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Abstract

In this proceeding, we study the dynamical evolution of the sigma field within the framework of Langevin dynamics.
We find that, as the system evolves in the critical regime, the magnitudes and signs of the cumulants of sigma field, C3

and C4, can be dramatically different from the equilibrated ones due to the memory effects near Tc. For the dynamical
evolution across the 1st order phase transition boundary, the supercooling effect leads the sigma field to be widely
distributed in the thermodynamical potential, which largely enhances the cumulants C3, C4, correspondingly.
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1. Introduction

The STAR collaboration has measured the higher order cumulants of net protons in Au+Au collisions
with collision energy ranging from 7.7 to 200 GeV [1, 2, 3]. The experimental data of κσ2

(
κσ2 = C4/C2

)
shows a large deviation from the poisson baseline, and presents an obvious non-monotonic behavior at lower
collision energies, indicating the potential of discovery the QCD critical point in experiment [3].

Within the framework of equilibrium critical fluctuations, we calculated the fluctuations of net protons
through coupling the fluctuating sigma field with particles emitted from the freeze-out surface of hydro-
dynamics [4]. Our calculations can fit the C4 and κσ2 data by tuning the related parameters, as well as
qualitatively describing the acceptance dependence of the cumulants of net protons. However, our calcula-
tions over-predicted both C2 and C3 data due to the positive critical fluctuations, which are in fact intrinsic
for the traditional equilibrium critical fluctuations [5, 6, 7].

Recently, Mukherjee and his collaborators have studied the non-equilibrium evolution for the cumulants
of sigma field in the critical regime, based on the Fokker-Plank equation [8]. The numerical results showed
that, as the system evolves near the critical point, the memory effects keep the signs of the Skewness and
Kurtosis at the early time, which are opposite to the equilibrium ones at the freeze-out points below Tc.
However, their calculations focus on the zero mode of the sigma field, which has averaged out the spatial
information and can not directly couple with particles to compare with the measured experimental data.

To solve this problem, one could directly trace the whole space-time evolution of the sigma field within
the framework of Langevin dynamics. In this proceeding, we will present the main results from our recent
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numerical simulations of the Langevin equation of the sigma field, using an effective potential of the linear
sigma model with constituent quarks. As discovered in early work [8], we also observe clearly memo-
ry effects as the system evolves in the critical regime, which largely influence the signs and values of the
cumulants C3 and C4. In addition, we find that for the dynamical evolution across the 1st order phase transi-
tion boundary, the supercooling effect leads the sigma field to be widely distributed in the thermodynamical
potential, which largely enhances the corresponding cumulants C2 −C4 at the freeze-out points.

2. The formalism and set-ups

In this proceeding we focus on the dynamical evolution of the order parameter field within the frame-
work of the linear sigma model with constituent quarks. According the the classification of the dynamical
universality classes [9], our approach belongs to model A, which is not in the same dynamical universali-
ty class of the full QCD matter evolution [10], but easy for numerical implementations. The linear sigma
model is an effective model to describe the chiral phase transition, which presents a complete phase diagram
on the (T, μ) plane with different phase transition scenarios, including a critical point [11, 12]. As the mass
of the sigma field vanishes at the critical point, the related thermodynamical quantities become divergent
due to the critical long wavelength fluctuations of the sigma field. In the critical regime, the semi-classical
evolution of the long wavelength mode of the sigma field can be described by a Langevin equation [13]:

∂μ∂μσ (t, x) + η∂tσ (t, x) +
δVe f f (σ)
δσ

= ξ (t, x) , (1)

where η is the damping coefficient and ξ (t, x) is the noise term. Both of these two terms come from the
interaction between the sigma field and quarks [13]. Here we take η as a free parameter, and input white
noise in the calculation. The effective potential of the sigma field is written as:

Ve f f (σ) = U (σ) + Ωq̄q (σ) =
λ2

4

(
σ2 − v2

)2 − hqσ − U0 + Ωq̄q (σ) (2)

where U (σ) is the vacuum potential of the chiral field, and the related values of λ, σ, hq and U0 are set by
the vacuum properties of hadrons. Note that here we have neglected the fluctuations of 	π, since its mass is
finite in the critical regime. Ωq̄q represents the contributions from thermal quarks, which has the form:

Ωqq̄ (σ; T, μ) = −dq

∫
d3 p

(2π)3 {E + T ln[1 + e−(E−μ)/T ] + T ln[1 + e−(E+μ)/T ]} (3)

where dq is the degeneracy factor of quarks, and the energy of the quark is E =
√

p2 + M (σ)2. Here we
introduce an effective mass for the quark, M (σ) = m0 + gσ [4, 6]. After the chiral phase transition, quarks
obtain effective mass and turn to constituent quarks. Based on the effective potential Eq. (2), one can obtain
the corresponding phase diagram in the (T, μ) plane, which is plotted in the left panel of Fig. 1.

For the numerical implementations, we first construct the profiles of the initial sigma field according
to the probability function P [σ (x)] ∼ exp (−ε (σ) /T ) (where ε (σ) =

∫
d3x
[

1
2 (∇σ (x))2 + Ve f f (σ (x))

]
),

then evolve the sigma field event by event through solving the Langevin equation Eq.(1). With the obtained
space-time configurations of the sigma fields, the moments of the sigma field can be calculated as:

μ′n = 〈σn〉 =
∫

dσσnP [σ]∫
dσP [σ]

, (4)

where σ = 1
V

∫
d3xσ (x). The cumulants of sigma field can be obtained from these above moments.

Note that numerically solving Eq.(1) also needs to input the space-time information of the local temper-
ature and chemical potential, T (t, x, y, z) and μ(t, x, y, z), for the effective potential, which are in principle
provided by the evolution of a back-ground heat bath. For simplicity, we assume that the heat bath evolves
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Fig. 1. Left panel: the phase diagram on the (T, μ) plane, obtained from the linear signa model with constituent quarks. Right panel:
the thermodynamic potentials with different temperatures (T < Tc, T = Tc and T > Tc), but with the same chemical potential μ = 240
MeV.

along simple trajectories with constant chemical potential (traj. I and traj. II in Fig. 1), and the temperature
drops down in a Hubble-like way [8]:

T (t)
T0
=

(
t
t0

)−0.45

, (5)

where T0 is the initial temperature and t0 is the initial time. Considering that the dynamical evolution of the
σ field belongs to the universality class of model A, we set the damping coefficient η to be a constant value.

3. Numerical results

Fig. 2 presents the time evolution for the cumulants of sigma fields. The left and right panels show the
results of evolution on the crossover phase transition side (along traj. I with μ = 200 MeV, which is also close
to the critical point) and on the 1st order phase transition side (along traj. II with μ = 240 MeV), respectively.
For each case, we choose three constant damping coefficients for the dynamical evolution, which are shown
as three colored solid lines. We also plot the equilibrated values of the sigma field (dotted lines) from
the equilibrium critical fluctuations along traj. I and traj. II, using the mapping between temperature and
evolution time in Eq. (5).

For the case with traj. I, the evolution of the cumulants for critical fluctuations presents clear memory
effects. For C3 and C4, the signs and values are different from the equilibrated ones at later evolution
time. For example, at t=12 fm/c, both C3 and C4 from dynamical evolution show positive values, while the
corresponding equilibrated ones are negative. In the dynamical evolution scenario, the increase of cumulants
is delayed due to the critical slowing down, which leads to certain memory effects. With the increase of the
damping coefficient η, the dynamical evolution becomes slower, and behaves like diffusion process. In the
early paper [4], it was found that the equilibrium critical fluctuations always over-predict C2 and C3 due
to the intrinsic positive contributions. The calculations presented in Fig. 2 (left) show that the dynamical
evolution of the sigma field near the critical point could change the sign of C3 and largely delay the increase
of C2, which has the potential to qualitatively describe different cumulant data of net protons with a properly
chosen freeze-out scheme and well tuned parameters 1.

The right panel presents the dynamical evolution along traj. II, which is across the first order phase
transition. For the equilibrium values, C1 −C4 show discontinuity at the phase transition temperature. Note
that the thermodynamical potential has two minima around Tc (Fig. 1, right), which leads to the discontinuity

1In the freeze-out scheme proposed in [4, 7], the fluctuations of the sigma field transfers to the fluctuations of protons through a
variable effective mass δm = gδσ. With a linear expansion of the distribution function f = f0 (1 − gδσ/ (γT )) [4, 6], C3 of protons
and C3 of the sigma field present opposite signs for both equilibrium and dynamical fluctuations. Correspondingly, the positive C3 of
the sigma field after a dynamical evolution leads to negative C3 of protons at the freeze-out point below Tc, which could qualitatively
explain the experimental data with the Poisson non-critical fluctuation baselines
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Fig. 2. Dynamical evolution for the cumulants of sigma fields. The left and right panels are the results evolving on the crossover side
with μ = 200 MeV (along traj. I) and on the 1st order phase transition side with μ = 240 MeV (along traj. II).

of C1 −C4. For the dynamical evolution scenario, C1 −C4 continuously change during the evolution and the
values of C2−C4 at late time are much larger than the maximum values of the equilibrated ones. As shown in
Fig. 1 (right), there exists a barrier between two minima of the thermodynamical potential, which prevents
part of the sigma’s configurations evolve to the real minimum at certain temperatures close to the phase
transition. Such supercooling effect leads the sigma field to be widely distributed in the thermodynamical
potential, which also largely enhances the cumulants C3 and C4 at the first order transition side.

4. Summary

Using Langevin dynamics, we simulate the dynamical evolution of the sigma field with the effective
potential from the linear sigma model. We found, as the system evolves in the critical regime, the memory
effects keep the signs of C3 and C4 from the early evolution, which are different from the equilibrated ones
at the possible freeze-out points below Tc. For the dynamical evolution across the 1st order phase transition
boundary, the supercooling effect leads the sigma field to be widely distributed in the thermodynamical
potential, which largely enhances the cumulants C3 and C4, correspondingly.
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