Neurolmage 130 (2016) 293-305

T

Contents lists available at ScienceDirect
Neurolmage

Neurolmage

journal homepage: www.elsevier.com/locate/ynimg o

Progression to deep sleep is characterized by changes to BOLD dynamics
in sensory cortices

@ CrossMark

Ben Davis ?, Enzo Tagliazucchi ¢, Jorge Jovicich ?, Helmut Laufs >, Uri Hasson **

@ Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy
b Department of Neurology, University Hospital Schleswig Holstein, Kiel, Germany
¢ Department of Neurology and Brain Imaging Center, Goethe University, Frankfurt, Germany

ARTICLE INFO ABSTRACT

Article history:

Received 16 July 2015

Accepted 18 December 2015
Available online 24 December 2015

Sleep has been shown to subtly disrupt the spatial organization of functional connectivity networks in the brain,
but in a way that largely preserves the connectivity within sensory cortices. Here we evaluated the hypothesis
that sleep does impact sensory cortices, but through alteration of activity dynamics. We therefore examined
the impact of sleep on hemodynamics using a method for quantifying non-random, high frequency signatures
of the blood-oxygen-level dependent (BOLD) signal (amplitude variance asymmetry; AVA). We found that
sleep was associated with the elimination of these dynamics in a manner that is restricted to auditory, motor
and visual cortices. This elimination was concurrent with increased variance of activity in these regions. Functional
connectivity between regions showing AVA during wakefulness maintained a relatively consistent hierarchical
structure during wakefulness and N1 and N2 sleep, despite a gradual reduction of connectivity strength as sleep
progressed. Thus, sleep is related to elimination of high frequency non-random activity signatures in sensory
cortices that are robust during wakefulness. The elimination of these AVA signatures conjointly with preservation
of the structure of functional connectivity patterns may be linked to the need to suppress sensory inputs during

sleep while still maintaining the capacity to react quickly to complex multimodal inputs.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Light sleep is associated with different modes of information pro-
cessing and sensory responses relative to wakeful rest (Nashida et al.
2000; Atienza et al. 2001; Czisch et al. 2002). There are however notable
similarities in the organization of brain activity during wakefulness and
NREM sleep. Neuroimaging studies comparing wakefulness and sleep
have documented similar magnitudes of evoked responses to sensory
stimuli (e.g., evoked auditory responses; Issa and Wang 2011). In addi-
tion, intrinsic connectivity networks (ICN) such as the default mode
network (DMN) are preserved in light sleep (Larson-Prior et al. 2009;
Horovitz et al. 2008, 2009), with changes limited to a decoupling of
the medial prefrontal regions and posterior regions of the DMN and
other large functional networks during deeper (N3) slow wave sleep
(Horovitz et al. 2009; Larson-Prior et al. 2011; Sdimann et al. 2011). In-
creases in functional connectivity, e.g., between posterior DMN regions
and parahippocampal, parietal, and posterior cingulate regions have
also been documented (Larson-Prior et al. 2011) as well as highly

* Corresponding author at: Center for Mind/Brain Sciences, Via delle Regole, 101,
Mattarello, TN, Italy.
E-mail address: uri.hasson@unitn.it (U. Hasson).

http://dx.doi.org/10.1016/j.neuroimage.2015.12.034

similar patterns of resting state connectivity when defined from audito-
ry, visual and motor regions (Larson-Prior et al. 2009). Network analy-
ses documented preservation of functional modules, albeit with
reduced inter-modular integration (Boly et al. 2012; Tagliazucchi et al.
2013a; Uehara et al. 2014). Electroencephalography (EEG) microstates
are preserved across wakefulness and deep sleep (Brodbeck et al.
2012), and the association of ICNs with microstates (Britz et al. 2010)
further supports the similarity of intrinsic brain activity during wake-
fulness and sleep. Furthermore, even the modest sleep-related
changes in the topology of functional connectivity networks (see
Tagliazucchi et al. 2013b for in depth discussion) largely exclude
sensory cortex (e.g., Horovitz et al. 2008; Larson-Prior et al. 2009).
Similarly, Uehara et al. (2014) documented local changes in nodal ef-
ficiency in transition from wakefulness to stage 1 sleep but these did
not include any sensory region. To summarize, while sleep has been re-
peatedly shown to impact the magnitude of synchronization between
brain regions, the actual topological structure of functional networks
seen during wakeful rest is only moderately affected, particularly in
sensory networks.

These prior findings raise the question we address in the current
work, which pertains the activation regimes of sensory cortices during
sleep. Specifically, we examined whether there exist activity patterns
in sensory cortices that characterize the progression to deep sleep.
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In prior work (Davis et al. 2014) we identified rapid, non-random
and non-oscillatory signatures in resting state fMRI data (amplitude
variance asymmetry; AVA) that clustered around sensory systems in
awake adults. AVA is a time-domain measure that is based on properties
of the rapidly changing peak/pit structure of the BOLD time series. The
magnitude and timing of these peaks and pits have been linked to func-
tional processing (Skipper et al. 2009). In our prior work (Davis et al.
2014) we found that sensory regions showed a particular signature of
the BOLD's signal local minima and maxima, which was reflected in
the relative asymmetry of variances of the time series’ peaks and pits.
We also found that the magnitude of AVA correlated with IQ within a
group of young children.

Formally, the AVA of a time series is given by [0%(peaks)/0?(pits)]
of the time series. White noise has an AVA of 1, time series where the
variance of the local maxima exceeds that of the local minima have an
AVA greater than 1, and those showing the converse pattern have an
AVA below 1. In this way AVA distinguishes between (i) ‘floor mode’
time series (AVA >1) consistent with spontaneous activity of different
magnitudes, and (ii) ‘ceiling mode’ time series (AVA <1), consistent
with diverse levels of spontaneous decreases in activity. AVA can
therefore differentiate between time series with identical variance or
entropy. Because in our prior work, adults’ AVA patterns only showed
floor-mode patterns and were limited to sensory cortices, we suggested
they are related to the monitoring of the sensory environment during
wakefulness.

On the basis of prior sleep and AVA work, we hypothesized that
progression to deep sleep would be associated with a reduction in
the robust AVA signatures found in sensory systems during wakeful
rest. In contrast, on the basis of prior work we also expected that
functional connectivity among sensory regions would largely main-
tain its topological structure during NREM sleep, potentially accom-
panied by an increase in BOLD variance (Horovitz et al. 2008;
Tagliazucchi et al. 2013c). Finding such a pattern would indicate
(1) that sleep is specifically linked to reduction in AVA even though
it is linked to increased overall variance, and (2) that functional con-
nectivity patterns and AVA are dissociable and therefore driven by
different factors.

Methods
EEG-fMRI acquisition and artifact correction

We analyzed a data set collected during a synchronous EEG-fMRI
acquisition protocol, which was approved by the ethical board of
Goethe University (Kommission des Fachbereichs Medizin der J. W.
Goethe-Universitdt Frankfurt am Main as of January 10, 2008). This
data has been analyzed in several prior studies that examined identifi-
cation of K-complex correlates in N2 sleep (Jahnke et al. 2012), use of
functional connectivity for sleep staging (Tagliazucchi et al. 2012a),
and the impact of sleep on serial autocorrelation of BOLD time series
(Tagliazucchi et al. 2013c¢). In the current study, the EEG data were
only used for purposes of determining sleep stages. EEG was sampled
at an initial sampling rate of 5 kHz, low pass filtered at 1 kHz, and
down-sampled to 250 Hz for artifact cleaning and sleep staging and fur-
ther analysis (see below). Data were recorded using a BrainCapMR
(Easycap) EEG cap (Herrsching, Germany) with 30 recording channels.
The MR-compatible amplifiers were BrainAmp MR +, BrainAmp ExG;
Brain Products (Gilching, Germany). Data was recorded using Brain
Products' “Recorder” and analyzed using Brain Products' “Analyzer”.
Analysis steps included: MRI and pulse artifact correction performed
based on the average artifact subtraction (AAS) method (Allen et al.,
1998) as implemented in Vision Analyzer2 (Brain Products, Germany)
followed by objective (CBC parameters, Vision Analyzer) ICA-based re-
jection of residual artifact-laden components after AAS (Laufs et al.,
2008). We obtained good quality EEG, which allowed for sleep staging
by an expert, according to the criteria of the American Academy of

Sleep Medicine (AASM 2007). Sleep staging was based on scoring 30 s
blocks of the EEG data. Based on this scoring we ignored sections asso-
ciated with transitions between sleep stages, maintaining those without
transitions. BOLD time series sections matching these were spliced from
the recorded time series.

Functional MRI scans were acquired on a 3 T system (Siemens Trio,
Erlangen, Germany) using single-shot T2*-weighted EPI (32 slices,
repetition time/echo time = 2080 ms/30 ms, matrix = 64 x 64, voxel
size = 3 x 3 x 2 mm?, distance factor = 50%). To correct for physiolog-
ical noise, physiological responses (cardiac, respiratory) were recorded
through sensors from the MR scanner (sampling rate = 50 Hz) and MR-
compatible devices (BrainAmp MR +, BrainAmp ExG; Brain Products).
Sixty-three healthy non-sleep-deprived participants (thirty-six females,
mean + SD age of 23.4 4 3.3 years) were scanned in the evening
(starting from 8:00 PM). Data from those 55 participants who reached
at least sleep stage N1 was used in our analysis.

BOLD time series selection

Each of the 55 participants provided epochs of functional imaging
data during wakefulness (W) and at least the N1 sleep stage. From
these epochs, we set the minimal time series length at 135.2 s
(65 volumes), amounting to 293 total epochs. In practice, most of
the epochs were 5-10 times as long (see Supplementary Table 1 for
epoch descriptives). We conducted a quality control procedure in
which we examined the functional time series for loss of signal in
any volume, and derived temporal SNR histograms for each epoch
to identify whether any epoch was associated with a shifted distribu-
tion indicating low quality data. Authors B.D. and U.H. conducted this
procedure jointly.

fMRI preprocessing

We used AFNI for preprocessing and physiological noise correction
(PN-correction). De-spiking of the time series was carried out as part
of the PN-correction workflow. The physiological (cardiac, respiratory)
data were down-sampled to the acquisition rate of single volume slices
(15.4 Hz). We used AFNI's retroTS.m procedure to create slice-based
regressors from these data. The utility produces (for each physiological
regressor) a time series that is phase shifted to match the timing of
each slice's acquisition. From the cardiac and respiration recordings
we derived 13 such slice-based regressors (4 for the cardiac series and
its harmonics, 4 for the respiratory series and its harmonics, and 5 for
respiration variation over time and its harmonics, Birn et al. 2006).
We removed the variance explained by these 13 regressors from the
BOLD time series using the RETROICOR procedure (Glover et al. 2000)
as implemented in AFNI.

Following PN-correction, we discarded the first 5 volumes of
each epoch from the analysis to allow for T1 stabilization effects, and
then performed slice timing correction (3dTshift), motion correction
(3dvolreg), and spatial smoothing (3dmerge, 6 mm FWHM Gaussian
Kernel) on all the images. We then removed several sources of variance
from the time series data via linear regression. These included (i) 6 mo-
tion parameters estimated during the head motion correction, and (ii)
linear, second-order and third-order polynomial trends. Because we
partialed out physiological-related variance from direct measurements
we did not use proxy measures typically used for this purpose such as
data from CSF or white matter voxels. While these are sometimes
used as proxies for physiological effects, they are only moderately
correlated (see Chang & Glover, 2009). Furthermore, given the im-
pact of global-mean correction on functional connectivity estimates
(see Murphy et al. 2009; Schélvinck et al. 2010), we did not imple-
ment this procedure. The residuals of the regression procedure
were used in all subsequent analyses. Following preprocessing, the
time series of all voxels were analyzed using the “R” software
(R Core Team 2012).
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Defining BOLD amplitude variance asymmetry

After fMRI preprocessing, we created amplitude variance asymme-
try (AVA) maps for each epoch using the R software (R Core Team
2012), following the procedures detailed in Davis et al. (2014). Briefly,
we used the Pastecs library (Ibanez and Etienne 2006) to identify the
location of turning points in the BOLD time series. Turning points are
deflections in the slope of the time series that occur when the slope
changes from positive to negative (a local maxima, i.e., “peak”), or
from negative to positive (a local minima, i.e., “pit”). We saved the
amplitude values for the identified peaks and pits and calculated sepa-
rately the variance of the peak amplitudes and the variance of the pit
amplitudes. We refer to the ratio of these variance terms, 0*(peaks)/
O?(pits), as the variance ratio (VR). For the inferences we draw, a VR
of 3/2 is as significant a departure from 1 (the null hypothesis) as is a
VR of 2/3. Therefore, significance tests are only performed after a natural
log transform of the VR since this transformation assigns the same abso-
lute value to a ratio and its inverse; e.g., |log(3/2)| = |log(2/3)| changing
only the sign. The logarithmic transform of VR log[o?(peaks)/o?(pits)],
returns 0 when VR equals 1, returns positive numbers when VR >1,
and returns negative numbers when VR <1. We defined AVA as the
logarithmic transform of the VR.

In order to reduce the impact of high frequency fluctuations, before
calculating the turning points and their variance, the time series X(t)
were temporally smoothed using a moderate three-point temporal
averaging kernel:

1 1 1
Xsmooth(t) = Zx(t_l) +§X(t) +Zx(t + 1)

This temporal smoothing was aimed at reducing the impact of very
small deviations (see Davis et al. 2014 for discussion) and has been
used previously in similar analyses of point processes in time series
(Morgan et al. 2008). We note that peaks and pits occur on a temporal
scale that is faster than those thought to mediate functional connectiv-
ity, with our previous work identifying peaks every 8 s on average, in
functional scans with a repetition time (TR) of around 2 s. We refer to
time series where AVA significantly exceeds 0 as ‘floor mode’ patterns,
because the distribution of local maxima is more varied, and to time
series where AVA is significantly below 0 as ‘ceiling mode’ patterns.

fMRI group-level analyses

MNI registration

Following AVA analysis, we obtained a transformation between each
EPI epoch to its corresponding anatomical image using FSL's epi_reg
script. The most important steps in this procedure are FAST's (FMRIB's
Automated Segmentation Tool; Zhang et al. 2001) histogram based
segmentation of the T1 structural scans to derive white matter maps,
and the use of the boundaries of these white matter maps to perform
Boundary-Based co-Registration of the EPIs to their corresponding T1
structural images (BBR; Greve and Fischl 2009). We then performed
nonlinear normalization (FNIRT), of each subject's T1 images into
2 x 2 x 2 mm MNI space. Importantly, we concatenated the two trans-
formations (EPI to T1; Linear, guided by white matter boundaries) and
T1 to MNI (nonlinear warp) to derive a single transformation from EPI
space to MNI space. We used this transformation to align the AVA
maps from original space to the MNI template in a single step.

Constructing single-participant AVA maps

Because participants had more than one AVA map per sleep stage
(max = 6, see Supplementary Table 1), after MNI registration, these
were averaged (within sleep stage) to construct a single AVA map per
sleep stage per participant. We implemented weighted averaging in
order to account for different epoch lengths as follows: we created
weighted averages of the AVA values by (1) multiplying each AVA

image by the total number of volumes in the epoch used to derive it,
(2) summing all the AVA volumes maps in a specific participant's
sleep stage and (3) dividing the result by the total number of volumes
in all the epochs in that participant's sleep stage. This procedure weights
the contributions to an individual's sleep stage AVA map in proportion
to the length of the time series, relatively down weighting shorter series
and up weighting longer series (i.e., the weights reflect percentage of
time within condition, and sum to 1). Note that epoch length may
have some effect on AVA estimation (though no relation to AVA magni-
tude) as longer epochs will offer a more precise sampling of the peak/pit
variance and their ratio. That said, most of the epochs were very long
(see Supplementary Table 1) and we further weighted the contribution
of each epoch to AVA estimation by its length as described above.

Group-level statistical analysis

For wakefulness and each sleep stage (W, N1, N2, N3), in order to de-
termine the brain regions in which the AVA reliably differed from
chance (i.e., 0) on the group level, we conducted group-level whole-
brain voxel wise t-test analyses of the AVA maps using AFNI's
3dttest ++ utility. We note that only 14 of the 55 participants contribut-
ed data to all four conditions (W, N1, N2, N3). The within-participant
analysis based on this sub-group alone is likely to be underpowered,
particularly given the strong potential for low correlations across the re-
peated measures, if indeed AVA indicates different processes across
stages. For this reason we conducted two types of group-level analyses.
The first focused on contrasts against the chance AVA value (i.e., 0),
which we define as a baseline value. Here we used data from all those
participants who provided data for a given stage (for W n = 50, for
N1 n = 44, for N2 n = 36, and for N3 n = 17). This constituted the
most sensitive test against baseline, and was based on one-sample t-
tests evaluating difference from the null hypothesis, AVA = 0. The sec-
ond analysis focused on differences between the experimental condi-
tions (i.e., sleep stages and wakefulness). To maximize power, here we
used paired t-tests, with each test relying on the maximal number of
participants with data for the two conditions contrasted.

In all analyses we controlled for Family-Wise Error (FWE) using
cluster-based thresholding, following the simulation procedures de-
scribed by Forman et al. (1995) as implemented in AFNI's Clustsim
utility. For contrasts against baseline, the following single-voxel thresh-
olds were used (W: p <.001, N1, N2, N3: p <.005 we used different
thresholds owing to different degrees of freedom in W vs. sleep stages),
and these were corrected for FWE using cluster-based thresholding
(p < .05). For contrasts between conditions, we used two cluster-
forming thresholds: a very liberal (p <.05) single-voxel threshold that
we corrected for FWE using cluster-based thresholding (p <.05), as
well as a less-liberal single-voxel threshold of p <.005 (FWE corrected
using cluster-based thresholding). The former was used to evaluate
whether clusters found at the less-liberal threshold were isolated
peaks or parts of larger clusters.

Comparison of AVA changes during sleep with changes in standard
deviation during sleep

To evaluate whether decreases in AVA were accompanied by a spe-
cific pattern of changes in the standard deviation of the BOLD time series
we first quantified the temporal standard deviation of the BOLD time
series (SD) in each sleep stage. In cases of multiple epochs per sleep
stage, these were averaged using the weighted mean procedure as
described above for the AVA maps, after registration to MNI space. We
calculated SD from the same time series for which AVA values were
calculated.

We evaluated patterns of SD changes in areas showing significant
changes in AVA. Within the regions showing higher AVA in W than N2
we identified 10 local difference maxima. Around each maxima we
defined a sphere (33 voxels each 1 mm?), and also verified the spheres
were at least 30 mm distant from each other. Within each sphere we
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analyzed whether SD values varied between the W and the N2 or N3
sleep stages.

Using the SD and AVA statistical parameter maps defined from the
W vs. N2 contrast (n = 33), we calculated several metrics to understand
the spatial relation between these two measures. We used the DICE
overlap (Dice, 1945) to quantify the spatial similarity of SD and AVA sta-
tistical maps, and this was done across a complete parameter sweep of
significant T values by which the SD map was thresholded. (The DICE
overlap was computed as the number of voxels in the intersection of a
thresholded AVA and a thresholded SD map, divided by total number
of voxels in these maps, multiplied by 2.) Our starting minimum
T value for the parameter sweep was 2.04 (uncorrected p < 0.1) and
the maximum was 13.24 (increment = 0.01). We also derived another
measure, which captured the proportion of voxels showing significant
SD changes that also showed significant AVA changes (for a given
T value threshold in the SD map).

AVA in thalamic subregions

To examine sleep-related impact on AVA patters in the thalamus
we obtained a high-resolution thalamic atlas in MNI space (Krauth
Atlas, Krauth et al. 2010), and used it to define 8 thalamic subregions
(anterior, posterior, lateral, and medial thalamus bilaterally; 8 regions
in all) per participant. This was based on the grouping of subregions
into 8 sets, as presented in Krauth et al. (2010). Using the 14 participants
for whom we had data in each condition, we examined AVA patterns in
the 4 experimental conditions within these 8 regions using repeated
measure ANOVAs.

Functional connectivity between regions associated with AVA, during
wakefulness and sleep

Quantifying connectivity of brain regions showing AVA during
wakefulness

From the AVA maps in the wakefulness condition we defined 11
regions of interest (ROIs) to be used as seed regions for functional con-
nectivity analyses. These regions were defined as follows. On the group
level, from the wakefulness analysis we automatically identified local
maxima of AVA values (in 2 x 2 x 2 mm MNI space) within significant
clusters. We then constructed a 3 mm radius spherical ROI around
each maximum with the constraint that no two peaks were closer
than 30 mm to each other. From these peaks, we manually chose the
peaks that most closely matched regions reported in our prior work
(Davis et al. 2014), in order to evaluate whether the functional connec-
tivity structure replicated our prior findings and whether its features
would change with sleep (we note that the peaks chosen this way
tended to be the strongest within the clusters). These included bilater-
ally the superior temporal gyrus (STG), postcentral gyrus, lingual
gyrus, middle occipital gyrus, as well as (unilaterally) the left inferior
occipital gyrus, right calcarine gyrus and right supplementary motor
area (SMA; see Supplementary Table 2 for locations). Because the pur-
pose of this analysis was to see if we could replicate the wakefulness
connectivity structure we documented in our prior work (Davis et al.
2014), we selected local maxima of AVA patterns in the current data
rather than peak AVA locations from our prior work.

To determine if the functional connectivities of these regions (in W,
N1, N2 and N3) were indicative of a single source of fluctuation, we
constructed single-participant and group-level dendrograms for each
condition, following the procedure we outlined in Davis et al. (2014).
Group-level dendrograms were created from the data of the 14 partici-
pants that contributed data to all conditions. For each participant, the
time series selected for each condition was matched to the length of
shortest of the 4 conditions.

The following steps were implemented for each condition separately:
1) for each participant we constructed a pairwise correlation matrix
of the connectivity of the 11 regions; 2) this matrix was subjected to
hierarchical clustering that generated a dendrogram reflecting

hierarchical connectivity per participant (using the hclust function in
the R clue package with Euclidian distance for defining dissimilarity
and complete-linkage method for hierarchical clustering); 3) the set of
the 14 participants' dendrograms was then subjected to a ‘consensus
cluster analysis’ that returns a centroid solution that optimally repre-
sents the set of individual level solutions. Furthermore, following Davis
et al. (2014; see details wherein) we determined whether the mean dis-
similarity of participants' dendrograms within condition differed from
what would be expected by chance, using 10,000 permutations, where
for each permutation, the labels of the ROIs were shuffled for each partic-
ipant and the mean dissimilarity established for that permutation.

Given that we found that the connectivity structure of the set of
regions defined by the W AVA map tended to maintain across several
sleep stages, we wanted to know whether stronger changes in connec-
tivity would be found for a different set of regions — that defined by the
W vs. N2 AVA contrast. For this reason we also evaluated the functional
connectivity between brain regions identified by that contrast. The pro-
cedures for defining these networks and group-level dendrograms were
identical to those described above.

Analysis of pairwise regional correlation values

We also analyzed the magnitude of the pairwise correlation values
for the connectivity of the 11 regions. In this analysis, we conducted
pairwise contrasts between conditions, and used the number of partic-
ipants that contributed data to both conditions. This was done, for each
region pair, by Fisher-Z transforming each participant's correlation
value and then conducting a paired t-test between conditions on the
group level. For comparisons between W and N1 we used data from
the 41 participants that contributed data to both, and for comparisons
between the W and N2 conditions we used data from the 33 partici-
pants who contributed data to both. For comparisons between the N2
and N3 conditions we used data from the 14 participants that contribut-
ed data to both conditions and we matched the length of the time series
within each participant across these conditions.

These analyses were meant to identify whether, in the functional
connectivity patterns we studied, there is reduced connectivity with
deeper sleep. Note that for any of the contrasts, the time series in the
two conditions were matched for length within each participant by
selecting the shortest time series of the two, and trimming the longer
to match (this minimum value could vary by participant). Hence, this
parameter was not confounded with sleep stage. All tests were paired-
sample t-tests. The aim of these series of tests was to identify data
patterns (i.e., whether sleep is generally associated with reduced con-
nectivity among these regions) rather than document which specific
reductions were significant. For this reason we report the number of
significant statistical tests, but do not control for Family-Wise Error.

Evaluating motion differences between conditions

In order to determine if head movement motion parameters differed
between conditions, for each participant's sleep epoch, we derived the
average root-mean-square (RMS) deviation between each volume of
the epoch and the reference volume used in motion correction. Then
on the group level, we conducted paired t-tests between conditions to
examine differences in this motion parameter. Motion was estimated
for those time series used for dendrogram construction and functional
connectivity analysis.

Evaluating peak-to-peak timing differences between conditions

The number of peaks and pits in a time series is orthogonal to the
ratio of the variance of the peaks over the pits of the time series. It is
thus possible that changes in peak-to-peak timings (i.e., the relative
‘pace’ of this time-domain measure) would be independent of changes
in AVA. We therefore evaluated the relative frequency of the peaks
and the pits in each condition (we thank an anonymous reviewer for
this suggestion). To do so we simply computed for each voxel the num-
ber of pits in a given time series and then transformed this number into
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units of peaks per second to allow merging of data across series. These
data (peak-to-peak interval) were processed on the single participant
and group level identically to the AVA data.

Results
Quality control for BOLD time series

On the basis of quality control procedures (see Methods) we
rejected 15 epochs (6 W, 4 N1, 4 N2, 1 N3). The remaining data
consisted of 278 epochs in W, 79 epochs in N1, 70 epochs in N2, and
22 epochs in N3. We also examined the head motion signatures (RMS
of each functional volume) derived from the registration of the BOLD
time series in the W, N1, N2 and N3 stages, for the 14 participants that
contributed data to all conditions. The N1 condition was associated
with less motion (N1 <W, t(13) = 2.01, p = .03; N1 <N2, t(13) =
2.29,p = .02; N1 <N3,t(13) = 2.17, p = .03), and no other pairwise
comparison between conditions approached significance. The absolute
RMS magnitudes for the different conditions were W M = 24.5 +
8.15,N1 M = 20.07 4 4.87, N2 M = 24.59 + 5.98, N3 M = 27.38 +
10.87). Given the relatively small differences in RMS magnitude, we
still included N1 in all analyses.

AVA changes in NREM sleep

During wakeful rest, AVA patterns were significant bilaterally
in visual clusters with a dorsal stream orientation that extended

to the parietal lobe, straddling the central sulcus, large clusters in
the lateral temporal lobe, and prefrontal cortex. This distribution
with a dominant floor mode (variance peaks > variance pits, Fig. 1,
n = 50 in t-tests against 0) corresponds to regions where we had
previously found AVA to depart from chance during wakeful rest
(Davis et al. 2014).

During the initial N1 phase of NREM sleep, the spatial extent of
statistically significant AVA clusters was more limited, but the distri-
bution was similar (Fig. 1) and a direct contrast between W and N1,
based on 41 participants with data in both conditions, produced a
null finding. (Here and in all other between-condition contrasts:
p <.005 single-voxel threshold, corrected for FWE using cluster extent
thresholding at p <.05. A similar analysis probing for more diffuse clus-
ters employed a very liberal single-voxel threshold of p < .05, similarly
controlled for FWE at p < .05, but revealed no differences of W vs. N1;
see Methods.)

AVA patterns during N2 sleep strongly departed from wakefulness.
The extent of the positive, floor-mode AVA profile was reduced, with a
few surviving clusters mostly in the bilateral fusiform gyri, motor cortex
and insula (see Fig. 1; n = 36 in t-tests against 0). Notably, we also
found an occipital cluster with a strong ceiling mode profile (variance
peaks < variance pits, blue clusters in Fig. 1). A direct contrast between
W and N2 based on 33 participants with data in both conditions con-
firmed these observations statistically (see Fig. 2a).

To better characterize the change in AVA patterns from W to N2 we
identified 10 local maxima in this contrast map, positioned spheres
around those points and treated those as functional regions of interest

Wake

AVA During Wake and Sleep

Fig. 1. AVA maps for the four experimental conditions. Warm/cold colors indicate regions where AVA was significantly above/below zero. All analyses corrected for multiple comparisons
using cluster extent thresholding (Family-Wise Error, p <.05). Uncorrected single-voxel thresholds used; wake: p <.001, all other conditions, p <.005.
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(fROIs; see Table 1). Note that the fact that these regions were identified
in a contrast does not speak to the magnitude of their absolute AVA
values in W and N2, because both values may be positive, negative, or
a mixture of the two. The change in AVA from W to N2 in these fROIs
is presented in Fig. 3.

As Fig. 3 shows, during wakefulness, these fROIs showed significant
floor-mode AVA, with the left middle temporal gyrus (L MTG) being the
only exception. During N2, AVA was around zero (chance level) in most
of the regions, and was significantly below zero in two regions: R.ccs
and L MOcG. This shows that the floor-mode AVA profile observed dur-
ing wakefulness is reduced with progression to sleep and that the visual
cortex switches to a strong ceiling mode profile.

During N3, AVA retained a strong negative ceiling mode profile in
the visual cortex, similar to that seen in N2 (variance peaks < variance
pits, Fig. 1, n = 17 in t-tests against zero). Posterior lateral temporal
clusters showed floor-mode AVA as observed for N2, N1 and W. Of
these clusters, the visual cluster survived the direct W > N3 contrast,
as did a cluster near the hand area of the central sulcus, which was iden-
tified when searching for clusters using a more liberal cluster-forming
threshold (see Fig. 2 and Table 2, based on 14 participants contributing
data to both conditions).

Table 1
Locations of local maxima (MNI coordinates) within clusters surviving the W vs. N2
contrast.

T value X y z Anatomical name

7.25 10 —84 6 R_calcerine (R ccs)

6.15 —56 —16 50 L_postcentral (L PoG1)
5.89 —34 —38 66 L_postcentral (L PoG2)

5.68 40 —28 64 L_midtemporal (L MTG)
5.32 —58 10 34 L_precentral (L Prg)

5.23 40 6 —12 R_insula (R Ins)

523 —26 —86 4 L_mid_occipital (L MOcG)
5.15 14 —68 66 R_superior_parietal (R SPL)
4,96 46 —68 18 R_mid_temporal (R MTG)
4.87 —4 —34 74 L_paracentral_lobule (L PCL)

Finally, we examined how AVA patterns in wakefulness and rest
were reflected in thalamic subregions. Using a high-resolution thalamic
atlas (see Methods) we divided each participant's left and right thala-
mus to anterior, posterior, lateral and medial sections, and examined
the effect of sleep stage on AVA signatures in these 8 regions. Surpris-
ingly, we found no impact of sleep on the AVA signatures in the thala-
mus. An omnibus 8 (Subregion) x 4 (Condition) analysis on mean

i A (focal clusters)
Wake > N2 sleep

B (nonfocal clusters)
Wake > N2 sleep
P

Changes in AVA Signatures During Sleep

Fig. 2. Regions where AVA differed for the wake condition as compared to the N2 and N3 conditions. Panel A: More focal clusters identified by cluster-based thresholding with single-voxel
type-I error of p <.005. Panel B: Non-focal clusters identified by cluster-based thresholding with single-voxel type-I error of p <.05. In both panels, the black outline in occipital regions
marks areas with AVA < 0 in the N2 and N3 conditions. No significant differences were found for the contrast between wake and N1.
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Fig. 3. AVA values for W and N2 conditions in ROIs showing differences between the two.
Mean AVA values for the 33 participants with data in the W and N2 sleep stage in the
spherical fROIs centered at the local maxima for the W > N2 contrast. Asterisks indicate
significant tests against zero (p < 0.01) and are independent of the contrast procedure
used to define each region. Abbreviations match region names in Table 1.

regional AVA values revealed only a main effect of Subregion, with no
effects of Condition or an interaction. When examining each subregion
separately via 4-level repeated-measures ANOVA, none showed an
effect of stage. In short, AVA signatures in the thalamus appeared rela-
tively unaffected by sleep stage (see Supplementary Fig. 2).

Peak-to-peak intervals in wake and sleep

We observed significant increases in peak-to-peak interval during
each of the sleep stages as compared to wakefulness (see Fig. 4). For
the W vs. N1 contrast, increased intervals were found in sensory regions
very similar to where AVA was positive in the W condition (but recall
that we did not document AVA changes between W and N1). A similar
set of regions was identified in the W vs. N2 contrast. For the W vs. N3
contrast, increased intervals were restricted to the visual and parietal cor-
tex. Note that these comparisons relied on the maximal number of sub-
jects in each condition and the more modest patterns in N3 could
reflect the lower number of participant that contributed data to that con-
dition. In absolute numbers, the average magnitude of the significant ef-
fect indicated around 0.5 s increase in peak-to-peak timing from Wake
to sleep. The maximum of any voxels was a 1.5 s increase found in prima-
ry visual cortex (~11 s in wake vs. ~12.5 s during N1 sleep).

Table 2
Locations of local maxima (MNI coordinates) within clusters surviving the W vs. N3
contrast.

T value X y z Anatomical name
7.28 -8 —90 2 L_calcerine
8.08 —54 —22 50 L_postcentral

BOLD standard deviation changes in clusters defined via AVA changes

We analyzed the BOLD standard deviation (SD) within the spherical
fROIs centered at the local maxima of the W vs. N2 contrast described in
Table 1. We found that SD significantly increased from W to N2 in those
regions defined by a significant decrease in AVA from W to N2 (see
Fig. 54, this relied on the same 33 participants as the AVA contrasts
between the W and n2 conditions). This increase was significant at
alpha level exceeding p <.005 in all but 3 fROIs (L middle occipital,
p = .018, Rinsula, p = .049, and L precentral gyrus, p = .029).

These findings demonstrate how changes in BOLD SD and BOLD AVA
provide important but complementary information. Standard deviation
increased in all fROIs. However, whereas in some fROIs this was accom-
panied by a loss of AVA signatures towards a chance value indicating a
random asymmetry pattern, in two occipital regions AVA transformed
from a significant floor mode to significant ceiling mode.

The relationship between the distribution of AVA and SD changes
(W vs. N2) can be understood considering the whole-brain distribution
of the effects: when thresholded at the same significance level (single
voxel p < .05; cluster extent corrected at p <.05), clusters showing
changes in AVA encompassed 9.8% of the combined WM + GM area,
whereas clusters showing changes in SD encompassed 41% of this
area. Thus, SD effects tended to be more widespread. Within the mask
of regions showing changes in SD, 21% of the volume was associated
with changes in AVA. Thus, it was clearly not the case that the two
metrics target the same phenomenon. Within the mask of regions not
showing changes in SD, only 2% of the volume was associated with
changes in AVA, but we note that this latter mask likely includes low-
signal-quality regions where it would be difficult to identify any system-
atic pattern across conditions.

When quantifying the spatial overlap of the AVA and SD effects
(thresholded using cluster-based thresholding, p <.05 on cluster extent,
p < .05 on single voxel uncorrected), we found a moderate overlap,
as quantified by the DICE coefficient, D = .344. However, a stronger
overlap was found when considering only voxels showing increasingly
stronger SD effects. As shown in Fig. 5b, we recalculated the DICE
coefficient while limiting the SD map to increasingly more stringent
statistical thresholds, and found a maxima of overlap (D = 0.45) ata
threshold of T = 4.68 (p < .0001; approximately 55% percentile of
voxels' T value distribution within the SD mask). Thus, the maximal
overlap was found when voxels showing less extreme SD effects
(2.01 < T < 4.68) were ignored. However, increasing the threshold
beyond T = 4.68 reduced the DICE coefficient (see Fig. 5b). Thus, it
is not the case that the AVA patterns can be reduced to a set of areas
showing a particularly strong SD effect. Finally, the strongest SD in-
creases (from W to N2) did tend to localize in areas showing AVA effects.
As seen in Fig. 5¢, applying increased thresholds to the SD map tended to
increase the relative proportion of SD voxels inside the AVA map.

Within the same ROIs (defined by the W vs. N2 AVA contrast) we also
evaluated the impact of sleep on SD during the N1 and N3 sleep stages.
For the contrast between W and N1 (using the 41 participants with
data in both stages), only two regions showed a statistically significant
difference (greater for N1: L paracentral lobule, p = .017; R calcerine,
p <.0001). The results for contrast between W and N3 were similar
to those found for the W vs. N2, with increased SD during N3.This in-
crease was significant (p <0.05) in all regions apart from three (R insula,
p = .86; R superior parietal, p = .054; L precentral gyrus, p = 0.52).

Functional connectivity among regions implicated in AVA activity
during wakefulness

Functional connectivity of brain regions showing significant AVA
during wakefulness

In this analysis we quantified the similarity of functional connectiv-
ity patterns in a network defined from brain regions showing significant
AVA during wakefulness (11 activity peaks of W condition in Fig 1, see
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Changes in Peak-to-peak Intervals

Wake < N1 sleep

Fig. 4. Regions where the peak-to-peak interval of the BOLD signal differed for the Wake condition as compared to the N1, N2 and N3 conditions. In all cases, intervals were shorter for the
wake condition than the sleep stages.

A. SD in regions B. Match between SD and C. Proportion of SD voxels
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Fig. 5. Relation of AVA and SD sleep-related changes in W vs. N2. Panel A: Functional ROIs were defined from regions showing strong W > N2 patterns. In all these, SD was significantly
higher during N2 than W (with exclusion of single region, all ps <.005). Panel B: The spatial match of sleep-related SD and AVA changes quantified via DICE coefficient. When thresholded
at the same level (p < 05 single voxel uncorrected, Family-Wise-Error p < .05 using cluster extent constraint) the DICE coefficient was moderate (0.34); it increased slightly with stricter
thresholding of the SD map, but remained below 0.5. Panel C: While the overlap between the maps was moderate, areas showing stronger sleep effects on SD were, proportionally, more
likely to be found in AVA clusters. In Panels B and C, ‘density’ refers to the density of T values inside the initial SD map.
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Supplementary Table 2 for locations). We used a hierarchical clustering
solution (a dendrogram) to describe connectivity between regions
showing significant AVA on the single-participant level. These analyses
differ from quantifying functional connectivity between region pairs as
they speak to the structure of connectivity between the set of regions as
a whole, which can remain similar even given a change in connectivity
strength per se, as we show below.

For the W, N1, N2 and N3 conditions, the consensus cluster analysis
solution returned centroid-dendrograms that were similar to those we
reported in prior work (Davis et al. 2014). As shown in Fig. 6, terminal
leaves included STG bilaterally, with a separate cluster for middle occip-
ital gyri, and a separate cluster for postcentral gyri. This supports our
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Fig. 6. Connectivity between regions with statistically significant AVA during wakefulness,
shown for the W, N1, N2 and N3 conditions. We constructed functional ROIs around peak
voxels showing AVA effects during wakefulness. For each condition, we characterized the
connectivity of these regions using hierarchical clustering on the single-participant level,
and then derived a consensus, centroid solution on the group level from the single-
participant dendrograms. The resulting solutions were qualitatively similar across
conditions (upper row). In contrast, the absolute correlations between time series
decreased from wakefulness sleep.

conclusion in prior work that AVA patterns in sensory systems are high-
ly correlated within but not across systems. Finally, within each of the
four conditions, the mean similarity of participants’ dendrograms
strongly exceeded that expected by chance (ps <.0001 for all conditions
as indicated by permutation methods; see Methods).

Another approach to quantifying similarity in network structure is
by evaluating the overall similarity of the group-level connectivity ma-
trices across conditions (see Fig. 6). We treated each condition's connec-
tivity matrix as a vector with 55 unique values, and examined the
similarities of these values across conditions using Pearson's R as a sim-
ilarity metric. (While most correlations were positive, a few were very
slightly negative.) The pairwise similarities were as follows: W:N1 =
0.93, W:N2 = 0.71, W:N3 = 0.70, N1:N2 = 0.78, N1:N3 = 0.76,
N2:N3 = 0.84. These considerable similarities, taken together with the
overall similarity in dendrogram solutions across conditions do not sug-
gest a qualitative difference in organization of functional connectivity
within this network across wakefulness and sleep.

While network structures were quite similar across wakefulness and
sleep, sleep was associated with a gradual and significant reduction in
connectivity among regions (see Fig. 6). For the W vs. N1 contrast, 9 of
the 55 region pairs showed statistically significant decreases, and
none showed statistically significant increases (paired t-tests for each
region pair, df = 41, p <.05 uncorrected; we used uncorrected tests as
we aim to discover data patterns rather than specifically document
which specific reductions are significant). The region showing the
most consistent pattern of reduced connectivity was L. STG, for which
5 of its 10 connections showed statistically significant reduced correla-
tions. For the W vs. N2 contrast, 14 of the 55 region pairs showed statis-
tically significant decreases, and 4 showed statistically significant
increases (paired t-tests for each region pair, df = 32, p <.05 uncorrect-
ed). The region showing the most consistent pattern of reduced connec-
tivity was L. I0G, for which 7 of its 10 connections showed statistically
significantly reduced correlations. The region pairs showing statistically
significant increased correlations were {L STG, R STG}, {L STG, L LiG},
{R ccs, R LiG}, {R ccs, L PoG}. For the W vs. N3 contrast (paired t-tests
for each region pair, df = 15, p <.05 uncorrected) we found statistically
significant reductions in the connectivity strength of 26 of the 55 region
pairs. A significantly higher correlation was found in one region pair,
the {R ccs, R LiG}. Note that in all tests between conditions, we used
matched-length BOLD time series (see Methods).

To summarize, the structure of functional connectivity in the AVA
network, as defined from regions of local maxima during wakefulness,
appeared to largely maintain across sleep conditions. However, deeper
sleep was associated with reduced correlation strength.

Functional connectivity of brain regions where AVA decreased from
wakefulness to N2 sleep

We also examined the connectivity structure between a set of
regions defined by the W vs. N2 contrast (Fig 2a and Table 1). The con-
sensus clustering solution for regions defined in this network revealed a
different sort of arrangement as the terminal leaves did not tend to clus-
ter within sensory regions (see dendrograms in Supplementary Fig. 1),
Among these regions, sleep was associated with decreased connectivity
(see connectivity matrices in Supplementary Fig. 1). For the W vs. N1
contrast only 3 of the 45 region pairs showed statistically significant dif-
ferences in connectivity. The L MTG-L POG, pair showed a significant
increase in connectivity strength, and the R SPL was revealed to have
significantly decreased connectivity to the R ins and the L MOcg (paired
t-test for each region, df = 40, p < .05 uncorrected). The W vs. N2
contrasts revealed 15 region pairs with statistically significant reduced
connectivity (paired t-test for each region, df = 32, p <.05 uncorrected).
For the W vs. N3 contrast, 27 of the 45 region pairs showed statistically
significant reduced connectivity. No region pairs were significantly
increased (paired t-tests for each region pair, df = 15, p <.05). Interest-
ingly, an analysis of the correlation matrices constructed for this set of
regions showed strong maintenance of structure across W, N1, N2 and
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N3. The similarity of the W and N1 correlation matrices was quite high
(Pearson's R = 0.93), as was the similarity of the W and N2 correlation
matrices (Pearson's R = 0.86), and the W and N3 correlation matrices
(Pearson's R = 0.81).

Discussion

Human NREM sleep is accompanied by extensive cognitive and
behavioral changes (e.g., Harsh et al. 1994) and an increased arousal
threshold for the deepest sleep stages (e.g., Carskadon and Dement
2005). Surprisingly, the analysis of spontaneous brain activity obtained
from fMRI and EEG recordings has failed to identify equally widespread
changes in the structure of functional connectivity networks during
NREM sleep (Larson-Prior et al. 2009, 2011; Horovitz et al. 2008,
2009; Boly et al. 2012; Brodbeck et al. 2012; Tagliazucchi et al. 2013a).
In particular, coordinated patterns of intrinsic connectivity networks
(ICN) are preserved and, while disconnections occur inside particular
networks such as the DMN, all individual ICN are nevertheless identifi-
able in all stages of human NREM sleep (Tagliazucchi et al. 2013c).
The maintenance of connectivity patterns is particularly noticeable in
sensory systems (e.g., Horovitz et al. 2008; Larson-Prior et al. 2009).
The maintenance of connectivity structure does not mean that the abso-
lute connectivity strength is necessarily unaltered (see, e.g., Picchioni
et al. 2014, for reduced thalamic connectivity). However, the preserved
structure of sensory ICNs points at a potential for preserved function
during sleep, perhaps suggesting (Horovitz et al. 2008, p. 677) that
“BOLD fMRI resting state activity does not require conscious wakeful-
ness, but rather, in most brain areas, persists during reduced levels of
consciousness characteristic of light sleep.”

Resting state activity, however, takes many forms beyond functional
connectivity patterns, and in the current study we aimed to apply a new
method for studying sleep-related activity, based on our prior work that
documented particular activity dynamics in sensory cortices. Specifically,
we have previously shown (Davis et al. 2014) that adult wakefulness is
dominated by AVA signatures in sensory cortices, and suggested that
these dynamics may indicate preparedness for sensory input during
calm wakefulness in the absence of any specific orienting task or exoge-
nous stimulation.

Here we find that during N2 and N3 sleep (but not N1) there is
no evidence for the sorts of floor-mode AVA patterns seen during wake-
fulness. Comparisons against chance/baseline showed a more limited
AVA profile in N2 and N3, and direct comparisons of N2 to
wakefulness documented multiple regions where AVA was significant
during wakefulness but at chance during N2. For N2, these changes
were found in both auditory and visual systems, whereas for N3 they
were limited to visual systems. In both N2 and N3, the AVA patterns
in visual cortex were statistically significant, but showed a different
pattern (“ceiling mode”) as compared to wakefulness. The whole-
brain contrast between wakefulness and N3 showed few differences,
meaning there were limited regions where the effect size was large
(on the single-voxel level). However, N3 was also associated with the
weakest AVA patterns compared to baseline, and it could be that both
these results reflect higher intrinsic noise in that condition. Thus,
although the functional connectivity patterns of sensory systems main-
tain across wakefulness and sleep (Horovitz et al. 2008, Larson-Prior
et al.,, 2009, Uehara et al. 2014), our work shows a very strong change
in local dynamics in all three sensory systems.

There are several potential explanations for these findings. One pos-
sibility is that during restful wakefulness, AVA reflects a cycling through
the activity ‘repertoire’ of sensory regions (Deco et al. 2011). These
might be related to maintaining a preparatory response set that could
be implemented rapidly when observing or hearing particular stimuli,
and it is this function that is reduced during sleep. Alternatively and
specifically for somatomotor regions, the shift from positive AVA to a
more neutral AVA signature may be related to a shift from a state of
wakeful inhibition of sophisticated and volitional motor activity to the

very different type of motor inhibition during sleep (Morales and
Chase 1978). This could be related to the fact that motor actions initiat-
ed during sleep may be generated by different systems (Parrino et al.
2006). Additionally, activation in both auditory and visual cortex has
been linked to generation of false percepts during wakeful rest
(e.g., Hesselmann et al. 2010). The sleep-related reduction of AVA may
indicate modulation of any or all of such processes, including, possibly,
a different dynamic operation mode corresponding to active inhibition
of sensory inputs during sleep, thus shifting towards a ceiling mode of
activity in which spontaneous deactivations reflect sensory inhibition
of environmental noise. Further work is needed to dissociate between
such explanations, but there is some support for the presence of inhib-
itory mechanisms in prior neuroimaging work, documenting a massive
decrease in the extent of BOLD activity to auditory stimulation during
NREM sleep accompanied by deactivation in visual cortex (Czisch
et al. 2002), as well as reduced (rather than increased) occipital re-
sponses during sleep (stimuli delivered via stroboscopic light through
closed eyelids) (Born et al. 2002).

Another possibility is that the changes in AVA observed in sensory
cortices during sleep are linked to disconnection from environmental
stimuli, which is prominent through all stages of sleep'. It might be
that during N1 sleep the sensory cortices might not yet have switched
to bistable dynamics which manifest themselves during sleep
(Pigorini et al.,, 2015, Compte et al., 2003 and Sanchez-Vives and McCor-
mick, 2000). It is possible that a bistable regime would manifest itself
with low BOLD AVA, but this is an issue that should be investigated fur-
ther. It is notable that while we observed no difference in AVA between
the wake and the N1 stages, we did find a significant increase in the
peak-to-peak interval in N1. This suggests that a change to the peak-
to-peak timing might be an initial indicator of sleep onset, prior to
changes in AVA dynamics proper.

This shift from a floor-mode AVA profile during wakefulness to a
ceiling mode AVA profile in visual cortex was specific to deeper sleep
stages and not observed in early N1 sleep. This result might seem
counter-intuitive, since the protection against incoming stimuli in the
progression from wakefulness to sleep, i.e., N1, is of critical importance.
However, this does not take into account the delay between thalamo-
cortical disconnection occurring at sleep onset (Spoormaker et al.
2010; Tagliazucchi and Laufs 2014) and the “deactivation” of sensory
regions (Magnin et al. 2010). This delay may account for residual
conscious awareness after the transition to N1 sleep and possibly
also for the preserved AVA during early sleep, during which incoming
stimuli are blocked by the thalamic disconnection. During N2 sleep,
thalamo-cortical communication is re-established (as shown by the cor-
tical presence of sleep-spindles, of thalamic origin; De Gennaro and
Ferrara 2003), but at this point the sensory cortices already react to
stimulation with an inhibition of BOLD activity (i.e., ceiling mode) in
order to raise the threshold for awakening.

Finally, we note that when interpreting these changes in AVA
dynamics it is important to keep in mind that AVA is a BOLD signature,
and that to better understand its origins, future work should study the
underlying neural activity in these regions, potentially using EEG/MEG
and source modeling approaches. The current work does however sug-
gest that during wakefulness, AVA is a functionally related signature
rather than simply reflecting very low-level processes that are indepen-
dent of cognitive activity (e.g., Boly et al. 2009).

AVA, variance and connectivity offer complementary insights into
descent to sleep

In addition to studying AVA changes during sleep, we also examined
how sleep-induced changes in AVA relate to changes in three parame-

ters typically used to characterize sleep-related changes: BOLD signal

1 We thank an anonymous reviewer for this suggestion.
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variance (SD of time series), the magnitude of connectivity between
different sets of regions (as measured via pairwise correlations), and
the structure of connectivity between these regions (as measured via
dendrograms). This evaluation is important not only for understanding
the relation between the measures, but also for determining whether
AVA provides additional information above and beyond offered by
other methods.

Increased BOLD signal variance has been reported in sensory cortices
during NREM sleep (Horovitz et al. 2008; Tagliazucchi et al. 2013¢),
which could suggest a magnification of responses to sensory stimuli -
either activation or deactivation - resulting in increased variance, or
potentially be a result of non-neural factors such as changes in perfusion
during sleep (Horovitz et al. 2008), or even changes in respirations
patterns as these have shown to impact EEG patterns during sleep
(Faes et al. 2015; but note that we partialed out heart rate variance
effects to some extent). Horovitz et al. (2008) reported a gradual
increase in standard deviation that correlated with an Inverse Index of
Wakefulness. Our findings are in line with these conclusions in the re-
gions we examined, as we found strong increases in standard deviation
for N2 and N3, but more modest ones for N1. The findings of increased
variance during sleep may appear to be at odds with the finding that
sleep is associated with a more limited propagation of signals as report-
ed in pivotal TMS work by Massimini et al. (2005). However the same
study also reported a stronger local response during sleep, and the
(local) variance of the BOLD signal may be a signature of such local re-
sponses rather than reverberation in an extended network.
Interestingly, the N1 stage already showed very strong differences in
the temporal dynamics of the BOLD response as measured by the
peak-to-peak interval. Thus, it could be that a change in peak frequency
precedes a strong change in variance, and this is an issue that can be
explored in future work.

The observation of changes in AVA, in particular the shift towards
a ceiling mode in occipital regions, is of a starkly different nature, as it
relates to the variance in the peak/pit values of the signal only and not
to the ratio of absolute activity between peaks and pits. This additional
result points to a dynamical transformation inside a (in fact, more re-
stricted) subset of sensory regions, which are those exhibiting highest
AVA values during wakefulness, thus establishing a stronger link be-
tween AVA and sleep. While purely physiological changes can clearly
impact magnitude of signal variance, it is difficult to explain how it
could generate such subtle but robust changes in time-domain dynam-
ics measured by AVA.

The relationship between the sets of brain regions that showed
changes in SD and AVA during sleep was complex: there was no striking
overlap between areas in which SD and AVA changed during sleep,
though voxels showing strong SD effects tended to be found within
AVA clusters. Again, it is essential to keep in mind that analytically,
the two quantities are independent. SD can increase while AVA stays
the same, as would be the case during any linear transformation of the
time series, such as the one associated with an increase in gain or ampli-
tude modulation. Thus, both analytically and practically the quantities
communicate different information.

While the dynamics of activity in sensory cortices, as measured by
AVA, changed with sleep, this was not the case for the structure of func-
tional connectivity among these regions. We examined connectivity
within these regions via dendrograms, and found that during wakeful-
ness, these regions arranged according to a structure typified by strong
clustering of regions within separate sensory systems, replicating our
prior work (Davis et al. 2014). For W, N1 and N2 dendrograms, terminal
nodes within a cluster always included regions linked to the same sen-
sory functional system (e.g., lateral temporal cortex bilaterally, sensori-
motor cortex bilaterally, and occipital cortex bilaterally). For N3,
sensorimotor regions were not terminal nodes. It is possible that the
constant scanner noise drove the consistent connectivity patterns
during wake, N1 and N2 sleep for auditory regions (this is a general con-
cern for any fMRI functional connectivity study). This concern could be

evaluated via less noisy hemodynamic measures such as near-infrared
spectroscopy, or by fMRI experiments with variable acoustic stimuli.

Additionally, we found that this structure of connectivity (among
mainly sensory regions) maintained during sleep in a similar configura-
tion to that found during wakefulness. This is very consistent with
prior work mentioned earlier documenting maintained connectivity
structure of sensory regions during sleep; see Horovitz et al. 2008 for
visual seed region; Larson-Prior et al. 2009, for visual, auditory and
somatomotor systems. Interestingly, this structure was maintained
even though the absolute magnitude of pairwise time series correla-
tions between these regions showed a systematic reduction with
sleep. We found similar results when we defined seed regions via
peaks in the W vs. N2 contrast. While spatial disintegration of networks
would presumably be effective in insulating the sleeping brain from
arousals and otherwise facilitating sleep (Boly et al. 2012; Tagliazucchi
et al. 2013a), preservation of connectivity may serve to generate rapid
responses to a sudden threat (Sadaghiani et al. 2010). In this appar-
ent contradiction, the nature of our observation of preserved func-
tional connectivity structure alongside drastically altered dynamics
is manifest.

Interestingly, when focusing on the thalamus we found no signifi-
cant changes in AVA patterns across wakefulness and sleep, in any
thalamic subregion. This stands in contrast to the marked impact of
sleep on thalamic functional connectivity (e.g., Picchioni et al. 2014).
Similarly, there was no difference in AVA between wakefulness and
N1, even though prior work (Tagliazucchi and Laufs 2014) has shown
that N1 sleep is associated with an increase in cortico-cortico connectiv-
ity and a decrease in cortico-thalamic connectivity. However, it is
important to note that it is possible that cortical changes in AVA are
mediated by thalamic activity, without concomitant changes to
AVA in the thalamus proper. That is, it could be that sleep's impact
on sensory cortices is mediated indirectly by its effect on the thala-
mus and other subcortical structures with the consequence of re-
duced dynamics in the cortex. Future examinations of specific
thalamic subregions across wake and sleep could dissociate between
the stability of AVA and potential changes in connectivity (but study-
ing connectivity of thalamic regions at high resolution would neces-
sitate higher resolution scanning protocols). To summarize, we find
that AVA dynamics, connectivity structure and correlation strength
can vary independently and shed light on different aspects of
sleep-related changes.

Alterations in the temporal dynamics of activity fluctuations are
well-established features of EEG during sleep (AASM 2007) and
fMRI is known to reflect neuroelectrical activity at specific frequen-
cies (Laufs et al. 2003a, 2003b; Mantini et al. 2007; Tagliazucchi
et al. 2012b). In particular, it is known that the alpha frequency (be-
tween 8 Hz and 12 Hz) is present during wakefulness, is correlated
with fMRI signals in sensory and visual (occipital) areas (Laufs
et al. 2006; Ritter et al. 2009) and gives way to slower frequencies
after sleep onset. The changes in AVA observed in sensory regions
are consistent with the alterations in the dynamics of electrical activ-
ity, considering that similar amplitude asymmetries have been ob-
served for the alpha wave in EEG recordings (Mazaheri and Jensen
2008).

Possible functional correlates of AVA

The sleep-related AVA changes we document may be related to dif-
ferent levels of conscious processing during wakefulness and sleep.
Some higher level processing is maintained during sleep. Stimuli that
fail to propagate to frontal and parietal regions and thus trigger a
conscious percept (for instance, due to subliminal masking or due to
the attentional blink) can still progress in the cortical hierarchy of
sensory regions and in fact be processed to extract meaningful informa-
tion, such as semantic information (Dehaene et al. 1998; Dehaene et al.
2006) or stop signals (van Gaal et al. 2009). However, the degree of
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information processing is diminished, for instance, lacking characteris-
tic landmarks such as mismatch negativity (Loewy et al. 1996). In addi-
tion, the sleep state may involve unique modes of activity in visual
cortex, including imagery or dreaming (see Born et al. 2002 for discus-
sion), which could explain its unique mode of energy consumption dur-
ing sleep. For instance, it has been shown it is possible to classify dream
content from activity in visual cortex (Horikawa et al. 2013). This
suggests that sleep unconsciousness is accompanied by unique activity
regimen in the sensory cortices. AVA may reflect these differences in
dynamical regimes across wakefulness and sleep, and the study of
AVA in other brain states with even more restricted processing of
sensory information (such as under anesthesia) should prove important
to support this distinction. Future work examining AVA in relation to
inter-individual differences in responding to sensory stimulation during
sleep could address this issue by quantifying such differences in a quiet
environment outside the scanner and then relating those observations
to BOLD data as obtained and reported here.

While it is reasonable to postulate a “deactivation” of higher level,
heteromodal cortical areas during sleep (i.e., the DMN and attention
networks), the absence of AVA changes in these regions is most sim-
ply attributable to the fact that these regions do not show AVA dur-
ing wakeful rest (see Fig. 1 and prior findings in Davis et al. 2014).
Indeed, sleep-induced alterations in these higher level cortical
areas appear to be more temporally extended (such as diminished
temporal integration; Tagliazucchi et al. 2013c), instead of corre-
sponding to changes in the variance of instantaneous “point-like”
events (Tagliazucchi et al. 2012a; Davis et al. 2014). The relation be-
tween AVA and consciousness is an interesting topic for future work.
At minimum, our findings suggest there might not be a monotonic
relation between AVA and consciousness, as the differences between
wakefulness and N3 appeared more limited than the differences
between wakefulness and N2.

Summary

Our findings lend support to the view that during sleep, sensory sys-
tems display a qualitatively different dynamical behavior as evidenced
by the inhibition of particular BOLD dynamics in these regions. At the
same time, the structure of connectivity between these regions remains
stable. The findings also suggest that during wakefulness, AVA reflects a
functional signature of information processing in sensory cortices, and
as such is strongly reduced during sleep. The change in dynamics from
wakefulness to sleep likely reflects different responses to environmen-
tal stimuli, thus protecting the brain against arousals in spite of well-
preserved functional connectivity structure, which might endow the
brain with rapid reactivity. The link between AVA and sensory informa-
tion processing and preparedness is also highlighted by these findings,
thus suggesting further research to elucidate the precise neural mecha-
nisms underlying this association.
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