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A B S T R A C T

Local climate change risk assessments (LCCRAs) are best supported by a quantitative integration of physical
hazards, exposures and vulnerabilities that includes the characterization of uncertainties. We propose to use
Bayesian Networks (BNs) for this task and show how to integrate freely-available output of multiple global
hydrological models (GHMs) into BNs, in order to probabilistically assess risks for water supply. Projected
relative changes in hydrological variables computed by three GHMs driven by the output of four global climate
models were processed using MATLAB, taking into account local information on water availability and use.
A roadmap to set up BNs and apply probability distributions of risk levels under historic and future climate
and water use was co-developed with experts from the Maghreb (Tunisia, Algeria, Morocco) who positively
evaluated the BN application for LCCRAs. We conclude that the presented approach is suitable for application
in the many LCCRAs necessary for successful adaptation to climate change world-wide.
Software and data availability

For the case study, three softwares were used: Netica, Matlab, and
DANA.

1. Name of software: Netica, 5.24" 64 Bit, For MS Windows 7 to 10

– Developer: Norsys Software Corp.
– Contact information: www.norsys.com
– Hardware requirements: PC/Mac
– Availability: https://www.norsys.com/netica.html
– Cost: license necessary

2. Name of software: Matlab R2019a

– Developer: The MathWorks, Inc.
– Contact information: https://www.mathworks.com/
– Hardware requirements: PC/Mac/Linux
– Availability: https://www.mathworks.com/products/matl

ab.html
– Cost: license necessary

3. Name of software: DANA

∗ Corresponding author.
E-mail addresses: f.kneier@em.uni-frankfurt.de (F. Kneier), laura.woltersdorf@gmx.de (L. Woltersdorf), ThediniAsaliPeiris@em.uni-frankfurt.de (T.A. Peiris),

p.doell@em.uni-frankfurt.de (P. Döll).

– Developer: Pieter W.G. Bots, Delft University of Technol-
ogy, Faculty of Technology, Policy and Management

– Contact information: http://dana.actoranalysis.com
– First year available: 2000
– Hardware requirements: PC (Windows)
– Program size: 2.01 MB
– Availability: http://dana.actoranalysis.com/
– Cost: license but at no cost

The input of multi-model ensemble data used in the case study is
provided in the supplemental Excel-file; Multi-model ensemble data of
the output of hydrological – but also of other types of – global-scale
impact models is also freely available from ISIMIP (www.isimip.org).
All other data obtained from literature or expert knowledge is listed in
the paper.

1. Introduction

For successful climate change adaptation, decision makers need
appropriate information about the risks of climate change impacts.
According to IPCC (2014), the risk that a certain impact (adverse
vailable online 3 July 2023
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consequence for a natural or human system) of climate change occurs
results from the interaction of hazard (potentially occurring physical
event or trend as affected by climate change), exposure (presence of
people, ecosystems and assets) and vulnerability (predisposition to be
adversely affected). Risk is often estimated as the probability of occur-
rence of hazardous events or trends multiplied by the negative impacts
that ensue if the event or trend occurs (IPCC, 2014). To assess climate
change risks, climate change hazards, exposures, vulnerabilities and
their uncertainties, i.e., for example in the form of probabilities, need to
be characterized (Döll et al., 2015). Climate change hazards related to
freshwater are best characterized by changes of hydrological variables
(due to climate) that are relevant for the specific risk considered;
for example, climate-driven changes in groundwater recharge and net
irrigation requirement would be relevant for characterizing risks of
climate change for irrigation water supply from groundwater.

Projections of changes of hydrological variables vary widely even
for specified greenhouse gas emission scenarios because of the sig-
nificant uncertainties of both climate and hydrological modeling; to
characterize climate change hazards, it is therefore state-of-the-art to
rely on multi-model ensembles for quantifying potential future changes
in hydrological variables (Döll et al., 2015). The ensemble output can
be used to, e.g., compute mean or median changes of these projec-
tions, and moreover, analyze agreement of models regarding projected
changes or compute percentiles of model output that can roughly be
interpreted as probabilities (Döll et al., 2015). Such ensembles have
been generated in the framework of the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP) initiative (e.g., Frieler et al., 2017),
where the bias-adjusted output of several global climate models for
various greenhouse gas emissions scenarios was used as the input
to several global hydrological models (GHM) to compute time series
of historic and potential future values of hydrological variables. The
model output of the simulation round ISIMIP2b is freely available
(https://www.isimip.org/outputdata/). In addition, CO-MICC (www.
co-micc.eu) is a web portal that freely provides similar model output
for download, in addition to interactive online visualization.

The disadvantage of global hydrological models for local climate
change risk assessments (LCCRA) is that they may only roughly rep-
resent current local hydrological conditions, mainly owing to the low
spatial resolution of mostly 0.5◦ latitude by 0.5◦ longitude (55 km by 55
km at the equator) and their restricted representation of anthropogenic
alterations of the water cycle by e.g. water use, man-made reservoirs
and water transfers. Their obvious advantage is that they cover land
areas of the Earth globally (except Antarctica and Greenland) and can
therefore help to estimate potential changes in hydrological variables
where no local hydrological or water resources model is available.
Even if a hydrological model for a specific drainage basin exists that
could be driven by the output of a number of Global Climate Models
(GCM), additional consideration of an ensemble of GHMs is useful to
avoid an underestimation of the range of potential changes due to
hydrological model uncertainty. This uncertainty arises, e.g., because
the models’ simulated changes differ because of different equations
for computing potential evapotranspiration (Kingston et al., 2009) or
because most local to regional hydrological models do not simulate the
response of vegetation to increasing CO2 concentrations and climate
change, a process that strongly determines future evapotranspiration
and thus runoff changes (Davie et al., 2013; Gerten et al., 2014).
While a few scientific papers on multi-model ensembles of potential
changes of hydrological variables due to climate change have been
published (e.g., global-scale studies on future streamflow Schewe et al.,
2014, irrigation requirements Wada et al., 2013, and groundwater
recharge Reinecke et al., 2021), no studies have yet been performed
on how to best utilize them in local climate change risk assessments.

Within the climate change adaptation literature, a shift from top-
down approaches towards bottom-up approaches has begun to take
place (Helgeson, 2020), addressing the importance of the decision
2

context as an interplay between climate and society, and the needs of f
immediate adaptation decisions (Conway et al., 2019) . A bottom-up
approach structures the problem starting from an understanding of the
specific decision context rather than the broader climatic conditions
under which the chosen action will ultimately play out. It begins with a
well-defined objective, defined in terms of a (e.g. policy-) performance
measure and a critical threshold that draws a line between adequate
and inadequate performance of that measure. Starting from this objec-
tive, one works backwards to determine the climatic (or other external)
conditions under which the stated performance threshold would be
reached and an appropriate policy should be implemented (Helgeson,
2020). A critical threshold is a level of chronic unacceptable perfor-
mance, which is often identified by stakeholders as they intuitively
understand the implications of failure in their system (Mendoza et al.,
2018). As climate change involves complex interactions and changing
likelihoods of diverse impacts (IPCC, 2014) within these systems, it is
essential to define the risks and estimate their probability of occur-
rence (Borgomeo et al., 2018). To this end, appropriate methods and
tools are needed.

Bayesian Networks (BN) are a cutting-edge integrated1 modeling
pproach (Terzi et al., 2019) to deal with uncertain and complex
omains (Phan et al., 2016) such as climate change (Sperotto et al.,
017) by estimating probabilities of occurring risks. Bayesian Networks
re a formal representation of the joint probabilistic behavior of a
ystem conditioned by deeply uncertain but potentially useful infor-
ation about the future (Taner et al., 2019). They can (1) combine

uantitative multi-model output data and qualitative expert knowledge,
2) deal with uncertain multi-model ensemble projections and other un-
ertain system variables regarding hazard, exposure and vulnerability
nherently through their representation with probability distributions,
3) include multiple stressors and endpoints, (4) compute alternative
cenarios for water availability and demand, and (5) take into account
he effect of adaptation policies on climate change risks (Sperotto
t al., 2017). Because of their ability to integrate not only quantitative
ata but also qualitative expert beliefs, they are also referred to as
ayesian Belief Networks. These make them promising tools to this end
f considering complex information in climate change risk assessments.

In the past two decades the use of Bayesian Networks in many envi-
onmental fields with a risk assessment perspective has been exponen-
ially growing (Phan et al., 2016) and Bayesian networks are increas-
ngly being integrated with other modeling constructs and tools (Mar-
ot and Penman, 2019). Phan et al. (2016) find 111 original, peer-
eviewed papers published from 1997 to 2016 dealing with Bayesian
etworks in the field of water resources. Sperotto et al. (2017) review
2 publications dealing with Bayesian Networks for climate change
isk (or impact) assessments and management. Eight out of the 22
se Bayesian Networks to integrate both climate change hazards and
reshwater, differing in how information on climate change hazards are
ntegrated. Three integrate climate change hazards as generic scenarios
uch as +50%, +100% or ‘‘high’’/‘‘low’’ precipitation change (Varis
nd Kuikka, 1997; Kotta et al., 2009; Nojavan A. et al., 2014). Five
se climate change projections from climate models and quantitative
rojections from water models to inform the Bayesian Network set-up.
mong these studies, Molina et al. (2013) develop a Bayesian Network

or assessing climate change impacts on highly stressed groundwater
ystems in Spain, using seven Regional Climatic Models and one re-
ional hydrological model. Dyer et al. (2014) use Bayesian Networks to
nvestigate the climate change impacts on streamflow and water quality
n Australia, using 15 GCMs and one regional hydrological model. Cou-
ure et al. (2018) assess the potential future ecological status of a
ake in Norway by using two GCMs, one regional hydrological model,
ne catchment phosphorus model and one lake model. Sperotto et al.

1 I.e., the ability to link main features from diverse disciplines such
s society, economy and physical Earth system processes in one modeling
ramework.

https://www.isimip.org/outputdata/
http://www.co-micc.eu
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Fig. 1. Steps 1 to 5 (blue numbers) of applying BN modeling in participatory LCCRA, with the three knowledge sources local stakeholder knowledge, multi-model ensemble, and
literature, where integration of the latter two required data pre-processing during step 3.
(2019a) assess climate change impacts on nutrient loadings in a river,
using projections of a Regional Climate Model and one hydrological
model. Sperotto et al. (2019b) extend the study by including ten climate
scenarios. As all eight studies applied only one hydrological model, the
uncertainty range of future projections of freshwater-related climate
change hazards was likely underestimated in the respective Bayesian
Networks. All eight publications lack a comprehensive documentation
of the methods applied to integrate data of multi-model ensembles
into a Bayesian Network model, how to compute the probabilistic
links between the variables of the Bayesian Network (i.e. information
to feed into the conditional probability tables), and how to compute
class sizes of nodes in the Bayesian Network. Only one of the eight
studies (Sperotto et al., 2019a) uses the input of experts or stakeholders
for conceptualization of the Bayesian Network but a description of how
this was done is lacking. However, good practices in Bayesian Network
modeling require expert or stakeholder involvement during all steps
of the model (co-)development, from model co-conceptualization to
co-validation (Bromley et al., 2005).

The objective of this publication is to provide a roadmap for setting
up and applying suitable Bayesian Network models in LCCRAs, using
a case study about assessing climate change risks for water supply in
the Medjerda basin (Tunisia and Algeria). The focus is on a detailed
description of (1) how multi-model ensemble estimates of hydrological
variables from global hydrological models can be integrated into a
Bayesian Network to obtain a state-of-the-art representation of climate
change hazards and their uncertainties, and (2) how stakeholders can
be involved in the Bayesian Network setup (participatory manner).
To this end, we co-designed with local experts a method to set up a
Bayesian Network model, by mimicking the participatory stakeholder
process that would be conducted in an LCCRA. Involving specific water
management experts meant that they could not only take on the roles of
stakeholders in the simulated case study but were also able to evaluate
the usefulness of the co-design.

An overview of the method is given in Section 2, detailed steps for
the setup of the Bayesian Network including the integration of a global
hydrological ensemble as data input and a suite of tools in a partici-
patory process with stakeholders are given in Section 3, the simulation
results in the case study are exemplarily analyzed in Section 4, while
the experts’ evaluation, the discussion and the conclusion are presented
in Sections 5, 6 and 7, respectively.
3

2. Method

Scientists and local experts (co)developed the roadmap of the setup
by mimicking a participatory process that would happen with stake-
holders in an LCCRA. To this end, we use the term ‘‘stakeholders’’ in
the setup steps of the roadmap to describe the participatory process
as it would be applied in an LCCRA. In addition, we use them as
‘‘experts’’ in an evaluation of the usefulness of the developed method
for local climate change risk assessment. Evaluation was conducted
using surveys at workshops and is discussed in Section 5.

2.1. Roadmap for setting up and applying Bayesian Network models for
LCCRAs

We used Bayesian Network modeling informed by the output of
an ensemble of global hydrological models, literature data and lo-
cal stakeholder knowledge to assess the probabilistic risk of climate
change for water supply from groundwater and from surface water
(Fig. 1). Our method consisted of a linked chain of tools through five
steps: (1) Co-defining the real-world problem, the Bayesian Network
model objective, the key risks, and the structure of the system to
be modeled, (2) co-developing the Bayesian Network model structure
including gathering data from literature and our multi-model ensemble,
(3) setting up the Bayesian Network model based on processing with
the software tools MATLAB2 and Netica,3 and (4) running the Bayesian
Network model with Netica to compute and analyze risks under various
future conditions, i.e. varying climate change and water use scenarios,
including adaptation measures. Lastly, (5) after monitoring of imple-
mented measures, the Bayesian Network model can be updated and
then better represent the simulated system. Steps 1–3, pertaining to the
setup of the Bayesian Network model, are presented in Section 3, while
steps 4–5 are discussed in Section 4.

2.2. Bayesian Network modeling

A Bayesian Network model is a probabilistic graphical model of
a real system for which a graph expresses the conditional depen-
dence structure among variables. It consists of three main components:

2 https://www.mathworks.com/products/matlab.html
3 https://www.norsys.com/netica.html

https://www.mathworks.com/products/matlab.html
https://www.norsys.com/netica.html
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Table 1
Stakeholder involvement regarding the setup of the Bayesian network tool.
Type of Number Location Duration Date Topics and activities
interaction of local

stakeholders

Semi-structured
stakeholder
interviews

13

Tunis
(Tunisia)
Algiers
(Algeria)
Marrakesh,
Beni Mellal,
Casablanca
(Morocco)

10 days, 2 h
per interview May 2018

(1) Tasks, responsibilities and challenges
of stakeholder’s organization
(2) Stakeholder’s problem perception of
the situation and challenges in the
country
(3) Development of individual
perception graphs representing the
problem perspective
(4) Information needs to support the
country in climate change adaptation in
the water sector
(5) Data availability and needs, time
frame for planning of the organization

Workshop I 6 Le Mans
(France) 1.5 days November

2018

(1) Presentation of perception graphs
(2) Introduction to Bayesian Networks
and presentation of first Bayesian
Network structure
(3) Acquiring stakeholders’ input for
knowledge and data provisioning

Workshop II 7 Tunis
(Tunisia) 2 days October

2019
(1) Presentation of further developed
Bayesian Network
(2) Co-development of possible risk
indicators, further variables and
qualitative classes
(1) the structure of the Bayesian Network, i.e. a directed acyclic graph
that consists of a set of nodes representing the system variables visual-
ized as boxes and a set of arrows indicating the relationships between
them (Phan et al., 2016) in a causal network, (2) a set of defined
distinct classes of attainable values for each variable (e.g. quantita-
tively: 1–2 mm, 2–3 mm, 3–4 mm or qualitatively: low, medium, high),
and (3) (un)conditional probability tables (CPTs) that represent how
one system variable depends on the state of another variable, thus
quantifying the links in the graph (Phan et al., 2016). Each variable is
described probabilistically, i.e. by the distinct classes and by the proba-
bility of the variable belonging to each class (probability distribution).
Unconditional, or fixed, probability tables are used for nodes at the
start of branches in the causal network, that do not depend on the
state of another variable to define their probability distribution (see
root nodes below), while the conditional probability tables uniquely
determine the probability distribution of all subsequent variables. This
roadmap focuses on the explanation of those aspects required to set
up the Bayesian Network, the interested reader can find more in-depth
explanations of the Bayesian Network method, e.g., in Pearl (1998),
Heckerman (1998) and Jensen and Nielsen (2007).

Regarding Bayesian Network terminology, we use in this paper the
terms ‘‘nodes’’ (i.e. variables of the system), ‘‘classes’’ (i.e. the possible
states within a node), and specifically ‘‘parent node’’ (i.e. a node with
child nodes downlink in the graph), ‘‘child node’’ (i.e. with parent nodes
uplink in the graph) and ‘‘root node’’ (i.e. a node at the beginning of a
branch without any parent nodes).

Our five steps guide the process of generating and entering the
required data for the three components of the Network. In general,
not enough data are available in complex problem fields to learn
CPTs and network structure automatically from data (Düspohl et al.,
2012). Instead, the network structure is co-developed with stakeholders
and information from literature (steps 1 and 2). Subsequently, the
discrete classes must be defined (step 3). Lastly, root nodes representing
observations, modeled output, scenarios or potential actions are defined
through unconditional probability tables, while child nodes are charac-
terized by conditional probability tables . From appropriate input data
4

sources and relationships, both have to be developed (steps 2 and 3).
2.3. Knowledge sources

Regarding the roadmap, (co)setup and application of the Bayesian
Network was embedded in a participatory process with local stake-
holders. Their knowledge was integrated in steps 1, 2 and 5 of our
participatory research process (Fig. 1). It was elicited during indi-
vidual interviews and two stakeholder workshops with scientific pre-
sentations, guided discussions and break-out groups (Table 1). Local
stakeholders came from Tunisia, Algeria and Morocco, because of the
similar nature of conditions and problems in the coastal regions of these
neighboring countries.

Data from a multi-model ensemble was used to inform the setup in
step 2 (input data). In addition, literature research supported steps 1
(framing) and 2 (input data). See the respective step descriptions for
the details of the necessary knowledge and its integration.

2.4. Perception graphs

During the participatory process, individual perception graphs – a
type of causal network or influence diagram – served to elicit and
visualize the problem perspective of stakeholders (Döll et al., 2013).
The perception graph is a directed acyclic graph containing the or-
ganization’s goals, factors that influence the goals and possible or
currently applied actions of the organization that affect these factors
(i.e. adaptation measures to climate change in the water sector), with
causal links between them (Döll et al., 2013). The aim of the perception
graph is to describe the current system with causes and effects of
climate change hazards on water in the country from the perspec-
tive of the stakeholder’s organization. The causal network contains
all relevant components of the system, their causal relationships and
(in)dependencies (Sperotto et al., 2017), thus increasing system under-
standing and identification of key risks by considering all perception
graphs. The perception graph was drawn by the scientist on a large
piece of paper on a table while asking the stakeholder guiding ques-
tions. Once the structure and the links of the perception graph were
defined, it was noted how factors and actions are expected to change

in the future.
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Fig. 2. Case study region Medjerda river basin in northern Algeria and northern Tunisia. Basin map adapted from Zahar et al. (2008).
3. Setup of Bayesian Network model

For each step (blue numbers in Fig. 1), first a brief description of
the sequence of activities is given. The specific outcomes for the case
study are then presented to support clarity of practise.

3.1. Step 1: Co-defining the real-world problem

Defining the real-world problem includes co-defining (i) the
Bayesian Network model objective, (ii) the key risks, and (iii) the
structure of the system to be modeled including its spatial and temporal
extents and resolution. We defined the real-world problem regarding
climate change hazards on water jointly in a process with stakeholders
and project scientists during interviews and two workshops (Table 1)
and from literature. To this end, individual semi-structured interviews
were conducted with 13 water stakeholders concerned with climate
change in Tunis (Tunisia, 4), Algiers (Algeria, 2) and Marrakech, Beni
Mellal and Casablanca (Morocco, 7). They were selected based on
stakeholder analysis and personal experience of a project scientist with
long term research experience in the Maghreb. Each organization’s
perception of key risks and real world problems, time horizons of
their work and data availability were elicited (see Table 1 for topic
details). Interviewed stakeholders were based in national meteorolog-
ical services, ministries concerned with water, national water supply
agencies, basin agencies, universities, agricultural services and an
intergovernmental organization. Based on interviews and literature, a
qualitative and quantitative assessment was conducted to characterize
the system under consideration. This served to streamline problem
framing with the stakeholders but also to summarize those aspects
potentially relevant for the subsequent network. For the case study
area, it is given in the supplemental material. In addition, as part
of the stakeholder interview, project scientists guided the stakeholder
through the creation of individual perception graphs to elicit their
problem perspective (including the organization’s goals, influencing
factors, and actions of the organization that affect these factors; see
Section 2.4). The scientists analyzed the perception graphs using the
software DANA (http://dana.actoranalysis.com/) (Bots, 2007), which
allows to compare or combine the individual graphs, identify potential
common factors, create digital versions for further discussions, and
eventually shared some exemplary perception graphs in workshop I
with all stakeholders. Subsequently during workshop I, the system’s
geographical and temporal boundaries were proposed by the project
5

scientists and agreed upon with the stakeholders. Based on the bottom-
up approach (Conway et al., 2019) of climate change assessments, the
objective of the Bayesian Network model was merely narrowed down
by project scientists to be a probabilistic quantification of key risks
of climate change on water. Six stakeholders further met in break-
out groups to determine such key risks, metrics to define them, and
the data required. Based on this, project scientists proposed different
options for two key risks and critical states for the two most important
water sources in the Medjerda basin, i.e. one for groundwater and one
for surface water, during workshop II. Different options comprising
various degrees of complexity were presented by project scientists
and discussed with local stakeholders before selecting the final risk
indicators.

Regarding temporal and spatial boundaries, the Bayesian Network
can be set up for any time horizon within the period of multi-model
output, which was available until 2100. Most interview partners had
time horizons for their work until 2020 or 2050; only the meteorologi-
cal service used data until 2100. As a compromise between the shorter
time horizons in water management and the longer time horizons
in meteorology, we selected the period 2050–2079 as the evaluation
period for our exemplary Bayesian Network model, and 1981–2010
as the currently recommended WMO reference period of long-term
climate. The geographic system boundary of the Network was jointly
determined to be the Medjerda river basin in Algeria and Tunisia
(Fig. 2).

Stakeholder interviews showed that northern Tunisia and Algeria
are already experiencing considerable water shortage. The impacts of
climate change have already been perceived to be noticeable since the
year 2000 and include more extreme precipitation events and more
frequent droughts and floods. Both governments have responded to this
with additional water supply infrastructure. Man-made reservoirs have
already been exploited to the maximum now and will be strongly af-
fected by climate change. In Tunisia and Algeria water from dams in the
North is commonly transferred to regions with less water availability
in the center of the countries. Envisioned strategies to mitigate water
scarcity now and under worsening climate conditions in the future
were non-conventional water resources (i.e. treated water reuse for
agriculture) and improved water irrigation efficiency (e.g. drip irriga-
tion). Water demand was expected to increase in the future because
of population growth and more irrigation water need. Current data
availability to stakeholders (also from climate models) differed greatly
and depended on their domain of work. There was no local hydrolog-

ical or water use model available for the Medjerda basin. Data from

http://dana.actoranalysis.com/
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Fig. 3. Perception graphs of three stakeholders, depicting actions (rectangle), factors (oval, non-colored boxes) and goals (oval, colored boxes). Links are either positive (e.g. if
‘‘A’’ increases, ‘‘B’’ increases) or negative (e.g. if ‘‘A’’ increases, ‘‘B’’ decreases). For example regarding the organization on the left-hand side, performing increasingly the action
‘‘creation of water allocation scenarios’’ (rectangle) would lead to an increase of the factor ‘‘adaptation strategies’’ and an increased achievement of its goal of ‘‘climate change
(CC) adaptation’’.
hydrological models have not been used so far for strategic planning
including adaptation to climate change. Assuming that this situation is
exemplary for many regions in developing countries around the world,
this means that our approach of combining lower resolution global
hydrological data available for all regions with local knowledge opens
up new possibilities for supporting freshwater-related risk assessments
in these imperiled regions.

At the end of the process, local stakeholders jointly decided the
key risk addressed by the model to be the reduced ability to satisfy
potable water and irrigation demands due to a climate change induced
reduction of water resources. The reduction of water resources was fur-
ther specified as reduction of groundwater and surface water resources,
respectively. During workshop II, specific risk metrics were defined
as ‘‘water-abstraction-to-resource’’ ratios (Section 3.2). Therefore, we
defined the objective of the Bayesian Network model to provide a
probabilistic estimate of the risk that climate change and water demand
change pose for water supply from groundwater and from surface water
by this ratio.

On the role of perception graphs
The role of the perception graphs was two-fold: (i) they structured

the problem understanding and the definition of common goals in the
stakeholder dialog by effectively showing where stakeholders are subtly
talking about different things. And (ii) they, subsequently, served as
the basis for the conceptualization of the Bayesian Network structure
(Section 3.2.1). Regarding the latter, it may be attempted to integrate
the individual perception graphs into one unified causal network which
comprises the perspectives of all stakeholders in a joint system descrip-
tion (Düspohl and Döll, 2016) that could act as a direct candidate for
the Bayesian Network structure. The software DANA, e.g., comprises a
semi-automatic function for this purpose. Success may, however, differ
depending on the level of complexity of the system at hand and on the
level of similarity in the individual stakeholders’ perception graphs.

For our study, three of the eleven created perception graphs are
exemplarily shown in Fig. 3. They present very different perceptions
of stakeholders regarding climate change impacts on water, depending
on the stakeholders’ organization. We found that integration into one
unified causal network was not easily accomplished, as the perception
graphs of each stakeholder did not have many factors and goals in
common. This shows that during the interviews stakeholders reported
about their specific perspective in detail, instead of generating a bigger
picture that would make it easier to relate to the other causal net-
works. Still, the perception graphs were useful during the interviews
in elucidating the perception of each stakeholder in a concrete way
and visualize it. Consequently, we did not directly turn a unified
causal network into the Bayesian Network structure but rather used
6

the individual ones among other sources and principles to develop it
(Section 3.2.1) taking also into account most important factors and
relationships reported in literature. Moreover, the diverse views among
stakeholders emphasize how important a participative process is, to
embed the risk assessment in, in order to get all stakeholders on board.

3.2. Step 2: Co-developing the Bayesian Network model structure and
acquiring input data

The Bayesian Network structure is the first of the three main com-
ponents of the model (see Section 2.2). The Network structure was set
up using the software Netica, and was co-developed as described in
Section 3.2.1. As input for the Bayesian Network model (see also Fig. 1)
we used data from a multi-model ensemble (Section 3.2.2) and data
from literature and stakeholder knowledge (Section 3.2.3).

3.2.1. Bayesian Network structure
The Bayesian Network structure including nodes and links was

co-developed based on

1. the IPCC (2014) concept of risks being composed of physical
hazards, exposures and vulnerabilities,

2. the bottom-up approach (Conway et al., 2019) for climate
change risk assessments starting from the decision-context, vul-
nerabilities and a well-defined objective defined as a critical
threshold,

3. the stakeholder interviews and the perception graphs
(Section 3.1),

4. a literature review of scientific publications addressing the re-
gion as well as Tunisian and Algerian national reports about
freshwater resources and climate change,

5. local stakeholder input through break-out groups and discus-
sions during workshops I and II (Table 1), and

6. the available output from the multi-model ensemble regarding
the most important local water resources.

For development of the network structure, one or more risk nodes
representing the identified key risks are generally the starting point.
Depending on the formulation of the risk indicator, i.e. what function of
which variables the risk indicator is, the immediately required variables
to calculate the risk are placed above, e.g., pertaining to future water
resources and future water demand; to these, further factors regarding
hazards, exposures and vulnerabilities are added. Leading questions
are: which potential climate-driven changes of hydrological variables
from the multi-model ensemble are needed for the key risk calculation?
Which non-climate change related changes of water resources and/or
of water demand play a role? Which further, secondary factors may be
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Fig. 4. Bayesian Network model with nodes and links. Each node shows the system variable name (top of nodes), classes and probabilities (middle section of nodes), and the mean
value attained (bottom of nodes). Nodes represent: (1) selected RCP and future time period (orange box), (2) physical hazards (blue boxes, informed by multi-model ensemble),
(3) exposures and vulnerabilities, (yellow boxes, developed from stakeholder knowledge and literature), (4) computed intermediate variables representing water use (green boxes),
(5) key risks indicators (pink boxes) and qualitative risk levels (red boxes). CC denotes climate change. Stars denote the ‘root nodes’.
impacting these? Do I need reference period information in addition to
the changes?

The developed Bayesian Network model structure with variables
and links is shown in Fig. 4. The setup of the classes seen in the figure is
described later in step 4 (Section 3.3). For the model structure, various
types of system variables reflect the IPCC concept of risks:

Two risk nodes are the focal point of the structure. They are placed
at the bottom of the net (red boxes) and were defined for groundwater
and for surface water as ‘‘risk level of groundwater scarcity’’ and ‘‘risk
level of surface water scarcity’’, respectively. The qualitative risk level
nodes depend on quantitative risk indicator nodes (pink boxes) of
groundwater and surface water scarcity, respectively. The groundwater
scarcity indicator is computed as the ratio of annual groundwater
abstractions (under long-term mean annual climate) to long-term mean
annual groundwater recharge. The surface water scarcity indicator
is computed as the ratio of surface water abstractions (under long-
term mean annual climate) to long-term mean runoff. Given the high
uncertainties of runoff and groundwater recharge estimates for the
Medjerda basin in the reference period, and to keep the complexity
of the Network low, we assumed that mean annual surface water
availability is equal to mean annual runoff and did not take into
account that this may be reduced because of a decrease of groundwater
discharge that is caused by groundwater use. The qualitative red risk
nodes summarize the indicator nodes into threshold-based risk levels
from stakeholder input.

Both risk indicator nodes are child nodes of nodes representing
physical hazards (blue boxes) as well as vulnerabilities and expo-
sures (yellow and green boxes). The three hazard nodes are: climate-
driven change of net irrigation requirement, groundwater recharge,
and runoff, respectively. Physical hazards are informed by the multi-
model ensemble (Section 3.2.2). The water use-related vulnerability
and exposure nodes are subdivided: the yellow nodes represent those
which require input from stakeholders (root nodes and a water alloca-
tion decision node, see below), while the green ones are child nodes
7

computed by the Bayesian Network model. The yellow nodes represent
non-climate-driven, i.e. management-driven factors. All nodes are prob-
abilistic type nodes, except for two decision type nodes : ‘‘Time period
and RCP’’ (a selector box at the top of the net) and ‘‘Source of water
abstractions’’, which need to be set by the user to select results for the
specific time period and RCP, as well as a specific ratio of groundwater
to surface water use while exploring climate scenarios and/or what-if
cases.

We chose to insert the ‘‘Time period and RCP’’ node at the top as an
implementation to enable the selection and analyses of various green-
house gas emissions scenarios and time periods in an LCCRA. However,
this design means that, technically, the selector node becomes the
root node of all existing branches in the network (see Section 3.3.2).
Despite this, we keep the nomenclature and continue to refer to those
nodes at the beginning of their branch of physical hazards (blue) and
exposures/vulnerabilities (yellow) as root nodes. For the sake of clarity,
these are marked with a star in the figure.

The formulation of the risk indicator inherently defines what kind
of input data is necessary for its calculation. In our case, because of
the ratios, we required full values (i.e., as opposed to only changes) of
water availabilities and abstractions. This may differ for other LCCRA
cases. We used global multi-model ensemble output. Due to their global
nature, process details on smaller spatial scales are lacking or vary, and
large inter-model differences exist regarding the full values themselves,
while, nonetheless, their projected relative changes are considered
quite robust. This also proved to be true during the evaluation of our
multi-model ensemble data with observational data for the historical
time period of the 20th century . Therefore, we used the relative
changes of the multi-model ensemble and local knowledge of reference
values from literature to inform our Bayesian Network model with
projections of actual values. In the nodes’ classes in Fig. 4 we denote
both – the range of the percentage change and of the full value – for
the sake of clarity.
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3.2.2. Input data: multi-model ensemble output
Our global-scale multi-model ensemble provided data for climate

change hazards related to water including projected uncertainty
(Fig. 1). We used the bias-adjusted outputs of four General Circula-
tion Models (GFDL-ESM2M, IPSL-CM5A-LR, MICROC-ESM-CHEM and
HadGEM2-ES), provided as part of the Inter-Sectoral Impact Model
Intercomparison Project (ISIMIP) for the period 1901–2099 to force
three Global Hydrological Models: WaterGAP2.2d (Döll et al., 2003;
Müller Schmied et al., 2021), LPJmL (Schaphoff et al., 2018), and
CWatM (Burek et al., 2020). To take into account the uncertainty
regarding future greenhouse gas emissions, four scenarios – the Rep-
resentative Concentration Pathways RCP 2.6, 4.5, 6.0 and 8.5 – were
included in the study. Output was consistently provided with a spatial
resolution of 0.5◦ latitude by 0.5◦ longitude for all cells on the WATCH-

RU land mask, taking into account the DDM30 map of lateral drainage
ithin river basins. In the Global Hydrological Model runs, socio-
conomic conditions including the extent and location of irrigated
reas, were fixed to 2005 levels. The case study area covers eleven
.5◦ grid cells. The Global Hydrological Model LPJmL, which is able
o simulate the response of vegetation and thus evapotranspiration
o increasing atmospheric CO2 concentration and climate change,
ontributed two variants to the ensemble. In variant 1, future CO2
oncentrations are assumed to remain at the 2005 level, mimicking
imulations of Global Hydrological Models such as WaterGAP and
WatM that cannot simulate vegetation response, while in variant 2,

uture CO2 concentrations increase according to the RCP. For each
f the four RCPs, 16 GCM-GHM model combinations (i.e. ensemble
embers) were considered in our study. Lastly, instead of creating

ne’s own GHM model runs, freely accessible ensemble output of
ydrological variables is available, e.g. from ISIMIP (www.isimip.org)
r CO-MICC (www.co-micc.eu).

For the risk assessment in the Bayesian Network, the climate change
azard was defined as the relative change of three hydrological vari-
bles between the 30-year reference period 1981–2010 and the future
eriod 2050–2079: (1) diffuse groundwater recharge, which is the
ater that percolates through the soil into the groundwater, (2) runoff
nder naturalized conditions, which is the part of the precipitation that
s neither evapotranspired nor stored, and (3) net irrigation require-
ent, which is the fraction of the water abstractions for irrigation that
ould evapotranspire on a unit irrigated area assuming an unlimited
ater supply. The product of net irrigation requirement and a water
se efficiency is the gross irrigation requirement, or the amount of
ater that must be abstracted to enable optimal crop growth. Water use
fficiency can be increased by water management, and thus belongs to
he yellow node category.

To obtain the hazard data, the GHM output of monthly data time
eries for these variables and for each of the ensemble members, respec-
ively, was spatially aggregated over the 11 basin cells to obtain values
or the entire basin, converted to annual time series, and the relative
hange computed between the reference and future time periods. The
rocessing steps are given in Table 2. Thus, the global multi-model
nsemble output provided projections of relative changes of these three
ariables for the time period assessed in the Bayesian Network model.
he output was collected in a table per variable, consisting of the
4 values of relative change from each ensemble member — given
n 4 rows (4 RCPs) with 16 values per row (16 GCM-GHM model
ombinations).

In addition, using the global models offers the additional advantage
f providing a range of uncertainty in the hydrological projections. This
ould not have been possible using just one Regional Hydrological
odel. In principle, the Bayesian Network could be informed by the

utput of a Regional Hydrological Model at the basin scale, however, in
hat case it will not be possible to capture the uncertainties associated
ith how individual hydrological models translate the climate change

ignal into hydrological changes of, e.g., total runoff, groundwater
8

echarge and net irrigation requirement. Obviously, without using a
Table 2
Processing steps for the extracted multi-model-ensemble output to obtain the required
relative changes of the three hazard-related variables in the Bayesian Network.

Analysis

Multi-model output typically consists of NetCDF files.
Separate data files with individual time periods may
have to be merged to yield the complete time series in
question. For our three hazard variables, the
corresponding hydrological model short names were
‘pirruse’ (potential irrigation use), ‘qbwp’ (blue water
production), and ‘qr_nat’ (groundwater recharge under
naturalized conditions). A time series of data was
extracted for each ensemble member, i.e. model
combination. The following processing steps were
performed for each ensemble member separately.

Steps

1. Monthly data extracted from NetCDF files for all grid
cells within the basin (11 grid cells).

2. Units converted from provided kg m-2 s-1 (= mm/s per
square meter, i.e. a ‘height of water column’) to the
water volume (m3/month) using the land area of the
grid cells.

3. For each month, all basin cells summed, yielding the
monthly time series for the whole basin.

4. Annual average computed from monthly data, resulting
in annual time series for the whole basin.

5. For each ensemble member and for the reference and
future period separately, the periods’ averages computed
and converted to the specific units in the BN (Mm3/yr)

6. Relative change computed between future and reference
period.

Table 3
Local-scale information to quantify root nodes representing physical hazard variables:
value for reference period based on literature for the Medjerda river basin (only
Tunisian side).

Node Value from
literature

Source

Runoff 1000 Mm3/yr Hermassi (2014) value for
Tunisian side of Medjerda
basin

Groundwater
recharge per year
(deep and shallow)

664 Mm3/yr Ministère de l’Environnement
et du Développement Durable
(2009), value for Northern
Tunisia

Net irrigation
requirement

480 Mm3/yr Own calculation based on
Institut National de la
Statistique Tunisie 2018,
Bouraoui et al. (2005), Ben
Nouna et al. (2014), value for
Tunisian side of Medjerda
basin

multi-model ensemble, the Bayesian Network cannot produce a prob-
abilistic distribution for its nodes representing water resources. And
while a Regional Hydrological Model may be potentially more accurate,
one may not be available in many regions worldwide requiring a risk
assessment.

3.2.3. Input data: literature and stakeholder knowledge
Input of the water supply risk Bayesian Network encompassed data

on water resources, water demand and management in the study area
during the reference period. A literature review and knowledge of
local stakeholders served to provide values of all Bayesian Network
variables for the reference period, as these are required to compute the
two selected key risk ratio indicators from the projected changes. In
addition, published expectations of change for management and water
demand nodes were reviewed as the basis for plausible ranges of change
in the designed scenarios.

Values for the reference period for the Medjerda basin as reported
by literature are shown for root nodes impacted (starred blue nodes)
and not impacted (starred yellow nodes) by climate change, in Tables 3

and 4, left-hand side, respectively. Regarding relative future changes

http://www.isimip.org
http://www.co-micc.eu
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Table 4
Local-scale information to quantify root nodes representing exposure and vulnerability variables: [Left] values for the reference period based on literature for the Medjerda river
basin (only Tunisian side), and [right] estimates of relative changes for the future period based on listed sources.

Node Reference period Future period

Value Source Probability range
of relative
change

Comment or assumption Source

Net irrigation
requirement:
management-
driven change

480 Mm3/yr Own calculation based
on Institut National de
la Statistique Tunisie
(2018), Bouraoui et al.
(2005), Ben Nouna
et al. (2014)

−10% to +30% Considering irrigation area, water
efficient crops. No data found for
NIR, only estimates for GIR for
northern Tunisia available

Ministère de
l’Environnement et du
Développement Durable
(2009)

Irrigation
efficiency
(consumptive
use to
abstraction ratio)

0.43 Ben Nouna et al.
(2014)

0% to +100% An increase by 100% results in a
extremely high irrigation
efficiency of 0.86

reasoning

Water reuse 2 Mm3/yr Chenini et al. (2003),
ONAS (2019)

0% to +500% Bahri (2001) estimate a 5% water
reuse growth rate per year in
Tunisia, without specification of
time span. This would mean
+2000% until 2065. We believe
that a 500% increase of capacity
to 12 Mm3/yr might be a more
realistic maximum increase as it
is unsure if a continued growth of
that magnitude will be sustained
for such a long time in the future.

Bahri (2001)

Water
abstraction for
non-irrigation
sectors

93 Mm3/yr Chenini et al. (2003),
Hermassi et al. (2014)
and own estimation
based on reasoning

0% to +80% Chenini et al. (2003) indicate a
13% growth rate of water
demand of other sectors in
Tunisia until 2030. Assuming
linear growth demand until 2065
this would mean an increase of
+40%. We chose a range until
+80% to allow for what-if
considerations under an even
higher water demand than
estimated.

Chenini et al. (2003)

Source of water
abstractions

20% GW,
80% SW

Estimation based on
stakeholder interviews

10% GW, 90%
SW to 60% GW,
40% SW

Possible realistic range Stakeholder interviews
and reasoning

Water transfers
to other basins

300 Mm3/yr Ministère de
l’Environnement et du
Développement Durable
(2009)

−25% to +50% The max. capacity of the Cap Bon
canal is 470 Mm3/yr (SONEDE,
2019)

Stakeholder interviews
for the latter, i.e. the management scenario root nodes, we estimated
a range of possible future changes. See Table 4, right-hand side, for an
overview with sources and assumptions.

3.3. Step 3: Setting up the Bayesian Network model

Final set up of the Bayesian Network model requires information
for each node that in part needs to be pre-calculated before entering in
the Network. The setup process is summarized in Fig. 5. It comprises
the two remaining main components (see Section 2.2): (i) defining
the distinct classes of each node and (ii) entering the probability
distribution either directly in the form of unconditional probability
tables (for the root nodes) or – where it depends on the parent nodes
– in the form of conditional probability tables (CPTs, for child nodes).

As shown on the left-hand side of Fig. 5, setup is based on (1)
the structure with variable titles, types of nodes and causal links im-
plemented in Netica. In our multi-model-input-driven network, all but
two nodes are probabilistic type nodes. Selector and Source allocation
nodes are examples of potential decision-type nodes. (2) the tables of
multi-model ensemble input, in our case in the form of 64 relative
9

change values per variable. (3) the information from stakeholders and
literature on (full) values in the reference period for all root nodes
(hazard and management, blue and yellow starred, respectively). And,
(4) the determined future management scenarios regarding possible
ranges of change.

In a first step, the relations between a child node and its par-
ent nodes are quantitatively defined for all child nodes in algebraic
equations (Table 5). These relations are needed in two places: in the
pre-processing when child class boundaries are derived from the bound-
aries of all its parents, but also in Netica when automatically generating
CPTs of child nodes. CPTs can be elicited and entered manually, but if
an algebraic relationship exists, they can be computed automatically.

Next, the calculation of classes and unconditional probability ta-
bles is described in Section 3.3.1, including the transfer to Netica,
comments on fine-tuning the risk nodes and on parameter checks,
while the generation of conditional probability tables is described in
Section 3.3.2.

3.3.1. Pre-processing with MATLAB: computation of class boundaries, child
node reference period full values and root node probability distributions

The range of the static classes should optimally only reflect the oc-
curring range of values for the respective variable over all dynamically
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Fig. 5. Setup procedure of the second and third main components of the Bayesian Network model: defining the distinct classes of each node and generating the probability
information either in the form of unconditional or conditional probability tables (CPTs).
Table 5
Equations to compute the conditional probability table of the child nodes in Netica (all variable node types are continuous and nature).
Abbreviations not explained in the table are: ΔNIRc - Net irrigation requirement: climate-driven change, ΔNIRm - Net irrigation
requirement: management-driven change, NIRref period - Net irrigation requirement: reference period value, Ieff - Irrigation efficiency,
in %, AbsO - Water abstractions for non-irrigation sectors, Reuse - Water reuse, Alloc - Source of water abstraction, i.e. groundwater
abstractions as a fraction of total abstractions, in %, Trans - Water transfers to other basins, GWR - Groundwater recharge, R - Runoff
(mean).
Child node title Name Equation

Net irrigation requirement (Mm3/yr) NIRt NIRt(ΔNIRc,ΔNIRm) = (ΔNIRc + ΔNIRm) + NIR𝑟𝑒𝑓 𝑝𝑒𝑟𝑖𝑜𝑑
Gross irrigation requirement (Mm3/yr) GIR GIR(NIRt, Ief f) = NIRt∕( Ief f

100
)

Total (potential) water abstraction (Mm3/yr) AbsT AbsT(GIR,AbsO,Reuse) = GIR + AbsO − Reuse
Groundwater abstraction (Mm3/yr) GWabs GWabs(AbsT,Alloc) = AbsT ⋅ ( Alloc

100
)

Surface water abstraction (Mm3/yr) SWabs SWabs(AbsT,Alloc,Trans) = AbsT ⋅ (1 − Alloc
100

) + Trans
Groundwater abstraction to recharge ratio GWratio GWratio(GWabs,GWR) = GWabs∕GWR
Surface water abstraction to runoff ratio SWratio SWratio(SWabs,R) = SWabs∕R
selectable time periods and scenarios. Defining classes therefore com-
prises defining appropriate lower and upper class boundaries (range)
and a class size. We defined this range for both root nodes and child
nodes, either by the given input data or by the passed down, combined
ranges of parent nodes, respectively. The required information and our
process below differs slightly for the different types of nodes (blue,
yellow, green, pink, red) in the network. For each node type, we
selected an appropriate number of classes (blue: 10, yellow: 5, green:
10, pink: 20, red: 4) considering data availability and detail needed. In
general, the more precise the knowledge, the more classes are suitable.

Standard Bayesian Network software such as Netica cannot extract
information for defining classes of a root node from a given multi-
model ensemble or other data source; nor is it able to calculate the
optimal class boundaries of child nodes depending on the ranges of
values in the parent nodes. Instead, Netica requires this information
to be entered manually. Therefore, we used the software MATLAB for
calculating the required input into Netica for the different node types.
We computed each node in the network this way from ‘‘top to bottom’’,
i.e. successively the next node with the computed class ranges of all its
parents as the new basis for its computations:

Root nodes representing physical hazards (starred blue nodes
in Fig. 4): Based on the value range given by the reference period
value from literature and the multi-model ensemble of future relative
change values, uniform class boundaries were calculated in the form of
relative change and of full value ranges for input into Netica (see blue
boxes in Fig. 4). In addition, the probability distribution of changes in
the variable was computed for each selectable climate scenario in the
orange selector node in Fig. 4, i.e., for future periods the probability
distribution was calculated for each individual RCP and for all RCPs
10
mixed together. To this end, assuming that each ensemble member is
equally likely, each output value of the 16 (individual RCP scenario) or
64 (all mixed scenario) multi-model ensemble members was assigned
to its corresponding class and the probability for multi-model ensemble
members to be in one class was calculated (e.g. 8 out of 64 ensemble
members in one class represent a 12.5% probability). For the reference
period the distribution was manually set to 100% in the class of zero
change. A resulting probability distribution is exemplarily shown for
groundwater recharge in Table 6.

Root nodes representing exposure/vulnerability (starred yel-
low nodes in Fig. 4): Based on the (full) reference period value and
respective scenario ranges of relative change (Table 4), class boundaries
were calculated in the form of relative changes and of full values as
well.

Child nodes (green nodes in Fig. 4): Based on the minimum and
maximum class boundary and the full reference value of each parent
node and the quantitative relationship between the parent nodes (see
Table 5), the child node’s reference value for the reference period and
the class boundaries were calculated.

Risk indicator nodes (pink): As for other child nodes, class bound-
aries and reference values were calculated. In addition, the uniform
class boundaries over the range of occurring values obtained by MAT-
LAB were manually adjusted to reflect details around actual critical
thresholds after assessing the occurring values in iterations between
analysis with the final Network and the Matlab processing routine
(see ‘‘V’’ in Fig. 5). Adjustment included the number of classes and
non-uniform class sizes.

Risk (level) nodes (red): For the actual risk node, a meaningful
aggregation of the risk indicator classes was performed, to enable
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Table 6
Exemplary probability distribution [%] of node ‘‘groundwater recharge: climate-driven changes’’ (percent probability rounded to one decimal digit, rows add up to 100% probability)

Classes

−88 to
−79%

−79 to
−70%

−70 to
−61%

−61 to
−52%

−52 to
−43%

−43 to
−34%

−34 to
−25%

−25 to
−16%

−16 to
−7%

−7 to
+2%

Reference period 0 0 0 0 0 0 0 0 0 100
RCPs equally likely 3.2 4.7 12.5 10.9 6.3 20.3 18.8 17.2 6.3 0
RCP2.6 0 6.3 6.3 0 12.5 18.8 12.5 18.8 25 0
RCP4.5 0 6.3 12.5 18.8 0 25 18.8 18.8 0 0
RCP6.0 0 0 25 0 12.5 18.8 12.5 31.3 0 0
RCP8.5 12.5 6.3 6.3 25 0 18.8 31.3 0 0 0
effective risk management and decision-making. Four classes (green,
orange, pink, red) reflected the user’s specific view of the actual thresh-
olds between acceptable and unacceptable performance; the assigned
thresholds defined the class boundaries.

When transferring the class values into the nodes in Netica, the
(full) values of e.g. net irrigation requirement (in Mm3/yr) and not
the relative (in percent) were entered into Netica4 and used further
o calculate the full values down the graph. To aid analysis, the class
itles in the nodes of the Bayesian Network also showed the relative
hanges (%), as computed above, in addition to the full value ranges
Mm3/year).

The computed full values for child node variables in the reference
eriod are given in Table 7. These were necessary in the process
o generate the relative change class ranges in addition to the full
alue classes, and as potential quality checks (see below for ‘‘VI’’ and
ection 3.3.3). The computed class boundaries – both in the form of
elative change and (full) value ranges – are shown in Fig. 4. They were
etermined to capture all possible future values.

The classification for the risk levels (red nodes) is shown in Ta-
le 8. We defined the thresholds for the levels differently between
urface water and groundwater scarcity, choosing higher abstraction to
unoff/recharge ratios for surface water risk levels for two reasons: (i)
ams can store surface water even over several years, allowing to use
he otherwise transient resource more fully, i.e. closer to 100%, without
ctually being in unsustainable water use scenarios, and (ii) taking into
ccount that because of return flows, accumulated total abstractions
long the river may sum up to beyond 100% of the available runoff. In
eneral, these thresholds must be adapted individually to the system
t question by the expert using the Bayesian Network according to
heir needs. If necessary, these thresholds should be determined in a
articipative process with stakeholders of the particular system at hand.

The optimal number of classes in each node may vary and should be
arefully checked (see ‘‘VI’’ in Fig. 5). We found that the multi-model-
nput-driven, quantitative nature of the Bayesian Network required a
igher number of classes than more traditional Bayesian Networks,
hich are kept as simple as possible to improve decision-making. How-
ver, broader classes may lead to bias in average values in the Netica
nterface (at bottom of nodes), e.g. especially visible as deviations in the
eference period mean, where exact values from pre-processing exist
Table 7), because of the size choice of class ranges and the position
f the exact value within it (i.e., if not chosen in such a way that the
eference value of 0% change sits in the middle of a class). For a chosen
lass, Netica uses simply the class average in a weighted mean with
he probabilities to calculate the node mean at the bottom of the box.
aturally, the higher the number of classes, the smaller the range for
value in it, the smaller the magnitude of deviations. The deviations
orsened for increased class sizes (i.e., reduced number of classes for

he given range). Therefore, the quantitative model data requires more
lasses to reflect the correct mean reference value in the Netica software

4 For probabilistic type nodes, nodes set to ‘‘Nature’’ and ‘‘Continuous’’,
hen entered under ‘‘Discretization’’. For the two decision type nodes, nodes
et to ‘‘Decision’’ and ‘‘Discrete’’, then only class titles but no numeric class
oundaries need to be entered under ‘‘State names’’.
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Table 7
(Full) values of child nodes for the reference period (1981–2010)
computed with MATLAB.
Child node name Result

Gross irrigation requirement 1.116 Mm3/yr
Total (potential) water abstraction 1.207 Mm3/yr
Groundwater abstraction 241 Mm3/yr
Surface water abstraction 1.266 Mm3/yr
Groundwater abstraction to recharge ratio 0.36
Surface water abstraction to runoff ratio 1.27

interface and yield optimized precision in the mean future values.
However, the class sizes have become too finely resolved if ‘holes’ in the
probability distribution become pronounced, and the number of classes
should be reduced. Tests with varying numbers of classes allow an
optimal choice in the system at hand. In our case, having more than 10
classes for a child node was not feasible because of the limited overall
number of ensemble members in the input data to produce smooth
probability distributions. In addition, more classes make it harder for
the stakeholders to understand the result of the Bayesian Network. This
to some extent differentiates the more quantitative Bayesian Network
from more qualitative ones, and the higher number of classes suitable
for multi-model-driven nodes highlights the need for introducing the
reduced (four) risk levels in the final red node.

3.3.2. Unconditional probability distributions of root nodes entered and
conditional probability tables of child nodes generated in Netica

The MATLAB results for probability distributions of blue root nodes
(Fig. 4, marked by stars) was then transferred into the respective node
in Netica: Normally, they would be entered in an unconditional proba-
bility table, since root nodes do not have any parents that they depend
upon. However, in the design with a selector node (see Section 3.2.1),
technically, the selector node becomes the root node, i.e. the parent
node to all starred nodes. Subsequently, the values of the probability
distribution are entered in the conditional probability table of the node
instead, in the respective row of the selectable scenario of the parent.
The output structure of the pre-processing in the example (Table 6) is
chosen to mirror the CPT table in the node in Netica.5

For the yellow root nodes, a probability distribution of changes in
the future is entered manually that represents equally-likely probabil-
ities over all their classes by default, except for the reference period
which is set to 100% in the class of zero change (Table 9). By selecting
a class in the node manually during simulations, the state can be alter-
natively set ‘‘deterministically’’ to one of its classes (i.e., representing a
state in the future with a probability of 100% to be in that class range
of values), allowing exploration of different scenarios, depending on
the respective anticipated certainty and magnitude of the management
factor in an LCCRA.

For the aggregation in the red risk level nodes, nodes in Netica are
set to ‘‘Nature’’ and ‘‘Discrete’’, the table is set to ‘‘Deterministic’’ and

5 For all probability nodes, the table in Netica is set to ‘‘Chance’’ and
‘% Probability’’.
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Table 8
Classification of risk levels for groundwater and surface water according to their abstraction to recharge ratio.
Risk
level

Groundwater
scarcity

Surface
water
scarcity

Explanation

Green 0 to 0.5 0 to 1 Maximum abstractions equal recharge, no problem.
Orange 0.5 to 1 1 to 2 Approaching over-use, start considering actions.
Red 1 to 1.5 2 to 5 Not sustainable anymore, feasible only for a certain

period if actions are taken afterwards.
Purple >1.5 >3 Cannot cope with this situation after a few years.
Table 9
Exemplary probability distribution [%] of node ‘‘Net irrigation requirement: management-driven change’’. Class notation in the Network is
converted to full values based on the reference period value.

Classes in %-notation

−10 to −2% −2 to +6% +6 to +14% +14 to +22% +22 to +30%

Reference period 0 100 0 0 0
RCPs equally likely 20 20 20 20 20
RCP2.6 20 20 20 20 20
RCP4.5 20 20 20 20 20
RCP6.0 20 20 20 20 20
RCP8.5 20 20 20 20 20
‘‘Function’’. Then, each (parent) risk indicator class can be assigned to
one of the risk levels in the table, according to the thresholds defined
in Table 8. Only the four state titles but no numeric class boundaries,
i.e., state numbers need to be entered.

Lastly, the CPTs of all child nodes were generated. The CPTs are
the basis for the Bayesian calculation of the probability distributions
in the child nodes, including in the final risk indicator nodes. They
can be entered manually, e.g. – generally – when the information has
been elicited from experts or – in the case of the risk level nodes
(red) – for the manual aggregation of risk indicator classes into the
four risk levels. Where a relationship between nodes can be described
by an algebraic expression (e.g. total water abstraction is the sum of
gross irrigation requirement and abstraction for non-irrigation sectors,
minus the reused water), Netica additionally allows to compute the
CPTs automatically. We used this based on the defined equations in
Table 5 for all green and pink child nodes. The Netica computation of
the CPTs was based on 106 samples per cell.

3.3.3. Model evaluation
Before simulations with the Bayesian Network model can support

an LCCRA, first a simulation of the system’s child node variables and
risk states in the reference period should be analyzed to ensure the
model’s ability to reflect the quantitative and qualitative assessment of
the ‘‘current’’ state . To this end, a consistency check with literature for
the reference period should be conducted.

Very few data are available to evaluate our model. Our value
computed for the node ‘‘groundwater abstractions’’ during the reference
period is in line with reported literature values. We computed total (po-
tential) water abstraction to be 1207 Mm3/yr, and assuming 20% to be
abstracted from groundwater, groundwater abstraction of 241 Mm3/yr
is computed. Official Tunisian reports (Ministère de l’Agriculture, des
Ressources Hydrauliques et de la Pêche, 2017) estimate abstractions
from deep groundwater in Northern Tunisia to be 148 Mm3/yr in 2006
(276 Mm3/yr in 2015), with no information on shallow groundwater
abstractions, thus, placing our value on the same order of magnitude
and slightly larger than this literature value which is missing the
shallow groundwater abstractions.

Regarding the node ‘‘groundwater abstractions to recharge ratio’’,
we also found that our computed ratio (0.36) is in line with reported
values. The Tunisian Water Ministry (Ministère de l’Agriculture, des
Ressources Hydrauliques et de la Pêche, 2017) indicates that for the
North of Tunisia the ratio of annual groundwater abstraction to deep
groundwater recharge was 43% in 2006 (88% in 2015). This does not
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include illegal boreholes which, however, constitute only 5% of deep
groundwater abstractions for the whole of Tunisia in 2011 (Ministère
de l’Agriculture, des Ressources Hydrauliques et de la Pêche, 2017). As-
suming that shallow groundwater is abstracted with the same ratio than
deep groundwater, the reported 43% agree well with the computed
36%.

It was impossible to check the consistency for surface water results
with literature because data on surface water abstractions is scarce and
the reported dam storages do not show year to year abstractions (Min-
istère de l’Agriculture, des Ressources Hydrauliques et de la Pêche,
2017). Hermassi et al. (2014) report that 80% of water abstractions in
the basin occur from surface water, which was used for the allocation
ratio of surface water in the node ‘‘Source of water abstractions’’. The
scarcity of data emphasizes the need for a tool like in this study to
enable risk assessments in such regions even in the face of scarce data
and uncertainty.

Validation of the changes projected by the Bayesian model is not as
directly possible. No historic time series of observed groundwater re-
sources and surface water resources exist, which would enable to check
how past climate change (or variability) was translated into changes of
water resources, and compare to the hydrological model results, and
enable to validate the model. It is essential to appropriately select input
data to reflect known constraints of the hazard projections, i.e. we
only considered long-term annual changes in hydrologic variables in
accordance with the capability/uncertainty of the global hydrological
models.

4. Application of the Bayesian Network model

4.1. Step 4: Simulations and analysis with the Bayesian Network

An analysis of the future changes of the physical hazards, inde-
pendent of the affected larger system, can already give insights into
the expected future pressure on the joint system from the physical
point of view (Section 4.1.1). To support an LCCRA, a suite of risk
scenarios must be developed that combine potential changes of hazards
with potential changes in vulnerabilities/exposures to assess future
risks (Section 4.1.2). Here, a simulation of the reference state in the
reference period must always be part of the scenario suite to serve
as a baseline for the future scenarios in the risk assessment, i.e. it is
possible that a risk already exists today (in the reference period), so
that a climate change risk assessment is able to consider that only the
difference to the baseline is the climate change related risk. Lastly, the
impact of potential actions or policy measures, which are considered
for mitigation or adaptation, can be explored through the Bayesian

Network model (Section 4.1.3).
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Fig. 6. Projected relative changes [%] of multi-model ensemble output per RCP between the periods 1981–2010 and 2050–2079 of (a) net irrigation requirement, (b) mean runoff
and (c) groundwater recharge change.
Fig. 7. Scenarios generated in this study combining different scenarios of climate change between the reference period 1981–2010 and the future period 2050–2079 with scenarios
of reference water use and of changing water use (naming scheme: climate_water use). ‘‘Scenario 1’’ is not an actual scenario but represents the conditions during the reference
period.
4.1.1. Future period changes in physical hazards
Due to climate change, all 64 multi-model ensemble members pro-

jected a considerable decrease in runoff and groundwater recharge and
an increase in net irrigation requirement (Fig. 6). These values are
based on the obtained multi-model input (Section 3.2.2). Net irrigation
requirement was projected to increase with respect to the median of
all ensemble members by +12% (min. +1% to max. +24%) for RCP2.6
and by +20% (min. +2% to max. +47%) for RCP8.5. Runoff was
projected to decrease with respect to the median by −19% (min. −56%
to max. −5%) for RCP2.6 and by −31% (min. −73% to max. −18%) for
RCP8.5. Median groundwater recharge was projected to decrease by
−29% (min. −71% to max. −10%) for RCP2.6 and −49% (min. −86%
to max. −27%) for RCP8.5. As expected, for all three physical hazards
decreases (in groundwater recharge and runoff) and increases (in net
irrigation requirement) were considerably higher for RCP8.5 compared
to RCP2.6. While projected changes showed considerable uncertainty,
even for RCP2.6 considerable changes compared to the reference period
were shown to exist.

4.1.2. Simulation of risk scenarios
To explore potential futures, we created six different scenarios of

RCPs and water use (Fig. 7). These should be developed in the partici-
patory process to define and capture the required range for the problem
assessment. The scenarios represent what-if cases, and in practise are
obtained combining the respective RCP scenarios in the selector node
with water use scenarios selected in the yellow root nodes. To this end,
the states of the latter nodes were either set deterministically to one
13
of its classes or left in a state where all classes remain equally likely.
Scenarios 2–4 vary the climate scenario and keep the water use fixed at
reference levels, while scenarios 5–7 build a series of best to worst cases
including both climate and water use scenarios. The former would be
a suitable approach to attribute the impact different RCPs have on the
risks, even without considering worsening water use, while the latter
is a basis to assess overall impacts in a potential LCCRA. The Bayesian
Network model was then used to calculate probability distributions of
the groundwater and surface water scarcity and thus the respective
water supply risks for the future period 2050–2079 under these six risk
scenarios. To establish the reference conditions, the Bayesian Network
model was also used to determine the same risks during the refer-
ence period 1981–2010. Conditions during the reference period are by
definition characterized by 0% change. Comparing the risks between
the reference period and the future period for the six scenarios (2–7)
enables to understand how risks for water supply may develop in case
the different scenarios became true.

Results of probability distributions for all seven computed child
nodes of the Bayesian Network are given in Figs. 8 and 9. For the
reference period, computed groundwater abstraction to recharge ratio
from pre-processing was 0.36, the surface water abstraction to runoff
ratio was 1.27 (Table 7). Based on the risk level thresholds (Table 8),
surface water scarcity was therefore already in the orange risk level,
while groundwater scarcity was classified in the green risk level. This
was reflected in the probability distribution of both risk level nodes in
the baseline scenario (Ref_Ref in Figs. 9(a) and 9(b)).
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Fig. 8. Cumulative probability distributions of the computed child nodes: (a) net irrigation requirement, (b) gross irrigation requirement, (c) total (potential) water abstraction,
(d) groundwater abstraction, (e) surface water abstraction for the seven scenarios (Fig. 7). The class including zero change is visually emphasized with a contour line.

Fig. 9. Cumulative probability distributions of risk levels for the nodes (a) risk of groundwater scarcity and (b) risk of surface water scarcity, for the seven scenarios. Risk levels:
green, yellow, red, purple (Table 8).
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Results further show the change in the probability range for the
future scenarios compared to the reference scenario for the seven
computed nodes. Under worsening climate conditions with reference
water use (2.6_Ref , Equal_Ref , 8.5_Ref), more water abstractions will
e needed than in the reference period (Fig. 8). Consequently, the two
isk indicators for water scarcity also show an increased probability for
n orange, red and purple risk level. For example, under RCP2.6 and
eference water use (2.6_Ref) the probability for the risk of groundwater
carcity (Fig. 9(a)) to be in the green level is 44%, in the orange
5%, in the red 7% and in the purple 3%. The situation considerably
eteriorates if additional to worsening climate conditions the water
emand also increases because of other reasons than climate. For
nstance, under RCP8.5 and the highest water use scenario (8.5_worst),
he probability for the risk of groundwater scarcity to be in the green
isk level is 5%, 50% in the orange, 23% in the red and 22% in the
urple risk level.

The impact of climate individually can be seen, e.g., when compar-
ng RCP2.6 and 8.5, both with reference water use (2.6_Ref , 8.5_Ref)
n Fig. 9(a). For RCP2.6, the probability for the risk of groundwater
carcity to be in the green level is still 44%, which diminishes to
nly 15% under worsening climate conditions, even with no further
ressure from growing water use. The impact of water use on top of the
limate conditions is twofold: On the one hand, for RCP8.5, increasing
eference water use to the worst case (8.5_Ref , 8.5_Worst), increases
he cumulative probability to be in the two worst levels from 29%
o then 45%. On the other hand, managing water use well into the
uture has the potential to alleviate the risk substantially, as can be
een comparing, for example, RCP2.6 with both reference water use
nd best case water use (2.6_Ref , 2.6_Best): compared to the current
ater use, in a best case management scenario and adaptation, the
robability to be in the acceptable level (green), which was already
iminished by climate conditions alone from 100% to 44%, can regain
probability of over 91%. Detailed attribution of factors is possible

hrough more finely designed scenarios or assessing individual policy
easures (Section 4.1.3).

.1.3. Impact of action or policy measure
The Bayesian Network can be used to determine the impact of a

ertain action or policy measure on risk. The impact of policy measures
eading to different increases of irrigation efficiency on the risk for
urface water supply is shown in Fig. 10. If there is only a small
rrigation efficiency increase (0 to +20%, Fig. 10(a)), the probability

to be in the orange risk level for surface water supply is 50%, to be in
the red is 40% and in the purple risk level 11%, with respect to the
scenario of all RCPs being equally likely. With the highest irrigation
efficiency change (+80% to +100%) the risk level for surface water
supply is reduced, with a probability of 9% to be in the green, 78% to
be in the orange, 12% in the red and 1% in the purple risk level for
the same scenario. In an LCCRA, proposed policy actions can then be
strategically evaluated according to the needs, prioritized by effect or a
portfolio of actions determined to meet specified goals of risk reduction.

4.2. Step 5: Evaluation of implemented measures

Climate change adaptation should be done in an adaptive and
iterative risk management process (IPCC, 2014). Within this process,
the impact of implemented adaptation measures should be monitored,
thus leading to an improved knowledge about the system. The Bayesian
Network can then be updated, also including changed input data or
beliefs, e.g. by modifying conditional and unconditional probability
tables. It then serves as an improved tool for a new round of the LCCRA
15

process.
5. Experts’ evaluation of using Bayesian Networks for local cli-
mate change risk assessments

Local experts evaluated the use of Bayesian Networks for local cli-
mate change risk assessments largely positively (Fig. 11). Bayesian Net-
works were seen as a useful way to integrate experts’ and stakeholder
knowledge about climate change impacts on water. The usefulness of
Bayesian Networks as a tool for local climate change risk manage-
ment was evaluated rather differently among the experts, with one
indecisive and one not so positive. While probabilistic computations
for local risk assessments were evaluated very positively, the difficulty
for stakeholders to think in terms of probabilities was simultaneously
considered more problematic. Respondents thought it was rather im-
portant to think in terms of probabilities for this kind of management
problems and half of the respondents could imagine to use Bayesian
Networks for their daily work. The experts think that experts from
engineering companies followed by experts from universities can use
Bayesian Networks most easily, more easily than experts working in
administration.

Regarding open question 1 ‘‘how should Bayesian Networks be
adapted to be more useful, so local experts could better work with
them?’’, respondents mentioned that it would be important to integrate
local data into the Bayesian Network and to enable the comparison
of model results to observation data for the reference period. In ad-
dition, capacities of local users to apply Bayesian Networks need to
be strengthened through training with real data. Introducing a user-
friendly interface with guiding elements how to use the Bayesian
Network software, indicator explanations and manuals to the Bayesian
Network software would facilitate comprehension, calculations and
avoid misuse. They acknowledged that the Bayesian Network would
also need to be adapted, and expressed the need to be able to integrate
more qualitative data. Regarding open question 2 ‘‘who do you think
is suited to use Bayesian Networks in your country?’’, respondents
answered that water resource managers such as those in basin agencies
or agricultural management agencies or a specific institute under the
agricultural ministry, statisticians, researchers with specific training,
high level managers, meteorologists (engineers and technicians) and
researchers would have the necessary capabilities to work with the
model. For open question 3 ‘‘in your daily work, for which concrete
tasks or problems could you imagine that Bayesian Network could
be useful?’’ respondents mentioned the support for risk management
in a scientific and objective manner, decision-making for projections,
planning and vulnerabilities for many different sectors such as for mid-
term and long-term water management and planning, infrastructure for
water mobilization and flood protection, irrigation management, water
distribution and allocation among sectors, erosion management and
dam protection. A meteorological service could use such a Bayesian
Network in impact studies of climate change on water and agricultural
production. For open question 4 ‘‘which difficulties or hindrances do
you see for you working with Bayesian Networks/or colleagues in your
organization?’’, respondents mentioned that the tool may be helpful
for water resources management in their country. They stressed that
Bayesian Network modeling requires availability of input data (e.g. hy-
drological data), interdisciplinary collaboration and an understanding
of all the relations between factors (nodes). The multiple use cases and
potential users collected here suggest that the method is promising
in the context of freshwater-related risk assessments and adaptation
planning in the face of climate change.

6. Discussion

6.1. Alternative Bayesian Network structures for integrating multi-model
ensemble estimates

The co-developed Bayesian Network is in two aspects a rather

atypical example — one, we used only quantitative and full values
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Fig. 10. Impact of management actions on risk level: impact of a change in irrigation efficiency on the risk level for surface water supply in the period 2050–2079 for the six
scenarios. The states of all other (yellow) management nodes were set to be equally likely except for the ‘‘source of water abstractions’’, which was set to 20% from groundwater.
throughout the network and, two, we did not use beliefs to elicit
CPTs but instead all nodes are connected through algebraic equa-
tions of a physically quantifiable relationship. Thus, we transferred
the deterministic physical relationships into the inherently probabilistic
representation of the Bayesian network. This has several advantages,
mainly the readily available graphical user interface, the inherent
representation of uncertainty, the ease to explore scenarios by the user,
and using the Bayesian Network tool simplified certain computations,
e.g. the automated computation of child node CPTs by the (Netica)
16
software. The main advantage, though still unexploited, is the gained
ability regarding the ease of extension to integrate additional factors
— also qualitative beliefs. The atypical character, however, was also a
direct result of the formulated key risk and network structure that came
from the stakeholders in the participatory process.

In the following, we will discuss briefly (i) the extension of the net-
work with qualitative factors, and (ii) examples of alternative Bayesian
networks and key risk formulations, that use information on climate
change hazards as estimated by a multi-model ensemble.
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Fig. 11. Experts’ evaluation of using the presented Bayesian Network for LCCRAs (Likert scale from 1: not at all (worst) to 7: very much (best)).
6.1.1. Qualitative factors
Qualitative factors are not yet reflected in the example network as

this study focused on the integration of multi-model ensemble hazard
estimates. Experts involved in the co-development of the Bayesian
Network suggested improving the network by adding qualitative nodes
to the quantitative ones, e.g., a node ‘‘farmers education’’ with the
classes ‘‘high’’, ‘‘medium’’, ‘‘low’’ linked to the quantitative water use
node ‘‘gross irrigation requirement’’ in Fig. 4. This would require
converting the qualitative scale into a quantitative scale in order to link
the qualitative and the quantitative nodes involved. Fig. 12(a) shows
an example of such a translation node where the ‘‘irrigation reduction
potential due to education’’, i.e. the ‘‘believed’’ quantitative impact
must be obtained. Again, the CPT of the translation node must be set,
which enables to capture the inherent uncertainty in the translation as
well. Literature studies on the translated impact can be used if they
exist. Commonly, the table will be elicited through (several) expert
interviews. E.g., for ‘‘low’’ education, they rate the strength of their
belief that the irrigation reduction is in the class of ‘‘0 to −10%’’, etc.
The beliefs of several experts can be averaged or weighted by their
elicited confidence in their beliefs.

6.1.2. Implications regarding the choice of the key risk indicator
The key risk indicator in our study that was suggested by the

stakeholders as the abstraction-to-resources ratio required full values to
be computed, and therefore a probability distribution over quantitative,
full value classes in each parent node. There are many other suitable
key risk indicators that do not require the probability distribution of full
values. For example, key risk indicators may be defined as a function
of only relative changes of certain relevant variables, as climate change
often causes risks just because a system that is adapted to certain
conditions is expected to suffer more from larger than from smaller
changes. The example in Fig. 12(b) comprises a weighted addition of
the changes of two variables to compute the risk indicator. In this
case the relative changes provided by the multi-model ensemble and
for the management scenarios would be sufficient, and differently to
the key risk indicator in our study, it would not be necessary to
know variable values for the reference period. Another alternative is
a purely qualitative key risk indicator that is computed by combining
multi-model based hazard changes with qualitative vulnerability classes
through expert elicitation (see example in Fig. 12(c)). One main aspect
that required the Matlab preprocessing was to compute quantitative
class boundaries for each node from the occurring range of values. For
non-quantitatively defined classes such as ‘‘low’’ and ‘‘high’’, obviously
no such processing is required. However, with rising system complexity
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and number of nodes, the strain on experts for interview elicitation for
the large number of CPTs should not be underestimated.

In summary, three classes of key risks exist with differing impli-
cations for the required pre-processing. (1) Qualitatively elicited risk
indicators require only pre-processing of the multi-model ensemble
data. (2) Quantitative risk indicators that are only a function of relative
changes require, in addition, pre-processing for class boundaries. (3)
Quantitative risk indicators that are a function of full values require
the above, plus pre-processing with local reference period values.

6.1.3. Aspects regarding the different approaches to set CPTs
One of the main advantages of Bayesian Networks lies in their

flexibility to define the relationship between nodes through CPTs,
enabling integration of influences even in the face of varying degree
of knowledge and certainty. If there is little knowledge about sys-
tem factors, they can be classified qualitatively in a typical Bayesian
‘‘Belief’’ Network, where these relationships can be expressed via the
elicited beliefs of experts (i.e. the tables allow to define the ‘‘believed’’
probability distribution for the given input combination of classes of the
parent nodes). Thus, also factors that are not algebraically consistent
can be related to each other. Similarly, another approach for completely
qualitative networks assigns classes (e.g. low, medium, high) to a range
of numbers (e.g. 0 to 1), to enable the use of algebraic equations in an
attempt to more objectively quantify relationships. On the opposite side
of the spectrum, if quantitative knowledge about system factors exists,
is the possibility to use algebraic expressions for known (physical)
relationships or derived from available data — with CPTs computed
based on those, respectively.

While the latter requires quantitative knowledge to be available, it
allows to explicitly consider two aspects separately: the combination
of the effect of the parent nodes onto the child factor with their
relative strengths in the relationship and the consequent evaluation
in qualitative classes, i.e. what constitutes a low/high risk. Both for-
mer ‘‘belief’’ approaches allow networks when quantitative data on
relationships are scarce, but their process blends the two aspects to a
certain degree: in the first, when prescribing a probability distribution
based on the parents’ classes in the table, e.g. combining low, medium
or high farmers education with low, medium or high climate-related
rise in irrigation need to its meaning for low, medium or high risk
for water scarcity, the experts belief must simultaneously incorporate
both the relative strengths and where the critical thresholds within
the system lie that will lead to a risk or not. In the second, similarly,
it is critical that the formulated algebraic equation represents both
aspects simultaneously for a sensible model of the relationship. Without
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Fig. 12. Integration of qualitative nodes to the co-developed quantitative nodes (a), and two examples to highlight the potential effects of various key risk formulations on setup,
i.e., for the risk of changed drought occurrence and deficit volumes to agriculture (b) and the risk of streamflow changes on river biota (c). Each example combines a multi-model
ensemble informed hazard (blue) with a vulnerability/exposure (yellow). In the case of (b), the ‘‘change in drought water deficit volume’’ combines with the ‘‘change in irrigated
area’’. Here, only relative changes are necessary to compute the risk to agriculture. In the case of (c), the (quantitative classes of) ‘‘change of low flow (Q90)’’ combine with the
‘‘sensitivity of species A to Q90’’ to qualitative node classes in the child (risk) node. Even if hazard and vulnerability differ with respect to units, they can be combined via beliefs
in the CPT or via a correlation learned from data.
sensible beliefs, no plausible results can be expected. Thus, awareness
of this internalization in the setup is important, and the latter case may
have merit in structurally separating and therefore externalizing both
aspects in the design process.

6.2. Limitations

Two important limitations for the use of the proposed method are,
one, that the calculation with MATLAB is not user friendly for local
experts who are unfamiliar with coding, and two, that the Netica
software is not available for free. To use the method as proposed would
likely restrict the local user community to universities and engineering
companies, or an LCCRA process would need to be supported by
engineers or scientists familiar with data processing.

To broaden the user base significantly would require availability
of specifically pre-processed ensemble data and an extension of the
Bayesian Network software to compute quantitative class boundaries
from input data and downlink in the model. As discussed above, the
examples of more typical belief networks might mean that neither full
values nor quantitative class boundaries (in the case of qualitative
classes) are necessary, alleviating the pre-processing requirements of
coding familiarity favorably, though processing of multi-model output
data remains.
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Regarding system knowledge, it may be challenging to define sen-
sible critical thresholds between the relevant risk levels quantitatively.
However, it will be essential that users know their systems in a way that
allows them to estimate these critical thresholds at least for the current
situation (i.e., to know what kind of values are problematic in their
system) to be able to interpret the changes in the future accordingly.

It should be understood by all participating users that Bayesian
Networks, with its simplified system representation through boxes, are
not suited for a detailed quantification of the complex water balances in
river basins, such as is done in hydrological models. Instead its strength
lies in its unique abilities for assessing the local risk of water resources
impacted by climate change.

7. Conclusion

The presented approach has the potential to support the many
LCCRAs necessary for a successful adaption to climate change world-
wide. This study shows how the complex quantitative information of
multi-model ensembles about future climate change-driven hydrolog-
ical changes can be integrated into a Bayesian Network to estimate
risks for water supply due to uncertain future climate change and
water demand. Using the presented methods, local knowledge about
current hydrological conditions and water use as well as local scenarios
of future water use can be optimally combined with state-of-the-art
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estimates of climate change-driven hydrological changes and their
uncertainty. These estimates can be derived from the freely available
output of global hydrological models and cover all continents of the
Earth. This suggests a very wide applicability of our approach for inte-
grating multi-model ensemble output with Bayesian Networks, which
is not restricted to freshwater-related climate change adaptation as
multi-model ensemble data of the output of other types of global-scale
impact models such as agricultural models or biome models is also
freely available from ISIMIP (www.isimip.org). Our methodology is
applicable for local experts with some experience in coding — working,
e.g., in engineering companies or universities. They can download
multi-model ensemble data of physical hazards of climate change from
data portals and develop a Bayesian Network for their specific region
and problem field for LCCRAs.
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