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Abstract
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1 Introduction

Tail-correlation matrices offer an approach to aggregate risks in a simple deterministic

manner. The correlation-based risk aggregation is employed in various contexts, including

the calculation of regulatory capital requirements or a firm’s economic capital. Regarding

a n-risks-portfolio, the approach starts from n univariate risk measurements, which are

collected in a vector x ∈ Rn. Then, a n × n-matrix R of correlation parameters is used

to calculate the aggregate risk measurement as

√
xTRx (1)

The approach in line (1) is employed in the Solvency II standard formula, which is used

to determine the regulatory capital requirement for most insurance companies in the Eu-

ropean Union (EU). Apart from the EU, the approach (1) is used in insurance regulation

in the United States (“Risk-Based Capital”), China (“C-ROSS”) and the International

Capital Standard. In the banking industry, the approach is referred to as the variance-

covariance approach and is popular in banks’ internal risk assessments (cf. Mathur, 2015,

pp. 272-274; Li et al., 2015). Moreover, the approach can be used for investment port-

folio optimization (cf. Mittnik 2014). Structurally, the calculation of the portfolio risk

using (1) mimics the calculation of the standard deviation of portfolio risk. Hence, port-

folio selection problems in connection with the risk measurement in (1) can be studied

analogously to those of the mean-variance framework of Markowitz (1952).1

1Apart from investment portfolio optimization, the mean-variance framework has been employed in
an insurance context. For example, Eckert & Gatzert (2018) identify an insurer’s optimal risk-return
combination against the background of policyholders’ willingness to pay depending on the insurer’s
solvency level. Braun et al. (2017) investigate insurers’ asset allocations in a mean-variance framework
when they face a regulatory capital requirement determined by the Solvency II standard formula. Braun
et al. (2017) find that the standard formula tends to promote inefficient portfolios over efficient ones.
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Using correlation parameters derived from the covariance matrix, approach (1) can guar-

antee an exact aggregation of risk measurements only if risks follow a multivariate ellip-

tical risk distribution (cf. McNeil et al. 2015, pp. 295 ff.). If risks exhibit heavy tails or

non-linear dependencies,2 the aggregate risk measurement based on (1) can substantially

differ from the “true” result in accordance with the complete multivariate risk distribution

(Pfeifer & Strassburger 2008, Li et al. 2015).3 To eliminate this bias and in connection

with the risk measure Value-at-Risk (VaR), so-called VaR-implied tail-correlations have

been proposed (Campbell et al. 2002, Mittnik 2014). According to EIOPA (2014, p. 9),

the risk aggregation in the Solvency II standard formula has been calibrated based on

VaR-implied tail-correlations.

Chen et al. (2019) empirically study the sensitivities of the correlation-based risk aggrega-

tion approach with regard to the regulatory Risk-Based Capital (RBC) for US insurance

companies, which is referred to as the “square-root formula” in this context.4 The authors

find that the insurers’ optimal investment policy is driven by marginal capital require-

ments, i.e. by sensitivities of the aggregate capital requirement with respect to the size of

univariate risks. Moreover, the authors demonstrate that the square-root formula has un-

derstated the marginal capital requirement of fixed-income investments and has thereby

2Empirical evidence indicates that correlations between asset returns are higher during periods of
(stressful) downside moves, cf. for example Longin & Solnik (2001), Campbell et al. (2002) and Ang
& Chen (2002). In addition, risk types such as operational risks or non-life insurance risks follow more
heavily tailed distribution, see for example Bernard et al. (2018).

3In addition, Christiansen et al. (2012) estimate correlation coefficients between a life insurer’s differ-
ent types of biometric risks. The authors find that the correlation-based risk aggregation in connection
with the estimated correlation coefficients leads to a conservative assessment of the aggregate risk. Breuer
et al. (2010) study banks’ summation of the regulatory capitals for market risks and credit risks—which
can be viewed as a special case of (1) with R including only ones. The authors find that the summation
is not necessarily conservative.

4More precisely, Chen et al. (2019) consider property and casualty insurance companies. For these
insurers, the RBC includes six risk categories, such as stock risk, underwriting risk and reserving risk.
Five of the risk categories are assumed to be uncorrelated and one of them (affiliated investments) is
added up on the result of the square-root formula.
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incentivized insurers to increase those investments. The insurers’ overall risks have thus

increased.

Our paper elaborates on the observations of Chen et al. (2019) in a stylized set-up. We

demonstrate that the sensitivities of approach (1) can be substantially biased if R is a

traditional tail-correlation matrix with ones on the diagonal, even if the calibration of R

is conducted based on the complete multivariate risk distribution.

To make the correlation-based risk aggregation approach a suitable basis for portfolio

management decisions, we propose taking a different view of matrix R. We show that for

elliptical distributions, the entries of R globally coincide with the second-order partial

derivatives of the squared aggregate risk measurement with respect to changes in the

risk measurements of the univariate risks. For general distributions, these second-order

partial derivatives uniquely define a symmetric matrix. We show that approach (1) in

connection with this “sensitivity-implied tail-correlation matrix” approximates the true

aggregate risk measurement in the sense of a second-order Taylor polynomial: hence,

for the calibration portfolio, it yields the aggregate risk and all first and second-order

sensitivities with respect to risk exposures in line with the respective results based on

the true risk distribution. The deterministic risk aggregation approach (1) thereby accu-

rately reflects diversification effects and how diversification changes when the portfolio is

changed in a neighborhood of the calibration portfolio.

Our method locally approximates the true risk measurement at the calibration portfo-

lio, but can misstate the risk of portfolios distant from the calibration portfolio. We

demonstrate that the diagonal elements of the matrix R inform about the approximation

error of approach (1) for stand-alone risks. For non-elliptical distributions, the diagonal
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elements of the sensitivity-implied tail-correlation matrix can substantially deviate from

one, and the matrix can hence cause a misstatement of stand-alone risks.

To analyze the implications of the calibration of the matrix R for portfolio optimization

and business steering, we consider an example of a multiline-insurance company whose

objective is the maximization of Economic Value Added (EVA) in connection with the

risk measure 99.5% VaR. As a basis of comparison, we identify the “true” EVA-optimal

strategy by calculating the risk measure based on the true multivariate risk distribution.

Afterwards, we derive the EVA-maximizing strategy if the correlation-based risk aggrega-

tion approach is used in connection with either a traditional tail-correlation matrix or our

proposed sensitivity-implied tail-correlation matrix. We find that the use of a traditional

tail-correlation matrix induces a strategy which achieves a reduced EVA and goes along

with a lower safety level than the true EVA-optimal strategy. In combination with the

sensitivity-implied tail-correlation matrix, these distortions are very small, even if the

calibration portfolio of the sensitivity-implied tail-correlation matrix clearly differs from

the true EVA-optimal portfolio.

The remainder of this paper is structured as follows. Section 1 introduces the “sensitivity-

implied tail-correlation” matrix and discusses its properties and calibration. Section 3

provides an overview of traditional tail-correlation matrices. Section 4 provides numerical

examples including an analysis in terms of EVA optimization. Section 5 concludes and

outlines possible areas of application of the sensitivity-implied tail-correlation matrix.
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2 Introducing the sensitivity-implied tail-correlation

matrix

2.1 Mathematical background

The mathematical core of the sensitivity-implied tail-correlation matrix is the observation

that for any function f(u) which is positive homogeneous of degree one and twice con-

tinuously differentiable, the second-order Taylor polynomial for f 2(u) can be presented

in a simple matrix form.5

Theorem 1. Let n ∈ N, U ⊆ Rn be an open and convex cone, and the function f : U → R

be twice continuously differentiable in a neighborhood of u0 ∈ U . Assume that f(u) is

positive homogeneous of degree one on U , i.e.

f(λu) = λ · f(u) for all λ > 0 and all u ∈ U

Then

f 2 : U → R, u 7→ (f(u))2

is positive homogeneous of degree two. Let Df 2(u0) and D2f 2(u0) denote the gradient and

Hesse matrix of f 2(u) with respect to u evaluated at u0. Then, the second-order Taylor

polynomial for f 2 at u0,

Pf2(u) = f 2(u0) + (u− u0)T · Df 2(u0) +
1

2
(u− u0)T · D2f 2(u0) · (u− u0)

5Throughout the article, we call the argument of the function f u instead of x, which is merely for
better presentation in line with the literature, specifically with Tasche (2008) and Buch et al. (2011).
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can be rewritten as

Pf2(u) = uT · 1

2
D2f 2(u0) · u

and is positive homogeneous of degree two.

Let f(u0) > 0. Thanks to Theorem 1, the original function f(u) can be approximated at

the point u0 by the function

g(u) =
√
Pf2(u) =

√
uT · 1

2
D2f 2(u0) · u

The approximation yields g(u0) = f(u0), and all first and second-order derivatives of g

and f coincide at u0. Moreover, the function g(u)—like f(u)—is positive homogeneous of

degree one. The latter property of g(u) is in general not fulfilled by the straightforward

second-order Taylor polynomial for f(u).

The remainder Rf2(u) = f 2(u)−Pf2(u) allows an assessment of the approximation error

of g(u) in terms of

f(u)− g(u) =
√
Rf2(u) + g2(u)− g(u) (2)

provided |Rf2(u)| ≤ g2(u) which can be guaranteed in a neighborhood of u0.6 Proposition

1 shows that—by homogeneity—the analysis of Rf2(u) may be restricted to a unit sphere,

i.e. an (n− 1)-dimensional submanifold of U .

Proposition 1. Under the definitions and assumptions of Theorem 1, the remainder

Rf2(u) = f 2(u)− Pf2(u) is positive homogeneous of degree two. Assume n ≥ 2 and let

Ũ = {u ∈ U such that ‖u‖ = 1}
6For error estimation, it is common to consider the term |f(u)− g(u)|. Eq. (2) immediately implies

that the absolute values of both sides of the equation coincide.
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be the intersection of U and a unit sphere with respect to some norm ‖.‖. Then for any

u ∈ U \ {0}, we have

Rf2(u) = ‖u‖2 ·Rf2

(
u

‖u‖

)

with u
‖u‖ ∈ Ũ .

As an alternative to analyzing Rf2(u) on a unit sphere, one could identify the set U∗ =

{u ∈ U such that f(u) = f(u0)}, which is an (n − 1)-dimensional submanifold under

suitable conditions on f . Each u∗ ∈ U∗ allows an assessment of f(λu∗) = λf(u∗) = λf(u0)

for all λ > 0 and the remainder at λu∗ is hence known. In total, the challenging task is

either to identify the remainder (or thresholds of it) on a unit sphere or to identify the

submanifold U∗.

2.2 Translation to a risk measurement context

Suppose the loss of a portfolio over a specified period of time is given by

uTX =
n∑
i=1

ui ·Xi, (3)

where n ∈ N denotes the number of relevant risks, X = (X1, ..., Xn)T is a random vector

with E[Xi] < ∞ for all i ∈ {1, ..., n} and the vector u = (u1, ..., un)T ∈ Rn reflects the

exposures to each risk. Going forward, we assume that the multivariate distribution of X

is fixed and that the variable u fully specifies the portfolio.7 Moreover, in line with Tasche

(2008), we assume that the Xi are scaled such that the coordinates u = 1n = (1, . . . , 1)T

7The assumption of a linear relationship between the portfolio return and the exposure vector u is
popular in the related literature, cf. for example Gourieroux et al. (2000); Zanjani (2002), Tasche (2008),
Buch et al. (2011), Mittnik (2014). An approach to generalize the relationship is presented by Boonen
et al. (2017).
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reflect the current portfolio. Following the notation in Tasche (2008), the function f%,X

measures the “true” aggregate risk of portfolio u,

f%,X : U → R,

u = (u1, . . . , un)T 7→ f%,X(u) = %
(
uTX

)
,

(4)

with % being a risk measure which is positive homogeneous of degree one and 1n ∈ U ⊆

Rn.8 Let ek ∈ Rn denote a vector which takes the value one at the k-th position and

zero elsewhere. Assuming that ek ∈ U , let x ∈ Rn be the univariate risk measurements

in accordance with %, namely

xk = f%,X(ek) = %(Xk), k = 1, ..., n (5)

The function g measures the aggregate risk of portfolio u based on the risk aggregation

approach (1), depending on the risk measurement x and the matrix R = (%ij)
n
i,j=1 ∈ Rn×n:

g : u = (u1, . . . , un)T 7→ g(u) =

√
(u ◦ x)TR (u ◦ x), (6)

8Following McNeil et al. (2015, p. 275 ff.), consider a probability space (Ω,F , P ), let L0(Ω,F , P ) be
the set of all random variables on (Ω,F , P ) that are almost surely finite, and consider a linear space of
random variables M⊂ L0(Ω,F , P ). A risk measure is a mapping % :M→ R. Axioms on % are defined
as follows. Positive homogeneity: for λ ≥ 0, %(λL) = λ%(L). Monotonicity: for L1 ≤ L2, %(L1) ≤ %(L2).
Translation invariance: for m ∈ R, %(L+m) = %(L) +m. Subadditivity: for L1, L2 ∈ M, %(L1 + L2) ≤
%(L1) + %(L2). Convexity: for 0 ≤ γ ≤ 1, L1, L2 ∈ M, %(γL1 + (1 − γ)L2) ≤ γ%(L1) + (1 − γ)%(L2).
Law invariance: if L1, L2 ∈ M have the same distribution functions, %(L1) = %(L2). A risk measure
satisfying the positive homogeneity, monotonicity, translation invariance and subadditivity axioms is
called coherent.
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where ◦ denotes the Hadamard product, i.e. u◦x = (u1x1, . . . , unxn)T ∈ Rn. For the case

of f%,X(u) being twice continuously differentiable,9 Proposition 2 states that g(u) locally

approximates f%,X(u) if R is chosen based on second-order sensitivities of f 2
%,X(u).

Proposition 2. Let % be a risk measure which is positive homogeneous of degree one

and let X = (X1, ..., Xn)T be a random vector. Let U ⊆ Rn be a convex cone with

1n, e1, ..., en ∈ U . Assume that the function f%,X(u), as defined in formula (4), is twice

continuously differentiable in a neighborhood of 1n and f%,X (1n) > 0. Let x ∈ Rn be

defined as in (5) and assume that xk > 0 for all k = 1, . . . , n. Then, the matrix R =

(%k`)
n
k,`=1 defined by

%k` =
1

2xkx`

∂2

∂uk∂u`
f 2
%,X(1n) (7)

=
1

xkx`

(
∂f%,X(1n)

∂uk

∂f%,X(1n)

∂u`
+ f%,X(1n)

∂2

∂uk∂u`
f%,X(1n)

)
(8)

is symmetric. In combination with this matrix R, let the function g be given as in (6).

Then, g(u) is defined in a neighborhood of 1n. g2(u) = (g(u))2 is the second-order Taylor

polynomial for f 2
%,X(u). Moreover, we have

g(1n) = f%,X(1n), (9)

∂

∂u`
g(1n) =

∂

∂u`
f%,X(1n), 1 ≤ ` ≤ n, (10)

∂2

∂uk∂u`
g(1n) =

∂2

∂uk∂u`
f%,X(1n), 1 ≤ k, ` ≤ n (11)

We call the matrix R, whose entries are defined in (7), the “sensitivity-implied tail-

correlation matrix”. In connection with this matrix R, g(u) approximates f%,X(u) in

9Differentiability of f%,X is commonly assumed in the context of Euler capital allocation, cf., for
example, Tasche (2008). Moreover, using second-order derivatives can be essential in the context of
portfolio optimization, cf. Buch et al. (2011).
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the sense that it correctly determines the aggregate risk of the current portfolio, the

sensitivities of the aggregate risk with respect to the exposures of all risks (starting at

the current portfolio)10 as well as the corresponding second-order sensitivities with respect

to all combinations of risks.

The terms in line (8) have been studied in the literature. First-order derivatives of Value-

at-Risk and Expected Shortfall (ES) can be viewed as expectations conditioned on the

rare event that the aggregate portfolio loss coincides with the Value-at-Risk (or exceeds

it in case of Expected Shortfall).11 Analogously, the Hesse matrix of the Value-at-Risk

can be presented in terms of the covariance matrix of risk drivers conditioned on the rare

event (cf. Gourieroux et al. 2000, p. 229). Therefore, the sensitivity-implied correlation

parameter ρk` is driven by the interaction of risks conditioned on (tail) events that are

relevant for the aggregate risk measurement. In general, ρk` is not determined solely by

the bivariate distribution of the random variables Xk and X`, but rather depends on the

joint distribution of the whole random vector X.

In connection with the sensitivity-implied tail-correlation matrix, g2(u) is the second-

order Taylor polynomial of f 2
%,X(u). Therefore, there are well-elaborated methods for

estimating the Taylor remainder which can help to assess the error between g(u) and

f%,X(u). Making use of Proposition 1, Appendix I demonstrates a possible procedure for

n = 2 risks. For large n, the error estimation comes up against the challenge that a

threshold for a large number of third-order derivatives of f 2
%,X(u) is needed.

10The first-order sensitivities are also known as the Euler capital allocation principle, cf., for example,
Tasche (2008).

11This applies under quite general conditions concerning the multivariate risk distribution; cf. Targino
et al. (2015, p. 209) for an overview.
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2.3 Examples

A. Risk measure is standard deviation

Assume that risk is measured by the standard deviation:

f%,X(u) = sd

(
n∑
i=1

ui ·Xi

)

Let Σ and RP =
(
%

(P )
ij

)n
i,j=1

denote the variance matrix and Pearson correlation matrix

of the random vector X = (X1, ..., Xn)T, and let x = σ = (sd(X1), ..., sd(Xn))T denote

the vector of univariate standard deviations. Assume that all these moments exist. We

have

f%,X(u) =
√
uT · Σ · u =

√
(u ◦ σ)T ·RP · (u ◦ σ) =

√
(u ◦ x)T ·RP · (u ◦ x)

=

√√√√ n∑
i=1

n∑
j=1

%
(P )
ij uixiujxj (12)

and hence

f 2
%,X(u) =

n∑
i=1

n∑
j=1

%
(P )
ij uixiujxj (13)

Differentiating the left-hand and right-hand sides of Eq. (13) with respect to uk, k ∈

{1, ..., n}, implies

∂

∂uk
f 2
%,X(u) = 2xk

n∑
j=1

%
(P )
kj ujxj (14)

Differentiating both sides of Eq. (14) again with respect to u`, ` ∈ {1, ..., n} implies

∂2

∂uk∂u`
f 2
%,X(u) = 2xkx`%

(P )
k`

⇒ %
(P )
k` =

1

2xkx`

∂2

∂uk∂u`
f 2
%,X(u) (15)
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Hence, in the outlined situation, all entries of the sensitivity-implied tail-correlation ma-

trix coincide with those of the Pearson correlation matrix, irrespective of the multivariate

risk distribution.

B. Multivariate elliptical distribution

Assume that the random vector X = (X1, ..., Xn)T follows an elliptical distribution with

a finite mean vector and dispersion matrix Σ = (σij)
n
i,j=1. Moreover, assume that

f%,X(u) = %
(
uTX

)
= %̃

(
uTX

)
− E

[
uTX

]
(16)

with %̃ being a positive homogeneous, translation-invariant and law-invariant risk mea-

sure. McNeil et al. (2015, pp. 295) show that f%,X(u) can be presented analogous to line

(12). If the covariance matrix of X exists, the sensitivity-implied tail-correlation matrix

coincides with the Pearson correlation matrix. In general, the entries of the sensitivity-

implied tail-correlation matrix are ρk` = σk`/
√
σkkσ``.

12

C. Independent gamma distributions and multivariate mixed gamma distribution

We now outline situations in which the sensitivity-implied tail-correlation matrix can be

calculated without Monte Carlo simulations, but instead in a way which is numerically

less elaborate and not subject to sampling error.

Assume that the entries of the random vector X = (X1, ..., Xn)T are independent and

gamma distributed with shape parameter γi > 0 and rate parameter ϑi > 0. If all

rate parameters are equal, ϑ1 = ... = ϑn =: ϑ, the aggregate loss
∑n

i=1 Xi is gamma

distributed with shape parameter γ1 + ... + γn and rate parameter ϑ. For the case that

12McNeil et al. (2015, p. 200-205) discuss estimating these quantities.
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the rate parameters are not all the same, Moschopoulos (1985, p. 543) provides an

analytical representation of the distribution function of X, which we denote by

FX(x) = FΓ+(x; γ1, ..., γn, ϑ1, ..., ϑn) (17)

For scalars ui > 0, the product ui ·Xi is gamma distributed with shape parameter γi and

rate parameter ϑi/ui. Hence, the distribution function of uTX =
∑n

i=1 uiXi, with ui > 0

for all i, is given by

FuTX(x) = FΓ+(x; γ1, ..., γn, ϑ1/u1, ..., ϑn/un) (18)

If the risk measure % is law-invariant, line (18) offers a starting point for calculating the

sensitivity-implied tail-correlation matrix. Specifically, the Value-at-Risk of uTX,

VaR1−α
(
uTX

)
= F−1

uTX
(1− α), (19)

can be calculated by inverting FuTX(x) from line (18) numerically using the Newton

method. First and second-order derivatives of VaR1−α (
∑n

i=1 uiXi) with respect to scalars

ui can also be calculated numerically.

Furman et al. (2020) introduce the class of multivariate mixed gamma distributions. This

class of distributions is dense in the class of all continuous distributions with non-negative

support.13 Hence, mixed gamma distributions are flexible in terms of the shape of the

univariate distributions and the stochastic dependencies between them. Appendix D

demonstrates that the distribution function of uTX has an analytical representation if the

13More precisely, for any random vector in the class of continuous distributions with non-negative
support, a sequence of mixed gamma distributed random vectors can be constructed which converges in
distribution to the given random vector.
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random vector X is mixed gamma distributed. Hence, the calculation of a law-invariant

risk measure and its sensitivities is again possible without Monte-Carlo simulations.

2.4 Properties of the sensitivity-implied tail-correlation matrix

Apart from the situations in the examples A and B from section 2.3, the sensitivity-

implied tail-correlation matrix does not necessarily satisfy the properties of the Pearson

correlation matrix.

Firstly, the sensitivity-implied matrix is not always positive semi-definite (psd). If it is

not psd, there are exposure vectors u such that (u ◦ x)T R (u ◦ x) is negative, and g(u)

is hence not defined in real numbers. Apart from this issue, the missing psd’ness may

result in optimization problems involving g(u) in the target function not being convex.

Section 4.3 shows a situation in which diversification based on the true multivariate risk

distribution does not necessarily increase value. In this situation, the sensitivity-implied

matrix is not psd and the optimization problem is not convex—neither on the basis of the

function f%,X(u) nor on the basis of g(u). Proposition 3 shows that the psd’ness of the

sensitivity-implied matrix can be guaranteed by the risk measure satisfying the convexity

axiom as defined in footnote 8.

Proposition 3. Under the assumptions and definitions in Proposition 2, the matrix R

with entries defined in (7) is positive semi-definite if the risk measure % satisfies the

convexity axiom.

Given that we generally assume the risk measure to be positive homogeneous, the con-

vexity axiom is always fulfilled if the risk measure is coherent.14 Hence, in connection

14Cf. McNeil et al. (2015, p. 276).
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with Expected Shortfall,15 the sensitivity-implied matrix is always psd. Consequently,

the counter-example in section 4.3 is based on Value-at-Risk.

Secondly, in contrast to the Pearson correlation matrix, the sensitivity-implied tail-

correlation matrix does not generally have ones on its diagonal. Appendix F provides an

example based on a discrete distribution where the diagonal elements of the sensitivity-

implied matrix can become arbitrarily large. Even negative diagonal entries are possible,

as the example in section 4.3—building on the mixed gamma distribution—demonstrates.

Proposition 4 states a sufficient condition for the diagonal elements being one.

Proposition 4. Under the assumptions and definitions in Proposition 2, assuming that

f%,X(u) is twice continuously differentiable on U , the entries of the sensitivity-implied

tail-correlation matrix satisfy

ρkk =

∂2

(∂uk)2
f 2
%,X(1n)

∂2

(∂uk)2
f 2
%,X(ek)

(20)

Hence, we have ρkk = 1 for all k ∈ {1, ..., n} if f 2
%,X(u) is quadratic in u on some open

and convex subspace Ũ ⊆ Rn containing 1n and ek for all k = 1, ..., n.

The next Proposition shows that the distance between the diagonal elements and one

informs about the relative error between g(u) and f%,X(u) for stand-alone risks.

Proposition 5. Based on the definitions in lines (4) and (6), assuming that f%,X(ek) > 0,

we have

f 2
%,X(ek)− g2(ek)

f 2
%,X(ek)

= 1− ρkk (21)

15Expected Shortfall is known as a coherent risk measure; see, for example, McNeil et al. (2015, p.
283).
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Assuming ρkk ≥ 0, this translates into

f%,X(ek)− g(ek)

f%,X(ek)
= 1−√ρkk (22)

Proposition 5 is not restricted to the sensitivity-implied tail-correlation matrix, as it

holds for any matrix R underlying the function g(u). Hence, the traditional notion of the

diagonal elements of a tail-correlation matrix being one refers to g(u) accurately reflecting

stand-alone risks. Based on the sensitivity-implied matrix, g(u) can reflect stand-alone

risks with an error that can even become arbitrarily large (cf. Appendix F).

2.5 Estimation

Estimating the sensitivity-implied tail-correlation matrix in situations other than the

examples in section 2.3 can be based on kernel estimation. The literature proposes

consistent estimators for the first-order derivatives of Value-at-Risk (Tasche 2009, p.

584) and Expected Shortfall (Scaillet 2004, p. 118 f.). Similarly, Gourieroux et al. (2000)

derive consistent estimates for a portfolio’s Value-at-Risk and its second-order derivatives,

which the authors apply for daily stock return data. At least for Value-at-Risk, therefore,

all items in line (8) can be consistently estimated. Slutsky’s theorem (cf. Casella & Berger

2002, p. 239 f.) implies that the composition of consistent estimators in terms of line

(8) provides a consistent estimator for %k`. Appendix J applies the previously mentioned

kernel estimators to the example specified in section 4.2.

The literature proposes a wide range of variance reduction techniques in the context

of estimating expectations conditioned on rare events (i.e. first-order derivatives) from

Monte-Carlo simulations. Several papers estimate marginal risk contributions for credit
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portfolios which are subject to systematic risk factors by employing Importance Sampling

(Glasserman 2005), kernel estimation in combination with Importance Sampling (Tasche

2009), or the Fast Fourier Transform technique for risk aggregation (cf. Siller 2013).

Targino et al. (2015) employ Sequential Monte Carlo simulation to estimate the Euler

capital allocation of a portfolio with stochastic dependencies being modeled by a copula.

To efficiently estimate the sensitivity-implied tail-correlation matrix, the above-mentioned

kernel estimators use the conditioned covariance, i.e. the expectation of products of

random variables. To the best of our knowledge, an algorithm designed to address this

problem is not immediately available and is left for future research.16

3 Traditional tail-correlation matrices

Traditionally, a tail-correlation matrix is assumed to be a symmetric matrix with ones on

its diagonal. For n = 2 risks and risk measurements x1 > 0, x2 > 0, there is only one free

correlation parameter %1,2, which is to be set such that approach (1) correctly determines

the aggregate risk of the current portfolio (cf. Campbell et al. 2002, p. 89):

g (12) = f%,X (12)

⇒ x2
1 + 2%1,2x1x2 + x2

2 = (f%,X (12))2

⇒ %1,2 =
(f%,X (12))2 − x2

1 − x2
2

2x1x2

(23)

For n ≥ 3 risks, Mittnik (2014, p. 70 f.) proposes defining the matrix R based on a set of

` benchmarking portfolio weight vectors w1, ..., w` ∈ Rn, assuming that R is symmetric

16To enhance the efficiency of kernel estimation, Epperlein & Smillie (2006, p. 71) and Tasche (2009,
p. 584) use an adjustment to ensure that the Euler allocation adds up to f%,X (1n). In our context, an
additional restriction about the row sums of the Hesse matrix of f2%,X(u0) can be used, cf. Eq. (A.3).
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with ones on the diagonal. The n·(n−1)
2

free correlation parameters in R can be determined

in light of the errors

f 2
%,X (wk)− g2 (wk) (24)

for the benchmark portfolios wk, k = 1, ..., `. Mittnik (2014, p. 70 f.) shows that the

term in (24) is linear in the correlation parameters %ij. For ` = n(n−1)/2, the correlation

parameters can be determined such that the risk assessments of g(u) and f%,X(u) coincide

for all benchmark portfolios and the identification is called “exact”. For ` > n(n− 1)/2,

there are more benchmark portfolios than correlation parameters in g(u). In general, it is

then not possible to choose correlation parameters bringing the errors in (24) to zero for

all k = 1, ..., `, but the parameters are described by an overdetermined equation system.

Mittnik (2014, p. 71) proposes identifying the correlation parameters by a least-squares

estimator minimizing the mean squared error (MSE)

1

`

∑̀
k=1

(
f 2
%,X (wk)− g2 (wk)

)2
. (25)

Going forward, we call the calibration with ` > n(n− 1)/2 calibration portfolios “least-

squares”. The matrix R calibrated as explained so far in this section is called the

“benchmark-implied tail-correlation matrix”.17

17For two reasons, we depart from the usual term “VaR-implied tail-correlation matrix”. Firstly,
the definitions in lines (23) and (25) are compatible with risk measures other than Value-at-Risk (e.g.
with Expected Shortfall). Secondly, contrasting the benchmark-implied tail-correlation matrix with the
sensitivity-implied tail-correlation matrix makes it clearer how the two concepts differ: the first matrix
is induced by the risk measurements of a finite set of benchmarking portfolio weight vectors, whereas
the second is induced by sensitivities of the risk measurement at a single calibration portfolio.
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Devineau & Loisel (2009, section 5) define R as the “minimal standard R” which solves

the optimization problem

‖R‖ → min

subject to f(1n) = g(1n),

(26)

with the norm ‖·‖ being defined as ‖D‖ =
√

trace(D ·DT). Devineau & Loisel (2009)

employ the approach only for n = 2 risks. For this case, the authors state that the problem

in (26) is solved by (23).18 For n ≥ 3 risks, the matrix R calibrated according to (26) does

not reflect which of the risks are more or less interdependent, since the calibration is only

based on the diversified risk measurement and the stand-alone risk measurements. Our

numerical examples in section 4 will illustrate this issue. More generally, our examples

will demonstrate that the function g(u) in connection with a traditional tail-correlation

matrix can misstate the slope and curvature of f%,X(u), and that these misstatements can

induce severe distortions in portfolio optimization.

4 Numerical examples

4.1 Set-up

We consider an insurance company with n lines of business (lobs). The scalars u1, ..., un

represent the volume of lob i in terms of the number of insurance contracts. We assume

that the ui are scaled, for example, in 100,000 contracts such that we may disregard the

integer restriction. Moreover, we assume that the diversification within each lob does not

18It thereby becomes clear that Devineau & Loisel (2009) restrict R to have ones on the diagonal.
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vary in ui such that the claims costs of lob i are modeled by ui ·Xi. In line with Solvency

II regulations, risk is measured by the 99.5% Value-at-Risk of unexpected losses.

The connections between the volume ui and the premium pi of each lob i ∈ {1, ..., n} are

determined by an isoelastic demand function,19

ui(pi) = ni · pεii , (27)

where ni > 0 calibrates demand to market size and εi < −1 is the price elasticity of

demand which is constant in pi. We consider a representative insurer whose objective is

to maximize its economic value added (EVA).20 In our model, the insurer’s EVA is the

expected profit minus the cost of capital, which is modeled by a hurdle rate rh times the

99.5% Value-at-Risk of the aggregate risk. In our baseline calibration, we set εi = −9 for

all lobs i,21 and rh = 5%.22

On the one hand, we consider the EVA in connection with the risk measurement based

on the true multivariate risk distribution:

EVAtrue(u) =
n∑
i=1

ui · (pi(ui)− E[Xi])− rh · f%,X(u)

=
n∑
i=1

ui · (pi(ui)− E[Xi])− rh · VaR99.5%

(
n∑
i=1

ui · (Xi − E[Xi])

)
(28)

19To simplify the notation, pi is also scaled. If ui are specified per 100,000 contracts, pi is the premium
income per 100,000 contracts.

20The objective is analogous to the analysis of Chen et al. (2019). It can be justified by assuming that
the insurer jointly decides on its level of equity capital and on the volumes u1, ..., un; the regulatory capital
requirement is based on VaR and binding. The objective can easily be modified to a situation in which
the insurer sticks to a fixed capital requirement ratio (in terms of equity capital over capital requirement).
In the context of Solvency II regulations, this ratio is relevant when insurers transmit information about
their solvency level, cf. Gatzert & Heidinger (2020). In related analyses, the Economic Value Added has
been employed by Stoughton & Zechner (2007) and Diers (2011).

21According to the empirical results of Yow & Sherris (2008, p. 318), this may reflect the price elasticity
of compulsory third party or motor insurance.

22Zanjani (2002, p. 297) estimates that the discounted cost of holding capital is 5% in commercial
automobile insurance.

20



with pi(ui) denoting the inverse of the demand function in Eq. (27). We call the portfolio

u, which maximizes EVAtrue(u), the “true optimal portfolio”. On the other hand, we

identify which portfolio u an insurer chooses if the risk measurement is conducted in

connection with a tail-correlation matrix R, i.e. the portfolio maximizing

EVAR(u) =
n∑
i=1

ui · (pi(ui)− E[Xi])− rh · g(u)

=
n∑
i=1

ui · (pi(ui)− E[Xi])− rh ·
√

(u ◦ x)T R (u ◦ x) (29)

The chosen set-up allows us to distinguish the distortions caused by the function g(u)

in terms of EVA and in terms of the insurer’s safety level. The insurer’s safety level is

measured by the true VaR confidence level which corresponds to g(u), i.e. the solution

α̃ of

VaR1−α̃

(
n∑
i=1

ui · (Xi − E[Xi])

)
= g(u) (30)

4.2 Relevance of first-order sensitivities

This section demonstrates that an inappropriate calibration of the matrix R can lead

to biased first-order sensitivities of the aggregate risk measurement and can induce a

suboptimal portfolio.

We model the basic losses of n = 5 lobs using stochastically independent and gamma

distributed random variables X̃1, ..., X̃5.23 Specifically, we assume that X̃1, X̃2 ∼ Γ(1
3
, 2

3
),

X̃3, X̃4 ∼ Γ(2, 2) and X̃5 ∼ Γ(1, 2), where Γ(γ, ϑ) denotes the gamma distribution with

shape parameter γ and rate parameter ϑ. In addition, lobs 1, 2 and 5 are exposed to

23The calculations of f%,X(u) and its sensitivities are conducted according to section 2.3, example
C, and are hence unaffected by sampling error. For calculating FuTX(x) in (18), we make use of the
R package coga, which implements the methodology of Hu et al. (2020).
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a common risk factor Y ∼ Γ(1, 1), which is independent from the X̃i. The total claims

costs of the three lobs are Xi = X̃i + 0.5Y for i ∈ {1, 2, 5} and Xj = X̃j for j ∈ {3, 4}.24

The vector of stand-alone capital requirements is

x = (4.679, 4.679, 2.715, 2.715, 2.715)T (31)

and the Pearson correlation matrix is

RP =



1 0.25 0 0 0.354

0.25 1 0 0 0.354

0 0 1 0 0

0 0 0 1 0

0.354 0.354 0 0 1


(32)

The insurer’s current portfolio is u = 15 = (1, 1, 1, 1, 1)T and the corresponding aggregate

risk measurement—based on the true multivariate risk distribution—is

f%,X (15) = VaR0.995 (X1 + ...+X5)−E [X1 + ...+X5] = 8.115 (33)

24The expected claims costs of all three lobs are 1, e.g. we calculate E[X1] = E[X̃1] + 0.5E[Y ] =(
1
3

)
/
(
2
3

)
+ 0.5 · 1/1 = 1. Moreover, the variances are var[X1]= var[X2]= var[X̃1] + 0.52var[Y ] =(

1
3

)
/
(
2
3

)2
+ 0.52 · 1/12 = 1 and var[X3] = var[X4] = var[X5]= 0.5. The risks of lobs 1 and 2 have

a relatively heavy tail, the risks of lobs 3, 4 and 5 have a relatively light tail. The ratios of the 99.5%
VaR and the 90% VaR are 3.89 for lobs 1 and 2 and 2.87 for lobs 3, 4 and 5. For comparison, Bernard
et al. (2018, p. 847) assume the distribution 200 ·LogNormal(0, 1) for aggregate non-life insurance risks.
This implies a corresponding VaR ratio of 5.88. For the aggregate market risk, Bernard et al. (2018, p.
847) assume a normal distribution, for which the corresponding VaR ratio is 2.01. This value is achieved
by the gamma distribution when setting the shape parameter to infinity.
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The true sensitivities of the aggregate risk measurement—i.e. the Euler allocation—are

obtained as

Df%,X(u)
∣∣∣
u=15

= (2.830, 2.830, 0.416, 0.416, 1.623)T (34)

According to line (34), the first two lobs have the strongest impact on the insurer’s

aggregate risk. The fifth lob follows next—due to its positive correlation with the risks

of the first lobs. The third and fourth lobs are less influential due to their independence

from the other risks.

We calibrate the sensitivity-implied tail-correlation matrix as defined in Proposition 2

with the calibration portfolio being the insurer’s current portfolio u = 15 by numer-

ical differentiation as discussed in section 2.3, example C. In Appendix J, moreover,

we estimate the matrix from Monte-Carlo simulations. To calibrate the benchmark-

implied tail-correlation matrix in line with Mittnik (2014), we need to choose a set of

` ≥ 5·(5−1)
2

= 10 calibration portfolios. We consider three of those sets. Firstly, we

conduct a pairwise calibration based on all equally weighted two-risk portfolios. Hence,

we set w1 = (1, 1, 0, 0, 0)T, w2 = (1, 0, 1, 0, 0)T ... w10 = (0, 0, 0, 1, 1)T. Secondly, we

consider an exact calibration: We take w1, ..., w9 as before and set w10 = (1, 1, 1, 1, 1)T.

Thirdly, we use the least-squares estimator minimizing (25) in connection with all 26

portfolios consisting of two, three, four or five assets. Finally, we calculate the “minimal

standard” tail-correlation matrix as proposed by Devineau & Loisel (2009) for u = 15.

Table 1 presents all five calculated tail-correlation matrices. The upper part of Figure

4 in Appendix K visualizes the relative error between g(u)—in connection with three

different tail-correlation matrices—and f%,X(u) depending on the exposure vector u. In

connection with the sensitivity-implied tail-correlation matrix, g(u) is relatively accu-

rate as long as u is close at 15 and underestimates the true risk by about −6% for
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Table 1: Calculated tail-correlation matrices.

Sensitivity-implied

Lob 1 Lob 2 Lob 3 Lob 4 Lob 5

Lob 1 0.999 -0.035 -0.049 -0.049 0.243
Lob 2 -0.035 0.999 -0.049 -0.049 0.243
Lob 3 -0.049 -0.049 0.649 0.013 -0.036
Lob 4 -0.049 -0.049 0.013 0.649 -0.036
Lob 5 0.243 0.243 -0.036 -0.036 1.021

Benchmark-implied

Pairwise (Mittnik 2014) Exact (Mittnik 2014)
Lob 1 Lob 2 Lob 3 Lob 4 Lob 5 Lob 1 Lob 2 Lob 3 Lob 4 Lob 5

Lob 1 1.000 -0.071 -0.174 -0.174 0.110 1.000 -0.071 -0.174 -0.174 0.110
Lob 2 -0.071 1.000 -0.174 -0.174 0.110 -0.071 1.000 -0.174 -0.174 0.110
Lob 3 -0.174 -0.174 1.000 -0.174 -0.174 -0.174 -0.174 1.000 -0.174 -0.174
Lob 4 -0.174 -0.174 -0.174 1.000 -0.174 -0.174 -0.174 -0.174 1.000 1.376
Lob 5 0.110 0.110 -0.174 -0.174 1.000 0.110 0.110 -0.174 1.376 1.000

Least-squares (Mittnik 2014) Minimum standard
(Devineau & Loisel 2009)

Lob 1 Lob 2 Lob 3 Lob 4 Lob 5 Lob 1 Lob 2 Lob 3 Lob 4 Lob 5

Lob 1 1.000 -0.029 -0.131 -0.131 0.163 1.000 -0.0004 -0.0002 -0.0002 -0.0002
Lob 2 -0.029 1.000 -0.131 -0.131 0.163 -0.0004 1.0000 -0.0002 -0.0002 -0.0002
Lob 3 -0.131 -0.131 1.000 -0.120 -0.123 -0.0002 -0.0002 1.0000 -0.0001 -0.0001
Lob 4 -0.131 -0.131 -0.120 1.000 -0.123 -0.0002 -0.0002 -0.0001 1.0000 -0.0001
Lob 5 0.163 0.163 -0.123 -0.123 1.000 -0.0002 -0.0002 -0.0001 -0.0001 1.0000

u = (0.25, 0.25, 1.75, 1.75, 1)T, which is in the top left corner of the considered plane

of exposures. In connection with a pairwise calibrated tail-correlation matrix, g(u) is

specifically biased at u = (0.57, 0.57, 1.11, 1.11, 1)T with a relative error of -22%; with the

least-squares estimator, g(u) has an error of -10.5% at u = (0.44, 0.44, 0.67, 0.67, 1)T.

Table 2 reports the aggregate risk of the current portfolio, u = 15, and the Euler allo-

cations in connection with all considered tail-correlation matrices. The results for the

traditional tail-correlation matrices clearly depend on the type of calibration. Moreover,

based on a benchmark-implied matrix, the aggregate risk of the current portfolio can be

underestimated by 9% (least-squares) or even 19% (pairwise calibration).25 In connection

with all considered calibrations, the traditional tail-correlation matrices lead to substan-

tially biased Euler allocations. For instance, the risk of lob 4 can be underestimated by

25As explained in section 3, the benchmark-implied tail-correlation matrix leads to a correct risk
assessment of the current portfolio only if the number of benchmark portfolios coincides with the number
of correlation parameters and the current portfolio is one of the benchmark portfolios.
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Table 2: Chosen portfolios of the model insurer. The risk measurement is conducted
based on the true multivariate risk measurement, the sensitivity-implied tail-correlation
matrix or a traditional tail-correlation matrix. The bracket terms show the relative error
compared to the true risk measurement.

Type of True Sensitivity- Benchmark-implied
calculation distribution implied Pairwise Exact Least-squares Min. Std.

Aggregate risk 8.115 8.115 6.557 8.115 7.360 8.115
measurement (±0%) (−19%) (±0%) (−9%) (±0%)

Euler allocation
Lob 1 2.830 2.830 2.641 2.134 2.716 2.696

(±0%) (−7%) (−25%) (−4%) (−5%)
Lob 2 2.830 2.830 2.641 2.134 2.716 2.696

(±0%) (−7%) (−25%) (−4%) (−5%)
Lob 3 0.416 0.416 0.059 0.048 0.306 0.908

(±0%) (−86%) (−88%) (−27%) (+118%)
Lob 4 0.416 0.416 0.059 1.456 0.306 0.908

(±0%) (−86%) (+250%) (−27%) (+118%)
Lob 5 1.623 1.623 1.157 2.343 1.318 0.908

(±0%) (−29%) (+44%) (−19%) (−44%)

Chosen portfolio
Lob 1 1.000 1.000 1.102 1.156 1.052 1.041
Lob 2 1.000 1.000 1.102 1.156 1.052 1.041
Lob 3 1.000 1.000 1.157 1.133 1.054 0.861
Lob 4 1.000 1.000 1.157 0.784 1.054 0.861
Lob 5 1.000 1.000 1.190 0.876 1.115 1.247

True EVA 0.676 0.676 0.670 0.666 0.674 0.668
(±0.0%) (−0.9%) (−1.5%) (−0.2%) (−1.1%)

True VaR conf. level 0.50% 0.50% 1.30% 0.65% 0.79% 0.60%

86% (pairwise calibration) or overestimated by 250% (exact calibration). In contrast, the

use of the sensitivity-implied tail-correlation matrix leads to an accurate measurement of

the aggregate risk and Euler allocations.

In terms of the EVA analysis, we set the demand function parameters to n1 = n2 = 9.497,

n3 = n4 = 3.474 and n5 = 5.826. These parameter values imply that the true EVA-

optimal strategy is u = 15. The same strategy maximizes the EVA in line (29) if R is

the sensitivity-implied tail-correlation matrix. However, the distorted risk measurement

based on the traditional tail-correlation matrices lead the insurer away from the truly

optimal strategy. For example, in the case of a pairwise calibration, the insurer chooses

unew = (1.102, 1.102, 1.157, 1.157, 1.190)T. Based on the true multivariate risk distribu-
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Table 3: Chosen portfolios of 500 randomly parameterized insurers. The risk measure-
ment is conducted based on the true multivariate risk measurement, the sensitivity-
implied tail-correlation matrix or a traditional tail-correlation matrix. The table reports
the means across the 500 insurers as well as the 5% and 95% percentiles.

Type of True Sensitivity- Benchmark-implied
calculation distribution implied Pairwise Exact Least-squares Min. Std.

RMSE between chosen portfolio and “true” optimal portfolio
Mean 0.000 0.004 0.140 0.154 0.067 0.137
p5% 0.000 0.001 0.105 0.102 0.052 0.103
p95% 0.000 0.010 0.178 0.205 0.084 0.173

Relative loss in EVA of chosen portfolio versus “true” optimal portfolio
Mean 0.000% 0.002% 0.867% 1.445% 0.216% 1.022%
p5% 0.000% 0.000% 0.340% 0.366% 0.090% 0.385%
p95% 0.000% 0.008% 1.559% 3.107% 0.381% 1.784%

True VaR confidence level
Mean 0.500% 0.500% 1.253% 0.653% 0.772% 0.587%
p5% 0.500% 0.498% 1.051% 0.572% 0.712% 0.503%
p95% 0.500% 0.503% 1.453% 0.728% 0.827% 0.686%

tion, the aggregate risk of the chosen portfolio is f%,X(unew) = 9.135. The benchmark-

implied correlation matrix in connection with a pairwise calibration, however, understates

the risk of this portfolio by g(unew)/f%,X(unew)−1 =7.339/9.135−1 = −19.7%. The true

VaR-confidence level of the chosen strategy is clearly too high and amounts to 1.3%. In

addition, the true EVA of the chosen portfolio, EVAtrue (unew), is 0.9% lower than the

maximal EVA, i.e. EVAtrue (15).

In the analyses so far, the calibrations of the tail-correlation matrices were centered at the

true optimal portfolio, u = 15. Next, we study how insurance companies with different

properties—and different true optimal portfolios—choose their portfolios if their risk

measurement is based on the tail-correlation matrices calibrated at 15. We modify eleven

parameters—namely the values of the demand function parameters, n1, ..., n5, ε1, ..., ε5, as

well as the hurdle rate rh—by multiplying them with scalars. To this end, we randomly

choose eleven scalars as independent realizations of uniform random variables on the

interval 0.6 to 1.4. This process is executed 500 times to generate 500 heterogeneous

insurance companies. The true optimal portfolios of the 500 insurers differ from u = 15
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Figure 1: Loss in EVA and true VaR confidence level for 500 randomly parameter-
ized insurers. The risk measurement is conducted based on the sensitivity-implied tail-
correlation matrix or a traditional tail-correlation matrix. The results show that portfolio
optimization in connection with the sensitivity-implied tail-correlation matrix hardly in-
duces distortions in terms of the VaR confidence level or the achieved EVA.

with a root mean squared error (RMSE) of 0.260 on average across the 500 insurers. The

risk of the true optimal portfolios is not measured accurately by any of the tail-correlation

matrices. Nevertheless, the sensitivity-implied matrix guides insurers to a portfolio which

achieves almost the same EVA as the true optimal portfolio (cf. Table 3: for 95% of

insurers, the relative loss in EVA does not exceed 0.01%). In contrast, measuring risk

based on a traditional tail-correlation matrix goes along with a considerable loss in EVA.

For example, the “exact” calibration of the benchmark-implied matrix leads to a relative

loss in EVA of 1.445% on average and of 3.107% or higher for those 5% of insurers

with the highest loss. Moreover, when using the sensitivity-implied matrix, the true

VaR confidence level of insurers’ aggregate risk is close to the supposed value of 0.5%.

With respect to traditional tail-correlation matrices, each of the four calibration methods

guides more than 95% of insurers to strategies with a true VaR confidence level above

0.5%. Figure 1 visualizes the loss in EVA and the true VaR confidence level of the
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portfolios that the 500 insurers choose based on the tail-correlation matrices. The figure

depicts that the sensitivity-implied matrix leads to substantially smaller distortions than

any of the traditional tail-correlation matrices.

4.3 Relevance of second-order sensitivities

This section studies the implications of biased second-order sensitivities of the aggregate

risk measurement based on a traditional tail-correlation matrix with ones on the diagonal.

The three lobs’ claims costs, X1, X2 and X3, now follow a mixed gamma distribution with

the parameters defined in Table 4.26 With a large weight in terms of pκ, the distribution

Table 4: Parameters of the mixed gamma distribution.

i ϑi γk1 γk2 γk3
1 0.5 0.5 9.5 0.5
2 0.5 0.5 0.5 9.5
3 0.5 0.5 4.5 4.5
pκ 0.99 0.005 0.005

consists of n = 3 independent and identically distributed risks. However, conditioning

on a high aggregate loss, the risks X1 and X2 are negatively correlated. In this set-up,

the marginal capital requirement of X1 decreases when increasing the exposure to X1.

Hence, the Hesse matrix of f%,X with respect to u has negative entries on the diagonal:

D2f%,X(u) =


−3.850 3.632 0.218

3.632 −3.850 0.218

0.218 0.218 −0.437


26Appendix D provides more details about this distribution.
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The aggregate Value-at-Risk can be reduced by shifting the exposures from u = (1, 1, 1)T

to u = (1 + h, 1 − h, 1)T for a small value of h.27 We embed this distribution into the

EVA-optimization problem as studied in section 4.2. By setting n1 = n2 = 128.082 and

n3 = 90.209, all first-order derivatives of the function EVAtrue(u) are zero at u = 13. The

Hesse matrix of EVAtrue(u) is indefinite at u = 13, reflecting the fact that it is a saddle

point, as illustrated on the left side of Figure 2. To keep the example graphically fully

tractable, we assume from now on that u3 = 1 is fixed and only u1 and u2 are decision

variables. The function EVAtrue(u1, u2|u3 = 1) then has a global maximum at (u1, u2) =

(1.8365, 0.5998) and, due to symmetry, another global maximum at (0.5998, 1.8365); cf.

points B and B’ in Figure 2.

We calibrate two tail-correlation matrices, R1 and R2, both with the calibration portfolio

u = 13. R1 is the sensitivity-implied tail-correlation matrix. R2 is calibrated such that

the function g(u) reflects the true first-order sensitivities:

Dg (13) = Df (13) (35)

In accordance with the traditional view of tail-correlation matrices, we restrict R2 to be

a symmetric matrix with ones on its diagonal. The three correlation parameters in R2

are thereby uniquely defined by (35).28

The right side of Figure 2 depicts the EVA function in connection with the matrix R2. By

construction, all first-order derivatives of this EVA function are zero at u = 13. However,

the Hesse matrix of this EVA function is negative definite, and this function hence has

27This can be seen by approximating f%,X(u) by a Taylor polynomial of degree 2 and noting that
∂/∂u1f(u) = ∂/∂u2f(u) at u = (1, 1, 1)T.

28Specifically, the three correlation parameters are the solution of a linear equation system. As shown
by Eq. (L.2) in Appendix L, Dg (13) is linear in the correlation parameters when fixing

√
xTR2 x at

f%,X (13).
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Figure 2: EVA based on volumes u1 and u2 and for fixed u3 = 1. Point A reflects
u1 = u2 = 1; points B and B’ are optimal based on the true risk distribution.

a global maximum at u = (1, 1, 1)T—in contrast to the true EVA function. The lower

part of Figure 2 shows the EVA function in connection with the sensitivity-implied tail-

correlation matrix R1. This EVA function correctly approximates the true EVA function

at the calibration portfolio u = 13, and the company hence does not mistake the saddle

point for an optimum.

Finally, as previously for the example in section 4.2, the lower part of Figure 4 in

Appendix K visualizes the relative error between g(u) and f%,X(u) for the sensitivity-

implied and two benchmark-implied tail-correlation matrices. The sensitivity-implied
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tail-correlation matrix again induces the largest errors in the corners of the considered

plane of exposures (i.e. -12% for u = (0.25, 1.75, 1)T). In connection with a pairwise

or least-squares calibration, g(u) has the largest displayed errors at u = (0.76, 0.76, 1)T,

amounting to -12% (pairwise) and -7.5% (least-squares).

5 Conclusion

This paper demonstrates that the traditional notion of (tail-) correlation matrices having

ones on their diagonal can make it impossible to fit them in accordance with the true

risk distribution. Those misstatements can distort portfolio management decisions in

terms of risk and return. We show that the square-root formula for risk aggregation is

structurally related to a second-order Taylor polynomial of a positive homogeneous risk

measure. Based on this result, we propose so-called “sensitivity-implied” tail-correlation

matrices, which approximate the risk measurement according to the true distribution up

to second-order derivatives with respect to exposures. We see several areas of application.

In the context of regulation, the proposed method may help to circumvent moral hazard

effects arising from misstated marginal capital requirements, as empirically detected by

Chen et al. (2019). Our example in section 4.2 indicates that the matrix R would not

have to be calibrated for every insurer individually. Instead, the sensitivity-implied tail-

correlation leads to a relatively stable risk measurement and steering signals even if the

insurers’ optimal portfolios differ from the calibration portfolio of R.

In the context of a firm’s internal economic capital assessment, the use of the correlation-

based risk aggregation is sometimes called the “hybrid approach” (Hull 2018, p. 594). In

comparison with a risk aggregation based on a Monte-Carlo simulation, the correlation-
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based approach facilitates the risk measurement process, since changes in the univariate

risk assessments do not require new simulations of the entire firm. Once the matrix R

has been calibrated, various methods (including scenario analyses, expert surveys, etc.)

can be used for the measurement of the univariate risks.

Finally, the proposed tail-correlation matrix can be helpful for portfolio optimization

in general when risk is to be measured using a positive homogeneous risk measure. For

instance, optimization problems with a VaR or ES constraint thereby become structurally

identical to mean-variance portfolio optimization. However, given that the sensitivity-

implied matrix is locally calibrated, the solution of the simplified problem may only be

useful if the optimal portfolio is not too far away from the calibration portfolio.
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Appendix

A Proof of Theorem 1

Given that the function f(u) is positive homogeneous of degree one, f 2(u) is positive

homogeneous of degree two: for all λ > 0 we have

f 2(λu) = λ2f 2(u) (A.1)

and Euler’s theorem for homogeneous functions implies

1

2
uT ·Df 2(u) = f 2(u) (A.2)

Differentiating both sides of Eq. (A.1) with respect to u implies that Df 2(u) is positive

homogeneous of degree one: for all λ > 0 we have

Df 2(λu) · λ = λ2Df 2(u)

⇒ Df 2(λu) = λDf 2(u)

Euler’s theorem for homogeneous functions thus implies that

uT ·D2f 2(u) = Df 2(u) (A.3)
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The second-order Taylor polynomial of f 2(u) can be presented as

Pf2(u) = f 2(u0) + (u− u0)T ·Df 2(u0) +
1

2
(u− u0)T ·D2f 2(u0) · (u− u0)

(A.2)
=

1

2
uT

0 ·Df 2(u0) + (u− u0)T ·Df 2(u0) +
1

2
(u− u0)T ·D2f 2(u0) · (u− u0)

(A.3)
=

1

2
uT

0 ·D2f 2(u0) · u0 + (u− u0)T ·D2f 2(u0) · u0

+
1

2
(u− u0)T ·D2f 2(u0) · (u− u0)

=
1

2
uT

0 ·D2f 2(u0) · u0 + (u− u0)T ·D2f 2(u0) · u0

+
1

2
uT ·D2f 2(u0) · u− uT ·D2f 2(u0) · u0 +

1

2
uT

0 ·D2f 2(u0) · u0

=
1

2
uT ·D2f 2(u0) · u

Finally, for all λ > 0 we have Pf2(λu) = 1
2
(λu)T ·D2f 2(u0) · (λu) = λ2Pf2(u).

B Proof of Proposition 1

For all λ > 0 we have Rf2(λx) = f 2(λx)−Pf2(λx) = λ2(f 2(x)−Pf2(x)) = λ2Rf2(x). For

any u ∈ U \ {0} this implies

Rf2(u) = Rf2

(
‖u‖ · u

‖u‖

)
= ‖u‖2 ·Rf2

(
u

‖u‖

)
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C Proof of Proposition 2

Function f%,X(u) with u0 = 1n fulfills the assumptions of Theorem 1. Hence, Pf2%,X (u) =

uT · 1
2
D2f 2

%,X(1n) · u is the second-order Taylor polynomial of f 2
%,X(u). We have

g2(u)
(6)
= (u ◦ x)TR (u ◦ x) =

n∑
i,j=1

ρi,juixiujxj
(7)
=

n∑
i,j=1

1

2xixj

∂2

∂ui∂uj
f 2
%,X(1n)uixiujxj

=
n∑

i,j=1

1

2

∂2

∂ui∂uj
f 2
%,X(1n)uiuj = Pf2%,X (u)

Hence, the assertions in lines (9), (10) and (11) follow.

D Distribution of portfolio loss for mixed gamma distributed

risks

According to Furman et al. (2020, p. 8 f.), the n-dimensional mixed gamma distribution

is defined as follows: let κ = (κ1, ..., κn) be a vector of discrete random variables which

can assume non-negative integer values, and let pκ(k) = P(κ1 = k1, ..., κn = kn) denote

the probability mass function of κ with k = (k1, ..., kn) ∈ Nn
0 . Let fΓ(x; γ, ϑ) denote the

density function of the univariate gamma distribution with shape parameter γ and rate

parameter ϑ. The random vector Γ(κ) = (Γ
(κ1)
1 , ...,Γ

(κn)
n ) is distributed n-variate mixed

gamma if its density function is given by

fΓ(κ)(x1, ..., xn) =
∑
k∈Nn

0

pκ(k)
n∏
i=1

fΓ(xi; γki , ϑi) (D.1)

where the shape parameters are determined by γki = γi + ki with γi > 0. Recall that

FΓ+(x; γ1, ..., γn, ϑ1, ..., ϑn) in (17) is the distribution function of the sum of independent
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gamma distributed random variables with different shape and rate parameters. Assum-

ing that there is only a finite number of vectors k with positive probability pκ(k), the

distribution function of X = Γ
(κ1)
1 + ...+ Γ

(κ1)
n is given by

FX(x) =

∫
...

∫
{y∈Rn

+ such that
∑n

i=1 yi≤x}

∑
k∈Nn

0

pκ(k)
n∏
i=1

fΓ(yi; γki , ϑi)dy1....dyn

=
∑
k∈Nn

0

pκ(k)

∫
...

∫
{y∈Rn

+ such that
∑n

i=1 yi≤x}

n∏
i=1

fΓ(yi; γki , ϑi)dy1....dyn

=
∑
k∈Nn

0

pκ(k)FΓ+(x; γk1 , ..., γkn , ϑ1, ..., ϑn),

and the distribution function of the linear combination u1Γ
(κ1)
1 + ...+ unΓ

(κ1)
n is given by

∑
k∈Nn

0

pκ(k)FΓ+(x; γk1 , ..., γkn , ϑ1/u1, ..., ϑn/un)

E Proof of Proposition 3

We show that f%,X is convex on U . Let u1, u2 ∈ U and γ ∈ [0, 1]. Then, by positive

homogeneity and convexity of %,

f%,X(γu1 + (1− γ)u2) = %
(
γuT

1X + (1− γ)uT
2X
)

≤ γ%
(
uT

1X
)

+ (1− γ)%
(
uT

2X
)

= γf%,X(u1) + (1− γ)f%,X(u2)

Due to f%,X being continuous with f%,X (1n) > 0, there is some Ũ open with 1n ∈ Ũ ⊆ U

and f(u) > 0 for all u ∈ Ũ . Given that h : [0,∞)→ [0,∞), x 7→ x2 is non-decreasing and

convex, the composition h(f%,X(u)) = f 2
%,X(u) is convex on Ũ . Hence, the Hesse matrix of
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f 2
%,X(u) at u = 1n, D2f 2

%,X(1n), is positive semidefinite. Moreover, the sensitivity-implied

tail-correlation matrix R is positive semidefinite: for any v ∈ Rn we have

vTRv
(7)
=

n∑
i,j=1

1

2xixj

∂2

∂ui∂uj
f 2
%,X(1n)vivj =

1

2
(v ◦ x̄)TD2f 2

%,X(1n)(v ◦ x̄) ≥ 0,

with the entries of the vector x̄ being defined as x̄i = x−1
i for all i = 1, ..., n.

F Example: No upper threshold for diagonal elements of sensitivity-

implied matrix

Consider two independent random variables defining losses X1, X2 with 0 < c ≤ 1,

P (X1 = c) = 96%, P (X1 = 1) = 4%, P (X2 = 2c) = 96%, P (X2 = 2) = 4%,

and the risk measure % = VaR95%. Then

x1 = %(X1) = c, x2 = %(X2) = 2c,

f%,X(u) = min{cu1 + 2u2, u1 + 2cu2} =


u1 + 2cu2, u1 ≤ 2u2

cu1 + 2u2, u1 > 2u2

Hence, for u1 ≤ 2u2, we have

Df 2
%,X(u) = 2(u1 + 2cu2)

 1

2c

 , D2f 2
%,X(u) =

 2 4c

4c 8c2

 ,
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such that the sensitivity-implied tail-correlation matrix at (u1, u2)T = (1, 1)T according

to (7) is

R =

 1
c2

1
c

1
c

1


As c can be small, the first diagonal element of R can be arbitrarily large. Note that

g(u) = u1 + 2cu2 coincides with f%,X(u) for u1 ≤ 2u2. For c = 1, f 2
%,X(u) is quadratic,

and the diagonal elements of R are hence 1 (cf. Proposition 4).

G Proof of Proposition 4

Given that f 2
%,X(u) is positive homogeneous of degree two, Theorem 1 implies for all u ∈ U

uT · 1

2
D2f 2

%,X(u) · u = f 2
%,X(u) (G.1)

We have

ρkk
(7)
=

1

2

∂2

(∂uk)2
f 2
%,X(1n)

f 2
%,X(ek)

(G.1)
=

1

2

∂2

(∂uk)2
f 2
%,X(1n)

eT
k · 1

2
D2f 2

%,X(ek) · ek
=

∂2

(∂uk)2
f 2
%,X(1n)

∂2

(∂uk)2
f 2
%,X(ek)

If f 2
%,X(u) is quadratic on Ũ containing 1n and ek for all k = 1, ..., n, then ∂2

(∂uk)2
f 2
%,X(u) is

constant in u on Ũ and hence ρkk = 1 for all k = 1, ..., n.

H Proof of Proposition 5

According to the definitions in lines (5) and (6) and with the assumption f%,X(ek) > 0,

we derive

g2(ek)

f 2
%,X(ek)

=
x2
k %kk
x2
k

= %kk
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Assuming ρkk ≥ 0 we can take the square-root on the left-hand side and right-hand side

of the equation. The assertions of Proposition 5 immediately follow.

I Example: Assessing the error between g(u) and f%,X(u) with

n = 2 risks

Suppose we want to estimate f%,X(u)−g(u) for n = 2 risks and some u which is entrywise

non-negative. In light of Proposition 1 in connection with the norm ‖u‖ = 0.5 ·
∑n

i=1|ui|,

we consider u = 12 + α · (1,−1)T with α ∈ [−1, 1]. We define

f̃ 2 : [−1, 1]→ R, α 7→ f 2
%,X

(
12 + α · (1,−1)T

)
g̃2 : [−1, 1]→ R, α 7→ g2

(
12 + α · (1,−1)T

)
Rf̃2 : [−1, 1]→ R, α 7→ f̃ 2(α)− g̃2(α)

Due to the mean value theorem, the remainder can be presented based on the third order

derivative of f̃ 2(α), i.e.

Rf̃2(α) = (f̃ 2)(3)(ᾱ)
α3

3!
(I.1)

for some ᾱ between 0 and α.29 Therefore, a lower and upper threshold for Rf̃2(α) are

given by

min

{
(f̃ 2)(3)(ᾱ) with ᾱ between 0 and α

}
· α

3

3!
(I.2)

and

max

{
(f̃ 2)(3)(ᾱ) with ᾱ between 0 and α

}
· α

3

3!
(I.3)

29Cf. Folland (2001, p. 88).
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Moreover, at α = 1 and α = −1, the mean value theorem implies that there are some

0 < ᾱ1 < 1 and −1 < ᾱ2 < 0 such that

(f̃ 2)(3)(ᾱ1)
13

3!
= Rf̃2(1) = (f 2

%,X(2 · e1)− g2(2 · e1))
Eq. (21)

= 4 · (1− ρ11) · x2
1

(f̃ 2)(3)(ᾱ2)
(−1)3

3!
= Rf̃2(−1) = (f 2

%,X(2 · e2)− g2(2 · e2))
Eq. (21)

= 4 · (1− ρ22) · x2
2

If α is close to 1 or −1, we approximate ᾱ from Eq. (I.1) by ᾱ1, or ᾱ2 respectively, and

thus have

Rf̃2(α) ≈


(f̃ 2)(3)(ᾱ1)α

3

3!
= 4 · (1− ρ11) · x2

1 · α3 if α > 0

(f̃ 2)(3)(ᾱ2)α
3

3!
= −4 · (1− ρ22) · x2

2 · α3 if α < 0

(I.4)

As an example, consider n = 2 independent Gamma distributed risks with shape and

rate parameters γ1 = ϑ1 = 1 for risk 1 and γ2 = ϑ2 = 2 for risk 2. We consider

f%,X(u) = VaR99.5%

(
uTX

)
− E

(
uTX

)
. We have evaluated the remainder Rf̃2 for α ∈

[−1, 1]. Hence, we have evaluated the error between g2(u) and f 2
%,X(u) (as well as the

corresponding thresholds) for all weighted sums of the portfolios u1 = (2, 0)T and u2 =

(0, 2)T. Afterwards, we have translated the error and thresholds into the error between

g(u) and f%,X(u) according to Eq. (2). Figure 3 depicts the latter error (red curve)

and estimates of it (gray and black curves) as a percentage of f%,X(u). The black curve

in Figure 3 shows the error estimate according to line (I.4). While this estimate does

not require the calculation of any third-order derivatives, it is not necessarily accurate

or conservative if α is in the middle between −1 and 0 or between 0 and 1. The gray
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curves in Figure 3 reflect the thresholds according to (I.2) and (I.3). We have calculated

third-order derivatives numerically by

(f̃ 2)(3)(α) ≈ (f̃ 2)′(α−∆α)− 2 · (f̃ 2)′(α) + (f̃ 2)′(α + ∆α)

(∆α)2

with ∆α = 0.1. As shown in Figure 3, the thresholds from (I.2) and (I.3) are conservative,

but not necessarily close at Rf̃2(α) if α is away from 0.

Figure 3: Error between g(u) and f%,X(u) and corresponding estimates as a percentage
of f%,X(u).

J Example: Estimating the sensitivity-implied tail-correlation

matrix from Monte-Carlo simulations

We consider the example from section 4.2. We perform a simulation-based estimation of

the sensitivity-implied tail-correlation matrix similarly to the example in Tasche (2009,

pp. 586 ff.). We draw nsim = 50, 000 simulations of the random vector (X1, ..., X5)T

and repeat the simulation 50 times. The risk measurements f%,X(15) and f%,X(ek) are
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Table 5: Estimation results from Monte-Carlo simulations for some ingredients of the
sensitivity-implied tail-correlation matrix, cf. line (8); nsim = 50, 000.

f(15) f%,X(e1) ∂
∂u1

f%,X(15) ∂2

∂u1∂u2
f%,X(15)

True values
8.115 4.679 2.830 -1.080

Bandwidth factor, c RMSE
1 0.081 0.067 0.193 1.183
2 0.110 0.125 0.154 0.460
3 0.203 0.270 0.152 0.270
4 0.349 0.486 0.181 0.237
5 0.543 0.774 0.238 0.296

estimated based on the Gaussian kernel and recursion formula (4.2) in Gourieroux et al.

(2000, p. 234). The gradient Df%,X(15) is estimated by the Nadaraya-Watson kernel

estimator for conditional expectations, cf. Tasche (2009, p. 584, Eq. (11)). The Hesse

matrix D2f%,X(15) is estimated according to Gourieroux et al. (2000, p. 235, Eq. (4.4)).

In each estimation, we set the bandwidth initially in line with the classical proportionality

rule, i.e. h =
(

4
3

)1/5 ·σP ·n−1/5
sim with σP being the estimated standard deviation of

∑5
i=1 Xi.

Moreover, we vary the bandwidth by multiplying it by factors c ∈ {1, 2, 3, 4, 5}. Table

5 reports the RMSE of the aggregate VaR, the VaR of X1, the first entry of Df%,X(15)

and entry (1, 2) of D2f%,X(15), each depending on the bandwidth factor. To calculate the

sensitivity-implied matrix, we use an increased bandwidth by factor 3 for the gradient and

by factor 4 for the Hesse matrix, given that these choices seem to stabilize the estimates

(cf. Table 5). On average, the entries of the estimated sensitivity-implied tail-correlation

matrix have a RMSE of 0.050. This RMSE can be reduced to 0.032 if nsim = 500, 000

simulations are used.
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K Graphical illustration of the approximation error

Figure 4: Contour plot of the relative error between g(u) and f%,X(u) according to the
examples in sections 4.2 and 4.3. Upper part: x-axis reflects value of u1 = u2 between
0.25 and 1.75; y-axis reflects corresponding values of u3 = u4; u5 = 1 is held constant. For
example, the upper left corner of the figures correspond to u = (0.25, 0.25, 1.75, 1.75, 1)T.
Lower part: x-axis reflects the exposures u1; y-axis reflects the exposures u2; u3 = 1 is
held constant.

L Gradient of the function g(u)

Let n ∈ N, R be a symmetrix matrix and x ∈ Rn such that xTRx > 0. We consider the

function g(u) as defined in line (6). The first-order partial derivative of g with respect to

an entry uk of u is obtained as

∂

∂uk
g(u) =

∑n
i=1 %kiuixi√

(u ◦ x)T R (u ◦ x)
· xk (L.1)
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In matrix notation and at u = 1n, the gradient of g is determined as

D g (1n) =
(Rx) ◦ x√
xTRx

(L.2)
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