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Abstract

In this paper a new method of experimental data analysis, the Particle-Set Identification method, is pre-
sented. The method allows to reconstruct moments of multiplicity distribution of identified particles. The 
difficulty the method copes with is due to incomplete particle identification – a particle mass is frequently 
determined with a resolution which does not allow for a unique determination of the particle type. Within 
this method the moments of order k are calculated from mean multiplicities of k-particle sets of a given type. 
The Particle-Set Identification method remains valid even in the case of correlations between mass mea-
surements for different particles. This distinguishes it from the Identity method introduced by us previously 
to solve the problem of incomplete particle identification in studies of particle fluctuations.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Study of multiplicity fluctuations of identified particles produced in high energy nucleus-
nucleus collisions is motivated by a number of important physics issues. They include searching 
for the critical point of strongly interacting matter, uncovering properties of hadronization and 
testing the validity of statistical models beyond mean multiplicities of identified hadrons, see 
Refs. [1,2] for details. Experimental measurements of multiplicity distributions of identified 
hadrons are challenging because it is often impossible to identify a particle with sufficient pre-
cision. Typical tracking detectors, like time projection chambers or silicon pixel detectors, used 
in high energy physics, allow for a precise measurement of momenta of charged particles and 
sign of their electric charges. In order to be able to distinguish between different particle types 
(e.g. e+, π+, K+, proton) a determination of particle mass is necessary. This is done indirectly 
by measuring for each particle the value of a special variable, e.g., specific energy loss, dE/dx, 
time-of-flight or the Cerenkov radiation angle. In the following this variable is referred to as the 
“mass” variable. In 2011 the Identity method [3] was proposed as a tool to measure moments 
of multiplicity distribution of identified particles, which circumvents the experimental issue of 
incomplete particle identification. The method was significantly developed in Ref. [4] and ex-
tended in following papers, see Refs. [5–8]. Currently, the Identity method is used by several 
experimental collaborations [9–13].

In this paper we present a novel approach, the Particle-Set (PSET) Identification method, for 
reconstructing moments of multiplicity distribution of identified particles. Hereinafter a PSET 
represents a set of k-particles (k = 2, 3, . . .) which is constructed from particles created in a col-
lision. For example, in the simplest non-trivial case of two particle types, pions and kaons, three 
types of two-particle sets are possible: pion-pion, kaon-kaon and pion-kaon. Mean multiplicities 
of different two-particle sets permit to calculate the second order moments of the joint multiplic-
ity distribution of pions and kaons. To find the third order (in general, kth order) moments of the 
multiplicity distribution one needs mean multiplicities of three-particle (in general, k-particle) 
sets. The latter are obtained from fits to the k-dimensional distribution of particle masses. The 
PSET Identification method has a broader range of applicability than the Identity method. Par-
ticularly, it does not assume that measurements of masses for different particles are independent.

The paper is organized as follows. Section 2 introduces the PSET Identification method. For 
simplicity, the presentation in this section is restricted to second moments of the multiplicity dis-
tribution of two particle types, pions and kaons. First, the problem is defined and the well-known 
method to calculate mean multiplicities of identified hadrons is reviewed. Next an extension of 
this method, needed to calculate second moments, is presented. In Sec. 3, a general formulation 
of the method is sketched. This allows to deal with an arbitrary number of particle types as well 
as to calculate higher than second order moments. In Sec. 4, exploiting simple Monte Carlo sim-
ulations, the PSET Identification method is confronted with the Identity method. Section 5 closes 
the paper.

2. Introduction to PSET Identification method

The resolution of the “mass” variable, denoted as x, is usually poor – often probabilities to 
register particles of different types in the same interval of x are comparable. Consequently, it is 
impossible to identify particles individually with a reasonable confidence level. However, it can 
still be possible to extract information on average production properties of particles of a given 
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type, such as mean multiplicity of single particles or, in general, mean multiplicity of particle 
sets of a given type.

The resolution of the “mass” variable measurement for single particles of type a is quanti-
fied by the probability density function (pdf) fa(x, p). In general, the function depends also on 
the particle momentum vector p which complicates the data analysis. Detector properties, data 
calibration and analysis procedures determine the pdf fa(x, p).

When pairs of particles are of interest, the single particle pdf is replaced by a two-particle 
probability density function, fab

(
(x1, p1), (x2, p2)

)
, where a and b are particle types of the first 

and second particle, respectively. Single and two-particle pdfs are related as

fa(x1,p1) =
∫

dx2 dp2 fab

(
(x1,p1), (x2,p2)

)
. (1)

In general, the two-particle pdf cannot be represented as a product of the single particle pdfs: 
fab

(
(x1, p1), (x2, p2)

) �= fa(x1, p1) · fb(x2, p2). The reason are correlations which are caused 
by detector and data calibration properties (e.g., a finite two track resolution and/or time depen-
dent response functions) as well as by the analysis procedure (e.g., neglecting the p-dependence 
of the pdfs within finite momentum bins used in analyses).

For clarity, the PSET Identification method is introduced using the following simplifying 
assumptions:

(i) There are only two particle types: positively charged pions and kaons which for simplicity 
are referred to as pions (π ) and kaons (K).

(ii) The single-particle and two-particle pdfs are independent of particle momenta, i.e., 
fa(x, p) = fa(x) and fab

(
(x1, p1), (x2, p2)

) = fab(x1, x2), for a, b = π, K .
(iii) The pdfs fa(x) and fab(x1, x2) are assumed to be known.

The extension of this simple model to an arbitrary number of particle types as well as to higher 
moments of multiplicity distribution is discussed in the next section.

2.1. Mean multiplicities of identified hadrons

Let us assume that an experiment measures particles produced in M collisions (events). The 
set of x values measured for the Ni particles in an event i is denoted as Xi = {x1, x2, ..., xNi

}. 
The total number of particles measured in M events is

N =
M∑
i=1

Ni , (2)

and the mean particle multiplicity (sum of pions and kaons) can be calculated as

〈N〉 = N
M

. (3)

The full set of x-measurements is denoted as X = {x1, x2, ..., xN }.
Statistical tools to extract mean multiplicities of identified hadrons and its momentum depen-

dence (single particle spectra) are presented and discussed in detail in Ref. [14]. Here the general 
solution [14] is adapted to the simple model introduced in this section.
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Fig. 1. (Color online.) Left panel: Example of the single-particle distribution ρ(x) [Eq. (4)] for the system of pions and 
kaons. Right panel: Example of the two-particle distribution ρ(x1, x2) for the system of pions and kaons. The shown 
distribution is obtained by assuming that x1 and x2 are independent, i.e., fab(x1, x2) = fa(x1) · fb(x2), and pion and 
kaon multiplicities are uncorrelated and distributed according to Poisson distributions. The functions fπ (x) and fK(x), 
and mean multiplicities of Nπ and NK correspond to those shown in the left panel.

The distribution of the sum of pions and kaons in the “mass” variable x is given by

ρ(x) ≡ ρπ(x) + ρK(x) ≡ 〈Nπ 〉 · fπ(x) + 〈NK〉 · fK(x) ≡ 〈N〉(rπ · fπ(x) + rK · fK(x)
)
,

(4)

where fπ(x) and fK(x) are the known pdfs of pions and kaons, respectively. Parameters rπ and 
rK define what fraction of particles in a given set of events is either pion or kaon. By definition 
rπ + rK = 1 and consequently, only one parameter, e.g. rK , should be estimated from the data 
X .

Mean multiplicities of pions 〈Nπ 〉 and kaons 〈NK〉 are unknown and should be extracted 
from the experimental data X = {x1, x2, ...xN }. They are equal to 〈Nπ 〉 = rπ · 〈N〉 and 〈NK〉 =
rK · 〈N〉 with 〈N〉 calculated from the data as given by Eq. (3). Finally, we note that the function

F(x) = rπ · fπ(x) + rK · fK(x) (5)

is the pdf for the system of pions and kaons.
An example distribution of the “mass” variable x, ρ(x) (Eq. (4)), for a system of pions and 

kaons is presented in Fig. 1, left. The overlap of the fπ(x) and fK(x) pdfs does not allow to 
identify a large fraction of particles with a high confidence level.

There are two commonly used parameter estimation methods (see, e.g., Ref. [15]):

(i) the least-squares method (LSM),
(ii) the maximum likelihood method (MLM).

The application of the LSM would require binning of the data points in x-space. This has two 
important disadvantages: the binning procedure causes partial loss of the experimental informa-
tion, and the binning necessary for the meaningful application of the LSM (number of entries in 
each bin has to be large enough) may be impossible in the case of low statistics data.
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The above problems are not present in the MLM, as it allows to use the unbinned data. There-
fore, in the following we will briefly introduce the MLM and the way it should be applied here. 
Let us start from defining the likelihood function (LF):

L(X | rK) =
N∏

j=1

F(xj | rK) (6)

as a joint conditional probability of the measurements X at the fixed value of the parameter 
rK . Now, in the LF we treat the measurements X as fixed values and the parameter rK as a 
variable. According to the maximum likelihood principle we should choose a value of rK = r∗

K

which maximizes L(X | rK). It is usually more convenient to minimize the auxiliary function, 
l(X | rK), defined as:

l(X | rK) ≡ − ln
(
L(X | rK)

) = −
N∑

j=1

ln
(
F(xj | rK)

)
. (7)

The search for the value of r∗
K , which minimizes l(X |rK), has to be done using standard numer-

ical minimization procedures [16].
To estimate the statistical uncertainty of r∗

K one should use the sub-sample [17] and/or boot-
strap methods [18] at the level of events as independent data units. It is important to stress that 
both methods take into account correlations between measurements of the “mass” variable for 
different particles. The goodness-of-fit tests are discussed in detail in Ref. [14].

2.2. Mean multiplicity of particle pairs

In this subsection the PSET Identification method is considered for particle pairs. Let us start 
with the observation that the mean multiplicity of pairs of particles of a given type is directly 
related to the second moment of its multiplicity distribution. For example, the mean multiplicity 
of pion-pion pairs, 〈Nππ 〉, is given as:

〈Nππ 〉 = 1

2

〈
Nπ (Nπ − 1)

〉 = 〈N2
π 〉 − 〈Nπ 〉

2
. (8)

When mean multiplicities of pions, 〈Nπ 〉, and pion-pion pairs, 〈Nππ 〉, are known, the second 
moment of the pion multiplicity distribution can be calculated as

〈N2
π 〉 = 2 · 〈Nππ 〉 + 〈Nπ 〉 . (9)

In a similar way 〈N2
K〉 and 〈Nπ · NK〉 are calculated. Thus the problem of measuring second 

moments of joint multiplicity distributions of identified particles is reduced to finding the mean 
multiplicities of identified particle pairs. It is possible as long as the mean number of identified 
particle pairs can be obtained. Consequently, similar to the Identity method, for fully overlapping 
ρπ(x) and ρK(x) functions the PSET identification method is not applicable.

The experimental data on particle pairs in M events is defined as follows. Number of particle 
pairs in an event i of multiplicity Ni is

N
(2)
i = 1

2
Ni(Ni − 1) . (10)

The total number of pairs in all M events is
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N (2) =
M∑
i=1

N
(2)
i , (11)

and the mean multiplicity of all possible pairs can be calculated as

〈N(2)〉 = N (2)

M
. (12)

The full set of the pair data consists of N (2) pairs:

X (2) = {(x1, x2)1, (x1, x2)2, . . . , (x1, x2)N (2)} . (13)

The two-particle mass distribution function ρ(x1, x2) is a weighted sum of two-dimensional 
pdfs of identified pairs:

ρ(x1, x2) ≡ ρππ(x1, x2) + ρKK(x1, x2) + ρπK(x1, x2) + ρKπ(x1, x2)

≡ 〈Nππ 〉 · fππ(x1, x2) + 〈NKK〉 · fKK(x1, x2) + 〈NπK 〉 · fπK(x1, x2)

+ 〈NKπ 〉 · fKπ(x1, x2)

≡ 〈N(2)〉(rππ · fππ(x1, x2) + rKK · fKK(x1, x2) + rπK · fπK(x1, x2)

+ rπK · fKπ(x1, x2)
)
, (14)

with rππ + rKK + 2 · rπK = 1. Consequently, only two parameters should be estimated from 
the experimental measurements X (2). The two-dimensional probability density function for the 
system of pions and kaons reads:

F(x1, x2|rππ , rKK) = rππ · fππ(x1, x2) + rKK · fKK(x1, x2) + rπK · fπK(x1, x2)

+ rπK · fKπ(x1, x2) (15)

and using the MLM the auxiliary likelihood function:

l(X (2) | rππ , rKK) = −
N (2)∑
j=1

ln
(
F

(
(x1, x2)j | rππ , rKK

) )
, (16)

is minimized to determine the parameters rππ and rKK . Statistical uncertainties of the fitted 
parameter values, rππ and rKK are to be estimated following the procedure described in the 
previous subsection. An example of the ρ(x1, x2) function is presented in Fig. 1 right.

3. PSET Identification method: towards general formulation

In this section the results presented in the previous section are extended to three particle types 
and to third moments of the multiplicity distributions. Then, the extension to higher number of 
particle types and higher moments is obvious.

In the case of three particle types, for example, pions, kaons, and protons, the two-particle 
“mass” distribution function reads:

ρ(x1, x2) = 〈N(2)〉( rππ · fππ (x1, x2) + rKK · fKK(x1, x2) + rpp · fpp(x1, x2)

+ rπK · fπK(x1, x2) + rKπ · fKπ(x1, x2) + rπp · fπp(x1, x2)

+ rpπ · fpπ(x1, x2) + rKp · fKp(x1, x2) + rpK · fpK(x1, x2)
)
. (17)
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From relations rab = rba and 
∑

a,b rab = 1 it follows that only five parameters are independent. 
Their values can be found by minimizing the corresponding auxiliary likelihood function, as that 
in Eq. (16). In a similar way expressions for more than three particle types can be obtained.

Let us now consider third moments of the multiplicity distribution for two particle types, pions 
and kaons. To calculate them within the PSET Identification method one should first extract from 
the data the mean multiplicity of identified three-particle sets. Then the three-dimensional pdfs, 
fabc(x1, x2, x3), have to be known. With these functions, the three-particle pdfs F(x1, x2, x3 | r)

can be calculated. Here r denotes a set of unknown independent parameters. Their values should 
be fitted to the data on particle triplets

X (3) = {(x1, x2, x3)1, (x1, x2, x3)2, . . . , (x1, x2, x3)N (3)} . (18)

Mean multiplicities 〈Nabc〉 = rabc〈N(3)〉 are straightforwardly connected with the third order 
moments of the identified particle multiplicity distributions. For example,

〈Nπππ 〉 = 〈Nπ(Nπ − 1)(Nπ − 2)〉
3! = 1

6

[
〈N3

π 〉 − 3〈N2
π 〉 + 2〈Nπ 〉

]
, (19)

〈NππK 〉 = 〈Nπ(Nπ − 1)NK〉
2

= 1

2

[
〈N2

πNK〉 − 〈NπNK〉
]

. (20)

In this way the mean multiplicity of the identified three-particle set, 〈Nabc〉, is obtained by a 
linear combination of third, second, and first moments of the identified particle multiplicity dis-
tributions. Similarly, third moments of the multiplicity distribution can be derived from a linear 
combination of mean multiplicities of single particles, particle pairs, and particle triplets.

The above procedures are straightforwardly extendable to k-particle sets and moments of or-
der k with k > 3 for an arbitrarily large number of particle types, provided that available statistics 
is sufficient.

4. Test on simulated data

In this section, based on simulated data, we provide results of the PSET Identification method 
and confront them with those obtained with the Identity method. Although the method is general 
and functions for unlimited number of particle species, for simplicity we consider the case of two 
particle types only. The simulation process consists of the following steps: (i) from independent 
Poisson distributions, with a given means of λπ = 6 and λK = 4, we first randomly generate 
multiplicities of pions and kaons in each event; (ii) using the ρπ and ρK distributions functions, 
presented in the left panel of Fig. 1 we generate the values of the particle identification variable 
x corresponding to each particle species. In order to introduce correlations between pairs of x
quantities, we use the probability density function of the bi-variate normal distribution

f (x1, x2) = 1

2π
√|�|e

−0.5(x−〈x〉)T �−1(x−〈x〉), (21)

where |�| is the determinant of �. The column vectors x, 〈x〉 and the covariance matrix � are 
defined as

x =
(

x1
x2

)
, 〈x〉 =

(〈x1〉
〈x2〉

)
,� =

(
σ 2

x1
Rσx1σx2

Rσx1σx2 σ 2
x2

)
. (22)

The dimensionless parameter R, referred to as the correlation coefficient, is introduced as
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Fig. 2. (Color online.) Left panel: Two-particle distribution ρ(x1, x2) for pions with the correlation coefficient R = 0.1. 
Right panel: Similar to the left panel with the correlation coefficient R = 0.5.

Fig. 3. (Color online.) Upper panel: Results for the second moments of pions as computed with the PSET method (open 
boxes) and the Identity method (solid lines). The value of the correlation coefficient is taken to be R = 0.1 (cf. left 
panel of Fig. 2). The analytical calculation is represented with the dashed line. Bottom panel: The ratios of the second 
moments of pions as computed with the PSET method to the theoretical baseline (open boxes). Similar ratios for the 
Identity method are presented with the solid lines.

R = 〈(x1 − 〈x1〉)(x2 − 〈x2〉)〉
σx1σx2

. (23)

We further note that the correlations between x1 and x2 are introduced only if they belong to 
the same particle, otherwise they are generated independently, i.e., the value of the correlation 
coefficient R is set to zero in this case. Each generated ith event contains a set of quantities 
X = {x1, x2, ..., xNi

}, where Ni refers to the total number of pions and kaons in a given event. 
Next, we construct all possible two-particle pairs (x1, x2) of the x quantity inside a given event. 
The full set of these pairs in all events (cf. Eq. (13)) generates an inclusive two particle mass 



M. Gazdzicki et al. / Nuclear Physics A 1001 (2020) 121915 9
Fig. 4. (Color online.) Upper panel: Results for the second moments of pions as computed with the PSET method (open 
boxes) and the Identity method (solid lines). The value of the correlation coefficient is taken to be R = 0.5 (cf. right 
panel of Fig. 2). The analytical calculation is represented with the dashed line. Bottom panel: The ratios of the second 
moments of pions as computed with the PSET method to the theoretical baseline (open boxes). Similar ratios for the 
Identity method are presented with the solid lines.

distribution. From Eq. (9) we estimate second moments of pions. For this purpose, we first fit the 
two-dimensional mass distribution (cf. the right panel of Fig. 1) and use Eq. (14) to determine 
the mean numbers of pion-pion pairs Nππ . In a similar way we compute the second moments 
of the kaon multiplicity distribution. The first moments are estimated using Eq. (5). For clar-
ity we present the results for pions only. In Fig. 2 the two-particle distributions ρ(x1, x2) are 
presented, where the left and right panels correspond to different values of the correlation co-
efficient: R = 0.1 and 0.5 respectively. The corresponding reconstructed second moments are 
presented in the upper panels of Figs. 3 and 4, where open boxes represent the results from the 
current study (PSET Identification method) while the solid lines are obtained with the Identity 
method [19]. In the bottom panels of Figs. 3 and 4 the ratios of the second moments of pions to 
their theoretical values are presented. Close inspection of Figs. 3 and 4 indicates that with the 
increasing correlations between x1 and x2 the Identity method deviates from the theoretical base-
line, while the PSET Identification method, as expected, is protected against such correlations. 
We further note that, the amount of bias in the Identity method depends on mean multiplicities, 
number of involved particle species and amount of overlaps between ρj(x) functions, where j
stands for a particle type.

5. Summary

The paper presents a new method, the Particle-Set Identification method, for reconstructing 
moments of multiplicity distribution of identified particles. A PSET represents a set of particles 
which is constructed from particles created in a collision. Mean multiplicities of particle sets 
of a given type are extracted from the measurements of the multi-dimensional distribution of a 
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particle “mass” variable. This multi-dimensional distribution is used to calculate moments of the 
joint multiplicity distributions of identified particles.

First, the PSET Identification method is introduced for the simple case of two particle types, 
addressing first and second order moments. Then a sketch of the generalization of the method is 
presented for k-particle sets and moments of order k ≥ 3 for the case of an arbitrary number of 
particle types.

Finally, using a simple model we explicitly demonstrated that the PSET Identification method 
is protected against possible correlations in the multi-dimensional distribution of the particle 
“mass” variables.

The PSET Identification method has a broader range of applicability than the Identity method 
introduced by us previously to solve the problem of incomplete particle identification. Par-
ticularly, it does not assume that measurements of particle “mass” for different particles are 
independent. The issue of introducing momentum dependent pdfs within the PSET identification 
method is left for future studies.
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