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A B S T R A C T   

Mass spectrometry focusing on small endogenous molecules has become an integral part of biomarker discovery 
in the pursuit of an in-depth understanding of the pathophysiology of various diseases, ultimately enabling the 
application of personalized medicine. While LC-MS methods allow researchers to gather vast amounts of data 
from hundreds or thousands of samples, the successful execution of a study as part of clinical research also re-
quires knowledge transfer with clinicians, involvement of data scientists, and interactions with various 
stakeholders. 

The initial planning phase of a clinical research project involves specifying the scope and design, and engaging 
relevant experts from different fields. Enrolling subjects and designing trials rely largely on the overall objective 
of the study and epidemiological considerations, while proper pre-analytical sample handling has immediate 
implications on the quality of analytical data. Subsequent LC-MS measurements may be conducted in a targeted, 
semi-targeted, or non-targeted manner, resulting in datasets of varying size and accuracy. Data processing further 
enhances the quality of data and is a prerequisite for in-silico analysis. Nowadays, the evaluation of such complex 
datasets relies on a mix of classical statistics and machine learning applications, in combination with other tools, 
such as pathway analysis and gene set enrichment. Finally, results must be validated before biomarkers can be 
used as prognostic or diagnostic decision-making tools. Throughout the study, quality control measures should be 
employed to enhance the reliability of data and increase confidence in the results. 

The aim of this graphical review is to provide an overview of the steps to be taken when conducting an LC-MS- 
based clinical research project to search for small molecule biomarkers.   

Introduction 

Liquid chromatography – mass spectrometry (LC-MS) aided 
biomarker discovery is a complex and extensive process that requires 
interdisciplinary expertise, horizontal knowledge transfer between cli-
nicians, analysts, data scientists, and other stakeholders (e.g., patients), 
and detailed planning. This process can be divided into five interwoven 
phases, with quality control (QC) measures supervising the other phases 

and facilitating confidence in findings and reproducibility. The other 
stages include clinical trial (including sample collection and pre-
processing), sample preparation (e.g., extraction), LC-MS analyses, data 
processing, and evaluation. The following graphical review outlines a 
general workflow for LC-MS-based clinical research projects that are 
intended to search for small molecule biomarkers or biomarker profiles. 
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Study and trial design 

Clinical research projects typically originate from observations of 
pre-clinical research or epidemiological data that suggest a need for a 
better understanding of pathophysiological processes, with the goal of 
improved diagnosis, prediction of progression, or selection of therapy in 
certain diseases [Fig. 1]. A plan is laid out based on literature, clinical 
relevance, and feasibility, including patient feedback, and funding is 
secured from either public organizations or industry [1]. It is important 
to discuss the implementation of potential biomarker screenings in 
terms of equipment, expertise, and capacity between end users and re-
searchers early on. An ethics council must then evaluate the study 
protocol and give their approval. Before the first samples are collected, 
analytical scientists will develop or select the methods to be used in the 
project and specify the pre-analytical requirements for the compounds 
or compound classes of interest. Depending on the research goals, 
different trial designs should be evaluated, taking into account various 
strategies for cohort randomization (e.g., simple randomization, block 
randomization or stratified randomization) and blinding (e.g., double/ 
triple blinding) [2,3]. Meanwhile, subject recruitment and stratification 
will occur at the clinical site and samples will be taken and processed 
following predefined standard operating procedures [4]. Comprehen-
sive subject data (e.g., age, gender, known diseases and medication) for 
later evaluation must be documented, while national and international 
standards for data privacy must be adhered to. Sampling protocols 
should carefully regulate sampling to control for pre-analytical vari-
ables. Pre-analytical factors are known to distort analyte levels and 
disrupt meaningful analysis, so emphasis should be put on sample 
handling that ensures sample integrity [5]. Sample documentation 
should include unique sample IDs, data on sample collection and the 
respective participant, using either unique sample-IDs or barcodes. 
Sample matrices, regulations in shipping biological specimens, sample 
stability, as well as distance between the clinical and analytical site must 
all be taken into account when planning the clinical research project 
[6,7]. 

Pre-analytics - sampling and sample preprocessing 

Sample preprocessing, including the generation of aliquots, should 
take place at the clinical site(s). Aliquot volumes should be selected 
appropriately to avoid unwanted freeze–thaw cycles. Further processing 
may also occur in the analytical laboratory before transferring samples 
to their final storage or starting the measurement. Special consideration 
should be placed on preserving sample stability in this phase as well. 
Analyte concentrations can be altered by simple chemical reactions, 
such as hydrolysis, enzymatic metabolism, or mass exchange between 
cells, or even the intrinsic instability of the compound of interest [8]. 
Therefore, the mode and temperature of intermediate storage, as well as 
the acceptable amount of processing delay should be predetermined. 
Sample handling steps for every sample need to be documented for 
tracking potential quality defects. For instance, in the case of anti-
coagulated whole blood samples, the time and temperature until 
centrifugation and separation of plasma, as well as centrifugation pa-
rameters and final storage temperature must be documented [Fig. 2] 
[9–12]. In cases where the protocol of sample collection is not within the 
scope of the research (e.g., samples derived from biobanks), sample 
quality can be assessed retrospectively. Especially for blood specimens, 
various markers for sample quality defects have been described. For 
example, hemolysis in blood samples can be assessed by determining the 
hemolytic index [13], while other metabolomics biomarkers have been 
proposed for the identification of other pre-analytical risk factors, such 
as prolonged storage at room temperature [9,14]. Without consensus on 
the best mode of detection of stability issues, documentation of sample 
collection remains an important tool for tracking potential quality de-
fects. Aliquoting preprocessed matrices allows for obtaining standard-
ized volumes from individual samples, as well as preparing technical 
replicates for different measurements and diluting matrices for the 
process of analyte extraction, which might be especially necessary for 
highly abundant compounds. The most important reason for generating 
small-volume aliquots is the prevention of additional freeze/thaw cy-
cles, which can have strong effects on analyte concentration [15,16]. 

Fig. 1. Before generating any sample, a clinical study for discovering biomarkers requires careful planning, including obtaining ethics approval, defining a research 
scope involving stakeholders such as clinicians, analysts, data scientists, investors, and patients, and obtaining sufficient funding. Subject recruitment and stratifi-
cation are instrumental to subsequent evaluations. Documenting meta data such as clinical (e.g., BMI), individual (e.g., smoking habits), and demographic infor-
mation (e.g., age) on study subjects is highly relevant for trial design, as well as subsequent data analyses. The trial design depends on a multitude of factors, 
including modes of randomization and blinding, as well as more practical considerations such as sampling plans and study sites. 
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Sample quality impairments, such as evaporation or oxidation, should 
be considered when generating very small aliquots. The effect of aliquot 
volume on the duration of thawing and subsequent stability implications 
should be considered as well [17]. As measurements are not necessarily 
performed immediately after sample preprocessing, biospecimens 
should be frozen at storage temperatures below − 70 ◦C. When freeze-
–thaw cycles are kept to a minimum, deep freezing facilitates long-term 
storage and collection of sufficiently high sample numbers for per-
forming LC-MS analytics [6]. Sample stability concerns related to the 
measurement should be pre-conceived during LC-MS method develop-
ment and validation. 

Planning of LC-MS-analysis 

LC-MS is able to quantify a wide variety of small molecules, 
including lipids or polar metabolites. The choice of methods depends 
largely on research requirements and the accessibility of compounds for 
analysis. Depending on whether the clinical study aims to answer highly 
specific or more general research questions, measurement can be con-
ducted in targeted or non-targeted modes. Targeted LC-MS analysis in-
volves the analysis of a predefined set of substances, often related by 
substance class or biological pathway, whereas non-targeted analysis 
records a broad set of mass traces that are identified and quantified later 
and usually result in comprehensive data sets [18]. Targeted analysis is 
often focused on low-concentration compounds, like lipid mediators, 
which require specific method optimization. LC-MS/MS is most 
commonly used for targeted analysis, due to its high sensitivity, selec-
tivity, and robustness. Targeted analysis can also include absolute 
quantification, which requires the acquisition of reference substances 
and internal standards that are preferably isotopically labeled and allow 
for external calibration on an individual analyte level [19]. Absolute 
quantitative data allows for drawing conclusions regarding physiolog-
ical reference intervals and simplifies data integration from multiple 
sites or studies. In the absence of substance-specific reference standards, 
relative quantification can be applied, either comparing the results to 
internal standards or to other samples (or reference materials) like a 
control group [20]. Non-targeted LC-HRMS analysis typically generates 

relative quantitative datasets of an extensive number of analytes, but 
focuses on species of higher abundance, due to a limited dynamic range 
[21]. Unlike targeted analysis, no predefinition of analytes is required 
for non-targeted approaches. To identify analytes, inferences are made 
from retention time and mass traces using previous experimental data 
and/or MS/MS libraries. To accelerate data evaluation, the analytes 
reviewed in a non-targeted analysis can be restricted post-acquisition to 
previously identified compounds, which is often referred to as semi- 
targeted analysis [22]. While the classical workflow of multiple reac-
tion monitoring (MRM) allows for the adjustment of collision energy and 
de-clustering potential to optimize ion fragmentation and enhance 
sensitivity for a specific set of analytes [23], non-targeted approaches 
rely on a fixed combination of instrument parameters for a, generally, 
much broader analyte coverage [24]. Yet certain metabolites might still 
be elusive to the dynamic range of non-targeted setups. MS/MS ap-
proaches with a wide range of (scheduled) MRM transitions can serve as 
a compromise between the more reliable quantification of analytes 
provided by targeted analyses and the more extensive analyte coverage 
of non-targeted approaches [25]. 

Special care should be taken when planning the batch sequence for 
LC-MS analysis, regardless of whether it is targeted, semi-targeted, or 
non-targeted [Fig. 3]. Randomizing samples can mitigate the risk of bias 
due to signal drift [26]. Further considerations should be given to the 
placement of blank samples, calibration standards, QC samples, long- 
term control samples, and bridging samples (if applicable). Bridging 
samples are technical replicates of study samples between batches, 
which can be used to track the robustness of measurements over mul-
tiple batches. The batch size, among other factors, depends on the 
overall sample size, duration of measurement, and reasonable assump-
tions of sample stability [27]. 

The extraction of analytes from sample matrices refers to the isola-
tion of compounds of interest while excluding or minimizing those that 
could interfere with the measurement. Analyte extraction can take 
different forms, ranging from protein precipitation, liquid–liquid 
extraction, to solid-phase extraction [21]. An internal or surrogate 
standard, which is distinguishable from the analyte yet behaves simi-
larly in measurement (e.g., an isotopically labeled variant), is processed 

Fig. 2. Sampling should follow a predefined protocol aligned with quality standards for the analytes of focus in the study. The pre-analytical phase in the life cycle of 
samples has the potential to significantly alter analyte concentrations. To ensure accurate results, well-defined procedures and relevant documentation on sample 
processing should be in place. Matrix preprocessing should be conducted at the sampling site, as whole blood cannot be stored or transported effectively without 
significant ex-vivo changes; it must be processed promptly into a plasma sample. When multiple measurements or technical replicates are planned for individual 
samples, aliquoting is required and should be conducted directly after sampling and before dry-ice shipping and final storage, usually at < -70 ◦C. 
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within the same sample. Since the amount of internal standards is held 
constant across samples, it is suitable for assessing analytical variability 
or matrix effects on a sample-by-sample basis [28]. In addition to sam-
ples, calibration standards (in the case of quantitative analysis), quality 
control (QC) samples, and long-term control samples are also prepared. 

Targeted LC-MS-analysis 

In the case of targeted and absolute quantitative LC-MS analytics, 
calibration standards and QC samples at different concentration levels 
are necessary [29]. Quantitative analysis is used to compare compound- 
specific calibration standards to an internal standard in order to enable 
the calculation of absolute analyte concentrations and to ensure confi-
dence in compound identification. Retention time, fragmentation pat-
terns, and peak shape of reference standards allow for drawing 
conclusions on analyte behavior. It is ideal to use isotopically labeled 
internal standards as analogues of the compound of interest. Calibration 
standards are derived by diluting and extracting reference substances in 
an analyte-free matrix to create a reference frame of concentrations 
(calibration curve), which can then be compared to samples of unknown 
concentration in order to calculate their relative concentrations [Fig. 3] 
[30]. Reference standard-based QC samples are processed with known 
concentrations spanning the range of measurable concentrations defined 
by the calibration curve, allowing for an assessment of accuracy and 
measurement system stability. In targeted analysis, these QC samples are 
usually placed at the beginning, intermittently at regular intervals, and 
at the end of the batch sequence so their accuracy and coefficient of 
variance can be used to determine measurement robustness and identify 
(and possibly correct for) drift effects within the batch [31]. Long-term 
control samples are similarly used as other QC samples, but concentra-
tion levels of technical replicates can be tracked in control charts over 

multiple measurements of the same or different studies in order to assess 
consistency of the LC-MS setup [32]. Thus, while regular QC samples 
serve as a control within the measurement, long-term control samples 
serve as a quality control method for the whole analytical process. 
Bridging samples are also technical replicates of individual samples that 
must be planned and prepared during sample aliquoting; one sample 
from each pair is measured in the batch following the first one. This is 
especially useful for assessing technical variations (i.e., batch effects) 
across multiple batches within the study. The selection for bridging 
samples should be done preemptively and randomized [33]. After 
completing the planning phase of the measuring sequence, extraction of 
analytes can begin. The measurement method, LC-column, and solvents 
should be specific to the chemical properties of the investigated analytes 
[Fig. 4]. Reversed phase (RP) columns are considered standard for most 
separation methods and are especially suitable for separation of lipo-
philic substances; however, polar metabolites may require Hydrophilic 
Interaction Liquid Chromatography (HILIC) phases in order to achieve 
suitable selectivity [35]. For targeted analysis, tandem mass spectrom-
eters are often used due to their high selectivity (and wide linear range) 
and sensitivity, which is well-suited for analyzing a predefined set of 
analytes. While many targeted methods use absolute quantification, 
targeted screening methods also allow for analyzing hundreds of ana-
lytes without reference standards using relative quantification and a 
measurement setup similar to non-targeted methods [36]. 

Semi- and Non-targeted LC-MS-analysis 

In non-targeted analysis, features with unique combinations of mass- 
to-charge and retention time are aligned, annotated, and compared 
based on relative quantification. High resolution mass spectrometry is 
typically used to allow for compound annotation or identification based 

Fig. 3. Meticulous planning of LC-MS measurements avoids pitfalls, like selection biases, and can be instrumental in quality control of the measurement. Initial batch 
design refers to dividing samples into different analytical runs. Different kinds of randomization can come into play, when aiming to mitigate the risk of individual 
samples being subjected to signal drift. While simple randomization is suitable for independent samples, a stratified cluster randomization might be more suitable for 
samples with nested dependence (e.g. time series data for individual subjects). Bridging refers to deliberately measuring technical replicates of samples, in order to 
connect batches by some proportion of shared measurements, allowing for comparability and assessment of robustness. The batch sequence (e.g., order of sample 
types) is subject to the mode of measurement. Depending on whether the measurement is absolute quantitative or relative quantitative, different combinations of 
blank samples, inter- and intra-measurement quality control samples, calibration standards and subject related unknown samples need to be considered. (Used 
abbreviations: U = “Sample of unknown concentration”; DB = “Double blank (without IS)”; B = “Blank (with IS)”; CS = “Calibration standard”; QC = “Quality 
control”; C = “Control plasma”). 
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on exact mass, isotopic distribution, (relative) retention time, and by 
comparison of MS/MS fragmentation patterns to reference spectra [24]. 
This expands the range of potentially observable analytes compared to 
targeted analysis; however, it also increases the chance of false identi-
fication. Quantification is limited by the fact that many analytes are 
related to only few surrogate internal standards or relative sample 
concentrations are calculated in relation to all other samples. The signal 
intensity of compounds can vary based on carbon chain length, the 
number of double bonds, and structural differences [37]. The amount of 
relatively quantified features can easily reach into the thousands; 
therefore, internal standards cannot be selected on an individual analyte 
level. Absolute quantitative analysis with reference standard calibration 
is also not suitable for the same reasons. Long-term control samples can 
still be used for tracking system performance. QC samples, used for 
assessing measuring robustness within an analysis run, also do not 
require a range of concentrations; rather, they are replicates from a 
representative sample pool distributed over the batch at regular in-
tervals (e.g., every 8 to 20 samples). 

Data integration and processing 

Signal interpretation uses specialized software, either specific to the 
manufacturer or offered by third-party vendors, to identify and integrate 
signal peaks for each analyte and its respective internal standard. This is 
instrumental in calculating the concentration, as it relies on the area 
under the curve. The evaluation software usually automates significant 
proportions of peak annotation and integration when referencing a 
database of earlier measurements [38]. Exceptions include non-targeted 
analysis, where it might not be possible to find a suitable internal 
standard for all features, yet surrogates are still used to verify technical 
variation. Absolute concentrations are calculated using a calibration 
curve [30] and values that deviate from the line should be deemed 
indistinct and may be imputed in later steps. QC samples are utilized to 
evaluate measurement robustness, a key parameter in biomarker 

discovery [39]. These concentrations should align with other QC sam-
ples (e.g., pooled QC samples), and their accuracy and coefficient of 
variance serves as a measure of quality for the analysis run [40,41]. 
Despite this, the resulting dataset might still be skewed and can be 
transformed further depending on its planned application [Fig. 5]. 
Missing values can be imputed, although the choice of method usually 
requires knowledge as to why the values are missing [42]. Erratically 
missing values may be imputed by more sophisticated methods like kNN 
or Random Forest Imputation [43], while values that fall below the 
lower limit of quantification can often be imputed with half of said limit, 
thus accounting for their approximate scale. Additionally, sample data 
can be normalized and scaled by various methods in order to remove 
systematic and statistical biases. Transformations towards normal dis-
tribution of measurements can be performed to satisfy the assumptions 
of statistical and machine learning models [34]. Normalization tech-
niques include approaches of general applicability that aim for compa-
rability of samples (e.g., Probabilistic Quotient Normalization [44] or 
Quantile Normalization [45]), as well as techniques that target specific 
biases like batch effect correction methods (e.g., LOESS normalization 
[46], SVA [47] or ComBat [48,49]). HRMS datasets usually take up large 
amounts of hard drive storage (e.g., dozens of gigabytes per 100 sam-
ples), and have very high complexity (e.g., randomization, data hier-
archy, time series). Therefore, data management and archiving in LC- 
MS, as well as other study data, is crucial for traceability of the study. 

Data analysis and Clinical translation 

Data analysis specific to the clinical scope of the study requires 
domain knowledge when pursuing specific questions. Before cohorts are 
evaluated, data sets may need to be adjusted for covariates (e.g., age 
distribution among groups) to avoid confounding [50,51]. A mix of 
classical statistics and machine learning applications is employed for 
data investigation [Fig. 6] [52], with classical statistics focusing on 
explaining phenomena, while machine learning methods focus on 

Fig. 4. The process of LC-MS analysis begins with the extraction of analytes that are specific to the class. Each extraction method includes one or more purification 
steps. Internal or surrogate standards are added to the samples, which are processed alongside the analytes in question. This allows the signal of the analytes of 
interest to be related to the surrogate signal, as they are all subject to the same influences during extraction, such as matrix effects and other measurement-specific 
variations in sensitivity. In an often used setup, (U)HPLC is used to separate analytes, while mass spectrometry facilitates their detection. Targeted analysis using 
tandem mass spectrometry is limited to a predefined set of analytes, but, when combined with matching reference standards, it allows for absolute quantification. 
Non-targeted analysis using high resolution mass spectrometry has fewer restrictions on what analytes can be detected, allowing for simultaneous analysis of 
hundreds or thousands of features. However, without compound-specific reference standards, quantification is only relative. Semi-targeted analysis is a compromise 
between these two methods, usually focusing on hundreds of well-characterized analytes while granting broad insights at reduced processing times. As reference 
standards are limited in availability and economical viability, semi-targeted analysis is mostly only relative quantitative. 
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prediction [53]. Unsupervised machine learning algorithms offer a 
general way of learning underlying structures of datasets; principal 
component analysis (PCA) and hierarchical clustering are instrumental 

in data exploration. Besides information on patterns within the data, 
they are able to offer techniques of variable selection (i.e., dimension-
ality reduction), which is crucial in identifying potential biomarkers 

Fig. 5. Peak identification depends on the mass traces and retention time of the respective analytes. Peak integration enables relative quantification. Relative 
quantification (non-targeted analysis) compares the peak areas of multiple analytes with one or multiple internal standards or a reference sample, and does not use a 
calibration curve of reference standards, which is necessary for targeted measurements. Further data processing might be needed after obtaining the results. Missing 
values must be imputed, outliers potentially removed, samples may need to be scaled for comparability, normalized to meet the assumptions of statistical models, and 
batch effects must be identified and corrected retrospectively. 

Fig. 6. Data analysis can take place between the fields of classical statistics and machine learning, which often overlap. Statistics obtain p-values, usually in uni- or 
bivariate analysis, to claim significance, while machine learning approaches strive for the best possible test metrics, such as optimal prediction accuracy. Machine 
learning can be further divided into unsupervised and supervised approaches. Unsupervised approaches act independently of pre-defined sample groups to develop 
hypotheses and explore data (although inferences are also possible). In contrast, supervised models usually aim for optimal regression or classification in the context 
of the research scope. Therefore, both supervised models and classical statistics can be used to confirm or reject hypotheses. Pathway analyses can integrate the 
obtained data into a broader biological context. Finally, resulting findings and potential biomarkers or biomarker panels need to be clinically validated, demonstrate 
clinical benefit, and be practical in order to be translated into clinical routine. 
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from hundreds or thousands of measured analytes. Supervised machine 
learning algorithms can put selected variables to the test and rely on 
powerful regression and classification algorithms, like the Random 
Forest (RF) or Support Vector Machines (SVM) [54]. Model validation, 
such as Cross-validation, must be facilitated to assess supervised ma-
chine learning model performance and exclude model overfitting [55]. 
Optimization of supervised machine learning models is usually per-
formed through a process of model parameter tuning and model 
assessment [54]. Pathway analysis helps to embed findings in a broader 
biological context and form hypotheses and make causal assumptions 
[56]. 

Besides analytical and clinical validity, biomarkers or biomarker 
panels need to prove their utility by being practical and broadly appli-
cable in a clinical context. However, validating biomarkers poses 
methodological and general challenges. A common problem in initial 
biomarker research is the lack of power due to small sample sizes, which 
increases the risk for confounders and reduces the applicability of ma-
chine learning methods. A high number of potential biomarkers, 
generated from a small sample size can thus be a result of overfitting 
[57]. Awareness of this is of particular interest, as there is no consensus 
on the best way of feature selection and machine learning methods are 
often selected for isolating a set of variables [58]. Furthermore, me-
tabolites are especially prone to vary due to various covariates, such as 
age, gender, and diet. Therefore, if feature selection steps result in a high 
number of analytes, special caution needs to be taken to avoid such 
biases (e.g., by stratifying the cohort properly). Additionally, due to the 
complexity of many diseases and subsequent systemic changes, indi-
vidual biomarkers are unlikely to emerge for diagnostic or prognostic 
purposes [59]. To overcome this issue, validation calls for increasing the 
sample size with an independent cohort to confirm selectivity, stability, 

and repeatability of the measurement and raise statistical power [60]. 
Moreover, there needs to be an emphasis on the utility of potential 
biomarkers for their end users throughout the research process. Insuf-
ficient interdisciplinary exchange can obscure the lack of clinical rele-
vance, which is not only influenced by predictive power, but also by 
cost-effectiveness in the clinical laboratory (in terms of instruments, 
work space, expertise, and staff allocation) and benefit for physicians 
and their patients in making therapy decisions [61]. While many bio-
markers fail at this stage, those that are successful can improve clinical 
decision making and/or elucidate novel therapeutic targets [46,47]. 

Quality control & quality assurance 

Published potential biomarkers found in LC-MS studies routinely fail 
in clinical translation, due to inadequate reporting, low quality control, 
low reproducibility and overfitting of models to available data sets [62]. 
Other issues that hinder the implementation of valuable biomarkers 
include biases in cohort selection and evaluation, as well as insufficient 
independent validation of research results. Quality management mea-
sures should be put in place to provide quality control (QC) and quality 
assurance (QA) throughout the entire research process, so as to improve 
the reliability and reproducibility of the data and experiments [Fig. 7]. 
This can be achieved by providing specific instructions for each step of 
the analytical process and requiring frequent documentation, which will 
enable traceability [36]. Documentation for quality control purposes 
should also include recording metadata that describe the study results. 
To enhance reproducibility across studies, national and international 
guidelines should be developed to harmonize quality control protocols 
[63]. 

Fig. 7. Quality control and quality assurance accompany the entire process of clinical research projects. Standard operating procedures, as well as good docu-
mentation practices, are essential for quality assurance in all stages of research. Data management of clinical data, metadata, data on (pre-)processing, analysis, and 
evaluation of results allows for traceability across the entire study. Clinical data, documentation on sample processing, analytical phases, and detailed reporting on 
the data analysis facilitate comprehension of the results and are necessary for reproducibility and validity of the study. 
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M.R. Wenk, G. Liebisch, Recommendations for good practice in MS-based 
lipidomics, J. Lipid Res. 62 (2021), 100138, https://doi.org/10.1016/j. 
jlr.2021.100138. 

S. Rischke et al.                                                                                                                                                                                                                                 

https://doi.org/10.1007/s00216-015-8681-7
https://doi.org/10.1016/j.trac.2016.07.004
https://doi.org/10.1016/j.trac.2016.07.004
https://doi.org/10.4155/bio.12.212
https://doi.org/10.1016/j.jpba.2018.12.030
https://doi.org/10.1016/j.jpba.2018.12.030
https://doi.org/10.1021/acs.analchem.1c02826
https://doi.org/10.1007/s10462-019-09709-4
https://doi.org/10.1007/s10462-019-09709-4
https://doi.org/10.1038/s41598-017-19120-0
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.1007/s11306-016-1030-9
https://doi.org/10.2116/analsci.28.801
https://doi.org/10.1007/s11306-016-0972-2
https://doi.org/10.1007/s11306-016-0972-2
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1093/biostatistics/kxj037
https://doi.org/10.1038/s41598-020-72664-6
https://doi.org/10.1038/s41598-020-72664-6
https://doi.org/10.1002/bimj.201700294
https://doi.org/10.1002/bimj.201700294
http://refhub.elsevier.com/S2667-145X(23)00010-X/h0255
http://refhub.elsevier.com/S2667-145X(23)00010-X/h0255
http://refhub.elsevier.com/S2667-145X(23)00010-X/h0255
http://refhub.elsevier.com/S2667-145X(23)00010-X/h0265
http://refhub.elsevier.com/S2667-145X(23)00010-X/h0265
https://doi.org/10.1038/s41584-021-00708-w
https://doi.org/10.1016/j.nic.2020.08.004
https://doi.org/10.1016/j.aca.2020.10.038
https://doi.org/10.1007/s11306-018-1404-2
https://doi.org/10.1007/s12551-021-00849-y
https://doi.org/10.1007/s12551-021-00849-y
https://doi.org/10.1038/s41596-021-00566-6
https://doi.org/10.1038/s41596-021-00566-6
https://doi.org/10.3390/metabo8040059
https://doi.org/10.1373/clinchem.2016.254649
https://doi.org/10.1373/clinchem.2016.254649
https://doi.org/10.1016/j.jlr.2021.100138
https://doi.org/10.1016/j.jlr.2021.100138

	Small molecule biomarker discovery: Proposed workflow for LC-MS-based clinical research projects
	Introduction
	Study and trial design
	Pre-analytics - sampling and sample preprocessing

	Planning of LC-MS-analysis
	Targeted LC-MS-analysis
	Semi- and Non-targeted LC-MS-analysis
	Data integration and processing

	Data analysis and Clinical translation
	Quality control & quality assurance
	Funding
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


