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dInstitute for Theoretical Physics, Eötvös University, H-1117 Budapest, Hungary
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Abstract
The QCD equation of state at finite baryon density is studied in the framework of a Cluster Expansion Model (CEM),
which is based on the fugacity expansion of the net baryon density. The CEM uses the two leading Fourier coefficients,
obtained from lattice simulations at imaginary μB, as the only model input and permits a closed analytic form. Excellent
description of the available lattice data at both μB = 0 and at imaginary μB is obtained. We also demonstrate how the
Fourier coefficients can be reconstructed from baryon number susceptibilities.
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1. Introduction

Direct first-principle lattice QCD methods provide the equation of state of QCD only at zero chemical
potential [1, 2], where a crossover-type transition is observed [3]. Lattice QCD calculations at finite μB, on
the other hand, are hindered by the sign problem. Thermodynamic features of QCD at small but finite μB are
therefore calculated using indirect methods, such as the reweighing techniques [4, 5], the Taylor expansion
around μ = 0 [6], the analytic continuation from imaginary μ [7, 8], or the canonical approach [9, 10].

The analysis presented here is based on the relativistic fugacity expansion of the net baryon density

ρB(T, μB)
T 3 =

∞∑

k=1

bk(T ) sinh(k μB/T )
μB→iμ̃B
= i

∞∑

k=1

bk(T ) sin(k μ̃B/T ), (1)

which takes the form of a Fourier series at purely imaginary values of μB. The leading four Fourier coeffi-
cients of the expansion (1) were recently calculated within imaginary μB lattice QCD simulations [11], see
Fig. 1a.
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Fig. 1. Temperature dependence of (a) the four leading Fourier coefficients from lattice QCD [11] and CEM-LQCD [12], and (b) the
α3 and α4 ratios [Eq. (2)], constructed from the lattice QCD data [11] and in the Stefan-Boltzmann limit of massless quarks [Eq. (3)].

2. Cluster Expansion Model

2.1. Higher-order coefficients from lower ones
It was pointed out in Ref. [11] that the lattice behavior of the Fourier coefficients b2, b3, and b4 (as well

as baryon number susceptibilities [13, 14]) can be understood in terms of repulsive baryonic interactions.
The models for repulsive baryon-baryon interactions, one prominent example being the excluded volume
model [15], suggest the following ratios of Fourier coefficients to be temperature-independent:

αk =
[b1(T )]k−2

[b2(T )]k−1 bk(T ), k = 3, 4, . . . (2)

The temperature dependence of the coefficients α3 and α4, constructed from the lattice QCD data [11],
is shown in Fig. 1b. Within the presently available level of accuracy, the lattice data are consistent with
temperature independent values for α3 and α4 calculated in the Stefan-Boltzmann limit of massless quarks:

αSB
k = 8k−1 (3 + 4π2)k−2

(3 + 16π2)k−1

3 + 4π2k2

k3 , k = 3, 4, . . . (3)

The above empirical observation forms the basis of the Cluster Expansion Model (CEM) [12]. The CEM
takes b1(T ) and b2(T ) as an input and assumes that all higher-order Fourier coefficients are given by

bk(T ) = αSB
k

[b2(T )]k−1

[b1(T )]k−2 , k = 3, 4, . . . (4)

This relation neglects the connected 3-baryon correlations and thus is valid for a sufficiently dilute system in
the hadronic phase. The constraint (3) ensures a smooth transition to the quark-gluon plasma at high T [12].

2.2. Analytic form
The fugacity expansion in Eq. (1) can be analytically summed for the CEM ansatz (4). The result is

ρB(T, μB)
T 3 = − 2

27π2

b̂2
1

b̂2

{
4π2 [Li1 (x+) − Li1 (x−)] + 3 [Li3 (x+) − Li3 (x−)]

}
. (5)

Here b̂1,2 =
b1,2(T )

bSB
1,2

, x± = − b̂2

b̂1
e±μB/T , and Lis(z) =

∞∑

k=1

zk

ks is the polylogarithm.

It follows from Eq. (5) that there is no singular behavior in the CEM at real values of the baryochemical
potential μB, provided that b1 > 0 and b2 < 0 as suggested by the lattice data for T > 135 MeV [11]. The
CEM corresponds to a no-critical-point scenario for the QCD phase diagram. Therefore, any unambiguous
signal of the QCD critical point will show up as a deviation from the CEM result. However, the CEM does
contain singularities in the complex μB/T plane, due to the polylogarithm, and this has certain consequences
for the radius of convergence of Taylor expansion around μB/T = 0 (see Ref. [12] for details).
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Fig. 2. Temperature dependence of the net baryon susceptibilities (a) χB
2 , (b) χB

4 /χ
B
2 , (c) χB

6 /χ
B
2 , and (d) χB

8 , calculated within CEM-
LQCD (red stars). Lattice QCD data of Wuppertal-Budapest [20] and HotQCD [18, 19] collaborations are shown by the blue and green
bands/symbols, respectively.

3. Results

3.1. Baryon number susceptibilities
The baryon number susceptibilities χB

k = ∂
k−1(ρB/T 3)/∂(μB/T )k−1 in the CEM read

χB
k (T, μB) = − 2

27π2

b̂2
1

b̂2

{
4π2
[
Li2−k (x+) + (−1)k Li2−k (x−)

]
+ 3
[
Li4−k (x+) + (−1)k Li4−k (x−)

]}
. (6)

Leading order baryon number susceptibilities at μB = 0 have recently been computed in lattice QCD [16,
17, 18, 19, 20]. A comparison with these lattice data can test the predictive power of the CEM.

Figure 2 depicts the temperature dependence of χB
2 , χB

4 /χ
B
2 , χB

6 /χ
B
2 , and χB

8 , calculated in CEM and
compared to the lattice data of Wuppertal-Budapest [20] and HotQCD collaborations [18, 19]. The CEM
calculations use the Wuppertal-Budapest data [11] for b1(T ) and b2(T ) as an input and are therefore labeled
CEM-LQCD in Fig. 2. CEM results are in quantitative agreement with the lattice data for χB

2 and χB
4 /χ

B
2 .

The CEM is also consistent with the lattice data for χB
6 /χ

B
2 and χB

8 , although these data are still preliminary
and have large error bars. One interesting qualitative feature is the dip in the temperature dependence of
χB

6 /χ
B
2 , where this quantity is negative. This behavior may stem from chiral criticality [21]. Given that this

behavior is also present in CEM (see red stars in Fig. 2c), i.e. in a model which has no critical point, we
conclude that the negative dip in χB

6 /χ
B
2 cannot be considered as an unambiguous signal of chiral criticality.

3.2. Reconstructing the Fourier coefficients b1 and b2 from susceptibilities
All baryon number susceptibilities at a given temperature are determined in the CEM by two parameters

– the leading two Fourier coefficients b1 and b2. One can now consider a reverse prescription – assuming
the validity of the CEM ansatz one can extract the values of b1 and b2 at a given temperature from two
independent combinations of baryon number susceptibilities by reversing Eq. (6). We demonstrate this
by considering the lattice QCD data of the HotQCD collaboration for χB

2 and χB
4 /χ

B
2 . The temperature

dependence of the b1 and b2 coefficients, reconstructed from the HotQCD collaboration’s lattice data on
the basis of CEM [Eq. (6)], is shown in Fig. 3 by the green symbols. The extracted values agree rather
well with the imaginary μB data of the Wuppertal-Budapest collaboration, shown in Fig. 3 by the blue
symbols. This agreement can be regarded as a possible implicit evidence for both, the consistency between
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Fig. 3. Temperature dependence of the leading two Fourier coefficients b1(T ) and b2(T ), calculated in lattice QCD simulations by
the Wuppertal-Budapest collaboration [11], and reconstructed from the lattice data of the HotQCD collaboration [18, 19] for χB

2 and
χB

4 /χ
B
2 using CEM [Eq. (6)].

the lattice results of the Wuppertal-Budapest and HotQCD collaborations, and that the CEM ansatz provides
an accurate description for all observables considered here.

4. Summary

We presented the Cluster Expansion Model for the QCD equation of state at finite baryon density, which
is based on the relation (4) between higher-order and the leading two Fourier coefficients of the net baryon
density, suggested by the recent lattice data at imaginary μB. The analytic structure of the CEM has no criti-
cal point, therefore unambiguous signals of the hypothetical QCD critical point in various observables must
show up as deviations from CEM predictions. The presently available lattice data on Fourier coefficients
and baryon number susceptibilities do not show such deviations. Given its simplicity and consistency with
the lattice data, the CEM based equation of state can be useful for hydrodynamic simulations of heavy-ion
collisions at finite baryon density.
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