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Phase diagram of the 1+1 dimensional Gross-Neveu model at finite Nf Laurin Pannullo

1. Introduction, the Gross-Neveu model

Exploring the QCD phase diagram using lattice field theory is currently limited to rather small
chemical potential due to the sign problem (see e.g. [1, 2]). Thus, it is of interest to study the phase
structure of simpler models, which have similarities to QCD at least in certain aspects. A common
example is the Gross-Neveu (GN) model [3].

The Euclidean action and the partition function of the GN model in 1+1 spacetime dimensions
are

S =
∫

d2x
( Nf

∑
n=1

ψ̄n

(
γ0(∂0 +µ)+ γ1∂1

)
ψn−

g2

2

( Nf

∑
n=1

ψ̄nψn

)2)
, Z =

∫
Dψ̄ Dψ e−S, (1.1)

where ψn denotes a fermionic field with flavor index n = 1, . . . ,Nf, µ is the chemical potential
and g is the coupling constant. A possible irreducible representation for the γ matrices, which we
use throughout this work, is γ0 = σ1 and γ1 = σ2. To get rid of the four-fermion interaction, one
typically introduces a real scalar field σ . Integrating over the fermionic fields then leads to the
equivalent effective action and partition function

Seff = Nf

(
1

2λ

∫
d2xσ

2− ln
(

det
(
(∂0 +µ)γ0 +∂1γ1 +σ

)))
, Z =

∫
Dσ e−Seff , (1.2)

where λ = Nfg2.
The effective action Seff has a discrete symmetry, Seff[σ ] = Seff[−σ ]. One can show 〈σ〉 ∝

〈∑Nf
n=1 ψ̄nψn〉, where 〈. . .〉 denotes the path integral expectation value. Thus, a non-vanishing 〈σ〉

would indicate spontaneous breaking of the symmetry ψn → σ3ψn. Since σ3 anticommutes with
γ0 and γ1, it is appropriate to define γ5 = σ3 and to interpret the symmetry ψn→ σ3ψn = γ5ψn as
discrete chiral symmetry and 〈σ〉 as corresponding order parameter.

2. The Gross-Neveu model for Nf→ ∞

In the limit Nf → ∞ the phase diagram of the GN model in 1+1 spacetime dimensions was
calculated analytically [4, 5], and with lattice field theory and related numerical methods [6, 7, 8].
There are three phases as shown in Figure 1:

• a homogeneously broken phase (〈σ(x)〉= constant 6= 0),

• a symmetric phase (〈σ(x)〉= 0),

• an inhomogeneous phase (〈σ(x)〉 = f (x), where f (x) is an oscillating periodic function of
the spatial coordinate).

In the inhomogeneous phase close to the phase boundary to the homogeneously broken phase f (x)
has a kink-antikink shape. For increasing chemical potential the wavelength of f (x) and its am-
plitude decrease and the shape is similar to a sin-function. For a recent review on inhomogeneous
condensates see ref. [9].
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Figure 1: Phase diagram of the GN model in in 1+1 spacetime dimensions for Nf→ ∞ [4].

3. The Gross-Neveu model at finite Nf

In this work we performed lattice field simulation with chiral fermions to explore the phase
structure of the GN model in 1+1 spacetime dimensions at finite Nf with particular focus on the
possible existence of an inhomogeneous phase (see also ref. [10] for results obtained at an early
stage of this project). We simulated a large variety of ensembles for various values of Nf, µ , the
number of lattice sites Nt×Ns and the lattice spacing a (the latter is a function of the coupling
constant λ and can be adjusted, by tuning λ appropriately). The temperature is proportional to the
inverse temporal extent of the lattice, T = 1/Nta, and the spatial extent of the lattice is denoted by
L = Nsa. We employed two different fermion discretizations, naive fermions and SLAC fermions
(see e.g. [11]), which provides a powerful cross-check of our numerical results.

We set the scale via the absolute value of the chiral condensate at µ = 0 and T = 0,
σ0 = 〈|σ |〉|µ=0,T=0. Dimensionful quantities are either expressed in units of the lattice spacing
a = 1 (e.g. x≡ x/a, µ ≡ µa, T ≡ Ta) or in units of σ0 (e.g. xσ0, µ/σ0, T/σ0).

3.1 The aligned condensate Σ(x)

The expectation value 〈σ(x)〉 is not a suitable quantity, to reliably detect a possibly existing
inhomogeneous phase. This is so, because field configurations might exhibit similar periodic oscil-
lations, but could be spatially shifted relative to each other. Thus, more appropriate is the “aligned
condensate” Σ(x), where field configurations are matched by spatial translations x→ x−∆x, before
the ensemble average is computed,

Σ(x) =
1
Nt

Nt

∑
t=0

〈
σ(t,x−∆x)

〉
. (3.1)

The technical aspects of the matching of field configurations, i.e. the determination of ∆x for each
field configuration, will be discussed in detail in an upcoming publication.

Exemplary results for Σ(x) for Nf = 8, µ/σ0 ∈ {0.0,0.4,0.6,0.8} and low temperature
T/σ0 = 0.031 are presented in Figure 2. These results are quite similar to 〈σ(x)〉 for Nf → ∞ as
discussed in section 2. The aligned condensate Σ(x) is a non-vanishing constant for µ = 0. For
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larger chemical potential Σ(x) starts to oscillate, which signals the existence of an inhomogeneous
phase. When increasing µ even further, both the wavelength and the amplitude of Σ(x) become
smaller.
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Figure 2: Aligned condensate Σ(x) for Nf = 8, µ/σ0 ∈ {0.0,0.5,0.7,1.5} and low temperature T/σ0 =

0.031 (SLAC fermions, λ = 5.20, Ns = 127, σ0 = 0.408).

3.2 The correlation function C(x)

Further quantities to distinguish a possibly existing inhomogeneous phase from a homoge-
neously broken phase or a symmetric phase is the correlation function

C(x) =
1

NtNs
∑
t,y

〈
σ(t,y+ x)σ(t,y)

〉
(3.2)

and its Fourier transform

C̃(k) =
1
Ns

∑
x

exp
(
− 2πikx

Ns

)
C(x) , k ∈

{
−Ns

2
, . . . ,+

Ns

2
−1
}
. (3.3)

Their expected behavior is as follows:

• Inside a homogeneously broken phase:
C(x) will approach a constant ≈ σ2

0 exponentially fast. C̃(k) will exhibit a pronounced peak
around k = 0.

• Inside a symmetric phase:
C(x) will approach zero exponentially fast. C̃(k) for k 6= 0 is similar as in a homogeneously
broken phase, however, without a peak around k = 0.
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• Inside an inhomogeneous phase:
C(x) will oscillate with constant, non-vanishing amplitude for large separations x. C̃(k)
will exhibit pronounced peaks around ±kpeak. The wavelength of the oscillations of C(x) is
≈ Ns/kpeak.

Exemplary results for C(x) and C̃(k) for Nf = 8 are presented in Figure 3 and agree with
this expectation. Particularly interesting are the two plots at the bottom showing C(x) and C̃(k)
at large chemical potential µ/σ0 ∈ {0.5,0.7,1.0} and low temperature T/σ0 = 0.078 inside an
inhomogeneous phase. For increasing µ , both the wavelength and the amplitude become smaller,
as in the limit Nf→ ∞ (see section 2).
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Figure 3: Correlation functions C(x) and C̃(k) for Nf = 8 (Naive fermions, λ = 5.28, Ns = 128, σ0 =

0.2015). (a) Inside a homogeneously broken phase, µ/σ0 = 0.0, T/σ0 = 0.062. (b) Inside a symmetric
phase, µ/σ0 = 0.0, T/σ0 = 0.621. (c) Inside an inhomogeneous phase, µ/σ0 ∈ {0.5,0.7,1.0}, T/σ0 =

0.078. C̃(k) is not plotted in the whole range of k.
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From Figure 3 one can see

min
x

C(x)


> 0 inside a homogeneously broken phase

≈ 0 inside a symmetric phase

< 0 inside an inhomogeneous phase

. (3.4)

Thus, the minimum of the correlation function C(x) is suited to plot a crude phase diagram, as
e.g. shown in Figure 4 for Nf = 8. This phase diagram is qualitatively similar to the Nf → ∞

phase diagram in Figure 1 (blue = homogeneously broken phase, green = symmetric phase, red
= inhomogeneous phase). The homogeneously broken phase and the inhomogeneous phase are,
however, somewhat smaller for finite Nf than for Nf→ ∞.
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Figure 4: Phase diagram via minx C(x) for Nf = 8 (Naive fermions, λ = 4.84, Ns = 128, σ0 = 0.253).

All results shown in this section were obtained from lattices with either Ns = 127 or Ns = 128
sites in spatial direction. To investigate and exclude finite volume corrections, we are currently in
the process of performing identical simulations with lattices of even larger spatial extent, Ns = 512,
at Nf = 2. We obtain similar results, which we will discuss in detail in an upcoming publication.
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