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Fig.S1 - Statistical Inter-brain causality patterns in theta band. The networks were obtained by statistically 
comparing the three different levels of interaction: Joint vs Solo, Joint vs PC and PC vs Solo (paired t-test, 
p<0.05 FDR corrected). The heads are seen from above, the nose pointing to the lower part of the page. 
The arrows indicate the existence of a statistical causality between the activity recorded on the scalp of 

the two subjects (15 electrodes each). 
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Fig.S2 - Statistical Inter-brain causality patterns in beta band. The networks were obtained by statistically 
comparing the three different levels of interaction: Joint vs Solo, Joint vs PC and PC vs Solo (paired t-test, 
p<0.05 FDR corrected). The heads are seen from above, the nose pointing to the lower part of the page. 
The arrows indicate the existence of a statistical causality between the activity recorded on the scalp of 

the two subjects (15 electrodes each). 
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Fig.S3 - Statistical Inter-brain causality patterns in gamma band. The networks were obtained by 

statistically comparing the three different levels of interaction: Joint vs Solo, Joint vs PC and PC vs Solo 
(paired t-test, p<0.05 FDR corrected). The heads are seen from above, the nose pointing to the lower part 
of the page. The arrows indicate the existence of a statistical causality between the activity recorded on 

the scalp of the two subjects (15 electrodes each). 
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Fig. S4 - Results of the ANOVA performed on indices computed in the multiple-brain networks in theta 
(panel a), alpha (panel b), beta (panel c) and gamma (panel d) bands, considering as within factor the 

type of interaction (Joint, PC, Solo). Indices directly proportional to the network integration are reported in 
blue, while those inversely proportional are depicted in red. Corresponding F and p values are reported in 

Tab.1. Asterisks indicate statistically significant differences as returned by the Newman-Keuls post-hoc 
test. Note: GlobEff = Global Efficiency; LocEff= Local Efficiency; Clust= Clustering; IBD= Inter-Brain 

Density; Div=Divisibility; Mod= Modularity. 
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Fig. S5 - Scatterplots reporting the values of Global Efficiency (on x-axis) and Local Efficiency (on y-axis) 
computed on single-subject networks in Alpha band. The scatterplots report the three different modalities of 
social interaction (Joint: blue circles, PC: red diamonds, Solo: green triangles). 
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Graph Indices Formulation Definition 
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Global efficiency is the average of the 
inverse of the geodesic length 𝑑𝑖𝑗 and 

represents the efficiency of the 
communication between all the N nodes in 
the network  

(Latora and Marchiori, 2001) 
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Local efficiency is the average of the 
global efficiencies computed on each sub-
graph 𝐺𝑖 belonging to the network and 
represents the efficiency of the 
communication between all the nodes 
around the node i in the network  

(Latora and Marchiori, 2001) 
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The clustering coefficient describes the 
intensity of interconnections between the 
neighbors of a node. It is defined as the 
fraction of triangles around a node or the 
fraction of node’s neighbors that are 
neighbors of each other 

(Watts and Strogatz, 1998) 

inter-brain density 

(IBD) 

𝐼𝐵𝐷 =
2

𝑁2
(∑ 𝐺𝑖𝑗

𝑖𝜖𝑆1
𝑗𝜖𝑆2

+ ∑ 𝐺𝑖𝑗

𝑖𝜖𝑆2
𝑗𝜖𝑆1

) 

The inter-brain density (IBD) is the number 
of statistically significant inter-subject 
connectivity links for each condition 
normalized by the maximum number of 
possible inter-brain connections. It 
quantifies the number of significant links 
between the two brains’ activities 

(Astolfi et al., 2014) 

path length 
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The characteristic path length is the 
average shortest path length in the 
network, where the shortest path length 
between two nodes is the minimum 
number of edges that must be traversed to 
get from one node to another. 

(Sporns et al., 2004) 

degree 

(deg) 

𝑑𝑒𝑔𝑘 = ∑ 𝐺𝑖𝑘

𝑖𝜖𝑁
𝑖≠𝑘

+ ∑ 𝐺𝑘𝑗

𝑗𝜖𝑁
𝑗≠𝑘

 

The degree of a node consists of the 
number of links connected directly to it. In 
directed networks, the indegree is the 
number of inward links and the outdegree 
is the number of outward links. 
Connections weight is ignored in 
calculations  

(Sporns et al., 2004) 

divisibility 

(div) 
𝐷 =

𝑊

∑ 𝑤𝑖𝑗[1 − 𝛿(𝐶𝑖 , 𝐶𝑗)] + 𝑘
 

Divisibility quantifies how well the general 
connectivity network including intra- and 
inter-brain subnetworks) can be divided 
into two sets of nodes, corresponding to 
the brains of the two subjects. 

(Newman, 2006) 

modularity 

(mod) 
𝑄 =

1

𝑤
∑ (𝑤𝑖𝑗 −

𝑠𝑗𝑜𝑢𝑡 𝑠𝑗𝑖𝑛

𝑊
)

𝑖𝑗

𝛿(𝐶𝑖 , 𝐶𝑗) 

Modularity measures the difference 
between the fraction of arcs connecting 
nodes belonging to the same community 
in the actual graph and its expected value 
in a random graph. Here, the two 
communities correspond to the two 
subjects’ brains 

(Arenas et al., 2007) 

Table S1 – Details about the graph indices used in the study 

 



7 
 

 

Graph 

Indices 

Theta Alpha Beta Gamma 

F      

(2,62) 
p 

J                  

vs                 

S 

J                 

vs               

PC 

PC 

F       

(2,62) 
p 

J                  

vs                 

S 

J                 

vs               

PC 

PC 

F       

(2,62) 
p 

J                  

vs                 

S 

J                 

vs               

PC 

PC 

F       

(2,62) 
p 

J                  

vs                 

S 

J                 

vs               

PC 

PC 

vs vs vs vs 

S S S S 

GlobEff 11.48 0.00006 ● ●  15.46 <0.00001 ● ●  9.53 0.00025 ● ●  7.41 0.0013 ● ●  

LocEff 7.95 0.00084 ● ●  7.92 0.00086 ● ●  4.71 0.0125 ●   3.75 0.029  ●  

Clust 6.26 0.0033 ● ●  4.18 0.019 ● ●  1.63 0.204    9.31 0.0003  ● ● 

PL 0.17 0.84    1.27 0.29    1 0.372    0.46 0.634    

Tab. S2 - Results of the ANOVA executed considering the graph theory indices obtained for the single 

subject network as dependent variables and the type of interaction (Joint, PC, Solo) as within factor. The 

tests were computed separately for the four bands. For each ANOVA we reported the F-value, the 

corresponding significance level p and the results of Newman-Keuls post-hoc test (● p<0.05). Note: GlobEff 

= Global Efficiency; LocEff= Local Efficiency; Clust= Clustering; PL= Path Lengh. 

 

 

 GlobEff  LocEff Clust PL 

J  
vs 
PC 

J  
vs 
S 

PC 
vs 
S 

J  
vs 
PC 

J  
vs 
S 

PC 
vs 
S 

J  
vs 
PC 

J  
vs 
S 

PC 
vs 
S 

J  
vs 
PC 

J  
vs 
S 

PC 
vs 
S 

T
h

e
ta

 GlobEff    61 56 61 59 63 48 66 58 59 

LocEff       66 52 53 56 48 48 

Clust          59 44 45 

PL                      

A
lp

h
a

 GlobEff    56 58 48 58 56 55 58 59 55 

LocEff       58 58 52 55 42 56 

Clust          63 56 53 

PL                      

B
e
ta

 GlobEff    75 61 59 66 58 58 59 59 50 

LocEff       50 55 50 56 63 45 

Clust          61 58 42 

PL                      

G
a
m

m
a

 GlobEff    61 55 58 69 66 58 45 52 55 

LocEff       69 55 63 48 47 55 

Clust          53 55 61 

PL                      

 
Tab. S3 – Classification accuracy achieved using graph indices derived from single-subject connectivity 
networks as features. A binary linear Fisher classifier was built for each pair of classes (Joint-PC, Joint-Solo, 
PC-Solo) and for each combination of graph indices (reported on x and y axis). Inter-Brain Density, Divisibility 
and Modularity between the two brains cannot be defined for single-subject networks and therefore they were 
not included in the analysis. The classification was repeated separately for the four frequency bands. 
Classification accuracies above 70% were highlighted in bold. Note: GlobEff = Global Efficiency; LocEff= Local 
Efficiency; Clust= Clustering; PL= Path Lengh.  
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Partial Directed Coherence and its multiple-subject extension 

Partial directed coherence (PDC) (Baccalá and Sameshima, 2001) is a full multivariate 

spectral measure used to determine the directed influences between pairs of signals in a 

multivariate dataset, and demonstrated to be a frequency version of the concept of Granger 

causality (Granger, 1969).  

Let Y be a set of time series: 

 

𝑌 = [𝑦1(𝑡), 𝑦2(𝑡), … , 𝑦𝑁(𝑡)] (1) 
 

where t refers to time and N is the number of signals considered. 

Let us suppose that the following multivariate autoregressive (MVAR) process is an 

adequate description of the dataset Y: 

 

∑ 𝐴(𝑘)𝑌(𝑡 − 𝑘) = 𝐸(𝑡)𝑝
𝑘=0   with  𝐴(0) = 𝐼 (2) 

 

where Y(t) is the data vector in time, E(t) = [e1(t),…,eN(t)]T is a vector of multivariate zero-

mean uncorrelated white noise processes, A(1),A(2),…,A(p) are the NxN matrices of model 

coefficients, and p is the model order, usually chosen by means of the Akaike information 

criteria (AIC) for MVAR processes (Akaike, 1974).  

Equation 2 can be transformed to the frequency domain as follows: 

 

𝐴(𝑓)𝑌(𝑓) = 𝐸(𝑓) (3) 
 

where A(f) represents the frequency transform of the vector of parameters 𝐴𝑖𝑗(𝑘) along 

the p lags considered according to the model order selected: 

 

𝐴𝑖𝑗(𝑓) = 𝛿𝑖𝑗 − ∑ 𝐴𝑖𝑗(𝑘)𝑒−𝑠𝑞𝑟𝑡(−1)2𝜋𝑓𝑘

𝑝

𝑘=1

 (4) 

 

where sqrt (-1) indicates the imaginary unit and 𝛿𝑖𝑗 = 1 whenever 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 

otherwise.  

𝐴(𝑓) appears in the definition of PDC directed from signal j to signal i as follows: 

 

𝜋𝑖𝑗(𝑓) =
|𝐴𝑖𝑗(𝑓)|

2

∑ |𝐴𝑚𝑗(𝑓)|
2𝑁

𝑚=1

   (5) 

 

Squared versions of PDC in its different normalizations are usually adopted, due to higher 

stability and accuracy (Astolfi et al., 2006; Plomp et al., 2014). We adopted the formulation 

reported in (5). 

The extension of PDC to the multi-subject case is performed by constructing an adaptive 

MVAR model including the data of the two subjects as a unique dataset. To account for 

individual differences, we normalized the data by computing the z-score of the EEG traces 

𝑌 of each subject and then juxtaposed them for each dyad, obtaining a dataset of dimension 

2𝑁, where the first N signals belong to the subject A and the second N signals belong to the 

subject B.  
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We therefore obtained a new dataset 𝑌𝑑𝑦𝑎𝑑 as follows: 

 

𝑌 = [𝑦1
𝐴(𝑡), 𝑦2

𝐴(𝑡), … , 𝑦𝑁
𝐴(𝑡), 𝑦1

𝐵(𝑡), 𝑦2
𝐵(𝑡), … , 𝑦𝑁

𝐵(𝑡) ] (6) 

 

where the generic signal  𝑦𝑖
𝑗
(𝑡) represents the EEG sample recorded from channel  𝑖 of 

subject 𝑗 with 𝑖 = 1, … 𝑁 and 𝑗 = 𝐴, 𝐵. 

 

The resulting multiple-subject MVAR model has the following structure: 

 

𝐴(𝑓) = [
𝐴𝐴(𝑓) 𝐴𝐴𝐵(𝑓)

𝐴𝐵𝐴(𝑓) 𝐴𝐵(𝑓)
] (7) 

 

where the matrices 𝐴𝐴(𝑓) and 𝐴𝐵(𝑓) describe the spectral transform of the intra-brain AR 

parameters for subject A or subject B, respectively. The matrices 𝐴𝐴𝐵(𝑓) and 𝐴𝐵𝐴(𝑓) express 

the spectral transform of the inter-brain AR parameters directed from subject B to subject A 

and vice versa. 

 

Using MVAR coefficients in (7) to compute (5) we obtain the extension of PDC to the multi-

subject case: 

 

𝜋(𝑓) = [
𝜋𝐴(𝑓) 𝜋𝐴𝐵(𝑓)

𝜋𝐵𝐴(𝑓) 𝜋𝐵(𝑓)
] (8) 

 

where the matrices 𝜋𝐴(𝑓) and 𝜋𝐵(𝑓) express the intra-brain connectivity for subjects A and 

B respectively, and the matrices 𝜋𝐴𝐵(𝑓) and 𝜋𝐵𝐴(𝑓) express the inter-brain causality directed 

from subject B to subject A and from subject A to subject B, respectively (see Fig.2). 

For further details, see (Babiloni and Astolfi, 2014). 

 

Effect size in statistical tests 

In Table S4, we report the effect sizes associated to the repeated measures ANOVAs 

performed on graph indices. The table lists the values of partial eta squared parameter 

associated to each of the ANOVAs described in Tab.2. It is worth of note that all the 

ANOVAs’ significant results (with the only exception of Local Efficiency in theta band for the 

AGENCY factor) were associated to a high effect size, categorized according to the criteria 

suggested by Cohen in 1992 (partial eta squared > 0.1379) (Cohen, 1973,1988, Richardson, 

2011). 
 

GlobEff LocEff Clust PL IBD Div Mod Deg 

theta 0.63 0.46 0.35 0.09 0.55 0.19 0.01 0.55 

alpha 0.67 0.43 0.30 0.02 0.62 0.21 0.18 0.60 

beta 0.48 0.36 0.40 0.04 0.59 0.34 0.25 0.59 

gamma 0.53 0.29 0.52 0.32 0.61 0.36 0.33 0.63 

Table S4. Effect size for the ANOVAs. Partial eta squared for each of the ANOVAs 
reported in Tab.1. In bold, the values > 0.1379 (high effect size). Note: GlobEff = Global 
Efficiency; LocEff= Local Efficiency; Clust= Clustering; PL= Path Lengh; IBD= Inter-Brain 

Density; Div=Divisibility; Mod= Modularity; Deg= Degree. 
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