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A B S T R A C T   

The article presents the results of numerical and experimental investigations of guided wave propagation in 
aluminum plates with variable thickness. The shapes of plate surfaces have been specially designed and man-
ufactured using a CNC milling machine. The shapes of the plates were defined by sinusoidal functions varying in 
phase shift, which forced the changes in thickness variability alongside the propagation path. The main aim of 
the study is to analyze the wave propagation characteristics caused by non-uniform thickness. In the first step, 
the influence of thickness variability on the time course of propagating waves has been analyzed theoretically. 
The study proves that the wave propagation signals can be determined based on knowledge about the statistical 
description of the specimen geometry. The histograms of thickness distribution together with the a priori 
knowledge of the dispersion curves were used to develop an iterative procedure assuming that the signal from the 
previous step becomes the excitation in the next step. Such an approach allowed for taking into account the 
complex geometry of the plate and rejecting the assumption about the constant average thickness alongside the 
propagation path. In consequence, it was possible to predict correctly the signal time course, as well as the time 
of flight and number of propagating wave modes in specimens with variable thickness. It is demonstrated that 
theoretical signals predicted in this way coincide well with numerical and experimental results. Moreover, the 
novel procedure allowed for the correct prediction of the occurrence of higher-order modes.   

1. Introduction 

In a variety of fields, from engineering to medical sciences, guided 
ultrasonic waves (GUW) are used to determine the properties of the 
medium in which they propagate [1]. In the simple case of a flat solid 
medium made of homogeneous, isotropic material, GUW modes prop-
agate with the same velocity in each direction [2]. The so-called Lamb 
waves [3] become dispersive which means that their velocity and the 
number of triggered modes depend on the material parameters of the 
structure as well as the frequency-times-thickness product. The 
assumption that for a certain structure a unique set of dispersion curves 
can be traced was the foundation of many methods aimed at solving the 
inverse problems i.e. determining the parameters of the tested medium 
based on reconstructed dispersive curves [4,5]. In the majority of cases, 
the thickness was assumed to be constant which enables the application 
of the so far developed methods for diagnostics of more complex 
structures characterized by non-uniform geometry. Because the relation 
between velocity and plate thickness, as well as material parameters, is 

nonlinear, the assumption that the average velocity can be used to 
determine the average thickness leads to significant inaccuracies [6], 
especially in damage localization applications. Thus, for the further 
development of wave-based diagnostic procedures, it is important to 
take into account the possible thickness variability and its influence on 
signal characteristics. 

The attempt of a theoretical description of wave propagation in 
specimens with variable thickness was made by Pageneux and Maurel 
[7]. The behavior of adiabatic modes in specimens with linearly varying 
thickness was investigated by El-Kettani et al. [8] and Moreau et al. [9]. 
Höhne [10,11] used a multimodal approach to simulate ultrasound 
propagation in cylindrical waveguides with non-constant thickness. The 
technique for pulse prediction and compensation in specimens with a 
variable cross-section was proposed by De Marchi et al. [12,13]. Guided 
waves in tapered waveguides were considered by Deng and Yang [14], 
Moll et al. [15] and Zima [16]. 

Despite the effort put into the analysis of wave propagation in plates 
with variable thickness, the detailed description of wave propagation in 
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plates with non-uniform geometry is still a research gap requiring 
consideration. The present study focuses on the analysis of the effects of 
smooth geometric thickness variations on wave propagation signals. The 
numerical and experimental investigations were conducted for 
sinusoidal-shaped plates varying in phase shift. In the first step, the in-
fluence of thickness variability on the time course of propagating waves 
has been analyzed theoretically. In the next steps, the time variability of 
wave propagation signals has been determined making use of a priori 
knowledge of the material parameters and dispersion relations The 
paper presents the novel procedure of signal reconstruction based only 
on statistical information about the geometry i.e. histograms of plate 
thickness distribution. The signal is obtained by using an iterative pro-
cedure based on assumption that the signal from the previous step be-
comes the excitation in the next step. The proposed method allowed for 
the prediction of the occurrence of higher-order modes, which can be 
useful in interpreting complex signals registered in objects with 
complicated non-uniform shapes. 

The paper is organized as follows: the theoretical background is 
presented in Section 2. Materials and methods are described in Section 
3, while the results are discussed in Section 4. Finally, the conclusions 
are drawn in Section 5. 

2. Theoretical background 

To consider the influence of thickness variability on wave propaga-
tion, let’s consider the plate-like structure, depicted in Fig. 1. The time 
variability of guided wave u(x1, t) at the distance x1 from the wave 
source after excitation defined as F(ω) in the frequency domain can be 
predicted based on the following expression: 

u(x1, t) = A(x1)

∫ ∞

− ∞
F(ω)ei(ωt− k(ω)x1)dω (1)  

where the factor A(x1) describes the amplitude decay and k(ω) is the 
wavenumber-frequency relationship. The above equation rewritten in 
the frequency domain takes the following form: 

U(x1,ω) = U(0,ω)e− ik(ω)x1 (2)  

Where U(x,ω) and U(0,ω) are the Fourier transforms of the received 
signal and the excitation, respectively. 

Now, let’s consider the time variability at the point located at the 
distance x2 from the first point. The signal in point x2 can be determined 
in two ways: by determining the waveform at the distance x1 +x2 from 
the source or by treating the waveform registered in point x1 as an 
excitation function: 

U(x2,ω) = U(0,ω)e− ik1(ω)x1 e− ik2(ω)x2 = U(0,ω)e− i(k1(ω)x1+ik2(ω)x2) (3) 

In both cases we obtain the same results which can be used to derive 
a more general form: 

U(xn,ω) = U(0,ω)e− i(
∑n

i=1
kj(ω)xj) (4)  

where n is the number of divisions alongside the plate. To take into 
account the possibility of propagation of several Lamb modes the 
equation can be written as follows: 

U(xn,ω) =
∑N

i=1
U(0,ω)e− i(

∑n

i=1
kN

j (ω)xj) (5)  

where N represents the number of Lamb modes. Based on the above 
derivations one can conclude that the shape of the wave packet depends 
on the thickness distribution along the propagation path but not on the 
exact shape of the plate. The same situation takes place in the case of the 
ToF of a wave passing through the distance L divided into n divisions 
with lengths Δx varying in thickness and thus, in wave velocitycg: 

ToF =
∑n

i=1

Δx
cgi

(6) 

Its value is also independent of the geometry, but only on the 
thickness distribution. 

3. Materials and methods 

3.1. Experimental investigation 

Computerized Numerical Control (CNC) was incorporated into the 
manufacturing procedure of experimental samples. Four solid plates 
considered here made of aluminum (elastic modulus E = 70 GPa, Pois-
son’s ratio v = 0.33 and density ρ = 2700 kg/m3) were characterized by 
specially designed sinusoidal shape. Both surfaces were defined by the 
same equation: 

s(x) = a⋅sin(ksx − φ)+ h0 (7)  

where a is the amplitude and ks is the wavenumber related to plate shape 
and h0 is the initial plate thickness. 

The phase shift φ for the bottom surface each time was equal to 0 in 
all four cases, while for the upper surface this value varied from 0 toπ. 
The amplitude a = 8 mm, initial thickness h0 = 20 mm and the wave-
number ks = 0.011 rad/mm were established by taking into account the 
difference in wave velocity between particular plates as well as the 
technological possibilities of manufacturing. The total length L was 500 
mm and was dictated by the size of the operating space of the CNC 
machine. In the case of plate#1 the phase shift was zero, both surfaces 
were described by the same function and thus, the plate thickness was 
constant. In the case of plate #4 the phase shift of the bottom surface 
was equal toπ, which forced the greatest thickness variability. Addi-
tionally, two intermediate cases were investigated (φ = π/3 and φ =

2π/3). The sinusoidal, smooth shape of the plates allowed for avoiding 
abrupt thickness changes associated with wave reflections and addi-
tional mode conversion. Because the geometry of each plate is defined 
by the same function and only the phase shift is variable, one can 
conclude that all differences in signals obtained for various plates result 
only from variable thickness, while not from the undesired effects 
related to the specific geometry of particular plates. The geometry, the 
histograms presenting thickness distributions, and the photos of inves-
tigated plates are given in Fig. 2. 

Guided waves were excited and registered by rectangular piezocer-
amic transducers with dimensions of 30 × 5 mm manufactured by 
Physik Instrumente attached at both ends of each plate. To generate and 
register GUW the oscilloscope and function generator Handyscope HS5 
(TiePie) was connected to a specially designed device Rammsbone [17]. 
The transducers were attached perpendicularly to the plate surface on 
top of the specimen. Thus, both mode families (symmetric and anti-
symmetric) were generated. 

3.2. Numerical modeling 

Numerical analysis was performed by using FEM-based software 
Abaqus/Explicit. Three-dimensional models were built of eight-node 
brick elements with reduced integration (C3D8R). The 3D model 

Fig. 1. Determining the time variability of the signal at different distances from 
the source. 
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allowed for registering edge reflections in signals, which would not be 
possible in a less time-consuming plane strain model. The numerical 
investigation was preceded by an analysis of the dispersion curves for 
particular plates presented in the further part of the paper to adjust the 
mesh element size to recommendations saying that at least 10 nodes per 
wavelength should be used in a model [18,19]. The transient wave 
propagation problem was solved with an integration time step of 10-8 s, 
which was adjusted according to CFL condition for the frequency and 
wavelength [20]. The element size did not exceed 1 mm3 and was 
established based on the results of the convergence study. 

The excitation was applied as a time-dependent pressure applied on 
the area corresponding to the area of the real piezo transducers. The 
excitation function was in form of a five-cycle sine modulated by the 
Hann window: 

p(t) =

⎧
⎪⎨

⎪⎩

0.5p0sin(2πft)
(

1 − cos
(

2πft
nw

))

t ∈ [0, Tw]

0 t⩾Tw

(8) 

The output was registered in a node localized at the middle point at 
the opposite end. The exemplary numerical model of plate #4 with finite 

element mesh and applied excitation is presented in Fig. 3. 

4. Results 

4.1. Numerical simulations – Visualization of propagating wave 

Fig. 4 presents the visualization of wave propagation in plates #1 
and #4 characterized by extreme values of phase shift φ (see Eq. (7)). 
After wave excitation the high-amplitude antisymmetric mode propa-
gates with comparable velocity in both plates. However, in plate #1 an 
additional low amplitude wave mode was triggered and it reached the 
plate edge first. Moreover, we can observe the differences in the 
amplitude. In the case of the plate with constant thickness, the ampli-
tude decays exponentially [21], while if the thickness is variable the 
amplitude decreases with increasing plate thickness and increases with 
thickness decrease (Fig. 4, t = 0.11 ms). 

Fig. 2. Tested sine-shaped plates: a) plates geometry, b) thickness distributions and c) the photos of the specimens.  

Fig. 3. Numerical simulations: a) model of plate#4 with b) applied pressure on the area corresponding to the area of the real transducers and c) finite element mesh 
at the edge of the plate and in the thinnest cross-section. 
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4.2. Signal reconstruction based on thickness histograms and exact plate 
geometry 

To verify the correctness of theoretical predictions, the time course of 
the signal corresponding to fundamental symmetric and antisymmetric 
mode was determined using two different approaches depicted in Fig. 5. 
The first approach (Fig. 5a) was based on an iterative procedure 
assuming that the signal from the previous step becomes the excitation 
in the next step. To reconstruct the signal, information about the exact 
thickness variability alongside the propagation path was required. 

The second approach (Fig. 5b) incorporated only histograms of 
thickness distribution and Eq. (5). Fig. 5c presents the comparison of the 
signals obtained in two ways for exemplary chosen plate #3 and exci-
tation of 200 kHz. It can be seen that in the case of A0 mode the time 
variability of the displacement caused by wave motion was the same, 
which proved the correctness of the theoretical reasoning presented in 
Section 2. The slight deviations were noted for symmetric mode. The 
amplitudes are comparable, but the average velocity of the S0 mode was 
greater when the signal was determined using iterative derivation 
alongside plate length. The non-perfect correspondence of these two 
signals arises from the fact that the histogram is not an ideal represen-
tation of plate geometry. The accuracy of signal reconstruction based on 
the histogram depends on the number and the width of the bins. The 
effect is more visible for symmetric mode because it is more sensitive to 
thickness variations. Fig. 6 presents the dispersion curves for both modes 
determined for maximum and minimum thickness determined for plates 
#2, #3, and #4 (plate #1 is characterized by constant thickness, so the 
dispersion curves are not presented here). The differences in wave ve-
locity in the case of antisymmetric mode vary from 0 to 100 m/s and for 
symmetric mode reach even 3000 m/s. Thus, the velocity of the S0 mode 
propagating alongside the plate varies significantly. In consequence, the 

discrepancies of exact thickness and the distance estimation resulting 
from non-perfect geometry description in the form of histogram together 
with significant velocity variabilities caused the differences between 
reconstructed signals to be more visible for S0 mode. Nevertheless, the 
comparison of signals proves that the statistical description of geometry 
i.e. histograms of thickness distributions can be efficiently used to esti-
mate the time variability of wave propagation signals. 

To derive time-domain signals, in the first step the wave modes 
which can be excited in tested plates were identified. Fig. 7 presents the 
dispersion curves for an aluminum plate traced in the normalized 
frequency-thickness domain. Next, the extreme values of the frequency- 
thickness product have been calculated for each specimen by multi-
plying the excitation frequency by minimum and maximum plate 
thickness. The possible wave modes have been indicated by shaded 
areas. The frequency-product range, as well as the number of possible 
wave modes increases with increasing plate thickness variability. 

Fig. 8 shows the theoretically derived time-domain signals, 
compared with numerical and experimental signals measured at the end 
of the plates for exemplary frequencies of 100 and 200 kHz, respectively. 
The theoretically derived signals were determined based on Eq. (5). 
Despite some differences between the signals obtained in different ways, 
the clear difference in the ToF for particular specimens caused by 
thickness variability is noticeable. Moreover, the ToF determined 
theoretically coincides well with numerical and experimental results, 
which proves the efficiency of signal reconstruction using histograms 
without the knowledge of the exact geometry. However, because the 
theoretical model was based on Rayleigh-Lamb dispersive equations 
derived for plane strain conditions, the theoretically determined signals 
do not contain edge reflections, which occur in numerical and experi-
mental signals. Thus, they also seem to be less complex and much easier 
to interpret. Moreover, as presented in Fig. 7 the number of modes may 

Fig. 4. Visualization of wave propagation in a) plate #1 and b) plate #4 at selected time instants.  

Fig. 5. The scheme of signal reconstruction based on plate geometry, dispersion relations and: a) iterative procedure repeated alongside propagation path, b) 
histogram of thickness distribution. Exemplary signals representing A0 and S0 mode in plate#3 presented in c) were determined for 200 kHz in two different ways 
and compared. 
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vary considerably alongside the propagation path. The mode conver-
sions and their reflections, especially in the case of plates #3 and #4, 
might influence the time course of registered signals. Nevertheless, the 
theoretical model allowed for the correct prediction of the order of 
modes registered at the end of the plate. One can see that in the case of 
excitation of 100 kHz the wave propagated the fastest in plate #1. For 
this frequency the velocities of all modes were comparable (Fig. 7a). 

However, 100 kHz is a central carrier, which means that the lower fre-
quencies were also excited. The shortest ToF for this plate is the result of 
triggering symmetric S0 mode characterized by relatively high velocity 
overlapping with slower antisymmetric A0 mode. Usually, in the case of 
plates with constant thickness, depending on the direction of applied 
excitation, one mode type is characterized by much higher energy i.e. 
the perpendicular excitation triggers mainly antisymmetric modes and 

Fig. 6. Dispersion curves representing fundamental A0 and S0 modes traced for minimum and maximum thickness of a) plate #2, b) plate #3, c) plate #4.  

Fig. 7. Determination of wave modes that can occur in a) plate #1, b) plate #2, c) plate #3 and d) plate #4 for excitation frequency of 100 and 200 kHz.  
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thus the possible symmetric mode has much lower amplitude. In 
consequence, the identification of particular modes is relatively 
straightforward. In the case of plates with irregular geometry, when the 
excitation is not perpendicular to the plate surface, the amplitudes of 
triggered modes can be comparable, which may result in difficulties in 
interpretation and wrong ToF or velocity estimation. In the considered 
case, taking into account only antisymmetric modes would be associated 
with significant velocity overestimation. In the context of damage 
localization purposes in specimens with complex geometry, it would 
result in incorrect determination of the defect position. 

It is noteworthy that the histogram-based procedure supported by a 
fundamental equation describing the response of Lamb waves (Eq. (5)) 
allowed for the prediction of the propagation of higher-order modes 
which is visible, especially for frequency of 200 kHz and plate #1. In this 
case, the first registered mode was recognized as S1 mode, which was 
characterized by the highest velocity for this frequency (Fig. 7a). The 
idea of using the histogram in predicting the higher-order modes prop-
agation requires checking the number of possible wave modes for 
particular thicknesses. If we find that for a certain thickness the addi-
tional mode may exist, the signal from the previous step is treated as an 
excitation, while the exponential factor in Eq. (5) is determined for the 
new dispersion curve representing the higher-order mode. In the case of 
the histogram, the thickness always increases so the number of possible 
wave modes also only increases. If the procedure would allow for the 
possibility that the thickness in the following steps decreases (like in the 
case of the iterative procedure depicted in Fig. 5a), the higher-order 
mode would be converted into the lower-order mode if the frequency- 
thickness product would be below its cut-off frequency. This proced-
ure has been applied in the case of each plate and all possible wave 
modes, which were summed up together, and finally the comparison of 
theoretical and experimental signals allowed for recognition of the first 
wave packet as S1 mode propagating in plate #1. However, one of the 
limitations of the proposed procedure is the lack of possibility to predict 
the amplitude or the relations between the amplitudes of particular 
modes. So far developed phenomenological models do not provide in-
formation on how to predict the amplitude variability in a plate with 

non-constant thickness and multiple mode propagation [21]. In the 
presented case the amplitude of the S1 mode has been artificially 
decreased to 30 % of its initial value only to keep the proportions be-
tween the amplitudes noted in experimental tests. 

4.3. ToF variability in non-uniform sine-shaped plates 

To analyze the influence of thickness variability on the ToF alongside 
the propagation path, the theoretical signals were calculated at each 
point with a 1 mm step. Next, the Hilbert transformation was incorpo-
rated to determine the signal envelope and calculate the ToF. The 
theoretically predicted ToF variability alongside propagation path for 
frequencies of 100, 150 and 200 kHz for fundamental antisymmetric and 
symmetric modes are presented in Fig. 9a and 9b, respectively. It can be 
seen that in the case of plate #1 the ToF increases linearly for both 
modes, which is associated with constant thickness and constant ve-
locity. In other cases the ToF-distance becomes nonlinear, however, the 
nonlinearity is more visible for symmetric mode (Fig. 9b). In the case of 
antisymmetric mode, the deviations from linear patterns are negligible, 
which suggests it is less sensitive to thickness variability. 

The potential velocity variability within the complex structure 
should be taken into account in wave-based damage detection and 
localization algorithms. As we can see, the ToF might depend not only 
on the distance between the transducers or obstacles but also on their 
exact location on the structure. The presented study demonstrates that it 
is possible to choose a wave mode that is insensitive to thickness vari-
ability, however, the non-uniform geometry always leads to triggering 
other wave modes affecting wave propagation signals and their 
characteristics. 

5. Conclusions 

The paper presents the results of numerical, experimental, and 
theoretical analysis of wave propagation in plates with variable thick-
ness. The specially designed sine-shaped plates were tested. The 
following conclusions can be drawn based on the obtained results: 

Fig. 8. Wave propagation signals collected for plates #1-#4 obtained a) experimentally, b) numerically and c) theoretically.  
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• the time course of the signal can be derived using analytical equa-
tions of time variability of guided wave and the known geometry. 
Because the propagation velocity, as well as the shape of the wave 
packet, depend only on thickness distribution, and not on the exact 
shape of the plate, the signals can be efficiently determined using 
histograms. The statistical information about the geometry allowed 
for the prediction of the presence of higher-order modes. Moreover, 
the ToF of guided waves in different plates for variable excitation 
frequency was predicted correctly;  

• the irregular geometry leads to significant velocity variability within 
the structure. Despite the possibility to choose a wave mode insen-
sitive to thickness variability, the irregular geometry leads to trig-
gering more than one mode, which significantly hinders the 
interpretation of the signals. Therefore, the common approach based 
on using the average wave velocity e.g. for damage localization 
purposes in plates characterized by variable thickness may result in 
significant errors. 

In the next steps, it is planned to consider the inverse problem aimed 
at determining the histogram of thickness distribution based on regis-
tered signals. 
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