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a b s t r a c t 

Human functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, 

defined as coactivation of brain regions over time. Rare states of particularly high cofluctuation have been shown 

to reflect fundamentals of intrinsic functional network architecture and to be highly subject-specific. However, 

it is unclear whether such network-defining states also contribute to individual variations in cognitive abilities –

which strongly rely on the interactions among distributed brain regions. By introducing CMEP, a new eigenvector- 

based prediction framework, we show that as few as 16 temporally separated time frames ( < 1.5% of 10 min 

resting-state fMRI) can significantly predict individual differences in intelligence ( N = 263, p < .001). Against 

previous expectations, individual’s network-defining time frames of particularly high cofluctuation do not pre- 

dict intelligence. Multiple functional brain networks contribute to the prediction, and all results replicate in an 

independent sample ( N = 831). Our results suggest that although fundamentals of person-specific functional con- 

nectomes can be derived from few time frames of highest connectivity, temporally distributed information is 

necessary to extract information about cognitive abilities. This information is not restricted to specific connec- 

tivity states, like network-defining high-cofluctuation states, but rather reflected across the entire length of the 

brain connectivity time series. 
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. Introduction 

Humans differ in cognitive ability as assessed by measures of in-
elligence. Individual differences in intelligence, in turn, are associated
ith important life outcomes like academic achievement ( Deary et al.,
007 ), socioeconomic status ( Strenze, 2007 ), or health (e.g., Batty and
eary, 2004 ). While intact brain functions are a necessary pre-condition

or intelligent behavior and thought, as evidenced by neuropsycholog-
cal data from lesion studies (e.g., Woolgar et al., 2010 ), the neurobio-
ogical mechanisms underlying individual differences in intelligence are
ot yet fully understood (e.g., Basten et al., 2015 ; Hilger et al., 2020a ).
ne currently emerging hypothesis is that individual differences in in-

elligence (or general cognitive ability) are related not only to the struc-
ure or function of distinct brain regions, but to their interactions and
∗ Corresponding author: Marcusstr. 9-11, D-97970 Würzburg, Germany 

E-mail address: kirsten.hilger@uni-wuerzburg.de (K. Hilger) . 
1 These authors share senior authorship 

ttps://doi.org/10.1016/j.neuroimage.2023.120246 . 

eceived 18 February 2023; Received in revised form 19 June 2023; Accepted 21 Ju

vailable online 24 June 2023. 

053-8119/© 2023 The Author(s). Published by Elsevier Inc. This is an open access a
he information flow between them (e.g., Hilger et al., 2017 , 2020b ;
itwi ń czuk et al., 2022 ; Ooi et al., 2022 ; see also Barbey, 2018 ) – a
roposal that is at least partly consistent with psychological theories
ostulating that general intelligence is the result of the coordination be-
ween several fundamental cognitive processes (including, e.g., working
emory capacity and mental processing speed; e.g., Duncan et al., 2020 ;

rischkorn et al., 2019 ; for review see Euler and McKinney, 2021 ; Hilger
t al., 2022 ). 

In the past few years, abundant functional MRI (fMRI) research has
stablished that the human brain is organized into functionally dissocia-
le large-scale networks ( Fox et al., 2005 ; Greicius et al., 2003 ; Seeley
t al., 2007 ; Sporns and Betzel, 2016 ), consisting of anatomically dis-
ributed brain regions whose activity covaries across time, even in the
bsence of specific cognitive task demands (task-free or resting-state
ne 2023 
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MRI). Multiple studies have demonstrated that individual differences
n cognitive ability can be predicted from resting-state functional MRI
onnectivity (e.g., Cai et al., 2020 ; Chen et al., 2022 ; Dubois et al., 2018 ;
inn et al., 2015 ; Pervaiz et al., 2020 ), so that a link between func-
ional brain network organization and individual differences in general
ognitive ability (intelligence) is widely accepted (see also Hilger and
porns, 2021 , for an overview of network neuroscience studies on intel-
igence). The exact nature of this relationship, however, remains to be
ully understood. 

Human network neuroscience studies have commonly relied on the
nalysis of ‘static’ intrinsic functional connectivity, which is derived
rom correlations between the entire BOLD time series of different brain
egions (typically assessed with task-free resting-state fMRI measure-
ents of 5 to 10 minutes in length, e.g., Friston et al., 1993 ). Newer
ethodological advances made it possible to explore functional connec-

ivity as a ‘dynamic’ property of the human brain (see Lurie et al., 2020 ;
or an overview) and suggest that individual differences in behavior and
ognition may be related to variations of functional connectivity over
ime (e.g., Fong et al., 2019 ; Hilger et al., 2020b ; Jiang et al., 2020 ).
ost recently, time-resolved analyses of intrinsic functional connectiv-

ty have demonstrated that a small fraction of the fMRI BOLD time series
s characterized by particularly strong functional interactions between
rain regions ( Cifre et al., 2020 ; Liu and Duyn, 2013 ; Tagliazucchi et al.,
012 ) and sufficient to account for several fundamental properties of
he static network architecture, including the overall (time-averaged)
onfiguration of connectivity patterns and their hierarchical modular
tructure ( Esfahlani et al., 2020 ). These ‘network-defining’ states of high
rain-wide cofluctuation (top 5% of the entire timeseries, i.e., 55 out
f 1100 time frames in Esfahlani et al., 2020 ) were suggested to be
emporally stable and highly individual-specific ( Betzel et al., 2022a ;
utts et al., 2023 ; Sporns et al., 2021 ), as subjects can be identified (in
he sense of ‘network fingerprinting’; cf. Finn et al., 2015 ) significantly
etter on the basis of these high-connectivity states, compared to the
ame number of low cofluctuation time frames ( Esfahlani et al., 2020 ).
ollowing up on these findings, we here explore whether individual
ifferences in general cognitive ability (intelligence) can be predicted
rom specific states of intrinsic functional brain connectivity, thereby
efining ‘states’ as selections of fMRI time frames characterized by a
articular selection criterion (such as strongest vs. weakest brain-wide
ofluctuation). 

To this end, we investigated the association between general intelli-
ence and different states of intrinsic functional connectivity in a sam-
le of 263 adults for which intelligence test data (Full-Scale Intelligence
uotient, FSIQ, from the Wechsler Abbreviated Scale of Intelligence;
ASI; Wechsler, 1999 ) and temporally highly resolved resting-state

MRI data are available (NKI Enhanced Rockland Sample; Nooner et al.,
012 ). To increase the robustness of prediction results we developed a
ross-validated machine learning-based prediction framework that cir-
umvents the necessity of selecting arbitrary statistical threshold pa-
ameters. First, we replicated earlier reports that static (time-averaged)
unctional connectivity can significantly predict intelligence. We then
dentified high cofluctuation time frames as described by Esfahlani
t al. (2020) and replicate their finding that the general structure of
tatic functional connectivity is strongly determined by a small number
f such high cofluctuation states. However, intelligence could not be
redicted from these ‘network-defining’ states, nor from an equal num-
er of time frames reflecting particularly low brain-wide cofluctuation.
ystematic analyses showed that more independent (i.e., temporally sep-
rated) time frames are required to predict intelligence than to recover
ajor characteristics of general functional network structure. However,

iven temporal independence, this number can be as low as 16 time
rames and appears largely independent of the ability to predict global
etwork features. Finally, multiple functional networks were involved
n the prediction, suggesting intelligence as whole-brain phenomenon.
ll results have been replicated in an independent sample ( N = 812;
an Essen et al., 2013 ). 
2 
. Materials and methods 

.1. Participants 

.1.1. Primary sample 

Data from the Enhanced NKI Rockland Sample (NKI ‐RS Enhanced
ample; acquired by the Nathan S. Kline Institute for Psychiatric Re-
earch, Release 1 ‐5; Nooner et al., 2012 ) were used in all analyses. The
KI dataset was selected as primary sample, because a) participants
ere characterized by a well-established and reliable measure of in-

elligence (the Full Scale Intelligence Quotient, FSIQ; Wechsler, 1999 ),
hich served as estimate of general cognitive ability, b) the sample is

haracterized by a broad variation in age and intelligence (in contrast
o, e.g., the Human Connectome Project; see 2.1.2. Replication sam-
le), as it was explicitly recruited to be representative of the population.
e restricted our analyses to subjects for whom complete fast-sampling

MRI data and FSIQ scores were available and who passed the Connec-
ome Computational System (CCS) quality check (implying exact motion
hresholds; see below), the fMRIPrep quality control as well as our vi-
ual inspection. This resulted in a final sample of N = 263 participants
172 females, 231 right-handed, mean age: 47.14, 18 – 83 years; FSIQ:
ean 105.93, range 74 – 143). 

.1.2. Replication sample 

The generalizability of our findings to an independent sample was
ssessed with data from the Human Connectome Project (HCP; 1200
elease; Van Essen et al., 2013 ). After removing subjects with incom-
lete MRI data, missing phenotypic measures, or more than 10% mo-
ion spikes in the fMRI data (defined as framewise displacement, FD
 0.25 mm; see Parkes et al., 2018 ), the replication sample comprised
 = 831 subjects (390 males, 756 right-handed, mean age: 28.55, 22 –
6 years). In contrast to the primary sample, the HCP dataset did not
ontain an intelligence test, but the Penn Matrix Test (PMAT) as a fast-
o-administer approximation of fluid intelligence ( Bilker et al., 2012 ).
MAT scores represent the number of correct responses out of 24 items
mean 17.32, range 5 – 24 in our sample), but were not normally dis-
ributed in our sample (Shapiro-Wilk-Test: W = 0.92, p < .001). To con-
truct a more comprehensive measure of general cognitive ability, we
sed 12 cognitive performance scores ( Barch et al., 2013 ) to calculate a
atent factor with bifactor analysis ( Dubois et al., 2018 ). Based on one
f the most influential theories of intelligence ( Spearman, 1904 ), such a
 g -factor’ constitutes a valid representation of general cognitive ability.
he standardized estimate of the g -factor (mean 0; range − 3 – 2.32) was
sed as variable of interest for replication analyses. 

All study procedures were approved by the NKI Institutional Review
oard (#239,708; primary sample), the Washington University Insti-
utional Review Board (replication sample, for details see Van Essen
t al., 2013 ), and informed consent in accordance with the declaration
f Helsinki was obtained from all participants. 

.2. Data acquisition and preprocessing 

.2.1. Primary sample 

Fast sampling resting-state fMRI data (9:15 min; eyes open;
R = 645 ms, 860 time frames, voxel size = 3 mm isotropic, 40 slices,
E = 30 ms, flip angle = 60°, FOV = 222 × 222 mm 

2 ) was obtained
ith a 32-channel head coil on a 3T Siemens Tim Trio scanner. A

tructural scan (T1-weighted, voxel size = 1 mm isotropic, 176 slices,
R = 1900 ms, TE = 2.52 ms, flip angle = 9°, FOV = 250 × 250 mm 

2 )
as acquired for coregistration. For subjects with more than one T1-
eighted (T1w) image, an unbiased subject-specific average was con-

tructed using ANT’s antsMultivariateTemplate Construction2.sh script.
ll T1-weighted images were denoised using ANT’s DenoiseImage func-

ion. We then preprocessed the fMRI data in an initial step with fM-
IPrep, followed by second step to remove nuisance confounds from

he data with Nilearn. 
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For the first fMRI preprocessing step we used fMRIPrep version
0.2.5 ( Esteban et al., 2019 ), a Nipype ( Gorgolewski et al., 2011 ) based
ool, involving the following steps (description based on freely dis-
ributed text describing analysis steps performed by fMRIPrep): Each
1w (T1-weighted) volume was corrected for intensity non-uniformity
sing N4BiasFieldCorrection v2.1.0 ( Tustison et al., 2010 ) and skull-
tripped using antsBrainExtraction.sh v2.1.0 (using the NKI template).
rain surfaces were reconstructed using recon-all from FreeSurfer v6.0.1
 Dale et al., 1999 ), and the brain mask estimated previously was refined
ith a custom variation of the method to reconcile ANTs-derived and
reeSurfer-derived segmentations of the cortical gray-matter of Mind-
oggle ( Klein et al., 2017 ). Spatial normalization to the ICBM 152 Non-
inear Asymmetrical template version 2009c ( Fonov et al., 2009 ) was
erformed through nonlinear registration with the antsRegistration tool
ANTs v2.1.0; Avants et al., 2008 ), using brain-extracted versions of
oth the T1w volume and the template. Brain tissue segmentation of
erebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM)
as performed on the brain-extracted T1w using FAST (FSL v5.0.9;
hang et al., 2001 ). Functional data was slice time corrected using
dTshift from AFNI v16.2.07 ( Cox, 2012 ) and motion corrected using
CFLIRT (FSL v5.0.9; Jenkinson et al., 2002 ). "Fieldmap-less" distortion

orrection was performed by co-registering the functional image to the
ame-subject’s T1w image with intensity inverted ( Huntenburg et al.,
014 ; Wang et al., 2017 ) constrained with an average fieldmap tem-
late ( Treiber et al., 2016 ), implemented with antsRegistration (ANTs).
his was followed by co-registration to the corresponding T1w us-

ng boundary-based registration ( Greve and Fischl, 2009 ) with nine
egrees of freedom, using bbregister (FreeSurfer v6.0.1). Motion cor-
ecting transformations, field distortion correcting warp, BOLD-to-T1w
ransformation and T1w-to-template (MNI) warp were concatenated and
pplied in a single step using antsApplyTransforms (ANTs v2.1.0) with
anczos interpolation. 

Two physiological noise regressors were extracted by estimating
rincipal components with CompCor ( Behzadi et al., 2007 ), i.e., tempo-
al (tCompCor) and anatomical (aCompCor). A mask to exclude signal
ith cortical origin was then obtained by eroding the brain mask, en-

uring that it only contains subcortical structures. Afterwards, six tCom-
Cor components were calculated including only the top 5% temporally
ariable voxels within that subcortical mask. For aCompCor, six compo-
ents were constructed within the intersection of the subcortical mask
nd the union of CSF and WM masks calculated in T1w space, after
heir projection to the native space of each functional run. Frame-wise
isplacement ( Power et al., 2014 ) was computed for each functional run
sing the implementation of Nipype. For more details of the pipeline see
ttps://fmriprep.readthedocs.io/en/20.2.5/workflows.html . 

After the initial preprocessing with fMRIPrep, subject-specific func-
ional connectivity matrices were constructed. Therefore, brain volumes
ere parcellated into 200 regions of the Schaefer atlas ( Schaefer et al.,
018 ), which allow for the assignment of brain regions to seven func-
ional networks: VIS, visual network; SMN, somatomotor network; DAN,
orsal attention network; VAN, ventral attention network; LIM, limbic
etwork; CON, control network; DMN, default mode network. Note that
he Schaefer 200 parcellation was rendered in each subject’s volumet-
ic anatomical space. In detail, FreeSurfer’s surface warp was applied
o bring the parcellation from fsaverage space to the subject space,
sing the mris_ca_label tool, in conjunction with a pre-trained Gaus-
ian classifier surface atlas. This process ensures that the parcellation
s rendered in the gray matter ribbon, and that the parcellation was
on-linearly warped to each subject based on individual curvature and
urface patterns. Each functional image in anatomical space was lin-
arly detrended, band-pass filtered (0.008–0.08 Hz), nuisance regressed,
nd standardized using Nilearn’s signal.clean function, which removes
onfounds orthogonally to the temporal filters. The nuisance regression
trategy included six motion estimates, mean signal from a white mat-
er, cerebrospinal fluid, and whole brain mask, derivatives of these nine
egressors, and squares of the respective 18 terms. Following these pre-
3 
rocessing operations, the mean signal was then taken at each node
ithin the subject’s volumetrically rendered parcellation. The resultant

ime series were then z -scored across time and the first and last 20 frames
ere removed. 

For each participant separately, functional connections were then
efined as weighted undirected edges and modelled using Fisher z -
ransformed Pearson correlation coefficients between these z -scored
ime series of each pair of brain regions ( Fig. 1 a,d). These edges rep-
esent brain connectivity as averaged across the whole duration of
he resting-state scan and provide the basis for the construction of
ach participant’s static connectivity matrix. In addition to the motion
orrection during preprocessing, we controlled for potential remain-
ng influences of head motion by regressing out mean FD from the
SIQ scores as well as from each connectivity value with linear regres-
ion ( http://scikitlearn.org/stable/modules/generated/sklearn.linear _
odel.LinearRegression.html ). 

.2.2. Replication sample 

Data of the replication sample consisted of the four resting-state
uns from the HCP (15 min, 1200 time points each; for details of
ata acquisition see Van Essen et al., 2013 ). The scanning param-
ters were: voxel size = 2 mm isotropic, 72 slices, TR = 720 ms,
E = 33 ms, flip angle = 52°, FOV = 208 × 180 mm 

2 (for de-
ails Smith et al., 2013 ). We obtained the minimally preprocessed
ata from the HCP ( Glasser et al., 2013 ), involving an initial cor-
ection for head motion and B0 distortion, co-registration to T1-
eighted structural images, and normalization to MNI152 space (i.e.,

he MNI template included in the FSL package and published as
art of the HCP pipelines: https://github.com/Washington-University/
CPpipelines/tree/master/global/templates ). For further preprocess-

ng, we followed strategy number six (24HMP + 8Phys + 4GSR) described
n Parkes et al. (2018) which has been shown to perform well on the
CP resting-state data and maintains the same temporal degrees of free-
om for all subjects. This strategy comprises regressing out a) 24 motion
arameters including the raw scores as well as the squares of both the
riginal and the derivate time series ( Satterthwaite et al., 2013 ), b) eight
hysical parameters including white matter (WM) and cerebrospinal
uid (CSF) signals along with their temporal derivatives, squares, and
quares of derivatives, and c) the global signal with its temporal deriva-
ive, square term, and the square of the derivatives. Also, a temporal
and-pass filter of 0.008-0.08 Hz was applied ( Parkes et al., 2018 ). Note
hat for comparability with the primary sample, i.e., to ensure same
umber of time frames, only 860 time frames in the center of each of the
our resting-state time series were used for further analyses. Brain vol-
mes were parcellated into 100 regions of the Schaefer atlas ( Schaefer
t al., 2018 ), which allow direct alignment to the seven Yeo networks
lso used in the primary sample ( Yeo et al., 2011 ). Again, for each indi-
idual static (time-averaged) connectivity matrix, weighted edges were
odelled on the basis of Fisher z -transformed Pearson correlation co-

fficients and remaining influences of head motion were controlled via
egressing out mean FD and the number of spikes. All further analyses
ere computed for each resting-state run separately, i.e., four times. 

.3. Time-resolved brain connectivity analyses 

Following Esfahlani et al. (2020) , we resolved connectivity in time
o capture the strength of brain-wide cofluctuation for each time frame
f the BOLD time series. Consider the Pearson correlation coefficient 𝑟 𝑖𝑗 
hat reflects the time-averaged strength of interaction (functional con-
ectivity) between two given nodes i and j: 

𝑟 𝑖𝑗 = 

1 
𝑇 − 1 

𝑇 ∑
𝑡 =1 

𝑧 𝑖 ( 𝑡 ) 𝑧 𝑗 ( 𝑡 ) (1) 

here T is the number of fMRI time frames and 𝑧 𝑖 ( 𝑡 ) and 𝑧 𝑗 ( 𝑡 ) are the
 -scored BOLD activity values at time t of nodes i and j , respectively. For

https://fmriprep.readthedocs.io/en/20.2.5/workflows.html
http://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://github.com/Washington-University/HCPpipelines/tree/master/global/templates
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Fig. 1. Schematic illustration of analysis steps to derive different types of state-restricted functional connectivity. ( a ) Resting-state fMRI data were parcellated into 

200 functional brain regions (nodes; Schaefer et al., 2018 ) and node-specific BOLD activation time courses were extracted. ( b ) For a given node pair, the strength of 

their cofluctuation is given by the product of their z -scored neural activation time series. Time-resolved whole-brain connectivity matrices ( c ) were then computed 

on the basis of all node-pairs instantaneous cofluctuation. Averaging this time-resolved connectivity matrices across all time frames (TFs) yields the full (‘static’) 

functional connectivity matrix ( d ). ( e ) The strength of instantaneous brain-wide (global) cofluctuation is computed as the root-sum-square (RSS) of all node-pair 

cofluctuations ( Esfahlani et al., 2020 ). Based on this global cofluctuation time series, six different brain connectivity states were defined (see Methods for details). 

The selections comprise i) the 43 time frames with the highest/lowest values of global cofluctuation (HiCo/LoCo), ii) only the maxima/minima within each of these 

short episodes of highest/lowest cofluctuation states (MxCo/MnCo, < 16 TFs) and iii) a larger set of, again, 43 time frames, but separated in time and representing the 

highest maxima/lowest minima within the complete RSS time series (maxima/minima, Mx/Mn). Apart from these specific selections of time frames, we also varied 

the number of frames and studied selections based on randomly drawn time-points. ( f ) On the basis of these different selections, functional connectivity matrices 

were computed as Fisher- z transformed Pearson correlation representing the six subject-specific brain connectivity states. rsfMRI, resting-state functional magnetic 

resonance imaging. 
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xample, for node i , the z -scored BOLD activity is defined as 

𝑧 𝑖 ( 𝑡 ) = 

𝑥 𝑖 ( 𝑡 ) − 𝜇𝑖 

𝜎𝑖 
(2) 

here 𝑥 𝑖 ( 𝑡 ) represents the BOLD activity at time t , 𝜇𝑖 is the mean of
ode 𝑖 ’s time series, and 𝜎𝑖 is the respective standard deviation. The
nstantaneous cofluctuation between node 𝑖 and node 𝑗 at time frame
 (representing time-resolved functional connectivity; Fig. 1 b) is thus
iven by: 

𝑐 𝑖𝑗 ( 𝑡 ) = 𝑧 𝑖 ( 𝑡 ) 𝑧 𝑗 ( 𝑡 ) (3) 

On the basis of 𝑐 𝑖𝑗 , we computed a three-dimensional time-resolved
onnectivity matrix for each participant (see Fig. 1 c for a schematic il-
ustration) with the shape n x n x T , where n is the number of nodes in
he respective fMRI dataset (NKI: n = 200, HCP: n = 100) and T is the
umber of time frames ( T = 860). The strength of brain-wide cofluctu-
tion per time frame was then quantified by the root-sum-square (RSS;
ig. 1 e) of the cofluctuation values of all node pairs 𝑐 𝑖𝑗 ( 𝑡 ) at a given time
4 
rame 𝑡 : 

𝑅𝑆 𝑆 ( 𝑡 ) = 

√ √ √ √ 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑐 𝑖𝑗 ( 𝑡 ) 2 (4) 

On the basis of this RSS, three different types of connectomes (each
elying on different selections of time frames) were created for each par-
icipant: A) In line with Esfahlani et al. (2020) , we defined high cofluc-
uation states (also referred to as ‘events’) as those time frames with
he 5% highest RSS values and low cofluctuation states as time frames
ith the 5% lowest RSS values, respectively (in our samples 43 time

rames; Fig. 1 e, HiCo/LoCo, red and blue parts of the RSS curve). B)
s the temporally adjacent time frames included in these high and low
ofluctuation states events are highly correlated with each other (for
iscussion see Ladwig et al., 2022 ), we replaced each event of tempo-
ally grouped highest/lowest cofluctuation frames by the single frame
ith maximal/minimal cofluctuation within this event, thereby reduc-

ng the total number of frames considerably ( Fig. 1 e, MxCo/MnCo, pink
nd light blue dots). C) Next, we selected from all maxima/minima
ithin the entire RSS time series the 43 time frames with the overall
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Fig. 2. Schematic illustration of the Covariance Maximizing Eigenvector-Based Predictive Modelling (CMEP) framework. ( a ) For leave-one-out cross-validation the 

functional connectivity ( 𝐒 ) was computed for every subject 𝑖 and these data were split into a training and a test set. ( b ) Calculation of an FSIQ-weighted group 

connectivity matrix ( 𝑴 ) to enhance differences in intelligence-related features in the training sample. ( c ) Eigendecomposition of 𝑴 generates the eigenvectors 

( 𝑢 1 … 𝑢 𝑛 ). The entries of the eigenvectors were highlighted in different colors according to the seven functional brain networks they correspond to ( Yeo et al., 2011 ; 

within each hemisphere; networks from left to right: visual, somatomotor, dorsal attention, ventral attention, limbic, control, and default mode). Projecting subject- 

specific functional connectivity onto these eigenvectors generates brain connectivity features for the training ( d ) and the left-out test sample ( e ). ( f ) All training set 

features were used to fit an ElasticNet regression and tested for generalization with the withheld test set features. Model performance was assessed by comparing 

the predicted with the observed intelligence scores. See Methods for further details. 
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ighest/lowest cofluctuation values (corresponding to again 5% of data;
ig. 1 e, Mx/Mn, orange and green dots). Note that case A and C include
he same number of time frames, whereas case B represents the intersec-
ion between the frames of case A and C. In case B and C, but not in case
, the selected time frames were temporally separated from each other.
or further analyses, and additionally to the previously computed static
unctional connectivity based on all time points (see above; Fig. 1 d),
unctional connectivity matrices (Fisher z-transformed Pearson corre-
ation, Fig. 1 f) were computed from each of these six selected subsets
f time frames (HiCo/LoCo, MxCo/MnCo, Mx/Mn), as well as for com-
arable random uniformly drawn subsets of time points. The resulting
ndividual-specific functional connectivity matrices (seven per subject)
ere used as input to prediction analyses. 

.4. Covariance maximizing eigenvector-based predictive modeling (CMEP)

We developed a two-staged machine learning-based predictive
odeling framework, which we refer to as covariance maximizing

igenvector-based predictive modeling (CMEP, see Fig. 2 for a schematic
llustration). The basic idea of CMEP is to first create candidate features
based on eigenvectors) within a training set that share a strong linear
elationship (covariance) with the target variable of interest, and then,
n a second step, to assess the predictive power of these features by
raining and testing a prediction model (ElasticNet regression) based on
hese features. Notably, the ElasticNet regression circumvents the need
o select features based on arbitrary threshold parameters (as is the case
n many other prediction frameworks used for brain imaging data). 
5 
.4.1. Feature construction 

The key characteristic that differentiates CMEP from previous pre-
ictive modeling approaches is its feature construction method which
mplifies features whose expression covary with a target variable (here
ntelligence). To this aim, functional connectivity matrices are projected
nto a scalar space chosen such that the covariation between individual
ntelligence scores and this scalar projection is maximal. 

More specifically, within the training set, we find a projection
 ⃗𝑢 ∈ ℝ 

𝑛𝑥 1 ) that maximizes the covariance between intelligence scores
 𝑞 ∈ ℝ 

𝑁𝑥 1 ) and functional connectivity ( 𝑺 ∈ ℝ 

𝑁𝑥𝑛𝑥𝑛 ): 

argmax 
u⃗ 

1 
𝑁 

𝑁 ∑
𝑝 =1 

𝑞 𝑝 ⃗𝑢 
T 𝑺 𝒑 ⃗𝑢 (5) 

here 𝑞 𝑝 represents the mean adjusted intelligence score, i.e., individ-
al FSIQ ( 𝑞 𝑝 ) minus group-average FSIQ ( ̄𝑞 ) of a participant 𝑝 . As the
rojection ⃗𝑢 is independent of 𝑝 , Eq. (5) can be reformulated as follows 

argmax 
u⃗ 

𝑢 T 

( 

1 
𝑁 

𝑁 ∑
𝑝 =1 

𝑞 𝑝 𝑺 𝒑 

) 

𝑢 (6) 

= argmax 
u⃗ 

𝑢 T 𝑴 ⃗𝑢 (7) 

The matrix 𝑴 ( Fig. 2 a,b) emphasizes intelligence-related differences
n functional connectivity within the training set. Note that the leading
igenvector of 𝑴 corresponds to the feature that maximally covaries
ith intelligence. However, it turned out that the prediction of general

ntelligence was more robust when including also other eigenvectors.
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herefore, we next calculated the eigendecomposition of the general
ntelligence-weighted matrix 𝑴 : 

𝑴 = 𝑼 𝚲𝑼 

T (8) 

here 𝑼 is the matrix of eigenvectors ( 𝑼 = [ ⃖⃖⃖⃗𝑢 1 , ⃖⃖⃖⃗𝑢 2 , … , ⃖⃖⃖⃗𝑢 𝑛 ] ) and 𝚲 is the
iagonal matrix of the corresponding eigenvalues in decreasing order
 Fig. 2 c). We assumed that 𝑴 is full rank and since it is real and sym-
etric, all eigenvalues are also real and the eigenvectors orthogonal.
ote that the entries within a given eigenvector are interpretable as the
eights of the corresponding nodes for that particular vector ( Fig. 2 c). 

Then, subject-specific features are derived by projecting each partic-
pant’s connectivity matrix 𝑺 𝒑 onto the previously computed eigenvec-
ors ⃖⃖⃗𝑢 i : 

⃖⃖⃗𝑢 𝑖 
𝑇 
𝑺 𝒑 ⃖⃖𝑢 𝑖 = 𝑣 𝑝𝑖 (9) 

This step results in an individual feature vector ⃖⃖⃖⃗𝑣 𝑝 = ( 𝑣 𝑝 1 , … , 𝑣 𝑝𝑛 ) ∈
 

𝑛𝑥 1 for each participant p ( Fig. 2 d and f). The number of features is
efined by the number of eigenvectors ⃖⃖⃗𝑢 𝑖 and is thus equal to the number
f nodes ( 𝑛 ), i.e., 200 in the primary sample and 100 in the replication
ample. Finally, an ElasticNet regression model is trained and optimized
o predict intelligence scores from the generated feature vectors of an
ndependent test set ( Fig. 2 e,f). 

.4.2. Prediction framework 

The feature construction step of CMEP is embedded within a cross-
alidated prediction framework in which, within each cross-validation
old, a new set of eigenvector-based features are created to ensure strict
ndependence between training and test set. Specifically, the prediction
ramework consists of two nested cross-validation loops. In the outer

oop (primary sample: leave-one-subject-out cross-validation; replica-
ion sample: leave-one-family-out due to family relations between par-
icipants) first, the eigenvectors 𝑼 are computed from the training set.
econd, the feature vectors ⃖⃖⃖⃗𝑣 𝑝 are constructed for each individual subject
nd third, an ElasticNet regression model is trained to predict the intel-
igence scores ( 𝑞 𝑝 ) from the subject-specific feature vectors ( ⃖⃖⃖⃗𝑣 𝑝 ) within
he training set. The hyperparameters of the ElasticNet model are opti-
ized within the inner loop (5-fold cross-validation of the training set).
lasticNet regularizes a linear regression model via the L1 (Lasso; favor-
ng feature sparsity) and L2 (Ridge; encouraging coefficient shrinkage)
orm to avoid overfitting ( Zou and Hastie, 2005 ). Therefore, Elastic-
et regression allows to utilize all created features as candidates for the
rediction without manually setting an a-priori selection threshold. The
odel is formalized as: 

𝑎𝑟𝑔𝑚𝑖𝑛 𝛽
∑
𝑝 

( 

𝑞 𝑝 − 

𝑛 ∑
𝑗=1 

𝛽𝑗 𝑣 𝑝𝑗 

) 2 

+ 𝜆1 

𝑛 ∑
𝑗=1 

|||𝛽𝑗 ||| + 𝜆2 

𝑛 ∑
𝑗=1 

𝛽2 𝑗 (10) 

here 𝛽 is the vector of regression weights and and 
→
𝑣 𝑝 are the cognitive

bility score and the feature vector, respectively, of this specific par-
icipant. The hyperparameters 𝜆1 (L1-penalty) and 𝜆2 (L2-penalty) are
ptimized to minimize the mean squared error (MSE) between observed
nd predicted intelligence scores. The sklearn ElasticNetCV implemen-
ation in Python was used with parameter choices for 𝛼 = 𝜆1 + 𝜆2 ∈
 0 . 01 , 0 . 02 , 0 . 05 , 0 . 1 , 0 . 5 , 1 } , and L1-ratio = 

𝜆1 
𝛼

∈ {0.01, 0.05, 0.1, 1 3 ,
.5, 0.7, 0.9, 0.95} to reduce computational costs. The obtained regres-
ion weights are then applied to the feature vector of the held-out subject
test set) to predict their intelligence score. 

Prediction performance in terms of difference between predicted and
bserved intelligence scores of the testing samples (in leave-one-subject-
ut cross-validation: average across the predictions after leaving each
ubject out once ) was evaluated using Pearson correlation coefficient
 r ), mean squared error (MSE), root mean squared error (RMSE), and
ean absolute error (MAE). While MSE and RMSE capture differences in

ias and precision, correlation coefficients and MAE can be more mean-
ngfully interpreted and allow for direct comparability with previous
eports ( Hilger et al., 2020a ). 
6 
.4.3. Prediction robustness analyses 

Three different control analyses were conducted with static (time-
veraged) connectivity matrices to assess the validity of CMEP. Specif-
cally, the robustness of prediction derived from CMEP were compared
ith those derived from the most frequently used neuroscientific predic-

ion framework, i.e., connectome-based predictive modeling (CPM; Finn
t al., 2015 ). First, we assessed the robustness across different data set
plits by randomly (100 times) dividing the data into 10 cross-validation
plits. Second, to test the robustness across different samples sizes, the
raining sample was randomly (100 times) reduced to 10% of the origi-
al data size within each iteration of a stratified 10-fold cross-validation.
inally, the transferability of each model was assessed by training it on
ne sample (e.g., the primary sample, NKI) and testing it on an inde-
endent sample (e.g., the replication sample, HCP). To this end, both
amples were parcellated into the 200 nodes partition and all intelli-
ence scores were standardized. 100 different models were fitted, each
ith a randomly bootstrapped composition of the training set. All anal-
ses described above were conducted four times, i.e., based on CMEP,
he positive CPM network, the negative CPM network, and the combi-
ation of both. Specifically, in CPM prediction features are calculated as
he sum over all functional connections that are significantly correlated
ith intelligence above a given threshold (here: p < .001; for details

ee Finn et al., 2015 ; Shen et al., 2017 ). Positively correlated connec-
ions were used to predict from a positive network, negatively corre-
ated connections to predict from a negative network, and the positive
nd negative networks to predict from the whole brain. 

.4.4. Significance tests 

Non-parametric permutation tests were used to assess the statisti-
al significance of above-chance predictive model performance. Specifi-
ally, we took all N (primary sample: 263; replication sample: 831) tar-
et values (cognitive ability scores) and permuted them, which resulted
n a random assignment between subjects and target values, and then
ssessed prediction performance ( r , MSE, RMSE, MAE). This step was re-
eated 1000 times. The significance of a prediction model ( p -value) was
hen calculated as fraction of times the model’s performance of predict-
ng the permuted scores was better than the performance of predicting
he actually observed scores. In cases where the prediction performance
f two models was compared, a similar non-parametric procedure was
dopted by comparing the difference in prediction performance between
oth models trained with the true targets and the difference in perfor-
ance with permuted targets. Statistical significance was accepted for p

alues < .05. 

. Results 

General cognitive ability was assessed with an established measure
f intelligence (FSIQ from the WASI; Wechsler, 1999 ), and descriptive
tatistics show that the intelligence quotient is normally distributed
n our sample of 18- to 83-year-old adults (172 females; Fig. S1).
ime-resolved functional connectivity between brain regions (net-
ork nodes) was extracted from fast-sampling resting-state fMRI data

primary sample: 200 regions, TR = 645 ms; replication sample: 100
egions, TR = 720 ms; see Methods and Fig. 1 a,b). A covariance
aximizing eigenvector-based predictive modeling framework (CMEP,

ee Fig. 2 and Methods for details) was developed and used for all
rediction analyses. This machine learning-based prediction framework
nvolves eigenvector-based generation of features from functional
rain connections that highly covary with the variable of interest
 Fig. 2 a-e), as well as ElasticNet regression and leave-one-out (LOO)
ross-validation ( Fig. 2 f). 

.1. Static functional connectivity predicts intelligence 

We first used the CMEP prediction framework to replicate
revious findings (e.g., Dubois et al., 2018 ; Finn et al., 2015 ) that
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Table 1 

Prediction of intelligence from functional brain connectivity. 

TFs 

Reconstruction 

similarity r MSE RMSE MAE 

Static functional connectivity (FCs) 860 n/a .34 ∗ ∗ 150.68 ∗ ∗ 12.28 ∗ ∗ 9.75 ∗ ∗ 

Highest cofluctuations (HiCo) 43 .80 .02 180.76 13.45 10.83 

Lowest cofluctuations (LoCo) 43 .54 .17 165.62 12.87 10.18 

Maxima during HiCo (MxCo) 4–11 .79 .17 167.70 12.95 10.30 

Minima during LoCo (MnCo) 4–16 .40 .15 166.96 12.92 10.19 

Highest maxima (Mx) 43 .97 .43 ∗ ∗ 141.00 ∗ ∗ 11.87 ∗ ∗ 9.34 ∗ ∗ 

Lowest minima (Mn) 43 .75 .32 ∗ ∗ 153.70 ∗ ∗ 12.40 ∗ ∗ 9.72 ∗ ∗ 

Note: Covariance maximizing eigenvector-based predictive modeling (CMEP; see Methods) was used in combina- 

tion with a nested cross-validation scheme (see Methods, Fig. 1 and Fig. 2 ) to predict individual intelligence scores 

(Full Scale Intelligence Quotient, FSIQ; WASI, Wechsler, 1999 ) from static connectivity (all fMRI time frames; 

TFs), highest and lowest cofluctuations (HiCo/LoCo; 43 TFs), maxima/minima during highest/lowest cofluctua- 

tion (MxCo/MnCo; < 16 TFs), and the 43 highest maxima and lowest minima across the whole RSS time series 

(Mx, Mn; see Methods and Fig. 1 ). Reconstruction similarity values represent Pearson correlations between the 

static connectivity matrix (row 1) and the reconstructed connectivity matrix from the respective selection of time 

frames. Model performance metrics reflect the error between predicted and observed intelligence scores: Pearson 

correlation coefficient ( r ), mean squared error (MSE), root mean squared error (RMSE), and mean absolute error 

(MAE). Significance was determined by a non-parametric permutation test with 1000 iterations and indicated as 
∗ ∗ if p < .001 after Bonferroni correction for seven comparisons. 

Fig. 3. Superior prediction robustness of our method CMEP relative to connectome-based predictive modeling (CPM). Prediction performances (mean squared error, 

MSE and Pearson correlation between observed and predicted intelligence scores) of CMEP and CPM were computed based on static connectivity (using the entire 

time series) and three validity analyses ( Finn et al., 2015 ; Shen et al., 2017 ). All analyses were conducted for CMEP (black, all brain connections), and three CPM 

prediction pipelines based on positively correlated connections (red), negatively correlated connections (blue), and a combination of both (green). ( a ) Robustness 

across different data set splits. Data were randomly (100 times) split into 10 folds for cross-validation. ( b ) Robustness across different sample sizes. Within stratified 

10-fold cross-validation, the training sample was randomly (100 times) reduced to 10% of the original sample size. ( c ) Transferability of the models to a new data 

set. Models were trained on the replication sample (HCP) and tested on the primary sample (NKI). Both samples were parcellated into the 200 nodes schemata ( Yeo 

et al., 2011 ) and all intelligence scores were standardized before prediction (but shown on original scale here for better comparability). The training data were 

randomly bootstrapped (100 times) to account for different compositions of the training data set. The vertical solid lines indicate the significance threshold ( p < .05) 

for each model. Models that were found to be significant are indicated by a shaded area and solid line, insignificant models are depicted with dotted lines. 

t  

f  

(  

r  

T
 

w  

(  

S  

d  

i  

m  

t  

p  

m  

i

ime-averaged (‘static’) functional connectivity derived from the
ull fMRI time series ( Fig. 1 d) significantly predicts intelligence
correlation between predicted and observed intelligence scores:
 = 0.34; prediction error: MSE = 150.68; all p < .001; see
able 1 ). 

To establish the validity of CMEP, we compared its prediction results
ith those derived from the most frequently used prediction framework

connectome-based predictive modeling, CPM; cf, Finn et al., 2015 ;
7 
hen et al., 2017 ). Prediction performance of CMEP was superior across
ifferent cross-validation splits ( Fig. 3 a) and when substantially reduc-
ng the sample size of the training set to only 10% ( Fig. 3 b), while
ost models produced similar results when trained on one sample and

ested on a new sample ( Fig. 3 c). Note that even though CMEP generally
erforms better for model transferability, all four tested models generate
ostly non-significant results. See Fig. S2 for similar robustness results

n the replication sample. 
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.2. Network-defining states of highest and lowest cofluctuation are not 

ufficient to predict intelligence 

To test whether intelligence could be predicted from ‘network-
efining’ states of highest cofluctuation, we followed the approach
ntroduced by Esfahlani et al. (2020) of analyzing only 5% of the
ynamic (time-resolved) functional connectivity time series. First, we
perationalized the instantaneous strength of brain-wide (global) con-
ectivity as the root-sum-square (RSS) over the cofluctuation between
ll pairs of nodes (brain regions), independently for each time frame
see Fig. 1 b-e). We then selected the 43 time frames corresponding
o the 5% highest global cofluctuation frames (HiCo; Fig. 1 e, red), as
ell as in an independent analysis the 5% time frames with lowest
lobal cofluctuation (LoCo; Fig. 1 e, blue). Pearson correlation between
he static connectivity matrix (average across all time frames) and the
onnectivity matrices constructed from only these selections of time
rames ( Fig. 1 f) demonstrated high reconstruction similarity, with on
verage r = 0.80 ( p < .001) and r = 0.54 ( p < .001), respectively, for
igh and low cofluctuation states ( Table 1 , Fig. 4 a). This replicates
he previous finding that an individual’s static functional connectome
an be well approximated based on just a few time frames of highest
ofluctuation ( Esfahlani et al., 2020 ), thus providing an important
recondition for all subsequent analyses. 

Next, we tested whether these states of highest cofluctuation are pre-
ictive of individual differences in intelligence. However, this was not
he case ( r = 0.02, MSE = 180.76, all p > .05). Further, the prediction
ig. 4. The performance to predict intelligence depends on the number of temporal

imilarity. ( a ) Reconstruction similarity of six different connectivity states operationa

rom all time frames; TFs) and connectivity matrices reconstructed from six differen

ubject-specific reconstruction similarity for all different connectivity states. The whis

 b, c ) Performance to predict intelligence (FSIQ; WASI, Wechsler, 1999 ) for the six

ig. 2 ), operationalized in ( b ) as Pearson correlation between predicted and observed 

nd performance to predict intelligence (correlation , e ; MSE, f ) as function of the num

orange or green dots in Fig. 1 e). Gray lines represent reconstruction similarity ( d ) an

or prediction performances only the two cases are illustrated that allow for signific

n. The upper bounds (black dashed lines) represent reconstruction similarity ( a, d ) 

eflects the approximate 5% significance level (determined as average over all seven

onnectivity ( a, d ) or intelligence prediction performance ( b, c, e, f ; see Methods). H

iCo; MnCo, minima during LoCo; Mx, 43 highest maxima; Mn, 43 lowest minima (s

8 
erformance was not significantly different from states of lowest cofluc-
uation ( r = 0.17, MSE = 165.62, all p > .05; see Table 1 ; Fig. 4 b, red
nd blue). Comparably low prediction performance was also evident
hen using an alternative prediction model (CPM; Fig. S3). These re-

ults suggest that reconstruction similarity (see previous paragraph) is
ot a faithful indicator for the ability to extract information about in-
ividual differences in cognitive ability from brain connectivity states,
nd that the ability to predict intelligence depends on a richer set of fea-
ures than that required for approximating global properties of network
tructure ( Fig. 4 a,b). 

Notably, these network-defining states of highest and lowest cofluc-
uation contain a comparably large number of temporally adjacent and
hus autocorrelated time frames and comprise only few spatially dis-
inctive coactivation patterns (CAPs; Liu et al., 2018 ; see Fig. S4).
o test whether the low prediction performance of highest and low-
st cofluctuation states is due to the small number of temporally in-
ependent data points contained in these selections, we next selected
nly the individual-specific maxima/minima from the previously exam-
ned states of highest/lowest cofluctuation, respectively ( Fig. 1e ; max-
ma: MxCo pink; minima: MnCo light blue). This strongly reduces the
mount of time frames (MxCo; 4–11 TFs, mean: 7.54; MnCo; 4–16 TFs,
ean: 9.54), but ensures their temporal separation. Notably, neither re-

onstruction similarity nor prediction performance decreased markedly
MxCo: reconstruction similarity r = 0.79, p < .001; intelligence predic-
ion r = 0.17, MSE = 167.70, all p > .05; MnCo: reconstruction similarity
 = 0.40, p < 001; intelligence prediction r = 0.15, MSE = 166.96, all
ly separated time frames rather than on functional connectivity reconstruction 

lized as Pearson correlation between static functional connectivity (constructed 

t selections of TFs (see Fig. 1 ). Boxplots depict the mean and quartiles of the 

kers show the 1.5 x interquartile ranges. Outliers are represented by diamonds. 

 different connectivity states from using the CMEP prediction framework (see 

scores ( r ) and in ( c ) as mean squared error (MSE). Reconstruction similarity ( d ) 

ber of time frames comprising cofluctuation maxima or cofluctuation minima 

d prediction performance ( e, f ) from randomly selected time frames. Note that 

ant prediction of intelligence, i.e., 43 highest maxima, Mx; 43 lowest minima, 

or prediction performance ( b, c, e, f ) using all TFs. The lower gray dashed line 

 models’ significance levels) of the within-subject similarity of static functional 

iCo, highest cofluctuations; LoCo, lowest cofluctuations; MxCo, maxima during 

ee also Fig. 1 e). 
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 > .05; Table 1 ; Fig. 4 a,b). The same results were observed when using
lternative prediction models, but CMEP provides the highest robust-
ess of results (Fig. S3). Together, these analyses suggest that the low
redictive power of connectivity states of highest/lowest cofluctuation
or intelligence is most likely due to the small amount of independent
nformation included in these selections of temporally adjacent time
rames. 

.3. A small selection of temporally separated time frames predicts 

ntelligence 

The selection of only the maxima/minima during highest/lowest
ofluctuation (MxCo/MnCo, see above) indicated that discarding more
han half of the time frames from the selection of HiCo/LoCo time frames
id neither significantly affect the reconstruction similarity nor the per-
ormance to predict intelligence – an observation that points to critical
elevance of temporal independence between the selected frames. In
 next analysis we therefore selected the 43 highest maxima (Mx) as
ell as the 43 lowest minima (Mn) across the entire cofluctuation time

eries (summing up to again 5% of data). This allows for a fairer com-
arison between the temporally correlated HiCo/LoCo states and the
ame number of temporally independent states (Mx/Mn). The Mx and
n states were characterized by a significantly higher number of indi-

idual coactivation patterns than the selection of autocorrelated high-
st/lowest cofluctuation states (HiCo/LoCo), reflecting more indepen-
ent information within the Mx and Mn states (see Fig. S4) . The pre-
iction performance for intelligence increased markedly compared to
he previous analyses. Specifically, the 43 highest maxima allowed to
econstruct static functional connectivity on average with r = 0.97 ( p <
001; Fig. 4 a orange) and to significantly predict individual intelligence
cores ( r = 0.43, MSE = 141.00, all p < .001; Table 1 , Fig. 4 b,c orange
ot). The same analyses based on a selection of the 43 lowest minima re-
ulted in a reconstruction similarity of r = 0.75 ( p < .001; Fig. 4 a green)
nd also in significant prediction of intelligence, albeit with a lower
rediction performance ( r = 0.32, MSE = 153.70, all p < .001; Table 1 ,
ig. 4 b,c green dot). Again, these results were similar for alternative pre-
iction models, with CMEP showing robustly the best prediction results
Fig. S3). 

.4. How much time frames are required to predict intelligence? 

To reveal the minimal amount of data necessary to predict individ-
al differences in intelligence, we systematically varied the number of
ighest maxima and lowest minima time frames, respectively, and inves-
igated how reconstruction similarity and prediction performances de-
end on this number. The ability to predict intelligence reached statisti-
al significance at 16 time frames for the highest maxima and at 24 time
rames for the lowest minima ( Fig. 4 e,f). This result shows that individ-
al intelligence scores can be predicted from as few as 16 time frames,
qual to < 1.51% of a 10 min resting-state fMRI session (TR = 645 ms,
60 TFs), as long as temporal independence of the selected time frames
s ensured. These are more time frames than necessary to reconstruct the
tatic functional connectome (e.g., MxCo contained less than 11 frames),
ndicating that more independent data points are required to predict a
omplex human trait like general intelligence. 

.5. Randomly selected time frames predict intelligence as good as time 

rames of maximal cofluctuation 

As states of highest maxima (Mx) are not significantly superior to
tates of lowest minima (Mn) in predicting intelligence ( Fig. 4 b,c), we
ext asked whether comparable prediction performances could be ob-
ained when using an equal number of time frames randomly sampled
rom a uniform distribution over all time frames. Similar to the original
iCo and LoCo selections, also highest maxima (Mx) significantly out-
erformed the randomly selected set of time frames in reconstructing the
9 
tatic connectivity matrix, whereas the lowest minima (Mn) performed
ignificantly worse (orange and green line in comparison to the gray
rea in Fig. 4 d). In contrast, when predicting intelligence, the random
ets of time frames performed just as good as sets with an equal number
f highest maxima and lowest minima ( Fig. 4 e,f) but significantly worse
han an equal number of HiCo and LoCo frames (Fig. S5). This suggests
hat while reconstruction similarity to the static FC primarily depends
n the strength of cofluctuation, the prediction of intelligence is mainly
etermined by the number independent time frames. 

.6. Intelligence prediction involves multiple functional brain networks 

The analyses reported so far used information from all possible func-
ional brain connections for predicting intelligence. However, the brain
an be decomposed into multiple non-overlapping networks (or mod-
les) associated with different cognitive functions (e.g., Fox et al., 2005 ).
o assess their relative contributions to the prediction of intelligence,
e repeated our analyses for a) static connectivity (all time frames)
nd b) the 43 highest maxima, considering seven established functional
rain networks ( Yeo et al., 2011 ). Specifically, we analyzed, in a first
tep, the prediction performance of only the connections within a net-
ork and of those between a specific pair of networks. As illustrated in
ig. 5 a, static connections within the visual network significantly pre-
icted intelligence ( p < .05, Bonferroni corrected for 28 comparisons,
.e., 21 between-network analyses and seven within-network analyses).

hen using the set of 43 highest maxima, only connections between the
efault-mode network and the limbic system ( Fig. 5 b) could significantly
redict intelligence ( p < .05, Bonferroni corrected for 28 comparisons).
econdly, we further explored the relevance of the seven functional net-
orks for prediction of intelligence by analyzing the change in overall
rediction performance when removing all connections, a specific net-
ork was involved in. No significant changes in prediction performances
ere observed when removing one network from static connectivity,
hile removing the fronto-parietal network for cognitive control from

he selection of 43 highest maxima reduced the prediction performance
ignificantly, however, only when not correcting for multiple compar-
sons ( Fig. 5d ; p < .05; both analyses Bonferroni corrected for seven
epeated analyses, i.e., one per network). In sum, these results suggest
hat multiple functional brain systems contribute to the prediction of
ntelligence. 

.7. Robustness control analyses 

Multiple control analyses were performed to further evaluate the ro-
ustness of our findings. As the choice of the cross-validation strategy
an potentially influence the results of predictive modeling approaches
 Varoquaux, 2018 ), we first repeated our analyses for static functional
onnectivity and the 43 highest maxima using stratified 10-fold cross-
alidation instead of LOO cross-validation and obtained highly similar
esults (Table S1). Given that both the cognitive ability measure used in
his study (FSIQ) and functional brain connectivity may vary with age
e.g., Deary et al., 2009 ; Geerligs et al., 2015 ) we secondly repeated our
nalyses using age-adjusted intelligence scores operationalized as resid-
als resulting from a linear regression predicting the mean FD adjusted
SIQ score ( ̂𝑦 ) from age ( x ). As illustrated in Table S1, these analyses re-
ulted in overall comparable findings for static connectivity and 43 high-
st maxima. Third, as functional connectivity estimates can be critically
nfluenced by motion (e.g., Ciric et al., 2017 ; Power et al., 2012 ), we in-
estigated whether there exists a temporal correspondence between the
3 highest maxima and high-motion time frames. This was not the case
Fig. S6a). Fourth, we tested whether the temporal distribution of the 43
ighest maxima itself might be associated with variations in intelligence
nd observed that this also was not the case ( r = 0.02, p = .78; Fig. S6b).
n sum, the control analyses support the robustness of our findings. 
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Fig. 5. Multiple functional brain networks contribute 

to the prediction of intelligence. Intelligence (FSIQ; 

WASI, Wechsler, 1999 ) was predicted with CMEP from 

( a, b ) static functional connectivity (all time frames; 

TFs) and ( c, d ) from the 43 highest maxima of the 

global cofluctuation time series ( Fig. 1 e). In ( a, c ) 

prediction performance (mean squared error; MSE) of 

connectivity within or between seven functional brain 

networks ( Yeo et al., 2011 ) was analyzed by selecting 

only the specific within or between network connec- 

tions, while ( b, d ) illustrates the change in prediction 

performance (MSE) after removing all connections a 

respective network was involved in. Significance was 

determined by a non-parametric permutation test with 

1,000 iterations. ∗ if p < .05 uncorrected for multiple 

comparisons and ∗ ∗ if p < .05 Bonferroni corrected for 

multiple comparisons (28 comparisons, p < .0018 in 

a and c and seven comparisons, p < .007 in b and 

d ). VIS, visual network; SMN, somatomotor network; 

DAN, dorsal attention network, VAN, ventral attention 

network; LIM, limbic network; CON, control network; 

DMN, default mode network. 
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.8. External replication 

Even though all of the results outlined above were thoroughly cross-
alidated and tested for different confounding effects, potential remain-
ng influences of sample-specific characteristics can only be ruled out
y external replication ( Cwiek et al., 2021 ). We therefore repeated our
nalyses using the four resting-state fMRI scans from the Human Con-
ectome Project (HCP; N = 831, age range: 22 – 36 years; 100 nodes,
chaefer et al., 2018 ; see Methods for details) each cropped to the same
ength as the time series of the primary sample (860 TFs). Given that
he HCP data do not provide a full-scale IQ measure, general cognitive
bility was operationalized as latent g -factor ( Spearman, 1904 ) com-
uted from 12 cognitive performance scores (following Dubois et al.,
018 ; Fig. S1). This second dataset corroborated our prediction results
Table S2; Fig. S7): Static functional connectivity derived from all time
rames could significantly predict intelligence (averaged across the four
cans: r = 0.23, p < .001), while highest and lowest cofluctuation states
ould not (HiCo: r = 0.08, p > .05; LoCo: r = 0.02, p > .05). As in the
rimary dataset, restricting the selection to the maxima/minima during
hese highest/lowest cofluctuation states ( < 17 TFs) resulted in only a
light decrease in reconstruction similarity (Table S2 in comparison to
able 1 ) and prediction performance (MxCo: r = 0.07, p > .05; MnCo:
 = − 0.03, p > .05). Finally, also in the replication sample, the 43 high-
st maxima and 43 lowest minima allowed for significant prediction of
ntelligence (Mx: r = 0.23, p < .001; Mn: r = 0.18, p < .05). Note that
he reconstruction similarity to static connectivity was again highest in
he latter cases (Mx: r = 0.97, Mn: r = 0.74). Finally, comparisons with
andomly selected time frames and across increasing numbers of time
rames resulted in similar findings as reported above for the original
nalyses (Fig. S7c,d). 

Network-specific analyses in the replication sample yielded qualita-
ively similar findings, i.e., significant predictive power of connections
inking the default mode, the fronto-parietal, and the attention networks
Fig. S8a,b). Also, in no case prediction performance (MSE) decreased
10 
ignificantly when removing one network (all p > .05; Fig. S8c,d). While
acking the specificity observed in the primary sample, this supports the
onclusion that multiple networks contribute to the prediction of intel-
igence. Lastly, an additional control analysis applying the 114-nodes
eo-atlas ( Yeo et al., 2011 ) to the replication sample yielded similar
esults and, thus, demonstrated the robustness of findings also against
ariations in different node parcellation schemes (Table S3). Overall,
he results of the external replication support the generalizability of our
ndings to different samples, different scanning and preprocessing pa-
ameters, different age cohorts, and to different measures of general
ognitive ability. 

. Discussion 

Recent work has shown that brief states of particularly high func-
ional connectivity reflect fundamental properties of individuals’ func-
ional connectomes measured across several minutes of resting-state
MRI ( Betzel et al., 2022a ; Esfahlani et al., 2020 ). Here, we explored
hether these network-defining and person-specific states of high brain-
ide cofluctuation – as well as other network states – carry information
bout individual differences in general cognitive ability (intelligence).
e first replicated the basic phenomenon that the fundamental struc-

ure of static functional connectivity is driven by a small number of
uch high cofluctuation states ( Esfahlani et al., 2020 ). Further a machine
earning-based prediction framework (CMEP) was developed to predict
ntelligence from functional connectivity created from only such states.
owever, neither the high cofluctuation states nor the states of partic-
larly low cofluctuation were predictive for intelligence. This low pre-
iction performance of high cofluctuation states as defined by Esfahlani
t al. (2020) and Betzel et al. (2022a) potentially results from the high
umber of temporally adjacent and thus correlated frames that carry lit-
le independent information. Secondly, we reveal that intelligence can
e predicted from equally small selections of fMRI time frames – when
uch time frames are temporally independent. This holds true for se-
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ections of maxima and minima within the cofluctuation time series, as
ell as for random selections of time frames. Lastly, we show that in-

elligence can be predicted from selections of as few as 16 time frames,
nd that intelligence prediction relies on multiple functional brain net-
orks, including the visual, the attention, the limbic, the fronto-parietal

ontrol, and the default mode systems. The replication of all results in an
ndependent sample suggests generalizability of our findings to different
opulations, processing pipelines, and to various measures of cognitive
bility. 

.1. How much brain data is required to predict human cognition? 

A large number of recent studies demonstrated that cognitive abil-
ties can be predicted from functional brain connectivity measured
ith fMRI (e.g., Dhamala et al., 2021 ; Finn et al., 2015 ; Thiele et al.,
022 ). The recent advent of time-resolved brain connectivity analyses
 Esfahlani et al., 2020 ) and of time-varying connectivity approaches in
eneral (for review see Lurie et al., 2020 ) has made it possible to inves-
igate the relationship between specific states of functional connectivity
nd cognition in more detail. Previous work has strongly focused on
ime frames of particularly high cofluctuation and demonstrated their
bility to capture idiosyncratic information ( Betzel et al., 2022a ; Cutts
t al., 2023 ; Sporns et al., 2021 ). In fact, our results suggest that the
bility to predict intelligence is rather independent from the strength
f cofluctuation but critically depends on the availability of sufficient
ndependent data. 

Further, our finding that prediction performance of intelligence in-
reases with the number of time frames and that sufficient temporal in-
ependence is required, contradicts earlier studies proposing that scans
s short as three to four minutes are sufficient to characterize individ-
al subjects comprehensively ( Byrge and Kennedy, 2019 ) and that even
ess than two minutes of resting-state fMRI can be used to build ro-
ust individual connectotypes (i.e., idiosyncratic connectivity proper-
ies; Miranda-Dominguez et al., 2014 ). In such short scanning durations,
t might not be possible to detect a sufficient number of frames that con-
ain enough independent trait-relevant information. On the one hand,
ur findings support the benefit of analyzing human brain connectivity
ith temporally fine-grained methods that prevent the temporal averag-

ng step (see also O’Connor et al., 2022 ). On the other hand, we argue
owards the relevance of longer scanning durations for neuroimaging
esearch on individual differences in complex human traits to ensure
apturing sufficient trait-relevant connectivity states. 

.2. Which brain states reflect individual differences in intelligence? 

The selection of only few time frames provides a method to clarify
hether or not individual differences in intelligence depend upon spe-

ific brain states - as recently proposed by the Network Neuroscience
heory of Intelligence (NNT; Barbey, 2018 ). We therefore defined a
rain connectivity state as a small selection of time frames from the
MRI connectivity time series that are all characterized by specific con-
ectivity properties, and we probed such selections for their ability to
redict individual intelligence scores. 

The successful recovery of individual-specific connectomes from
 limited number of highest connectivity brain states ( Esfahlani
t al., 2020 ) made these states a plausible first target. Also, Ladwig
t al. (2022) suggested that focusing on time frames of higher cofluc-
uation increases the signal to noise ratio and thus increases the prob-
bility of detecting trait-relevant information. In contrast, in our study
ime frame selections with higher cofluctuation did not differ signifi-
antly from selections with lower cofluctuation regarding their predic-
ive ability. This result is supported by Sasse et al. (2022) , who find
hat lower and intermediate cofluctuation time frames provide higher
ubject specificity as well as highest phenotype predictions. Ladwig
t al. (2022) further demonstrated that high cofluctuation states are not
11 
ecessarily special: removing these states from the connectivity time se-
ies did not impair the ability to derive individual connectomes, and
andom selections were equally capable of reconstructing static connec-
ivity matrices. Relatedly, our result that even randomly selected time
rames can predict intelligence as good as highest cofluctuation maxima
uggests that intelligence-relevant information is not reflected in a spe-
ific brain-network organizational state (such as the high cofluctuation
tates) but is rather present in many fMRI time frames distributed across
he entire scan. This assumption is further supported by the observation
hat the selection of time frames that allowed for highest predictive per-
ormance (i.e., Mx, Mn) includes a higher number of distinct spatial
oactivation patterns and may thus depict more independent informa-
ion. Our study adds to the large literature on the occurrence of indi-
idual brain states ( Allen et al., 2014 ; Liu et al., 2018 ; Medaglia et al.,
018 ) but additionally analyzes such states on a frame-by-frame level as
ell as regarding their relevance for cognitive abilities . To summarize,

ntelligence does not seem to be characterized by a specific brain state,
ut rather by the ability of the human brain to explore different brain
tates over time. 

.3. Implications for understanding the brain bases of intelligence 

The involvement of multiple functional brain networks in the predic-
ion of intelligence from functional connectivity, observed here, is well
n line with established neurocognitive theories of human intelligence
Parieto-Frontal Integration Theory, P-FIT, Jung and Haier, 2007 ; Multi-
le Demand System, MD, Duncan, 2010 ) and more recent meta-analytic
ndings ( Basten et al., 2015 ) suggesting that a widely distributed sys-
em of brain regions is implicated in individual differences in intelli-
ence. Further support for the relevance of whole-brain analyses comes
rom a more theoretical perspective claiming that cognitively highly de-
anding activities – like complex problem solving – require the integra-

ion of information that is distributed widely across the brain ( Duncan
t al., 2020 ). We observed consistent relevance of the default-mode and
he fronto-parietal networks in the prediction of intelligence from the
ull time series as well as the selection of 43 highest maxima, corrobo-
ating previous results that these networks are especially relevant for
ndividual differences in intelligence (e.g., Dubois et al., 2018 ; Finn
t al., 2015 ; Thiele et al., 2022 ; for review see Hilger and Sporns, 2021 ).
he reduction in predictive power of connections within the dorsal at-
ention and visual network when comparing predictions based on all
ime frames to those based on the highest maxima may potentially re-
ult from the underrepresentation of the inter- and intra-connectivity of
maller networks (and thus the overrepresentation of larger networks)
hen computing the whole-brain cofluctuation ( Betzel et al., 2022b ).
owever, best predictions were achieved with whole-brain connectiv-

ty, highlighting the positive effect of information from all networks on
redicting intelligence. 

.4. Introducing CMEP – a data-driven prediction framework for 

euroscience 

Finally, the here-introduced prediction framework - covariance max-
mizing eigenvector-based predictive modeling (CMEP) - has some no-
able advantages in comparison to previously used prediction methods
or functional neuroimaging data. First, we demonstrated in multiple
ontrol analyses superior robustness of prediction results derived from
MEP in comparison to those derived from the to date most frequently
sed approach in network neuroscience (CPM; Finn et al., 2015 ; Shen
t al., 2017 ). Second, CMEP is a completely data-driven framework,
hereby making it unnecessary to (arbitrarily) select a threshold pa-
ameter (e.g., to identify most relevant brain connections). This reduces
he researchers’ degrees of freedom and thereby facilitates the repro-
ucibility of results ( Gilmore et al., 2017 ; Poldrack, 2019 ). We there-
ore propose that CMEP is better suited to extract trait-like connectivity
haracteristics. However, compared to CPM, CMEP comes with slightly
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igher computational costs (1.14 x longer training time in comparison to
PM) and although the generated eigenvectors allow for more detailed

unctional interpretations ( Fig. 2 c), they produce more complex features
han the two network averages used in CPM (i.e., a positive network and
 negative network; Finn et al., 2015 ; Shen et al., 2017 ). Note however,
hat all tested models for intelligence prediction seem to be not trans-
errable to a completely new data set - an observation which is most
ikely caused by differences in sample characteristics, data acquisition
arameters, preprocessing strategy, and in the predicted cognitive mea-
ure. Despite these limitations, our results suggest CMEP as a promising
andidate for broad applications in neuroscientific studies testing for
rain-behavior relationships. 

. Limitations and future directions 

Our results are in line with the recent proposal in Barbey (2018) that
ifferent brain states underly human cognition, however, we did not
robe for the dynamic reconfiguration between such states. We have,
owever, recently demonstrated that persons with higher IQ scores show
igher stability of network modularity over time – an effect that was in
art driven by the same functional systems as identified here ( Hilger
t al., 2020a ). These former results together with our current obser-
ation that even random selections of time frames allow for significant
rediction of intelligence contradicts the NNT’s proposal that the brain’s
bility to flexibly access a specific set of network states is essential for
igher levels of intelligence ( Barbey, 2018 ). Whether higher network
tability, higher network flexibility or neither of the two facilitates hu-
an cognition requires clarification in future work. However, our for-
er study ( Hilger et al., 2020a ) and the NNT ( Barbey, 2018 ) imply that

ndividual differences in intelligence relate to the dynamic reconfigura-
ions of functional connectivity over time, while our current study adds
hat the most predictive brain connectivity states include more hetero-
eneous coactivation patterns that can only be captured by ensuring
ufficient temporally independent fMRI data frames. However, as this
equires sufficiently long scan durations, such types of analyses cannot
irectly be transferred to all standard fMRI settings. In sum, this research
ighlights the need for time-varying connectivity analyses and sufficient
ong scan durations. 

Our study focuses on the analysis of distributed states of functional
RI during rest. Recent literature has also highlighted the potential

enefits of including anatomic MRI as well as diffusion tensor imag-
ng (DTI) into prediction models (e.g., Dhamala et al., 2021 ; Litwi ń czuk
t al., 2022 ; Ooi et al., 2022 ; Popp et al., 2023 ; Sarwar et al., 2021 ).
uture work should extend this research and simultaneously include a
road range of structural parameters such as anatomical connectivity
ombined with cortical thickness, cortical surface area, or gyrification.
dditionally, task-induced functional connectivity has been related to

ndividual differences in cognitive ability (e.g., Greene et al., 2018 ; Fong
t al., 2019 ; Jiang et al., 2020 ) and represents together with dynamic
MRI analyzes another promising future perspective (e.g., Chen et al.,
022 ). 

The prediction performances in our study were in a comparable
ange to previous large-scale studies predicting intelligence or other
omplex human traits from static brain connectivity including all time
rames ( He et al., 2020 ; for review see Dizaji et al., 2021 ) or even from
rain structure ( Hilger et al., 2020b ; mean absolute error ∼10 IQ points).
owever, it has recently been proposed that the investigation of brain-
ehavior relations requires large sample sizes ( DeYoung et al., 2022 ;
arek et al., 2022 ; Rosenberg and Finn, 2022 ) and that replication stud-

es observe small effect sizes ( Marek et al. (2022) found the largest 1%
f replicable univariate effects to be between | r | = 0.06 and 0.16). De-
pite limited sample sizes in the range of hundreds our study demon-
trates (via external validation) that the combination of cross-validation
nd sophisticated analyses approaches like CMEP allows to reliably
dentify brain-behavior associations - a promising direction for future
esearch. 
12 
. Conclusion 

We introduced an eigenvector-based prediction framework to show
hat functional connectivity estimated from as few as 16 temporally
eparated time frames allow to significantly predict individual differ-
nces in general cognitive ability ( N = 263). In contrast and against
revious expectations, we revealed that network-defining time frames
f particularly high or low cofluctuation are not predictive of intelli-
ence, such that much more frames would be required to achieve a pre-
ictive performance comparable to the complete time series. Further
e showed that multiple functional brain networks contribute to the
rediction of cognitive ability from small selections of the fMRI time
eries, and all results replicate in an independent sample ( N = 831).
verall, our results reveal that whereas relatively few time frames
f brain connectivity are sufficient to derive fundamentals of person-
pecific functional connectomes, temporally distributed information and
ence ultimately more data is necessary to extract information about
ognitive abilities from functional connectivity time series. Importantly
nd in contrast to recent proposals, intelligence-predictive information
s not restricted to specific brain connectivity states, but rather re-
ected within many different brain states that are temporally widely
istributed over the whole brain connectivity time series. To detect such
tates requires sufficient amounts of neuroimaging data, making longer
canning durations essential for reliable prediction of complex human
raits. 
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