, then central
clearing reduces realized counterparty risk exposure compared to bilateral clearing. The baseline calibration is

described in Tables 4 and 5.

81



0 10 20 30 40 50 60 70 80

-10%

-5%

0%

5%

10%

15%

20%

25%

(a) Large entity that is long in systematic risk (vkij = 10).
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(b) Entity that is short in systematic risk (vkij = −1).
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(c) Hedged dealer (
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Figure 19. Impact of systematic risk on realized counterparty risk exposure in the presence of
one large market participant that is long in systematic risk (with vk1j = 10).

Change in realized counterparty risk exposure due to central clearing of derivative class K,
∆E∗ = E[E∗i

BN+MN − E∗i BN,K ]/E[E∗i
BN,K ], for different levels of systematic risk ρX,M . If ∆E∗ < 0, then central

clearing reduces realized counterparty risk exposure compared to bilateral clearing. The baseline calibration is
described in Tables 4 and 5.
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