

Supporting Information

for Adv. Mater. Technol., DOI: 10.1002/admt.202200029

Upgrading a Consumer Stereolithographic 3D Printer to Produce a Physiologically Relevant Model with Human Liver Cancer Organoids

Louise Breideband, Kaja N. Wächtershäuser, Levin Hafa, Konstantin Wieland, Achilleas S. Frangakis, Ernst H. K. Stelzer, and Francesco Pampaloni*

Supporting Information

Bioprinting the Tumor Microenvironment with an Upgraded Consumer Stereolithographic 3D Printer

Louise Breideband, Kaja N. Wächtershäuser, Levin Hafa, Konstantin Wieland, Achilleas Frangakis, Ernst H. K. Stelzer, Francesco Pampaloni*

Figure S1: CAD files for the modifications on the printer available on GitHub.

https://github.com/LouiseBreide/BreidebandSupportingInformation/blob/main/Bioprinting_8 xIbidi_plate-holder.stl

https://github.com/LouiseBreide/BreidebandSupportingInformation/blob/main/Bioprinter_8x Platform_Template.stl

https://github.com/LouiseBreide/BreidebandSupportingInformation/blob/main/Bioprinting_S upport_platform_Ibidi.stl

https://github.com/LouiseBreide/BreidebandSupportingInformation/blob/main/Bioprinter_CompressedAirInlet.stl

Figure S2: Picture of the finished bioprinter after adaptations. The changes have been marked with red arrows.

Figure S3: Complete measurements for the rheological analysis available on GitHub.

https://github.com/LouiseBreide/BreidebandSupportingInformation/blob/main/Bioprinter_Su mmary_Rheology.xls

Figure S4: Cryo-FIB SEM picture of milling tests on a 3%/3% GelMA/PEGDA hydrogel sample. Squares (20 x 20 µm) were etched with increasing time to reveal deeper regions of the hydrogel and determine the optimal etching time.

Figure S5: Imaging of CCA organoids displaying a compact morphology, taken at three different timepoints during a 7-day timelapse. As a writing convention, first the GelMA concentration was written, then the PEGDA concentration (for example, 3%/1.5% referred to 3% GelMA and 1.5% PEGDA). Microscope: Zeiss Axio Observer Z1. Objective: Plan-Apochromat 5x/0.16. Camera: AxioCam MR R3. Voxel size: $1.29 \times 1.29 \times 60 \ \mu\text{m}^3$. Scale bar: $100 \ \mu\text{m}$. The images were acquired as tiles (two x two or three x three with a 10% overlap) and exported as stitched data, which created artefacts as can be seen at time point 00:00 hours.

3%/3%

Figure S6: Cell viability of the CCA organoids in the bioprinted constructs after 7 days in culture.

Figure S7: Complete RT-qPCR analysis available on GitHub.

https://github.com/LouiseBreide/BreidebandSupportingInformation/blob/main/Bioprinting_R T-qPCR_results.xlsx

Figure S8: Additional tumor-related markers were investigated. The variation in the results (upregulation versus downregulation) shows the heterogeneity of the tumor. The samples were normalized to the Matrigel samples. (A) Axin 2 (*AXIN2*) is part of the WNT signaling pathway which is a pharmacological target in cholangiocarcinoma treatments (Boulter et al. 2015, J Clin Invest.). *AXIN2* was found to be upregulated. *TNFRSF19* (TNF Receptor Superfamily Member 19) is part of the TGF β pathway to promote tumorigenesis (Deng et al. 2017, Cancer Res.). *TNFRSF19* was downregulated. (B) Cystic fibrosis transmembrane conductance regulators (*CFTR*) are an indicator of high fibrosis in diseased tissues (Kim et al. 2002, Dig Dis Sci.). All samples were downregulated but the square one. Epithelial cell adhesion molecule (*EpCAM*) is a prognosis marker in cholangiocarcinoma (Sulpice et al. 2014, J Surg Res.). EpCAM was slightly downregulated compared to Matrigel samples.

Figure S9: CAD of the platform for the Anycubic Photon S bioprinter for a 96 well-plate available on GitHub.

https://github.com/LouiseBreide/BreidebandSupportingInformation/blob/main/96-wellplate_Anycubic-Bioprinter.stl

Figure S10: List of antibodies and dyes.

Table 1: List of primary antibodies

Antigen	Supplier	Cat.	Clonality	Origin	Reactivity	Dilution
		number				
Caspase 3	Cell Signaling	9661	Polyclonal	Rabbit	Human, mouse, rat,	1:400
					monkey	
Ki67	Abcam	Ab6526	Monoclonal	Rabbit	Human, mouse	1:100
Keratin 19	St John's Laboratory	STJ24355	Polyclonal	Rabbit	Human, mouse, rat	1:100
YAP	Santa Cruz	sc-101199	Monoclonal	Mouse	Human, mouse, rat	1:400
	Biotechnology					

Table 2: List of secondary antibodies

Antigen	Supplier	Cat.	Origin	Fluorophore	Dilution
		number			
Rabbit	Thermo Fisher Scientific	A11008	Goat	Alexa Fluor	1:400
				488	
Rabbit	Thermo Fisher Scientific	A11011	Goat	Alexa Fluor	1:400
				546	
Mouse	Thermo Fisher Scientific	A21131	Mouse	Alexa Fluor	1:400
				488	

Table 3: List of dyes

Dye	Supplier	Cat.	Dilution
		number	
Phalloidin 488	Thermo Fisher Scientific	A12379	1:100
Phalloidin 546	Thermo Fisher Scientific	A22283	1:200
Phalloidin 647	Thermo Fisher Scientific	A22287	1:100
Hoechst 33342	Thermo Fisher Scientific	H1399	1:500

Figure S11: List of primers used for this work available on GitHub.

https://github.com/LouiseBreide/BreidebandSupportingInformation/blob/main/Bioprinter_RT -qPCR_primerslist.xlsx