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Abstract

The state-of-the-art pattern recognition method in machine learning (deep convolution neural network) is used to identify
the equation of state (EoS) employed in the relativistic hydrodynamic simulations of heavy ion collisions. High-level
correlations of particle spectra in transverse momentum and azimuthal angle learned by the network act as an effective
EoS-meter in deciphering the nature of the phase transition in QCD. The EoS-meter is model independent and insensitive
to other simulation inputs including the initial conditions and shear viscosity for hydrodynamic simulations. Through
this study we demonstrate that there is a traceable encoder of the dynamical information from the phase structure that
survives the evolution and exists in the final snapshot of heavy ion collisions and one can exclusively and effectively
decode these information from the highly complex final output with machine learning when traditional methods fail.
Besides the deep neural network, the performance of traditional machine learning classifiers are also provided.
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1. Introduction

The equation of state (EoS) of strongly coupled QCD matter (nuclear matter, quark matter or quark
gluon plasma QGP) describes the pressure as a function of energy density and net baryon chemical potential
(which reflects the matter to anti-matter ratio). The nuclear EoS is critical for understanding the evolution
of early universe, the structure of neutron stars, the gravitational wave from neutron star mergers and high
energy nuclear reactions. The most interesting region in the EoS is the transition region between normal
nuclear matter and strongly coupled QGP. Lattice QCD calculations predict that the transition is a smooth
crossover for high temperature and low net baryon chemical potential. Due to the famous fermion sign
problem, no first principle lattice QCD calculation is able to provide the EoS at intermediate temperature
and net baryon chemical potential, in which region it is conjectured that there is a first order phase transition.
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In nature, hot QGP exist in one microsecond after the big bang, while dense QGP may exist in the deep core
of neutron stars. In laboratory, QGP is produced in high energy heavy ion collisions. Huge amount of
experimental data is accumulated which makes the field of relativistic heavy ion collisions a perfect place to
investigate the equation of state of strongly coupled QCD matter and the phase transition between normal
nuclear matter and QGP.

Tremendous efforts have been conducted to locate the critical end point in the QCD phase diagram which
separates crossover and first order phase transition regions, using fluctuations of conserved charges (net
baryon number, net electric charge or net strangeness), HBT radii or the v1 slope at mid-rapidity. Till now,
none of these methods find plausible signal. We’d like to explore another avenue by reforming the scientific
problem into one image classification task using deep learning [1]. We have used the state-of-the-art pattern
recognition method – deep convolution neural network, to classify the EoS type from the distribution of
final state hadrons in momentum space [2]. The network trained with data from one Monte Carlo model
generalizes well on another two groups of testing data from different Monte Carlo models, achieves in
average approximately 95% prediction accuracy. As a comparison, the best classification accuracy from
many traditional machine learning methods such as naive Bayesian classifier, decision tree, random forest,
gradient boosting trees and support vector machines is approximately 80%.

2. Method

τ = 0.4 fm τ = 1.9 fm τ = 3.7 fm τ = 6.7 fm

� � � �

�

�crossover

first order

(a) The time evolution of energy density distributions of
strongly coupled QCD matter in the transverse plane, for
crossover EoS and first order phase transition EoS.
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(b) Given the initial condition, EoS and transport coef-
ficients, relativistic hydrodynamics and hadronic cascade
models can predict the momentum distribution of final
state hadrons. Given the final state hadron, is there a way to
determine EoS and QCD phase transition type exclusively
and effectively?

Fig. 1: The main idea of the present study is to classify EoS from the momentum distribution of final state hadrons, by supervised
training a deep convolution neural network with big amount of labeled training data, which are (spectra, EoS type) pairs from event-
by-event relativistic hydrodynamic simulations. The training data is provided by CLVisc [3] which is a (3+1)D viscous hydro code
parallelized on GPU using OpenCL. The program is publicly available from https://gitlab.com/snowhitiger/PyVisc.

It is well known that the pressure as a function of energy density has a plateau (or a spinodal structure) in
the first order phase transition region. A plateau in the EoS means that there is one layer of QCD matter with
zero pressure gradient where the expansion rate has a softest point. As shown in Fig. 1a, the evolutions of
energy density distributions in the transverse plane have visually different patterns for two different EoS at
multiple evolution stages. At quite early time, the independent expansion of each hotspot is dominant. Soon
after 1 fm, there are multiple hot spikes squeezed out in between each pair of the hot spots. Afterwards, the
hot spikes or hot ridges expand rapidly along the short axis of the ridges. For EoS with smooth crossover,
the hot ridges disappear because of this rapid expansion. For EoS with first order phase transition, the hot
ridges seem to be confined inside the mixed phase shells and stay alive for a much longer time. What is
interesting is that the pattern is not round islands around the hotspots but elongated islands around the hot
ridges in the energy density distributions. The task would be extremely easy if the goal is to classify one
snapshot of the energy density distribution in the transverse plane (as the images are visually distinguish-
able). However, when the QGP freeze-out into hadrons, the Cooper-Frye formula ρ(pT , φ) ∝

∫
pμdΣμ f (p ·u)

has one convolution operation and the hadrons should go through hadronic cascade before being captured
by the detectors. As demonstrated in Fig. 1b, we asked the questions, wether the signal of phase transition
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between normal nuclear matter and QGP survives the complex dynamical evolution, and exists in the final
snapshot of heavy ion collisions? Whether one can decode this information using traditional observables,
traditional machine learning method and deep convolution neural network? What has been learned by the
black-box deep neural network if it is able to classify first order phase transition EoS and smooth crossover
EoS of strongly coupled QCD matter, from the four-momenta distribution of final state hadrons?

Deep learning is a subset of artificial intelligence and machine learning, it uses multi-layer neural net-
work, recurrent neural network or deep forest structure to learn many different levels of representations from
data. Deep convolution neural network (DCNN) is the state-of-the-art pattern recognition method in ma-
chine learning and deep learning. DCNN has excellent generalization ability as animal brains which makes
it quite popular in AI+Physics studies. In this proof of principle study, we used supervised learning with
deep convolution neural network to classify two different EoS from the final particle spectra ρ(pT , φ), using
(spectra, EoS type) pairs provided by dissipative relativistic hydrodynamic simulations. The input image
is the particle density distribution in momentum space ρ(pT , φ), with 15 different pT bins and 48 differ-
ent azimuthal angle φ bins. The training data is provided by CLVisc [3] with AMPT [5] initial condition,
the testing data has 3 categories (1) the same source as training data, but has never been used for training
(2) CLVisc with IP-Glasma [6] like initial condition provided by Trento [7] (3) IEBE-VISHNU with MC-
Glauber initial condition [4]. In all the training and testing dataset, there are 2 different equation of states,
one is s95p-pce which is dubbed as EOSL and and the other is EOSQ with a Maxwell construction for the
mixed phase. The study aims to extract features that can classify 2 different EoS from the final particle
spectra.

The most important thing in training a machine learning model is to make sure that the model has good
generalizability, which means that the model that works well on the training data should also work well
on testing data. In fully connected neural networks, if there are 2 layers with m neurons in the first layer
and n neurons in the second layer, the number of weight matrix elements (equals to the number of links)
is m × n, which becomes too big if the input is image and m is the number of pixels. Too many trainable
parameters in the model makes it overfit to the training data. If each neuron in the second layer only
locally connect to 2 neurons in the first layer, the number of trainable parameters will be reduced to 2 × n.
This number can be further reduced to 2 if the 2 links of each neuron in the second layer share weights.
The convolution neural network has very good generalizability because of less number of parameters m ×
n → 2, translational invariance (convolution), rotational invariance (multiple convolution kernels that learn
different orientations) and scaling invariance (by pooling operation). In practice, many other tricks are used
to improve the generalizability, e.g., early stopping, preparing more data, data augmentation (by flipping,
rotating, clipping, resizing, adding noise or missing patches), L1 and L2 regularization (to constrain the
magnitude of the trainable parameters from going wildly), randomly discard neurons and associated links
(drop out), randomly discard links (drop connection), using deeper and narrower neural network instead of
shallow and wider neural network, as it is proved that in order to get the same prediction accuracy, a deeper
and narrower neural network uses less number of parameters. We have used almost all of these techniques
in training the deep convolution neural network to enhance the generalizability. In the present study we have
not employed those quite popular neural network structures which have deep layers and been pre-trained
on large datasets. There is one option to extract latent features using those networks (e.g., VGG, ResNet,
Inception Net . . . ), and do some fine-tuning on top of those features for few data classification tasks.

We found the batch normalization is very important to improve the prediction accuracy of the neural
network. At the time we constructed our network for EoS classification, batch normalization layer is always
followed by one dropout layer, however, recently it has been proved that this is not the best practice. On
the other hand, adaptively reducing learning rate after many epochs seems to increase the performance of
network because the trainable parameter will not jump back and forth around the stationary value because of
the large learning rate. Another trick is to use adaptive batch size, using a smaller batch size in the beginning
of training to increase the variance such that the network can explore wider parameter space, using a larger
batch size at later stages to reduce the variance such that the network converges to its stationary value more
quickly. These are useful tricks for training a deep neural network, which have not been used in the present
study but may boost the performance of the network to a higher level. They are listed here to help future
studies in AI + high energy physics researches.
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3. Results

Table 1: The classification accuracies using traditional machine learning methods and deep convolution neural network (CNN).

Data obs obs obs obs obs obs raw pca raw

Method Gaussian
Naive
Bayes

Decision
Tree

Random
Forest

Gradient
Boosting
Trees

linear
SVC

rbf
SVC

linear
SVC

linear
SVC

deep
CNN

Testing 1 46.2 57.5 62.5 66.9 75.8 60.9 65.2 46.7 93.46
Testing 2 47.6 64.9 69.8 81.9 84.6 56.7 84.3 47.7 93.91

The model parameters are tweaked to produce two classes (EoSL and EosQ) of training data with al-
most degenerate results on traditional observables. The first group of testing data is generated using IEBE-
VISHNU + Glauber initial condition. The second group of testing data is provided by CLVisc + IP-Glasma
initial condition, with quite different parameter settings. In this way the mean pT distribution is quite dif-
ferent from the training data to avoid overfitting. It is found that the event-by-event distributions of these
traditional observables and the scattering plots between pairs of observables overlap for two different EoSs.
Using this big amount of simulation data, we computed the correlation matrix between pairs of observables.
The big data analysis confirms various correlations found in the last several decades one after another, such
as the strong correlation between (v2, v4), (v2, v5), (v3, v5) and (〈pT 〉, dN/dY). The new-revealed strong cor-
relation between 〈pT 〉 and v5 is yet to be verified. We feed 85 such observables (dubbed as ”obs”), such
as mean pT , pT spectra, pT integrated vn and pT differential vn for 15 different pT , the two dimensional
ρ(pT , φ) (dubbed as ”raw”) and the 100 most important components from principle component analysis
(PCA) method, to many traditional machine learning algorithms and deep CNN. The prediction accuracies
from deep CNN are significantly higher in this classification task. For the testing data from the same source
as training data, the prediction accuracy by deep CNN is larger than 99%, while for the 2 groups of testing
data from different models, the prediction accuracy is larger than 93%. The study demonstrated that there
is a traceable encoder of the dynamical information from the phase structure that survives the evolution
and exists in the final snapshot of heavy ion collisions and one can exclusively and effectively decode these
information from the highly complex final output with machine learning when traditional methods fail.
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