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The Gross-Neveu model in the N → ∞ limit in d ¼ 1 spatial dimensions exhibits a chiral
inhomogeneous phase (IP), where the chiral condensate has a spatial dependence that spontaneously
breaks translational invariance and theZ2 chiral symmetry. This phase is absent in d ¼ 2, while in d ¼ 3 its
existence and extent strongly depends on the regularization and the value of the finite regulator. This work
connects these three results smoothly by extending the analysis to noninteger spatial dimensions
1 ≤ d < 3, where the model is fully renormalizable. To this end, we adapt the stability analysis, which
probes the stability of the homogeneous ground state under inhomogeneous perturbations, to noninteger
spatial dimensions. We find that the IP is present for all d < 2 and vanishes exactly at d ¼ 2. Moreover, we
find no instability toward an IP for 2 ≤ d < 3, which suggests that the IP in d ¼ 3 is solely generated by the
presence of a regulator.
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I. INTRODUCTION

A chiral inhomogeneous phase (IP) features a conden-
sate with a spatial dependence that spontaneously breaks
translational invariance in addition to chiral symmetry (see
Ref. [1] for an extensive review). While phases with
inhomogeneous order parameters are well established in
condensed matter physics, they are a rather exotic phe-
nomenon in high-energy contexts. In quantum chromody-
namics (QCD) an IP occurs in the limit of infinite number
of colors Nc and at asymptotically large chemical potential
[2]. For the physical case of Nc ¼ 3, there are also
indications for the realization of such a phase at low
temperature and high baryon chemical potential as pro-
vided by a Dyson-Schwinger equation (DSE) based study
that used specific ansatz functions for the inhomogeneous
condensate [3]. Recent technical developments [4] might
even enable an ansatz-free investigation of the IP within the
DSE framework. Moreover, a functional renormalization
group study of QCD [5] found a so-called moat regime,
where the wave-function renormalization assumes negative
values. Such a regime is closely related to the existence of
an IP and the implications of such a nontrivial dispersion
relation might also be measurable in an experiment [6–9].

Furthermore, it was shown that inhomogeneous ground
states can naturally be found in theories with PT -type
symmetries, which is also realized in finite-density
QCD [10,11].
However, due to the lack of first principle calculations of

QCD at low temperature and high chemical potential, it is
not clear whether the IP is indeed realized in nature or what
the extent of the moat regime might be. Therefore, more
often IPs are investigated in Four-Fermion (FF) and related
Yukawa-models, some of which can be regarded as toy-
models for QCD [1]. A prominent example is the (1þ 1)-
dimensional Gross-Neveu (GN) model [12] in the infinite
N limit (equivalent to a mean-field approximation in this
model), where all quantum fluctuations of the bosonic
degrees of freedom are neglected. It features a homo-
geneously broken phase (HBP) at low temperature and
baryon chemical potential, where the constant, nonzero
chiral condensate breaks the discrete Z2 chiral symmetry
that is realized in the model. This phase is separated from a
chirally symmetric phase (SP) by a second order line at
high temperatures and low chemical potentials that bends
down to lower temperatures for increasing chemical poten-
tial and ends in a critical point (CP) [13,14]. If the chiral
condensate is restricted to being homogeneous, a first order
phase transition extends from this CP down to zero
temperature. However, for spatially dependent condensates,
the CP coincides with a Lifshitz point (LP) from which an
IP opens up to lower temperatures and higher chemical
potentials [14–16]. The coincidence of these points is a
feature of the GN model (and Nambu-Jona-Lasinio (NJL)-
type models) in various dimensions [16–20] that can be
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broken up by introducing additional vector interactions
[21,22]. These points can also separate as the result of
artifacts at finite regulators in certain regularization
schemes [18,20,23]. In addition, the model also exhibits
a moat regime within a region in the phase diagram that is
larger than the IP itself [17]. While the phase diagram of the
(1þ 1)-dimensional GN and the related chiral GN model
(sometimes also called NJL2 model), which features a
continuous chiral symmetry, is fairly understood in the
infinite-N limit, it is under intense investigation for finiteN.
Currently, there is no final consensus about which phases
persist with full bosonic quantum fluctuations [24–31].
However, recent work [31] showed that the feature of
negative wave-function renormalization and moat regimes
at large μ is robust under the influence of bosonic
fluctuations.
In contrast to the infinite N results in 1þ 1 dimensions

stands the phase diagram of the same GN model in 2þ 1
dimensions, where no IP for any chemical potential and
nonzero temperature is present [23,32–34]. One only finds
a second order line separating the HBP at low temperature
and chemical potential from the SP, which ends in a CP at
zero temperature [35,36]. It was found that keeping
regulators such as the lattice spacing or the Pauli-Villars
mass at a finite value, causes the CP to be located at a
nonzero temperature and the emergence of an IP [23]. An
extended analysis in 2þ 1 dimensions revealed that a large
class of FF models featuring Lorentz-(pseudo)scalar inter-
actions and their Yukawa model extensions do not exhibit
an IP [34]. Thus, the absence of an IP in the (2þ 1)-
dimensional GN model is apparently part of a more general
behavior of FF models in 2þ 1 dimensions. Still it is not
clear what the cause of the absence of the IP compared to
1þ 1 dimensions is. There has also been considerable
effort in understanding the phase structure of the (2þ 1)-
dimensional GN model beyond the infinite-N limit for
finite temperature, chemical potential and magnetic field
with lattice and functional methods (see, e.g., [37–44]).
However, there is no concrete evidence for inhomogeneous
condensation for finite N.
In 3þ 1 dimensions, the GN and NJL model exhibit an

identical phase diagram in the chiral limit within the mean-
field approximation [19]. In general, one finds a similar
phase structure as for the GN model in d ¼ 1 with all three
phases and a CP present. These models are, however,
nonrenormalizable in d ¼ 3 and thus one has to keep the
employed regulator (e.g., the Pauli-Villars mass) at a finite
value. The phase structure of the theory is strongly
dependent on the chosen regularization scheme and value
of the regulator [45–48]. Varying these can lead to a
disappearance of the CP for the homogeneous phase
transition [46], a splitting of LP and CP [18,19,23,49],
and an absence of the IP altogether [45,47].
In this work, we connect these three results from integer

dimensions and illustrate why the model shows these

qualitatively different phase diagrams. To this end, we
consider the GN model in the mean-field approximation in
noninteger number of spatial dimensions 1 ≤ d < 3. This
builds on the results of Ref. [50] where the dependence of
the homogeneous phase diagram on d was investigated. We
extend this by an investigation of the IP and the moat
regime based on the bosonic two-point function.
The so-called stability analysis, which probes the sta-

bility of a homogeneous field configuration against spa-
tially inhomogeneous perturbations by inspection of the
bosonic two-point functions, is a common technique to
study IPs. This method was already used to investigate the
IP in integer spatial dimensions d ¼ 1, 2, 3 within the GN
and related models (see, e.g., Refs. [17,23,47,51–56]) and
we extend this technique to noninteger spatial dimensions
1 ≤ d < 3. The model is renormalizable for 1 ≤ d < 3 and
the analysis can be formulated independently from details
like the fermion representation. Thus, in this setup the only
parameter left is the number of spatial dimensions, which
allows us to study its influence isolated from other effects.
At this point it needs to be noted that the concept of
noninteger spatial dimensions is something peculiar—
especially since we are investigating a spatial phenomenon.
Therefore, we should consider the number of spatial
dimensions d merely as a parameter that we can vary to
interpolate between the physically relevant integer dimen-
sions. The study is restricted to zero temperature as it
suffices to demonstrate the central findings and makes it
possible to give closed form expression for most of the
derived quantities.
We find that the instability toward the IP gradually

disappears when going from d ¼ 1 to d ¼ 2. Since this
setup depends only on d as a parameter, we can identify the
number of spatial dimensions as the sole cause of the
disappearance of the IP in d ¼ 2. Furthermore, there is no
instability for 2 < d < 3, which suggests that the presence
of an IP in studies of (3þ 1)-dimensional models is caused
by the presence of finite regulators.
This paper is structured as follows. Section II introduces

the GN model in d spatial dimensions. The homogeneous
effective potential at zero temperature and aspects of the
homogeneous phase transition are discussed in Sec. II A.
The key quantities of the stability analysis are introduced in
Sec. II B and the main results of the stability analysis are
presented in Sec. III, which is split between spatial
dimensions 1 ≤ d ≤ 2 and 2 ≤ d < 3. Section IV provides
a brief conclusion and outlook on future extensions to this
work. The Appendices A and B present technical aspects of
the derivation of the effective potential, the stability
analysis and the wave-function renormalization.

II. THE GROSS-NEVEU MODEL IN 1 ≤ d < 3
SPATIAL DIMENSIONS

We consider the action of the GN model in D ¼ dþ 1
spacetime dimensions
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S½ψ̄ ;ψ � ¼
Z

β

0

dτ
Z

ddx

�
ψ̄ð∂þ γ0μÞψ −

λ

2N
ðψ̄ψÞ2

�
; ð1Þ

where ψ are fermionic spinors with N × Nγ degrees of
freedom (number of flavors1 × dimension of the repre-
sentation of the Clifford algebra). The Euclidean time
direction, i.e., the zeroth direction, is compactified with
its extent β corresponding to the inverse temperature
β ¼ 1=T and the d-dimensional spatial integration goes
over the d-dimensional volume V. In the actual calcula-
tions, we will assume both V and β to be infinite and hence
consider the theory at zero temperature in an infinite
volume. A baryon chemical potential μ is introduced in
the standard way and the coupling λ controls the strength of
the FF interaction.
By applying a Hubbard-Stratonovich transformation, we

remove the FF interaction and introduce a real, scalar
bosonic field σ in the action

Sσ½ψ̄ ;ψ ; σ� ¼
Z

β

0

dτ
Z

ddx

�
N
2λ

σ2 þ ψ̄ð∂þ γ0μþ σÞψ
�
;

ð2Þ

where the introduced bosonic field fulfills the Ward identity

hψ̄ðxÞψðxÞi ¼ −N
λ

hσðxÞi ð3Þ

that connects the expectation values of the chiral conden-
sate and the bosonic field at the spacetime point x. The
model possesses a discrete Z2 chiral symmetry in integer
dimensions under the transformation

ψ → γ5ψ ; ψ̄ → −ψ̄γ5; σ → −σ; ð4Þ

where γ5 is the Dirac matrix that anti-commutes with the
spacetime Dirac matrices. Thus, the auxiliary field σ also
serves as an order parameter of the spontaneous breaking of
the chiral symmetry. The special connection between
chirality and the number of spacetime dimensions, as well
as the ambiguities of defining γ5 [57] in noninteger
dimensions cause the chiral symmetry to be strictly present
only in integer dimensions. Nevertheless, in analogy to this
symmetry, we denote phases with hσi ≠ 0 as HBP (or IP, if
hσi is spatially dependent) as well as phases with hσi ¼ 0
as SP even in noninteger dimensions.
Moreover, one has to choose a reducible representation

of the Clifford algebra in odd spacetime dimensions in
order to find an additional matrix that anticommutes with
the spacetime Dirac matrices. This is particularly relevant

in 2þ 1 dimensions, where one needs to use a reducible
4 × 4 representation to regain the notion of chirality
[23,51,58,59]. Even though our analysis will be indepen-
dent of specific representations and their dimensions, we
will assume a representation that enables the existence of a
matrix γ5 in the respective integer dimensions. Irrespective
of the number of dimensions and representation, we can
assume the standard anti-commutation relation for the
spacetime Dirac matrices fγμ; γνg ¼ 2δμν1 to hold [57].
Integrating over the fermionic fields in the path integral

yields the so-called effective action

Seff ½σ�
N

¼
Z

β

0

dτ
Z

ddx
σ2

2λ
− ln Det½βð∂þ γ0μþ σÞ�; ð5Þ

where Det denotes a functional determinant. In the follow-
ing, we consider only the leading term in a 1=N expansion
(equivalent to a mean-field approximation in this case),
which neglects all quantum fluctuations of σ. Then, the
only field configurations Σ that contribute to the path
integral are these that minimize the effective action Seff
globally. In the case of a broken symmetry, there are
multiple such field configurations which are connected by
the transformations of the broken symmetry. One typically
picks one of these configurations in the evaluation of
observables (compare, e.g., Refs. [17,19]). This is equiv-
alent to introducing an explicit breaking to the action and
extrapolating this term to zero.
The model is renormalizable for d < 3 [60] and we use

as a renormalization condition that the vacuum expectation
value of the auxiliary field assumes a finite homogeneous
value hσijT¼μ¼0 ¼ σ̄0. The UV-divergent contributions
from loop integrals are regularized with a spatial momen-
tum cutoff. This regularization scheme is chosen due to its
simplicity and its application being independent of the
number of spatial dimensions. The scheme restricts the
spatial loop momenta to a d-dimensional sphere with radius
Λ in the regularized integrals and Λ is then sent to infinity
in the renormalization procedure.

A. The homogeneous effective potential
at zero temperature

We define the homogeneous effective potential Ūeff as
the effective action of the homogeneous bosonic field per
volume and degree of freedom, i.e.,

Ūeffðσ̄; μ; dÞ ≔
Seff ½σ̄�
NVβ

; ð6Þ

where σ̄ is the bosonic field restricted to homogeneous field
configurations, i.e., σ̄ ¼ const. We proceed to calculate the
homogeneous effective potential at zero temperature in the
infinite spatial volume

1Note that within the GN model, “flavors” is the traditional
name for this degree of freedom in which the interactions are
diagonal. Hence, these flavors are distinctively different from an
isospin degree of freedom or quark flavors in QCD.
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Ūeffðσ̄;μ;dÞ¼
σ̄2

2λ
−

1

βV
lnDet½βð=∂þ γ0μþ σ̄Þ�

¼ σ̄2

2λ
−
Nγ

2

Z
ddp
ð2πÞd ½E−Θðμ2−E2ÞðE− jμjÞ�

¼ σ̄2

2λ
−
Nγ

2
l0ðσ̄2;μÞ; ð7Þ

where E2 ¼ σ̄2 þ p2. The integral l0 is obviously UV-
divergent for every number of spatial dimensions d > 0.
We renormalize the effective potential with the condition
hσijT¼μ¼0 ¼ σ̄0 (see Sec. II). This condition corresponds
to minσ̄ Ūeff jT¼μ¼0 ¼ Σ̄jT¼μ¼0 ¼ σ̄0 within the infinite N
limit. Therefore, σ̄0 fulfills the homogeneous gap equation

dŪeff

dσ̄

����
T¼μ¼0;σ̄¼σ̄0

¼
�
σ̄

λ
− σ̄Nγ

Z
∞

−∞

dp0

ð2πÞ
Z
Λ

ddp
ð2πÞd

1

ðp0− iμÞ2þE2

�����
T¼μ¼0;σ̄¼σ̄0

¼
�
σ̄

�
1

λ
−Nγl1

������
T¼μ¼0;σ̄¼σ̄0

¼! 0; ð8Þ

which is used to tune the coupling λ in order to renormalize
the theory.
Appendix A outlines the calculation of l0 and l1 for

spatial dimensions 1 ≤ d < 3, which are needed to obtain
the renormalized effective potential

Ūeffðσ̄;μ; dÞ

¼ Nγ

2d−1πd
2

"ðdþ 1ÞΓ
�
− dþ1

2

�
8

ffiffiffi
π

p
�
−
σ̄d−10 σ̄2

2
þ jσ̄jdþ1

dþ 1

�

þΘðμ̄2Þ
dΓðd

2
Þ jσ̄j

dþ1

���� μ̄σ̄
����d
�

2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

�
−
����μσ̄
����
�#

;

ð9Þ

where 2F1 is the Gaussian hypergeometric Function
defined by Eq. (A2), μ̄2 ¼ μ2 − σ̄2 and a divergent,
thermodynamically irrelevant constant term is neglected.
The effective potential in noninteger spatial dimensions
was first investigated in Ref. [50]. However, a closed form
expression for T ¼ 0 and finite chemical potential was not
explicitly given and thus we provide it for completeness.
For homogeneous fields, one finds by inspection of Ūeff

for all number of spatial dimensions 1 ≤ d < 3 an HBP at
low chemical potential indicated by the minimizing field
value Σ̄ being nonzero. For chemical potentials larger than
a critical chemical potential μcðdÞ, the system enters the SP
signaled by jΣ̄j ¼ 0 (see Ref. [50] for a detailed discussion
of the homogeneous phase structure). Figure 1 shows

the renormalized effective potential Ū0
effðσ̄; μcðdÞ; dÞ ¼

Ūeffðσ̄; μcðdÞ; dÞ − Ūeffð0; μcðdÞ; dÞ2 in the σ̄; d-plane at
the critical chemical potential μcðdÞ with the red dashed
lines indicating the minima Σ̄ðdÞ. This illustrates how the
phase transition is of first order for d < 2 due to the
potential barrier separating the two minima at Σ̄ ¼ 0; σ̄0.
The potential is flat for jσ̄j ≤ σ̄0 at d ¼ 2, which is caused
by a combined effect of zero temperature and the CP being
located at this point. Reference [50] documents how this
CP evolves from ðμ; TÞ=σ̄0 ≈ ð0.608; 0.318Þ in d ¼ 1 to
ðμ; TÞ=σ̄0 ¼ ð1.0; 0Þ in d ¼ 2. For d > 2 the CP vanishes
and the homogeneous phase transition is strictly of sec-
ond order.

B. Stability analysis at zero temperature

The key concept of the stability analysis is to apply an
arbitrary inhomogeneous perturbation of infinitesimal
amplitude to a homogeneous field configuration σ̄ and
analyze the curvature of the effective action Seff under this
perturbation. If the global homogeneous minimum Σ̄ is
used as an expansion point, a negative curvature indicates
that there exists an inhomogeneous field configuration with
an even lower action and thus confirms the existence of an
IP. For a detailed derivation of the stability analysis in the
GN model in 1þ 1 and 2þ 1 dimensions we refer to
Refs. [17,23]. Here, we present only the final result for the
bosonic two-point function Γð2Þ, which is the previously
mentioned curvature of the effective action in the direction
of an inhomogeneous perturbation of momentum q to the

FIG. 1. The renormalized effective potential Ū0
effðσ̄; μcðdÞ; dÞ ¼

Ūeffðσ̄; μcðdÞ; dÞ − Ūeffð0; μcðdÞ; dÞ in the σ̄; d-plane at the critical
chemical potential μcðdÞ, where the homogeneous phase transition
occurs. The red dashed lines indicate the minima Σ̄ðdÞ.

2The symmetric contribution is subtracted in order to facilitate
the comparison between different d.
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homogeneous bosonic field σ̄. One finds that this curva-
ture is only dependent on the magnitude of the
bosonic momentum jqj ¼ q and not its direction in
the d-dimensional space. This circumstance makes it

possible to apply this technique in noninteger spatial
dimensions.
The two-point function at zero temperature has the

general form

Γð2Þðσ̄2; μ; q2; dÞ ¼ 1

λ
− Nγl1ðσ̄2; μ; dÞ þ L2ðσ̄2; μ; q2; dÞ; ð10Þ

where we recognize the same contribution 1=λ − Nγl1 as in the gap equation and that the whole momentum dependence
resides in L2, which is given by

L2ðσ̄2; μ; q2; dÞ ¼
1

2
ðq2 þ 4σ̄2ÞNγ

Z
∞

−∞

dp0

ð2πÞ
Z

ddp
ð2πÞd

1

ððp0 − iμÞ2 þ σ̄2 þ ðpþ qÞ2Þððp0 − iμÞ2 þ σ̄2 þ p2Þ : ð11Þ

The evaluation of this expression for arbitrary 1 ≤ d < 3 is outlined in Appendix B, while for the integer cases of d ¼ 1 we
refer to Ref. [17] and for d ¼ 2 to Ref. [23]. We find for arbitrary spatial dimensions 1 ≤ d < 3 that the two-point function
evaluates to

Γð2Þðσ̄2; μ; q2; dÞ ¼ Nγ

2dπ
d
2Γðd

2
Þ

2
64Γ

�
1−d
2

�
Γ
�
dþ2
2

�
dπ

ðjσ̄0jd−1 − jσ̄jd−1Þ

þ

8>>><
>>>:

jμjd−1
ðd−1Þ if σ̄ ¼ 0; μ ≠ 0

jσ̄jd−1
d

��� μ̄σ̄���d2F1

�
1
2
; d
2
; dþ2

2
;− μ̄2

σ̄2

�
if σ̄ ≠ 0; μ̄2 > 0

0 otherwise

9>>>=
>>>;

þ
�
q2

4
þ σ̄2

�Z
1

0

dx ×

8<
:

μ̃d−3

ð3−dÞ 2F1

�
3
2
; 3−d

2
; 3−d

2
þ 1;− Δ̃2

μ̃2

�
− μ̃d−2

jμj if μ̃2 > 0

Δ̃d−3

2
B
�
d
2
; 3−d

2

�
otherwise

)3
75; ð12Þ

where Δ̃2 ¼ σ̄2 þ q2xð1 − xÞ and μ̃2 ¼ μ2 − Δ̃2. The re-
maining integral over x is evaluated numerically since no
closed form can be given for the integral.
The other quantity of interest is the bosonic wave-

function renormalization z, where negative values indicate

a moat regime. This z is the coefficient of the bosonic
kinetic term ∝ 1=2∂μσ∂μσ in the effective action that is
contained in the fermionic contribution.3 We can calculate z
from the bosonic two-point function by differentiating it
twice with respect to q and setting q ¼ 0 [17], i.e.,

zðσ̄; μ; dÞ ¼ 1

2

d2Γð2Þðσ̄; μ; q2; dÞ
dq2

����
q¼0

¼ Nγ

2dþ2π
d
2Γðd

2
Þ ×

8>>><
>>>:

1
ð3−dÞμ̄3−d 2F1

�
3
2
; 3−d

2
; 5−d

2
;− σ̄2

μ̄2

�
þ 1

ð5−dÞ
σ̄2

μ̄2
1

μ̄3−d 2
F1

�
5
2
; 5−d

2
; 7−d

2
;− σ̄2

μ̄2

�
þ μ̄d−2

jμj
h
σ̄2

μ2

�
1þ 1

3μ̄2
ð2σ̄2 − ð4 − dÞμ2Þ

�
− 1

i
if μ̄2 > 0

1
2jσ̄j3−d

h
B
�
d
2
; 3−d

2

�
− B

�
d
2
; 5−d

2

�i
otherwise

: ð13Þ

3This term can be explicitly seen in an expansion of the lnDet contribution in the effective action (5), e.g., in a Ginzburg-Landau
approach. See also Ref. [31] for a study of Z in the (1þ 1)-dimensional GN model at finite N, i.e., in the presence of bosonic
fluctuations.
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The derivation of z is outlined in Appendix B. If z is
evaluated on the global homogeneous minimum Σ̄ðμ; dÞ,
we denote it as Zðμ; dÞ≡ zðΣ̄ðμ; dÞ; μ; dÞ.

III. RESULTS OF THE STABILITY ANALYSIS

In this section the results that are obtained by the stability
analysis of the GN model for 1 ≤ d < 3 spatial dimensions
are discussed. The discussion is split in 1 ≤ d ≤ 2 and 2 ≤
d < 3 due to the different conclusions that we can draw
from these two intervals.

A. 1 ≤ d ≤ 2

Figure 2 shows the two-point functionsΓð2ÞðΣ̄2; μþc ; q2; dÞ
for 1 ≤ d ≤ 2 spatial dimensions at μ ¼ μþc , which is the
critical chemical potentialwith an infinitesimal positive shift.
This ensures that the homogeneous minimum used as the
expansion point is Σ̄ ¼ 0. For d ¼ 1, the two-point function
diverges logarithmically at q ¼ 2μ for all μ > μc as also
observed in Ref. [17]. For 1 < d < 2, the integral over x in
Eq. (12) has to be performed numerically. It is thus not
immediately clear, whether the two-point function diverges
as in d ¼ 1 for q ¼ 2μ. The integrand in Eq. (12) is divergent
at x ¼ 1=2 for σ̄ ¼ 0; q ¼ 2μ and expanding it at x0 ¼ 1=2
reveals that the most divergent term is ∝ðx − 1=2Þd−2.
Hence, the integral over x is finite for any d > 1. Thus,
the divergence of the two-point functions vanishes for d > 1,
but a cusp that is a negative minimum is retained. This
preserves the instability at μc for 1 < d < 2. However, one
finds that the offset of Γð2Þ at q ¼ 0 increases with increasing
μ. Thus, for 1 < d < 2 there is an upper μ at which the IP
vanishes (see Fig. 6).
It was documented in Ref. [17] that in the (1þ 1)-

dimensional GN model there is a region of the IP in the
μ-T-plane that is not detected by the stability analysis. This
is where the homogeneous minimum Σ̄ assumes a finite

value, which is separated from the true inhomogeneous
minimum by an energy barrier. Thus, Σ̄ appears to be stable
against inhomogeneous perturbations even though an
inhomogeneous condensate is energetically preferred
[14]. We expect this to happen in some portion of the
phase diagram for all spatial dimensions 1 < d < 2, since
the first order phase transition, which was identified as the
cause of this effect in d ¼ 1, is also present there.
By increasing d further to d ¼ 2, the two-point function

evolves to the known (2þ 1)-dimensional result [23,34].
The two-point function is constant and zero for all q ≤ 2μ
at which it rises for q > 2μ. This corresponds to a
degeneracy of the homogeneous minimum and field
configurations with small inhomogeneous perturbations
of momentum q ≤ 2μ. Hence, it cannot provide any
information about the energetically preferred state.
However, it was found that the crystal kink solutions of
the (1þ 1)-dimensional GN model embedded in 2 spatial
dimensions are energetically degenerate to homogeneous
field configurations even for finite amplitudes at ðμ; TÞ ¼
ðμc; 0Þ in the (2þ 1)-dimensional GN model [32].4 This
observation and our results for the two-point function
suggest a flat effective potential for a variety of inhomo-
geneous modulations. This would be similar to the flat
homogeneous potential shown in Fig. 1, which is caused by
the special nature of the CP at this point.
We observe that all numbers of spatial dimensions

1 ≤ d < 2, where the CP is also located at a nonzero
temperature (as discussed in Sec. II A), exhibit an insta-
bility. This is due to the coincidence of the CP and the LP
for the renormalized GN model.
Figure 3 shows the wave-function renormalization

evaluated at Σ̄ as a function of μ for 1 ≤ d ≤ 2. We observe
Z < 0 for μ > μc and d < 2, which is the key property of a
moat regime [6–9]. Thus, a moat regime is retained for all
chemical potentials for d < 2.

B. 2 ≤ d < 3

Figure 4 shows Γð2ÞðΣ̄2; μ; q2; dÞ for spatial dimensions
2 ≤ d < 3 at μ ¼ μþc . For spatial dimensions d > 2, the
constant behavior vanishes and the two-point function
approaches a parabolic shape, but the cusp at q ¼ 2μ
remains a nonanalytic point. Thus, by inspection of the
two-point function we recognize that there is no instability
for 2 < d < 3. This is in stark contrast to existing results of
the NJL model in 3þ 1 dimensions, which exhibits the
same phase diagram as the (3þ 1)-dimensional GN model
within the mean-field approximation [19,50]. Here one
finds instabilities toward an IP [47,52,61] and even the

FIG. 2. The two-point function Γð2ÞðΣ̄2 ¼ 0; μþc ; q2; dÞ as a
function of the bosonic momentum q for various spatial dimen-
sions 1 ≤ d ≤ 2 evaluated at the homogeneous minimum Σ̄ at
chemical potential μ ¼ μþc (the critical chemical potential with an
infinitesimal positive shift). Compare to Ref. [17] for d ¼ 1 and
Refs. [23,34] for d ¼ 2.

4It might be interesting to embed the solutions of the (1þ 1)-
dimensional GNmodel in 1 < d < 2 similar to what was done for
d ¼ 2 in [32]. In this way, one could observe how the degeneracy
between homogeneous configurations and these inhomogeneous
modulations develops at d ¼ 2.
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energetically preferred inhomogeneous condensates by
minimizing the effective action with a suitable ansatz
[19,45,53,61–65]. Due to the smooth evolution of the
two-point function for 1 ≤ d < 3, we would not expect a
significant change in behavior caused by increasing the
number of dimensions when going from d < 3 to d ¼ 3.
The difference, however, is that while we investigated the
renormalized model in d < 3, it loses its renormalizability
in d ¼ 3. Thus, the aforementioned investigations are
performed at a finite regulator. It was shown that varying
the regularization scheme (e.g., Pauli-Villars regularization,
spatial momentum cutoff, lattice regularization) and the
value of its regulator can have a severe impact on the
existence and extent of the IP [45,47]. Moreover, the CP
coincides with the LP only for some regularization
schemes, e.g., Pauli-Villars or dimensional regularization.
For small enough regulators this CP and with it also the LP
is located at a nonzero temperature, which enables the
existence of the IP. In a similar fashion an investigation of
the (2þ 1)-dimensional GN model revealed that an IP

exists at a finite regulator and vanishes when removing the
regulator [23,33,51]. This finding and the lack of instability
for 2 < d < 3 in the renormalized setup as presented in this
work suggest the conclusion that the existence of the IP in
the (3þ 1)-dimensional GN model (and due to their
equivalence also the NJL model) is solely triggered by
the choice of the regularization scheme and the presence of
a finite regulator.
Figure 5 depicts the bosonic wave-function renormali-

zation Z as a function of the chemical potential for various
spatial dimensions 2 ≤ d < 3. While the minimum value of
the wave-function renormalization at d ¼ 2 is Z ¼ 0, it is
strictly positive for 2 < d < 3. Therefore, no moat regime
is retained for d > 2. Moreover, we note that Z diverges at
μ=σ̄0 ¼ 1. This is caused in 2 < d < 3 by the second order
homogeneous phase transition, where the condensate starts
to “melt” for chemical potentials μ=σ̄0 > 1. This enables
1 ¼ μ2 ≈ Σ̄ðμÞ2, which causes divergences in Z [compare
to Eq. (13)]. Graphically speaking, this is caused by the
cusp that is present in the two-point function at jqj ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − σ̄2

p
, being located at q ¼ 0 for μ2 ¼ Σ̄2. Then, this

causes Z, which is the second derivative of the two-point
function, to diverge.

IV. CONCLUSION AND OUTLOOK

A. Conclusion

Within the stability analysis one applies inhomogeneous
perturbations to the homogeneous ground state and inspects
the curvature of the effective action for these perturbations.
If one finds negative values for this curvature, which are
given by negatives values in the momentum dependence of
the bosonic two-point function, the homogeneous field
configuration is unstable and an inhomogeneous ground
state is energetically preferred.
We adapted this method to noninteger spatial dimensions

and illuminated how the instability toward an inhomo-
geneous phase (IP) in 1þ 1 dimensions turns into an

FIG. 4. The two-point function Γð2ÞðΣ̄2 ¼ 0; μþc ; q2; dÞ as a
function of the bosonic momentum q for various spatial dimen-
sions 2 ≤ d < 3 evaluated at the homogeneous minimum Σ̄ at
chemical potential μ ¼ μþc (the critical chemical potential with an
infinitesimal positive shift). Compare to Refs. [23,34] for d ¼ 2.

FIG. 5. The wave-function renormalization Z as a function of
the chemical potential for various spatial dimensions 2 ≤ d < 3.
The circle indicates the chemical potential μc at which the
homogeneous phase transition is located.

FIG. 3. Thewave-function renormalizationZ as a function of the
chemical potential for various spatial dimensions 1 ≤ d ≤ 2. The
circle indicates the chemical potential μc at which the homo-
geneous phase transition is located.Compare toRef. [17] ford ¼ 1.
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absence of instability in 2þ 1 dimensions. By continuously
increasing the number of spatial dimensions from d ¼ 1 to
d ¼ 2, we observed how the two-point function evolves as
a function of d. The IP is present for all d < 2 in some
range of μ and the instability vanishes exactly at d ¼ 2.
Moreover, for 1 < d < 2 there is an upper chemical
potential at which the instability vanishes, but a moat
regime is retained for all chemical potentials. This renor-
malized setup is independent of regulators and details like
the fermion representation, which allows us to study the
isolated effect of the number of dimension. Thus, we
identified that the sole driver of the disappearance of the
IP at d ¼ 2 is the number of spatial dimensions, and by
extension the dependence of the critical point (CP) and
Lifshitz point (LP) on d.
For 2 < d < 3, one finds that the two-point function is

positive for all bosonic momenta q ≥ 0 and thus there is
no instability toward an IP. This is qualitatively different
from existing results in d ¼ 3 that exhibit an IP
[19,19,45,47,52,53,61,61–65]. The difference is the need
for a finite regulator in d ¼ 3 spatial dimensions that can
cause the appearance of a CP and LP at a nonzero
temperature. This effect was also observed in the Gross-
Neveu (GN) model for d ¼ 2where it led to the appearance
of the IP even though it is not present when the model is
renormalized [23,33,51]. This observation and our results
suggest that the appearance of the IP in the (3þ 1)-
dimensional GN and Nambu-Jona-Lasinio (NJL) model
is generated by the necessary use of a finite regulator.
Figure 6 summarizes these findings in the phase diagram

of the renormalized GN model at zero temperature in the
plane of the number of spatial dimensions d and chemical
potential μ.
Interestingly there is a connection of this work with

investigations of the (3þ 1)-dimensional NJL model that

use dimensional regularization to regulate the theory
[46,66–69]. Due to the nonrenormalizability of the model,
the number of spatial dimensions d has to be fixed at a
value d < 3 and additionally one has to introduce a mass
scale M0 (because the regulator d itself is dimensionless).
Both d andM0 are then tuned such that certain observables
in the vacuum assume fixed values (e.g. the pion decay
constant). In this way, one could interpret the present work
as the (3þ 1)-dimensional GN model with dimensional
regularization, since the applied renormalization also intro-
duced a mass scale σ̄0 and we vary the dimensions d. In this
picture, by analyzing the phase structure for different d, we
really investigate the regulator dependence of the phase
diagram of the (3þ 1)-dimensional GN model for the
dimensional regularization scheme. Vice versa, the effect of
considering (3þ 1)-dimensional models with dimensional
regularization at finite regulator is that one generates the
phase structure of lower dimensional versions of the
respective models.

B. Outlook

An obvious extension of the present work might be the
investigation of the NJL model. It features an additional
Yukawa interaction term with a pion field of the form
ψ̄ iγ5τ⃗ · π⃗ψ . However, the ambiguities of γ5 in noninteger
dimensions lead to an altered anticommutation relation
fγμ; γ5g [57], which significantly changes the renormal-
ization and the stability analysis of the NJL model
compared to integer dimensions. While it is still possible
to conduct the stability analysis, the results depend on
these ambiguities in noninteger dimensions and thus no
results for this model are presented. A more detailed
discussion of the resulting implications can be found
in Ref. [70].
Most investigations of the IP in (3þ 1)-dimensional

models (see, e.g., Refs. [18,19,21,22,49,52,63,64]) use the
Pauli-Villars regularization. In order to connect better to
these results, it would be instructive to carry out the present
analysis in noninteger spatial dimensions with the Pauli-
Villars regularization at a finite regulator. In this way, one
could show that it is possible to regain an IP for 2 < d ≤ 3
by considering appropriate values of the regulator and
smoothly connect our noninteger analysis to established,
finite regulator results in d ¼ 3.
Several investigations in integer dimensions (e.g.,

Refs. [19,32]) have embedded 1-dimensional solutions of
the (1þ 1)-dimensional GN model in higher dimensional
models. This procedure is also adaptable to noninteger d,
since the (d − 1)-dimensional space perpendicular to the
modulation can be treated in a way where d enters only as a
parameter just as in the present study. This would enable us
to observe how the degeneracy of the 1-dimensional
solutions of the 1þ 1-dimensional GN model and homo-
geneous field configurations at ðμ;TÞ¼ ðμc;0Þ in d ¼ 2 [32]
develops for 1 < d < 2.

FIG. 6. The phase diagram of the renormalized GN model as
obtained from the stability analysis in the plane of spatial
dimensions d and chemical potential μ. The phase diagram shows
a homogeneously broken phase (HBP) with σðxÞ ¼ σ̄ ¼ const, a
symmetric phase (SP) with σðxÞ ¼ 0, an inhomogeneous phase
(IP) with σðxÞ ¼ fðxÞ and a moat regime with negative wave-
function renormalization, i.e., Z < 0. The boundaries of the HBP
are calculated by Eqs. (3.33) and (3.35) from Ref. [50].
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The extension of the present analysis to nonzero temper-
ature is under way. A nonzero temperature will likely not
change the conclusion about the (non)-existence of the
instability, since a nonzero temperature in all known
occurrences disfavors an IP. However, it would reveal
how the whole phase diagram evolves between the known
results in integer spatial dimensions.

ACKNOWLEDGMENTS

I thank Adrian Koenigstein, Marc Winstel, and Marc
Wagner for their helpful comments on this manuscript
and numerous, valuable discussions. Furthermore,
I acknowledge fruitful, related discussions with Michael
Buballa, Zohar Nussinov, Gergely Markó, Mike Ogilvie,
Robert Pisarski, Fabian Rennecke, Stella Schindler,
and David Wagner. I acknowledge the support of the
Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through the collaborative research
center trans-regio CRC-TR 211 “Strong-interaction matter
under extreme conditions”–project number 315477589—
TRR 211. I acknowledge the support of the Helmholtz

Graduate School for Hadron and Ion Research. I acknowl-
edge the support of the Giersch Foundation.

APPENDIX A: DERIVATION OF THE
RENORMALIZED, HOMOGENEOUS

EFFECTIVE POTENTIAL

In this Appendix, we outline the derivation of the
renormalized, homogeneous effective potential by using
a spatial momentum cutoff Λ to regularize the theory. A
more detailed derivation and discussion can be found in
Ref. [70]. The homogeneous effective potential was already
investigated in Ref. [50], thus it is not original to this work.
However, we need some of the results in the later derivation
and hence it is instructive to also include the full derivation
of the renormalized, effective potential here. Throughout
this Appendix, we make regular use of the integral
identities 3.194 from Ref. [71].
We start the derivation by calculating the integral l0

that appears in the expression Eq. (7) and find that it
evaluates to

l0 ¼
Sd

ð2πÞd
Z

dppd−1½E − Θðμ2 − E2ÞðE − jμjÞ�

¼ Sd
ð2πÞd

1

d

�
Λdjσ̄j2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

�
Λ
σ̄

�
2
�
− Θðμ̄2Þjσ̄jdþ1

���� μ̄σ̄
����d
�

2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

�
−
���� μσ̄

����
��

¼ Sd
ð2πÞd

1

2

�
−
jσ̄jdþ1Γ

�
− d

2
− 1

2

�
Γðd

2
þ 1Þ

d
ffiffiffi
π

p þ Λd

�
2Λ

dþ 1
þ σ̄2

ðd − 1ÞΛþ σ̄4

4ð3 − dÞΛ3
þOðΛ−5Þ

�

þ Θðμ̄2Þ2
d

jσ̄jdþ1

���� μ̄σ̄
����d
�

2F1

�
−
1

2
;
d
2
;
dþ 2

2
;−

μ̄2

σ̄2

�
−
���� μσ̄

����
��

; ðA1Þ

where Sd ¼ 2π
d
2=Γðd

2
Þ is the surface area of a d-dimensional

unit sphere, μ̄2 ¼ μ2 − σ̄2 and we expanded the Λ depen-
dent terms for jΛ=σ̄j ≫ 1 in the last step. 2F1 denotes the
Gaussian hypergeometric function that can be represented
via the integral

2F1ðα; β; γ; zÞ

¼ 1

Bðβ; γ − βÞ
Z

1

0

dttβ−1ð1 − tÞγ−β−1ð1 − tzÞ−α ðA2Þ

with B being the Beta function.
In order to derive the renormalized, homogeneous

effective potential, one needs to tune the coupling λ by
imposing that the minimum of the renormalized, homo-
geneous effective potential in vacuum is at σ̄ ¼ σ̄0. To do
so, we employ the gap equation (8), where we need to
calculate the integral l1. For the renormalization procedure,
we would only need l1 at μ ¼ 0 and finite σ̄. However, we

calculate it in its general μ and σ̄ dependent form, since the
same integral also appears in the bosonic two-point
function that we need for the stability analysis. We find
for the integral

l1ðσ̄2;μ;dÞ¼
Z
Λ

ddp
ð2πÞd

Z
∞

−∞

dp0

ð2πÞ
1

ðp0− iμÞ2þE2

¼ Sd
ð2πÞd

Z
Λ

0

dppd−1 1−Θðμ2−E2Þ
2E

¼ Sd
ð2πÞd

1

2djσ̄j
�
Λd

2F1

�
1

2
;
d
2
;
dþ2

2
;−

�
Λ
σ̄

�
2
�

−Θðμ̄2Þjμ̄jd2F1

�
1

2
;
d
2
;
dþ2

2
;−

μ̄2

σ̄2

��
: ðA3Þ

Using the vacuum part of this result and the gap equa-
tion (8), we tune the coupling to the appropriate value
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1

λ
¼ Nγ

Sd
ð2πÞd

1

2dσ̄0
Λd

2F1

�
1

2
;
d
2
;
dþ 2

2
;−

�
Λ
σ̄0

�
2
�

ðA4Þ

¼ Nγ
Sd

ð2πÞd
1

2

�σ̄d−10 Γ
�
d
2
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�
Γ
�
1
2
− d

2

�
d
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π

p

þ Λd

�
1

ðd − 1ÞΛþ σ̄20
2ð3 − dÞΛ3

þOðΛ−5Þ
��

; ðA5Þ

where we expanded the Λ dependent terms for jΛ=σ̄0j ≫ 1.
Inserting the expression for l0 from Eq. (A1) and the
tuned coupling into Eq. (7) yields the renormalized,
homogeneous effective potential from Eq. (9), where a
divergent, thermodynamically irrelevant constant term is
neglected. We find for the symmetric limit σ̄ → 0 that the
renormalized effective potential is reduced to

Ūeffðσ̄ ¼ 0; μ; dÞ ¼ − Nγ

2dπ
d
2

jμjdþ1

Γ
�
d
2

�
dðdþ 1Þ

: ðA6Þ

APPENDIX B: DERIVATION OF THE
BOSONIC TWO-POINT FUNCTION

AND THE BOSONIC WAVE-FUNCTION
RENORMALIZATION

In this Appendix, we outline the derivation of the
bosonic two-point function and the wave-function renorm-
alization. A more detailed derivation and discussion can
be found in Ref. [70]. Throughout this Appendix, we
make regular use of the integral identities 3.194 from
Ref. [71].
The bosonic-two point function consists of a constant

contribution 1=λ − Nγl1, which is derived in Appendix A.
Thus, we only need to calculate the integral L2 that is given
in Eq. (11). The first step is to get rid of any contributions
that depend on the angle between the loop momentum p
and the external bosonic momentum q. We can achieve this
by applying a Feynman parametrization of the integral in
Eq. (11) resulting in

l2ðσ̄2; μ; q2; dÞ ¼ Nγ

Z
∞

−∞

dp0

ð2πÞ
Z

ddp
ð2πÞd

Z
1

0

dx
1

½ðpþ qÞ2xþ Δ2xþ ð1 − xÞp2 þ ð1 − xÞΔ2�2

¼ Nγ

Z
∞

−∞

dp0

ð2πÞ
Z

ddp
ð2πÞd

Z
1

0

dx
1

½p2 þ Δ2 þ q2xð1 − xÞ�2 ðB1Þ

where we performed a shift of the integration variable pþ qx → p and Δ2 ¼ ðp0 − iμÞ2 þ σ̄2. In this form we can easily
carry out the integration over the temporal momenta and over the spatial momenta subsequently to obtain the form

l2ðσ̄2; μ; q2; dÞ ¼ Nγ
Sd

ð2πÞd
Z

1

0

dx
Z

∞

0

dppd−1 1

4Ẽ3

�
Θ
�
Ẽ
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�
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Ẽ
jμj δ

�
Ẽ
jμj − 1

��

¼ Nγ

2dþ1πd=2Γðd
2
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Z

1

0

dx ×

8<
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2
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jμj if μ̃2 > 0

Δ̃d−3

2
B
�
d
2
; 3−d

2

�
otherwise

; ðB2Þ

where Ẽ2 ¼ σ̄2 þ p2 þ q2xð1 − xÞ, Δ̃2 ¼ σ̄2 þ q2xð1 − xÞ and μ̃2 ¼ μ2 − Δ̃2. Since only certain limits of σ̄2, μ2 and q2

allow to give a closed form expression of the integral over x, we simply evaluate the integral over x numerically. Inserting
the result for l2 (B2) and for 1=λ − l1 from Eq. (A3)(A5) into Eq. (10) yields the full two-point function from Eq. (12). The
integral over x is trivial in the limit of q → 0 for which we obtain for the two-point function the closed form

Γð2Þðσ̄2; μ; q2 ¼ 0; dÞ ¼ Nγ
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where μ̄2 ¼ μ2 − σ̄2.
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The bosonic wave-function renormalization z is the curvature of the bosonic two-point function evaluated at q ¼ 0. By
differentiating L2 twice with respect to q and evaluating it at q ¼ 0, we find

z ¼ 1

2

d2Γð2Þðσ̄; μ; q2; dÞ
dq2

����
q¼0

¼ 1

4
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Carrying out the remaining integral over p results in the form given in Eq. (13).
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