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Dual formulations of Abelian U (1) and Z(N) LGT with a static fermion determinant are constructed at 
finite temperatures and non-zero chemical potential. The dual form is valid for a broad class of lattice 
gauge actions, for arbitrary number of fermion flavors and in any dimension. The distinguished feature 
of the dual formulation is that the dual Boltzmann weight is strictly positive. This allows to gain reliable 
results at finite density via the Monte-Carlo simulations. As a byproduct of the dual representation we 
outline an exact solution for the partition function of the (1 + 1)-dimensional theory and reveal an 
existence of a phase with oscillating correlations.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

There are many approaches designed to solve fully or partially 
the sign problem in QCD at finite chemical potential. One of such 
approaches is based on the dual representation for the partition 
function and physical observables. The main idea is to perform an 
integration over original (gauge and fermion) degrees of freedom 
and to present the resulting weight in a positive form suitable for 
numerical simulations. A certain progress along this line of inves-
tigations has been achieved during last decade and can be briefly 
summarized as follows. The dual models with positive Boltzmann 
weights have been obtained and studied in Refs. [1–5]. The cal-
culations have been performed in the region of vanishing spatial 
gauge coupling constant and in the static approximation for the 
quark determinant (or at large quark masses). In the strong cou-
pling limit the SU (N) LGT can be mapped onto monomer-dimer 
and closed baryon loop model [6]. This dual representation has a 
soft sign problem and can be studied numerically. The positivity 
of the Boltzmann weight was also proven in the strong coupling 
limit of the scalar QCD with one, two or three scalar flavors [7]. 
Beyond the strong coupling regime the dual formulation of Z(3)

gauge-Higgs model is also positive [8,9] and suitable for Monte-
Carlo simulations. Attempts to extend these results to full lattice 
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QCD with the staggered fermions using different schemes of com-
putations have not been so successful so far [10–12]. Important 
result for the present paper was proven in Ref. [13]: the dual form 
of the massless two-dimensional U (1) LGT with one or two flavors 
of staggered fermions is free of the sign problem and can be sim-
ulated with the help of a worm algorithm. Generalizing this result 
to a non-vanishing fermion mass proved to be a non-trivial task, 
and no solution has been found up to date.

In this paper we extend results of Refs. [1–5] on the dual for-
mulation to the case of arbitrary spatial gauge coupling for Abelian 
LGTs. The crucial simplification in dealing with Abelian models is 
the known exact and positive dual form of any U (1) and Z(N)

pure gauge theory in any dimension. The purpose of this paper 
is to derive a positive dual formulation of Abelian LGTs with the 
full pure gauge action and arbitrary number of the staggered or 
Wilson flavors taken in the static approximation for the fermion 
determinants. As an application we discuss the possible updates 
of the dual Boltzmann weight appropriate for the Monte-Carlo 
simulations. Another direction we explore here is the solution of 
(1 + 1)-dimensional theory based on the dual representation. In 
particular, we calculate the eigenvalues of the corresponding trans-
fer matrix and reveal the existence of an oscillating phase at finite 
density in all Z(N) models with one or two fermion flavors.

Our notations and conventions are as follows. We work on an 
anisotropic periodic (d + 1)-dimensional lattice � = Ld × Nt with 
spatial extension L and temporal extension Nt . The lattice sites are 
denoted as �x = (t, x) with x = (x1, · · · , xd), links in the temporal 
(spatial) direction are denoted as lt (ls) and plaquettes as pt (ps). 
The pure gauge action is of the form
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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S g(w p) = βt

∑
pt

S(w pt ) + βs

∑
ps

S(w ps ) , (1)

where anisotropic coupling constants are related by βs = βt ξ2

with ξ = at
as

. at (as) is lattice spacing in the temporal (spatial) di-
rection. β = at Nt is an inverse temperature. The partition functions 
of Z(N) and U (1) LGTs are given by

Z� =
N−1∑

{sl}=0

eS g(sp)

N f∏
f =1

DetM�x,�x′ , (2)

Z� =
2π∫
0

∏
l

dφl

2π
eS g(φp)

N f∏
f =1

DetM�x,�x′ , (3)

where sp and φp are the standard plaquette angles. In the static 
approximation valid for large masses and/or for ξ � 1 the fermion 
determinant can be approximated as

DetM�x,�x′ ≈
∏

x

A f

[
1 + h f

+W (x)
]g [

1 + h f
−W †(x)

]g
. (4)

g = 1(2) for the staggered (Wilson) fermions, W (x) = ∏Nt
t=1 U0(t, x)

is the Polyakov loop. The constants appearing on the right-hand 
side of (4) are given by

A f = e2Nt arcsinh m f , h f
± = e−(arcsinh m f ∓μ f )Nt (5)

for the staggered fermions and

A f = (2κ f )
4Nt , h f

± = (
2κ f e±μ f

)Nt
,

κ f = 1

2m f + 2d + 2 coshμ f

(6)

for the Wilson fermions. In this paper we consider a class of ferro-
magnetic pure gauge actions S g whose Boltzmann weight can be 
expanded as

eS g (ω) =
∏

p

∞∑
r=−∞

Cr eirω (7)

with positive coefficients Cr . E.g., for the standard Wilson action 
one has Cr = Ir(β), where Ir(β) is the modified Bessel function.

2. Dual representation

The Boltzmann weight of the models (2) and (3) is complex 
due to the fermion contribution (4). It is straightforward to get 
a positive expression for this weight by integrating out explicitly 
all gauge degrees of freedom and rewriting the theory in terms 
of fermion and plaquette occupation numbers. In order to perform 
such integration, the static determinant with N f fermion flavors is 
presented as

1∑
k1(x)=0
k′

1(x)=0

. . .

1∑
kN f

(x)=0

k′
N f

(x)=0

∏
x

N f∏
f =1

A f (h f
+)k f (x) (h f

−)
k′

f (x)
(W (x))k f (x)−k′

f (x)
.

(8)

Combining this representation with the expansion (7) one can in-
tegrate over gauge fields to obtain, e.g. for the staggered fermions
2

Z =
∞∑

{r(p)}=−∞

1∑
k1(x)=0
k′

1(x)=0

. . .

1∑
kN f

(x)=0

k′
N f

(x)=0

∏
ps

Cr(ps)(βs)
∏
pt

Cr(pt )(βt)

×
∏

x

N f∏
f =1

A f (h f
+)k f (x) (h f

−)
k′

f (x)
∏

ls

δG

⎛
⎝∑

p∈ls

r̃(p)

⎞
⎠ (9)

×
∏

lt

δG

⎛
⎝∑

p∈lt

r̃(p) +
N f∑
f =1

(
k f (x) − k′

f (x)
)⎞
⎠ .

In case of N f degenerate flavors the last expression simplifies to

Z = AgN f Ld
∞∑

{r(p)}=−∞

gN f∑
k(x)=0
k′(x)=0

×
∏
ps

Cr(ps)(βs)
∏
pt

Cr(pt )(βt)
∏

ls

δG

⎛
⎝∑

p∈ls

r̃(p)

⎞
⎠

∏
lt

δG

⎛
⎝∑

p∈lt

r̃(p) + k(x) − k′(x)

⎞
⎠

×
∏

x

(
gN f

k(x)

)(
gN f

k′(x)

)
hk(x)

+ hk′(x)
− . (10)

In the last equations δG (x) means the delta-function on the group 
G = Z(N), U (1). Thus, the partition function is expressed in terms 
of fermion numbers k f (x), k′

f (x) and plaquette occupation num-
bers r(p). Both numbers are subject to constraints expressed via 
group delta-functions. The constraint on the spatial links ls is pre-
cisely the same as in the pure gauge theory due to the absence 
of spatial gauge fields in the fermion determinant. The constraint 
on the temporal links lt is modified due to a contribution of the 
Polyakov loops arising from the determinant. Note, fermion num-
bers k f (x), k′

f (x) do not depend on the temporal coordinate t , i.e.
they are equal for all time-like links with coordinates lt = (t, x; 0)

at fixed x. We have also used the following convention: r̃(p) = r(p)

if a given link ls or lt points in a positive direction when going 
around plaquette p and r̃(p) = −r(p), otherwise.

As follows from the explicit representation of the group delta 
function δG (x) the dependence on μ drops out both from the par-
tition function and from all invariant observables for U (1) theory 
with one fermion flavor. To get a non-trivial dependence one has 
to consider a theory with N f ≥ 2 as in [13]. For Z(N) model the 
dependence on chemical potential is non-trivial for any number of 
flavors.

It is straightforward to get dual representations for the most 
important observables. Taking into account Eq. (5) one obtains for 
the staggered fermions the particle density of f th flavor

B f = 1

Ld Nt

∂ ln Z

∂μ f
= 1

Ld

〈 ∑
x

(
k f (x) − k′

f (x)
)〉

(11)

and the fermion condensate of f th flavor

σ f = 1

Ld Nt

∂ ln Z

∂m f
= 1√

1 + m2
f Ld

〈∑
x

(
2 − k f (x) − k′

f (x)
)〉

.

(12)

Extension to the Wilson fermions is trivial. Plaquette expectation 
value is



O. Borisenko, V. Chelnokov, S. Voloshyn et al. Physics Letters B 827 (2022) 137000
P (p) = 1

2

〈
Ir(p)−1(b) + Ir(p)+1(b)

Ir(p)(b)

〉
, (13)

where b = βs(βt) stays for the spatial (temporal) plaquette. Expec-
tation value of the pure gauge action becomes

〈
S g

〉 = 1

Ld Nt

(
βs

∑
ps

P (ps) + βt

∑
pt

P (pt)

)
. (14)

Correlation functions of the Polyakov loops can be calculated as a 
ratio of the partition functions

〈
W (x)W ∗(y)

〉 = Z(ηx, η̄y)

Z
. (15)

The partition function Z(ηx, η̄y) coincides with Z up to a modi-
fication of the delta’s on all temporal links with coordinates l =
(t, x; 0) and l = (t, y; 0): arguments of these delta-functions ac-
quire a linear shift by η = −η̄ = 1.

The models defined in Eqs. (9) and (10) have explicitly non-
negative weights (for h+, h− > 0), hence they can in principle be 
studied with numerical Monte-Carlo simulations. The delta func-
tions in the partition function create constraints on the config-
urations, which have to be preserved by the updates. As a first 
approach to the numerical simulation we propose a Metropolis al-
gorithm for a (d + 1) model on a lattice with periodic boundary 
conditions, that attempts following updates:

• For Z(N) models - change of each variable (k f (x), k′
f (x), r(p)) 

by ±N .
• Change of two k variables at the same x by ±1, preserving the 

sum 
∑

f (k f (x) − k′
f (x)).

• Change by ±1 of two k variables at two neighboring space 
positions x, y, compensated by the corresponding change at 
each time-like plaquette between sites x and y.

• Change by ±1 of r(p) variables on plaquettes forming a unit 
three dimensional cube.

• Global change by ±1 of all r(p) variables in μν direction 
forming a surface wrapping around the whole lattice.

These updates generate the full set of permitted configurations, 
though it is possible that two configurations with large weight 
are connected through configurations with much smaller weight, 
which would reduce the update algorithm efficiency. A more ef-
ficient alternative would be to develop a surface-building worm 
update algorithm similar to the ones proposed in [8].

Another approach is to get rid of constraints on configurations 
whenever possible. First, consider the representation (10) for (2 +
1)-dimensional U (1) theory. When k(x) = k′(x) = 0 we recover the 
dual representation for the pure gauge model. The solution of the 
constraint is well known and reads [14]

r̃(p) = q(x) − q(x + eν) . (16)

q(x) is a new set of integer variables defined in the sites of the 
dual lattice. We have neglected some global variables. These global 
variables are conjugate to global Bianchi identities and do not con-
tribute to thermodynamic limit. Possibility of nonzero k is restored 
by modifying the conditions for the temporal plaquettes:

r̃(ps) = q(x) − q(x + e0) , (17)

r̃(pt) = q(x) − q(x + en) + ρn(x) , n = 1,2 . (18)

Here ρn(x) are new integer variables defined on the dual links 
(x, n) and depending only on spatial coordinates. Substituting 
Eqs. (17), (18) into our constraints we see that the constraints on 
3

ls are satisfied, while the constraints on lt appear only at one fixed 
time slice and read

δG
(
ρ(p) − k(p) + k′(p)

)
,

ρ(p) = ρ1(x) + ρ2(x + e1) − ρ1(x + e2) − ρ2(x) .
(19)

Four links entering this constraint form a dual plaquette p. Since 
now each of the variables k(p), k′(p) appear just in one delta func-
tion, and the terms in partition function that depend on k do not 
mix at different plaquettes, we can calculate the sum over k(p)

and k′(p) at each plaquette to remove the last set of deltas. This 
leads to the following dual form of the partition function

Z = AgN f Ld
∞∑

{q(x)}=−∞

∏
lt

Cq(x)−q(x+e0)(βs)

×
∞∑

ρn(x)=−∞

∏
ls

Cq(x)−q(x+en)+ρn(x)(βt)
∏

p

Kρ(p) , (20)

Kρ =
(

h+
h−

) ρ
2 (gN f )!

(gN f + ρ)! Pρ
gN f

(
1 + h+h−
1 − h+h−

)
, (21)

where Pρ
n (x) is the associated Legendre function. Product 

∏
p runs 

over all space-like plaquettes of the dual lattice at a fixed time 
slice. To simulate the model (20) one can precompute Kρ for 
−gN f ≤ ρ ≤ gN f and then perform Metropolis updates by ±1 on 
each variable q(x), ρn(x).

For N f non-degenerate flavors, Eq. (9), the representation (20)
remains valid. The only change is the expression for Kρ which 
becomes more complicated. An extension to d = 3 theory can be 
accomplished in a similar way if one uses the solution of the con-
straint for the pure gauge model following [14]. Finally, the Z(N)

case is recovered by treating each solution as an equality modulo 
N , thus leaving a degree of freedom for the difference of left and 
right parts divided by N .

3. (1 + 1)-dimensional theory

As an application, let us consider the dual formulation in 
(1 + 1)-dimensions. Due to deltas on spatial links ls all plaquette 
numbers at fixed position x are equal and can be identified with a 
link variable r(l) of a one-dimensional lattice. All deltas on tempo-
ral links with a fixed coordinate x become also equal and can be 
associated with a site x of the same one-dimensional lattice. The 
U (1) partition function (9) gets the form (βs = βt = β)

Z =
∞∑

{r(l)}=−∞

1∑
k1(x)=0
k′

1(x)=0

. . .

1∑
kN f

(x)=0

k′
N f

(x)=0

∏
l

C Nt
r(l)(β)

×
∏

x

N f∏
f =1

A f (h f
+)k f (x) (h f

−)
k′

f (x)

×
∏

x

δG

⎛
⎝r(l) − r(l − 1) +

N f∑
f =1

(
k f (x) − k′

f (x)
)⎞
⎠ . (22)

For Z(N) model one has to make the following replacement in the 
last expression

∞∑
r=−∞

→
N∑

r=0

∞∑
q=−∞

, Cr(β) → Cr+qN(β) . (23)

This partition function can be evaluated as
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Fig. 1. Plots of the imaginary part of the 2nd eigenvalue of the transfer matrix of Z(N) model with two flavors of staggered fermions as a function of the coupling constant. 
Left panel: m1 = 3, m2 = 1, μ1 = −0.16, μ2 = 0.45. Right panel: m1 = 1, m2 = 0.1, μ1 = 2, μ2 = 1.
Z = C LNt
0 (β)

N f∏
f =1

AL
f

∑
i=0

λL
i , (24)

where λi are eigenvalues of the following transfer matrix

Tr1r2 = √
Br1 Br2

1∑
k1=0
k′

1=0

. . .

1∑
kN f

=0

k′
N f

=0

N f∏
f =1

(h f
+)k f (h f

−)
k′

f , (25)

where Br = C Nt
r (β)/C Nt

0 (β) and all configurations are subject to 
constraint r1 − r2 + ∑N f

f =1

(
k f − k′

f

)
= 0(modN). Below we ana-

lyze the theory with the Wilson action and two staggered fermion 
flavors.

When chemical potentials are zero all eigenvalues are real. This 
leads to a familiar exponential decay of the connected part of the 
Polyakov loop correlation function. However, when non-zero chem-
ical potentials are introduced, one finds such values of the coupling 
constant above which the eigenvalues become complex. Moreover, 
the second and the third eigenvalues are conjugate to each other. 
Typical examples of such behavior are shown in Fig. 1 for vari-
ous values of N . This implies the following decay of the two-point 
correlation function

〈W (0)W ∗(R)〉c ≈ e−mr R cos mi R . (26)

Such an oscillating decay should not come as a surprise. Indeed, in 
a similar settings it was found in the (1 + 1)-dimensional SU (3)

theory with one flavor [15] and in the two-dimensional Z(3) spin 
model in a complex magnetic field [16] as well as in the ’t Hooft-
Veneziano limit of SU (N) Polyakov loop models [17]. In all cases 
studied we have found the increase of the β value with N above 
which the oscillating phase appears. We do not know if the val-
ues of masses and/or chemical potentials can be re-scaled in a 
way such that in the limit N → ∞ the oscillating phase would 
exist. We have, however studied U (1) model directly in the re-
gion β ≤ 10 and various values of masses and chemical potentials. 
No oscillating phase have been found in this case. We thus think 
the reasonable conjecture is to assume that the complex spectrum 
of the eigenvalues does not appear in the U (1) model with two 
fermion flavors though this issue requires more thorough investi-
gation.
4

4. Summary

In this paper we have derived the dual representations for U (1)

and Z(N) lattice gauge theories in (d +1)-dimension with N f stag-
gered or Wilson fermion flavors and in the static approximation for 
the fermion determinant. We presented two essentially different 
representations: one with a set of constraints on the dual variables, 
the second one is free of constraints. In both cases the dual weight 
is positive and suitable for numerical simulations. Even the dual 
model with constraints can be studied numerically if the proper al-
gorithm is developed. One such possible algorithm was suggested 
here. As an application of the dual form we have studied (1 + 1)-
dimensional model with two staggered flavors. The model can be 
solved with the help of the transfer matrix. This solution reveals 
an existence of a phase in all Z(N) models with an exponential 
decay of the correlations modulated by an oscillating function. The 
value of the coupling constant, above which such phase appears, 
grows with N .

Further possible applications of the dual formulation would be 
to study 1) the large N f limit of Abelian models at finite density 
and 2) the Berezinskii-Kosterlitz-Thouless phase transition in 2 + 1
models. The dual formulation of U (1) model turned out to be very 
efficient in the study of this type of phase transition in a pure 
gauge model [18]. We think it can be also useful to investigate 
how the finite-density affects the critical behavior. These problems 
are currently under investigation.

Probably, the most important question is whether this approach 
can be extended to the full fermion determinant. On our opinion, 
combining the present approach with the methods of Ref. [13] one 
could construct the positive dual weight for (1 + 1) dimensional 
Abelian models with non-zero fermion masses. This possibility cer-
tainly deserves further investigations.
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