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A Econometric Model

The time-varying rank TVP-VECM model of Chua and Tsiaplias (2018) assumes two sources
of temporal variation in the cointegrating matrix of a VECM, Π. First, they consider the
SVD decomposition of Π

Π = UΛV ′,

where U ′U = In, V ′V = In, and Λ is an n-dimensional diagonal matrix with diagonal
elements w1 ≥ . . . ≥ wn ≥ 0. In presence of r < n cointegrating relationships, the matrix Π

has rank r, meaning that last n − r singular values of Π are zero. Moreover, it admits the
low rank decomposition

Π = UΛV ′ = βα = U1:rΛ1:r,1:rV
′
1:r

α = Λ1:r,1:rV
′
1:r

β = U1:r,

where U1:r denote the first r columns of U (similarly for V ) and Λ1:r,1:r represent the top-left
square submatrix of Λ of size r.

To account for time-varying cointegration rank, Chua and Tsiaplias (2018) introduce an
idempotent diagonal matrix into the SVD decomposition of Π, denoted I(St), and assume
it is driven by a hidden homogeneous finite state Markov chain, St. This results in

Πt = UI(St)I(St)ΛV
′ = UI(St)I(St)D, (1)
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with D = ΛV ′. The matrix I(St) has generic k-th diagonal element

I(St)kk = (1− s1t)
n+1∑

j=k+1

sjt, k = 1, . . . , n, (2)

where

sjt =

 1 if St = j

0 otherwise.

From eq. (2) it follows that when sjt = 1 the rank of Πt is exactly r = (j−1), thus providing a
direct link between the state of the hidden Markov chain, St, and the number of cointegrating
relationships, r. Considering an n-dimensional system, the rank ranges from r = 0 (resulting
in a VAR model for δyt) to r = n (meaning a VAR model for stationary yt). Therefore, the
homogeneous Markov chain has n + 1 possible states, from j = 1 to j = n + 1, and the
transition probabilities are encoded in the (n + 1× n + 1) matrix P whose generic entry is
given by Pij = P(St = j|St−1 = 1), for i, j = 1, . . . , n+ 1.

Finally, to allow for smooth changes over time of both the loading matrix, α, and the
cointegrating relationships, β, Chua and Tsiaplias (2018) assume that matrices U and V

from the SVD decomposition of Π are time-varying. To do that, one must first of all address
the identifiability issue of the VECM. In particular, since the factorization Π = βα does not
allow to separately identify all the entries of β and α, a parameter expansion technique is
used, following Koop et al. (2011), leading to

Πt = UtI(St)I(St)Dt

= UtκtI(St)I(St)κ
−1
t Dt

= U∗t I(St)I(St)D
∗
t

= β∗α∗t ,

(3)

where κt = (U∗′t U
∗
t )1/2, U∗t = Utκt, D∗t = κ−1t Dt, and

α∗t = I(St)κ
−1
t Dt = I(St)D

∗
t (4)

α∗t = UtκtI(St) = U∗t I(St). (5)

However, it is important to recall that, as both U∗t and D∗t stem from the SVD decomposition
of Πt, they must satisfy an orthogonality condition. In particular, one has to ensure that
(U∗′t U

∗
t ) = In and (D∗tD

∗′
t ) = ΛΛ. To ensure these conditions hold, Chua and Tsiaplias

(2018) impose n(n − 1)/2 constraints on U∗t , by restricting the first j − 1 elements of the
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j-th column, for j = 2, . . . , n, and n(n− 1)/2 constraints on D∗t , by restricting the first j− 1

elements of the j-th row, for j = 2, . . . , n. Overall, this results in n∗ = n(n+1)/2 unrestricted
parameters located in the lower triangular part of U∗t and n∗ unrestricted parameters located
in the upper triangular part of D∗t .

Finally, defining u∗t = vec(U∗t ) and d∗t = vec(D∗t ), the smooth evolution of the loadings is
modelled by assuming

d∗t+1 = dt ∗+ζt, ζt ∼ N (0, Q), (6)

whereQ = diag(σ2
1, . . . , σ

2
n∗) and d∗0 ∼ N (0, σdIn∗). Instead the dynamics of the cointegrating

relationships is defined by the stationary VAR process

u∗t+1 = ρu∗t + ηt, N (0, In∗), (7)

with |ρ| < 1 and u∗0 ∼ N (0, 1/(1− ρ2)).

A.1 Prior Distributions and Posterior Inference

We adopt the same prior specification as in Chua and Tsiaplias (2018), that is we assume

g ∼ N (g|µ
g
,Σg)

Σ ∼ IW(Σ|ν,Ψ)

Pi ∼ Dir(Pi|τ i,1, . . . , τ i,n+1), i = 1, . . . , n+ 1

σ2
i ∼ IG

(
σ2
i

∣∣θi
2
,
θif i

2

)
, i = 1, . . . , n∗

ρ ∼ U(ρ|ρ
0
, ρ

1
),

where Pi is the i-th row of the transition matrix P .
To describe the MCMC algorithm, first define S = (S1, . . . , ST )′, y = (y1, . . . , yT ),

d∗ = (d∗1, . . . , d
∗
T ), u∗ = (u∗1, . . . , u

∗
T ), g = vec((c′, B′)′). The most involved steps of

the MCMC are those concerned with the sampling of the time-varying parameters, d∗

and u∗, which represent the unrestricted elements of the loading matrix and cointegrating
relationships, respectively. Conditioning on the observations and the other parameters, one
obtains a linear Gaussian state space model with d∗t as latent state vector. Therefore, it
is possible to sample the path d∗ by relaying on Kalman filter and smoother techniques.
An analogous approach can be used to sample the path u∗. Instead, the path of the hidden
states, S, is drawn using a multi-move Gibbs sampler (Frühwirth-Schnatter, 2006; Kim et al.,
1998; Carter and Kohn, 1994).
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Concerning the constant parameters, conditionally on the observations and all the time
varying parameters, the observation model can be expresses as a linear Gaussian SUR, thus
allowing for the use of conjugate priors for the coefficients, g, and the covariance matrix, Σ.
Similarly, we can easily draw σ2

i from its full conditional, as it admits a conjugate inverse
gamma prior distribution. Instead, the autoregressive coefficient driving the dynamics of
the cointegrating vectors, ρ, is sampled using a Metropolis-Hastings step as in Koop et al.
(2011).

Summarizing, the Gibbs sampler cycles over the following steps:

1. sample u∗, conditionally on y,S,d∗,g, ρ,Σ, using the Kalman filter and smoother with
the simulation smoother method of Durbin and Koopman (2012).

2. sample the latent variables autoregressive coefficient ρ, conditionally on u∗, from its
full conditional distribution using a Metropolis-Hastings step as in Koop et al. (2011).

3. sample d∗, conditionally on y,S,u∗,g, σ,Σ, using the Kalman filter and smoother with
the simulation smoother method of Durbin and Koopman (2012).

4. sample the latent variables variance parameter, σ2
i , for i = 1, . . . , n, conditionally on

d∗, from its full conditional distribution p(σ2
i |d∗i,1, . . . , d∗i,T ) = IG(σ2

i |θi, f i).

5. sample the coefficients of the VECM, g, conditionally on y,S,d∗,u∗,Σ from its full
conditional distribution p(g|y,S,d∗,u∗,Σ) = N (g|µg,Σg).

6. sample the covariance matrix, Σ, conditionally on y,S,d∗,u∗,g from its full conditional
distribution p(Σ|y,S,d∗,u∗,g) = IW(Σ|ν,Ψ).

7. sample the latent states St, t = 1, . . . , T , conditionally on y,d∗,u∗,g, P,Σ, using a
multi-move Gibbs Sampling algorithm (Frühwirth-Schnatter, 2006; Kim et al., 1998;
Carter and Kohn, 1994).

8. sample the rows of the transition matrix Pi, i = 1, . . . , n + 1, from its full conditional
distribution p(Pi|S) = Dir(Pi|τ).

B Data collection

We consider the following six stocks: GameStop (GME), AMC Entertainment (AMC), KOSS
Corporation (KOSS), Moody’s (MCO), Pfizer (PFE), and Disney (DIS). The considered
period is from January 2019 to April 2021 at daily frequency. Stock prices and stock
trading volumes have been downloaded in Bloomberg. Tweets related to the aforementioned
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stocks have been collected through a R script based on the academictwitter library (Barrie
and ting Ho, 2021), which programmatically sends requests to Twitter’s FullArchive API
v2 (see: https://developer.twitter.com/en/docs/twitter-api/early-access). By
repetitively querying the Twitter’s API we have collected Twitter posts published from
January 2019 to April 2021 that jointly match the following conditions: (i) contain one
or more images (ii) are not a retweet, and (iii) contain one or more Twitter hash-tag
(#[ACRONYM]) or fin-tag1 ($[ACRONYM]) explicitly referring to the targeted stock. The
specific query conditions for each stock are reported in Table 1.

Stock name (acronym) condition (i) condition (ii) condition (iii)

GameStop (GME)

-is:retweet has:images

#GME OR $GME

AMC Entertainment (AMC) #AMC OR $AMC

KOSS Corporation (KOSS) #KOSS OR $KOSS

Moody’s (MCO) #MCO OR $MCO

Pfizer (PFE) #PFE OR $PFE

Disney (DIS) #DIS OR $DIS

Table 1: List of query conditions used for retrieving Twitter data from API V2. for
each stock, all conditions must be met to include a Twitter post in our data-set.

For each stock, raw tweets matching the three conditions are then transformed in count
time series at the daily frequency. Only working days for which market data is also available
are considered in the empirical analysis.
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