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We continue previous investigations of the (inhomogeneous) phase structure of the Gross-Neveu
model in a noninteger number of spatial dimensions (1 ≤ d < 3) in the limit of an infinite number
of fermion species (N → ∞) at (non)zero chemical potential µ [1]. In this work, we extend the
analysis from zero to nonzero temperature T .

The phase diagram of the Gross-Neveu model in 1 ≤ d < 3 spatial dimensions is well known
under the assumption of spatially homogeneous condensation with both a symmetry broken and a
symmetric phase present for all spatial dimensions. In d = 1 one additionally finds an inhomogeneous
phase, where the order parameter, the condensate, is varying in space. Similarly, phases of spatially
varying condensates are also found in the Gross-Neveu model in d = 2 and d = 3, as long as the
theory is not fully renormalized, i.e., in the presence of a regulator. For d = 2, one observes that
the inhomogeneous phase vanishes, when the regulator is properly removed (which is not possible
for d = 3 without introducing additional parameters).

In the present work, we use the stability analysis of the symmetric phase to study the presence
(for 1 ≤ d < 2) and absence (for 2 ≤ d < 3) of these inhomogeneous phases and the related moat
regimes in the fully renormalized Gross-Neveu model in the µ, T -plane. We also discuss the relation
between “the number of spatial dimensions” and “studying the model with a finite regulator” as
well as the possible consequences for the limit d → 3.

Keywords: Gross-Neveu model, inhomogeneous phases, moat regime, stability analysis, noninteger spatial
dimensions, mean field, phase diagram, nonzero temperature
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I. INTRODUCTION

The Gross-Neveu (GN) model is arguably one of
the most simple theories that describe (self-)interacting
fermions. Despite this fact and having been formulated
50 years ago [2], its chiral phase diagram in the µ, T -plane
in various number of spatial dimensions d is still under in-
vestigation today. Within this work, we aim to contribute
to this research by focusing on so-called inhomogeneous
phases (IPs) of spatially oscillating condensates in non-
integer spatial dimensions. (We refer to Ref. [3] for a
review on IPs.)

A. General contextualization

Within the N → ∞ limit, one finds that bosonic quan-
tum fluctuations are suppressed [2], which immensely
simplifies calculations and enables mostly analytic ap-
proaches. Thus, it is not surprising that the most com-
plete picture of the thermodynamics of the GN model is
within the special N → ∞ limit, see, e.g., Refs. [4–20].
Still, even with these simplifications the GN model can
be seen as a prototype quantum field theory (QFT) that
shares a lot of features with more realistic QFTs. It is
asymptotically free and undergoes dimensional transmu-
tation, leading to a condensation of fermion-anti-fermion
pairs in the infra red (IR) in vacuum, which is similar to
Quantum Chromodynamics (QCD) and QCD-like theo-
ries. However, there are also important relations between
the GNmodel and various models from solid state physics
as well as numerous extensions of the model that are used
as toy model QFTs, such that studying the model within
different setups remains an interesting task on its own
but is also of relevance as reference work. For further
reading, we refer to Refs. [21, 22].

B. Recap of central results

In 1 + 1 dimensions the GN model exhibits three
distinct chiral phases [9, 23]. At low temperatures
and chemical potential the discrete chiral Z2 symme-
try is spontaneously broken and one finds the so-called
homogeneously broken phase (HBP) that is character-
ized by a nonzero chiral condensate, which is constant
in space. At moderate and high temperatures one finds
the symmetric phase (SP) – a gas-like phase, which is
characterized by a vanishing chiral condensate. Espe-
cially relevant for our work is the IP at low temperatures
and moderate and large µ, where the chiral condensate is
non-vanishing and exhibits a spatial dependence. Thus,
in addition to chiral symmetry also translational invari-
ance is spontaneously broken. This phase is associated
with negative values of the bosonic two-point function
for some range of spatial bosonic momenta [13, 24–38].
Assuming a second order phase transition (PT) to the
SP, a necessary condition for the IP is a negative wave-
function renormalization even though this is not a suffi-
cient criterion [38–40]. Nevertheless, regions of negative
wave-function renormalization in the µ, T -plane are in-
teresting on their own, since they feature a nontrivial
momentum structure of the two-point function and the
dispersion relation. These regions that can be larger than
the actual IP were labeled as moat regimes recently and
could play an important role in the hadronization process
in heavy-ion collisions [40–43]. As discussed in Ref. [25]
the 1 + 1 GN model has a moat regime, which extends
over large parts of the µ, T -plane and thus serves as a toy
model for this phenomenon.
It was found that the number of spatial dimensions has

a profound impact on the phase structure. In 2 + 1 di-
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mensions, one finds that the IP and the moat regime are
only present at finite regulator and vanish in the renor-
malized limit [13, 14, 44]. Still, one observes an HBP for
small µ and T and an SP for large µ and T [17, 18].

The situation is less clear in 3+1 dimensions, where the
model is non-renormalizable (without introducing addi-
tional parameters) and the value of the regulator and the
choice of the regularization scheme has a drastic impact
on the phase structure [45–49]. Most certainly one also
finds an HBP and an SP, while the existence of an IP
can be regarded as disputed as it heavily depends on the
regularization.

In an effort to understand why the IP is absent in 2+1
dimensions and to what extent the existence of the phase
is a regulator artifact in 3 + 1 dimensions, Ref. [1] inves-
tigated the GN model in noninteger d spatial dimensions
in order to interpolate between the known integer di-
mensional results and to additional mimic the effect of
dimensional regularization.1 This study was conducted
at T = 0, which sufficed to illuminate that (a) the IP is
present for 1 ≤ d < 2 and vanishes exactly in 2 = d, and
(b) one does not find the phase in 2 < d < 3 in a renor-
malized setup, which implies that its existence in d = 3
is caused by a finite regulator.

C. Research objective

In the present work, we extend this investigation of
spatially inhomogeneous condensation in (non)integer
number of spatial dimensions from zero to nonzero tem-
perature in order to map out the d-dependence of the
IP and the moat regime. This study therefore comple-
ments the previously mentioned study in Ref. [1] as well
as Ref. [11]. The latter study already investigated the
phase diagram of the GN model in continuous dimen-
sions 1 ≤ d < 3 under the assumption of spatially ho-
mogeneous condensation. Therefore, we aim at closing a
gap in the literature about the GN model.

Furthermore, we hope that this work contributes to
the general discussion about necessary conditions for the
presence/absence of IPs in arbitrary models and theories.
Here, especially our findings about the role of the spa-
tial dimensionality may be essential to understand the
general criteria for the formation of inhomogeneous con-
densates.

1 Note, that we will still use the same terminology HBP, SP, and
IP as well as symmetry breaking etc. for noninteger dimensions,
even though chiral symmetry and the concept of spatial oscilla-
tion might not be well-defined in a noninteger number of spatial
dimensions. It might be better to talk about instabilities of spa-
tially constant condensates etc.. However, this leads to a needless
complication of the discussion.

D. Structure

This work is structured as follows: In Section II we
recapitulate some basic mathematical aspects of the GN
model. We present the four-fermion action, the bosonized
version of the model in the N → ∞ limit and we discuss
the quantities that are relevant to map out the phase
diagram. Here, we also explain our regularization and
renormalization prescription as well as the stability anal-
ysis – the method to detect inhomogeneous condensation.

Afterwards, in Section III, we turn to the results. We
present the evaluation of the above expressions for some
points in the µ, T -plane and different dimensions d. We
show sample plots for the two-point function and wave-
function renormalization. Most importantly, we present
the dependence of the phase diagram and especially of the
IP and moat regime on the number of spatial dimensions
d.

We conclude and comment on our results in Section IV
and provide a brief outlook to possible consequences of
our findings and followup questions.

Our work is accompanied by a large number of appen-
dices, where we present all relevant details of this work.
We hope that the amount of technical details might help
the interested reader to easily reproduce and/or build on
our work. We also consider these appendices as a com-
pilation of the most relevant formulae for the GN model
in d < 3 within the N → ∞ limit.

II. THE GROSS-NEVEU MODEL IN 1 ≤ d < 3
SPATIAL DIMENSIONS IN MEDIUM

In this chapter, we introduce the GN model in d +
1 dimensions, where d is the number of spatial di-
mensions. We work at (non)zero temperature T and
(non)zero chemical potential µ and briefly recapitulate
the derivation of the grand canonical/effective potential,
the bosonic two-point function as well as the bosonic
wave-function renormalization. All calculations and re-
sults are in the limit N → ∞, where N is the number of
fermion species. The quantities that are presented in this
chapter are required for the computation of the phase di-
agram, the stability analysis, and the detection of a pos-
sible IP and/or moat regime, see also Refs. [13, 25, 44]
for similar analyses and results that arise as the limiting
cases for integer d.

A. The action and the potential

The microscopic action of the GN model is given by
[2]

S[ψ̄, ψ] = (1)
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=

∫ 1
T

0

dτ

∫
ddx

[
ψ̄ (/∂ + γ0µ)ψ − λ

2N (ψ̄ ψ)2
]
.

Here, ψ̄ = ψ̄(τ, x⃗ ) and ψ = ψ(τ, x⃗ ) are the fermion
fields, where xi ∈ (−∞,∞), i ∈ {1, . . . , d}, are the spa-
tial coordinates of a d-dimensional Euclidean space and
τ ∈ [0, 1

T ) denotes the coordinate of the compactified
temporal direction that mimics the (inverse) temperature
T . The fermions have antiperiodic boundary conditions
in the compact direction, come in N different species2

and transform as spinors. We use a dγ-dimensional rep-
resentation of the gamma matrices of the corresponding
Clifford algebra,

{γµ, γν}+ = 2δµν11dγ , µ, ν ∈ {0, 1, . . . , d} . (2)

This generalizes to noninteger d dimensions [50] and we
use the Kronecker delta as the components of the Eu-
clidean metric. Furthermore, we use λ for the four-
fermion coupling and introduce the fermion chemical po-
tential µ in the standard way.

For a detailed discussion of the symmetries of this
model in different integer dimensions, we refer for ex-
ample to Refs. [22, 51].

In order to study four-fermion models (especially in the
N → ∞ limit) one convenient approach is to bosonize
the theory in the ultra violet (UV) via a Hubbard-
Stratonovich transformation [52, 53]. Here, the four-
fermion interaction is replaced by an auxiliary real scalar
bosonic field ϕ. On the level of the partition function the
equivalent action is [2, 4, 8]

S[ψ̄, ψ, ϕ] = (3)

=

∫ 1
T

0

dτ

∫
ddx

[
1
2λ (hϕ)2 + ψ̄

(
/∂ + γ0µ+ h√

N
ϕ
)
ψ
]
,

where we also introduced the Yukawa coupling h to ob-
tain canonical energy dimensions for ϕ. Now, in addi-
tion to the functional integration over fermion fields, one
also has to integrate over the bosonic field ϕ. Since loop
corrections for the Yukawa coupling are suppressed for
N → ∞, see, e.g., Refs. [22, 54], it is convenient to ab-
sorb the Yukawa coupling in the field ϕ which is after-
wards of dimension energy in any number of spatial di-
mensions. In addition, to correctly take the limitN → ∞
one rescales the boson field with

√
N . Hence, we intro-

duce

σ = h√
N
ϕ (4)

as the new bosonic degree of freedom.

2 Occasionally, these species are referred to as different colors or
flavors.

It is simple to show, see, e.g., Ref. [55], that

⟨σ⟩ ∝ ⟨ψ̄ ψ⟩ . (5)

In an even number of spacetime dimensions d + 1 the
formation of a nonzero expectation value of σ therefore
signals the breaking of the discrete Z2 chiral symmetry

ψ 7→ γchψ , ψ̄ 7→ −ψ̄ γch , σ 7→ −σ (6)

of the GN action and the formation of a condensate. In
an odd number of spacetime dimensions as well as for
noninteger dimensions the matrix γch, which fulfills

{γµ, γch}+ = 0 , µ ∈ {0, 1, . . . , d} , (7)

is either nonexisting or its definition is ambiguous (de-
pending on dγ). For detailed discussions of these sit-
uations, we refer to Refs. [50, 51, 56]. Still, it is pos-
sible to study the action (3) and analyze for which µ
and T one finds (non)vanishing expectation values of
the scalar field ⟨σ⟩. This even holds true if one al-
lows for spatial modulations of this condensate. Regions
in the µ, T -plane with ⟨σ⟩ ≠ 0 are denoted as phases
of spatially (in)homogeneous condensation/symmetry
breaking, while regions with ⟨σ⟩ = 0 are called gas
like/symmetric phases.

The standard way to proceed from Eq. (3) is to per-
form the functional integration over the fermion fields
and absorb the resulting fermion determinant in an ef-
fective action for the boson field σ. The resulting action
Seff in the probability distribution in the thermal parti-
tion function is

1
N Seff [σ] = (8)

=

∫ 1
T

0

dτ

∫
ddx σ2

2λ − lnDet
[
β(/∂ + γ0µ+ σ)

]
,

where we already divided by the number of species N
and Det denotes a functional determinant.
Considering the limit N → ∞, this implies that the

only field configurations that contribute in the partition
function and the expectation values are those that mini-
mize the effective action Seff . This is equivalent to study-
ing the full quantum effective action (the generating func-
tional for one-particle-irreducible vertex functions) and
only taking into account the contribution of the fermionic
quantum fluctuations [57–59]. In any case, for arbitrary
modulations in spatial and temporal directions, the min-
imization of Eq. (8) is a highly challenging task. It might
not even be a well-posed problem for noninteger dimen-
sions. However, assuming that the field configuration
with least (effective) action is constant in space and time,
e.g., σ(τ, x⃗ ) = σ̄ = const. the problem simplifies drasti-
cally. We define the (homogeneous) effective potential

Ū(σ̄, µ, T, d) = 1
N

1
βV Seff [σ̄], (9)
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which is the effective action for homogeneous fields per
species and spacetime volume. The eigenvalues of the
Dirac operator for homogeneous fields σ̄ are those of free
fermions with mass m = σ̄. Thus, the evaluation of Ū
yields,

Ū(σ̄, µ, T, d) = (10)

= σ̄2

2λ − 1
βV lnDet

[
β(/∂ + γ0µ+ σ̄)

]
=

= σ̄2

2λ − dγ

2 l0(σ̄, µ, T, d) ,

where l0 is the Matsubara sum and momentum integral
over the log of the eigenvalues. Its evaluation is presented
in Appendix C.

By determining the global and local minima of
Eq. (10), we obtain the homogeneous phase diagram in-
cluding the spinodal lines. We denote the homogeneous
field configuration that corresponds to the global mini-
mum of the homogeneous effective potential for a given
µ and T by Σ̄(µ, T ).
The derivative of the homogeneous effective potential

with respect to (w.r.t.) the homogeneous field σ̄

d
dσ̄ Ū(σ̄, µ, T, d) = (11)

= σ̄
(
1
λ − dγ l1(σ̄, µ, T, d)

)
is used to express the gap equation, which is of central
importance in the renormalization of this model as dis-
cussed in Section II E. The quantity l1 is again a Mat-
subara sum and spatial momentum integration. Its eval-
uation is discussed in Appendix D.

B. The bosonic two-point function

The bosonic two-point function at bosonic spatial mo-
mentum q = |q⃗ | for a homogeneous bosonic field σ̄ is
given by

Γ(2)(σ̄, µ, T, q, d) = (12)

= 1
λ − dγ

[
l1(σ̄, µ, T, d)− 1

2 (q
2 + 4 σ̄2) l2(σ̄, µ, T, q, d)

]
,

where the quantities l1 and l2 are fermionic Matsub-
ara sums and loop momentum integrals that are dis-
cussed in Appendices D and E. The derivation of this
quantity in the GN model is discussed in great detail in
Refs. [1, 13, 22, 25] and shall not be repeated here. Sim-
ply speaking, one obtains the bosonic two-point function,
by (1.) taking two functional derivatives w.r.t. to σ of

Eq. (8), (2.) evaluating the result at vanishing external
Matsubara frequencies and for σ(τ, x⃗ ) = σ̄ = const.. In
our analysis, we evaluate the two-point function at the
global minimum of the effective potential Σ̄(µ, T ) for the
specific µ and T .

C. The bosonic wave-function renormalization

Another quantity of interest is the so-called bosonic
wave-function renormalization given by

z(σ̄, µ, T, d) = 1
2

d2

dq2 Γ
(2)(σ̄, µ, T, q, d)

∣∣∣
q=0

, (13)

which is the coefficient of the kinetic contribution
1
2 (∂µσ)

2 to the quantum effective action [4]. After a
short calculation, which is summarized in Appendix H
one finds

z(σ̄, µ, T, d) = (14)

=
dγ

2

[
l2(σ̄, µ, T, 0, d)− 8

6 σ̄
2 l3(σ̄, µ, T, d)

]
,

where we introduced l3 as another Matsubara sum and
integral that is evaluated in Appendix F. If the wave-
function renormalization is evaluated at the global mini-
mum of the effective potential Σ̄, we denote it by Z, i.e.,
Z(µ, T, d) ≡ z(Σ̄(µ, T ), µ, T, d).

D. Regularization of vacuum contributions

Some of the previously listed quantities contain contri-
butions with UV-divergent integrals. For d < 3, these are
the vacuum parts of l0 and l1, which require a UV regu-
larization to render calculations tractable. We regularize
the theory with a spatial momentum cutoff that confines
the integration of spatial fermionic loop momenta to a
d-dimensional sphere of radius Λ. This scheme certainly
has its drawbacks in the investigation of inhomogeneous
condensation as we explicitly break translational invari-
ance. However, as is discussed in Section II E, one can
renormalize the theory for d < 3. Thus, it is possible to
eventually remove the regulator completely by sending
Λ → ∞, allowing us to make the assumptions that Λ is
large.
Regularizing the vacuum part of l0 and l1 with the

spatial momentum cutoff and expanding the result for
Λ/σ̄ ≫ 1 results in

lΛ0 (σ̄, 0, 0, d) = (15)

= Sd

(2π)d
1
2

(
− Γ( d+2

2 ) Γ(− d+1
2 )

d
√
π

σ̄d+1 + 2
d+1 Λ

d+1 +

+ Λd
[

σ̄2

d−1
1
Λ + σ̄4

4(3−d)

(
1
Λ

)3
+O

(
1
Λ5

)])
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and

lΛ1 (σ̄, 0, 0, d) = (16)

= Sd

(2π)d
1
2

(
Γ( d+2

2 ) Γ(− d+1
2 )

d
√
π

(
− d+1

2

)
σ̄d−1 +

+ Λd
[

1
d−1

1
Λ + σ̄2

2(3−d)
1
Λ3 +O

(
1
Λ5

)])
,

where the lΛx are the regularized versions (C3) and (D3)
of the respective quantities, and Sd is given by Eq. (B2).
These expansions are obtained by applying the formula
Eq. (B23), whose origin is discussed in Appendix B 4. In
the last step we also used Eq. (B4) in order to have iden-
tical prefactors of the first terms in Eqs. (15) and (16).

E. Renormalization

The GNmodel naturally experiences spontaneous sym-
metry breaking in the vacuum for all d for N → ∞, which
is exploited in the renormalization procedure. We impose
as renormalization condition that the auxiliary field σ as-
sumes the homogeneous nonzero value σ̄0 in the vacuum.
The coupling λ is tuned such that this condition is ful-
filled and the divergences are absorbed. Within the limit
of N → ∞, one finds that this is successful for spatial
dimensions d < 3, see Refs. [11, 19, 60]. This can easily
be understood by looking at Eq. (15), where a divergence
∝ σ̄4 arises for d ≥ 3. There is no coupling in the action
that can compensate this divergence and removing the
cutoff is only possible by introducing more parameters.

1. The gap equation

Our renormalization condition can be expressed by the
gap equation in vacuum

d
dσ̄ Ū(σ̄, µ = 0, T = 0, d)

∣∣∣
σ̄=σ̄0

= 0. (17)

Inserting Eq. (11) and rearranging the equation for
nonzero σ̄0 fixes the value of the coupling (its cutoff de-
pendence) as

1
λ = dγ l

Λ
1 (σ̄0, 0, 0, d) = (18)

= dγ
Sd

(2π)d
1
2

(
Γ( d+2

2 ) Γ(− d+1
2 )

d
√
π

(
− d+1

2

)
|σ̄0|d−1 +

+ Λd
[

1
d−1

1
Λ +

σ̄2
0

2(3−d)
1
Λ3 +O

(
1
Λ5

)])
,

where we again assumed that Λ is large, i.e., Λ/σ̄0 ≫ 1
and therefore simply applied Eq. (16) for σ̄ → σ̄0.

2. Renormalization of the effective potential

Hence, for the effective potential in the presence of the
UV cutoff we find

ŪΛ(σ̄, µ, T, d) = (19)

=
dγ

2

[
σ̄2 lΛ1 (σ̄0, 0, 0, d)− lΛ0 (σ̄, µ, T, d)

]
,

which in vacuum evaluates to

Ū(σ̄, 0, 0, d) = (20)

=
dγ

2
Sd

(2π)d

[
(d+1) Γ( d+2

2 ) Γ(− d+1
2 )

2d
√
π

(
− σ̄d−1

0 σ̄2

2 + σ̄d+1

d+1

)
+

+ Λd
[

σ̄4

8(3−d)
1
Λ3 +O

(
1
Λ5

)]]
.

The last line vanishes for d < 3 in the limit of Λ →
∞, see also Ref. [1]. We then obtain the renormalized
homogeneous effective potential

Ū(σ̄, µ, T, d) = (21)

=
dγ

2
Sd

(2π)d

[
Γ( d

2 )Γ(−
d+1
2 )(d+1)

4
√
π

(
1

d+1 |σ̄|
d+1 − 1

2 σ̄
d−1
0 σ̄2

)
+

− T

∫ ∞

0

dp pd−1 ln
[
1 + exp

(
− E+µ

T

)]
+

+ (µ→ −µ)
]
,

whose derivation and special limits of the parameters
σ̄, µ, T, d are presented in Appendix G. This result is
equivalent to the result presented already in Refs. [11, 61].

3. Renormalization of the two-point function

The unrenormalized two-point function Eq. (12) con-
tains the divergent contribution l1. By inserting the reg-
ularized value for the coupling λ and inserting the regu-
larized expression for l1, one obtains

Γ(2)Λ(σ̄, µ, T, q, d) = (22)

= dγ
[
lΛ1 (σ̄0, 0, 0, d)− lΛ1 (σ̄, µ, T, d) +

+ 1
2 (q

2 + 4 σ̄2) l2(σ̄, µ, T, q, d)
]
.

In the limit Λ → ∞, one finds that the divergent parts
are absorbed by the coupling and we find for the renor-
malized two-point function the expression

Γ(2)(σ̄, µ, T, q, d) = (23)
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=
dγ

2
Sd

(2π)d

[(
|σ̄0|d−1 − |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

+

+

∫ ∞

0

dp pd−1 1
E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]
+

+
(
q2

4 + σ̄2)

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
Ẽ3

×

×
[
1− nf

(
Ẽ+µ
T

)
+ Ẽ

T

[
n2f
(
Ẽ+µ
T

)
− nf

(
Ẽ+µ
T

)]
+

+ (µ→ −µ)
]]
.

The definition of Ẽ is given in Eq. (A15), and detailed
steps of the renormalization as well as special limits in
the parameters σ̄, µ, T, q, d are presented in Appendix I.

F. The stability analysis

While the investigation of the homogeneous phase
structure can be conducted via the one-dimensional min-
imization of the homogeneous effective potential Ū w.r.t.
the variable σ̄, one cannot minimize the effective ac-
tion for an arbitrary inhomogeneous field configuration.
Typically, one either resorts to an ansatz for the field
modulation, as, e.g., in Refs. [9, 14, 23, 51, 62, 63],
or conduct a stability analysis, which is the approach
that we consider. Here, we only summarize the strat-
egy of this technique and the final quantities. We re-
fer to Ref. [25] for a detailed derivation and discussion
at the example of the (1 + 1)-dimensional GN model
and to Refs. [1, 46] for some further details of the sta-
bility analysis in noninteger dimensions. Other works
that relied on this or related techniques are for example
Refs. [13, 24, 25, 29, 33, 34, 36, 38, 39, 44, 64–66].

The strategy of this technique is to apply inhomoge-
neous perturbations to a homogeneous field configuration
and expand the effective action in powers of this per-
turbation. When applying this expansion at the global
homogeneous minimum, one finds that the first nonzero
correction is the second order term quadratic in the per-
turbations. A negative sign of its coefficient signals that
an inhomogeneous field configuration is energetically fa-
vored over the homogeneous expansion point. This coeffi-
cient is given by the bosonic two-point function Γ(2) with
the external, spatial bosonic momentum corresponding
to the momentum of the inhomogeneous perturbation.
On a strictly formal level, we are therefore simply search-
ing for spatial momenta q, where the two-point function
(23) takes negative values, if it is evaluated at the global
minimum of the potential (21).

Closely related to the IP is the so-called moat regime
[41, 43], which is characterized by a two-point function
featuring a minimum at a finite momentum. This is also
realized in an IP, where, however, the minimum of the

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.05

0.00

0.05

0.10

FIG. 1. The two-point function Γ(2) evaluated at the global
homogeneous minimum Σ̄(µ, T ) at µ/σ̄0 = 1.2 and d = 1.8
for various temperatures T/σ̄0 as a function of the bosonic
momentum q/σ̄0.

two-point function is necessarily negative. A simple cri-
terion for the detection of the moat regime is that the
wave-function renormalization (13) evaluated at the ho-
mogeneous minimum of the potential (21) assumes a neg-
ative value.3

III. RESULTS

The results as discussed in the following are an exten-
sion of the results presented in Ref. [1], which conducted
the stability analysis of the (d+1)-dimensional GN model
at T = 0. Therefore, we concentrate our presentation on
the effects by nonzero T and on the phase diagram as a
function of d as a whole. We refer to Ref. [1] for further
results, which analyze the d-dependence of the stability
analysis. Furthermore, we refer to Ref. [25] for a detailed
discussion of the results for d = 1 and to Refs. [13, 44]
for d = 2.

A. The two-point function

We start the discussion by providing two example plots
of the bosonic two-point function as a function of the

3 This criterion assumes that there are no minima in the two-point
function at finite momentum that are separated from the origin
by a local maximum. This situation would also correspond to
a moat regime, but blind to our criterion. Such a situation can
indeed occur in non-renormalizable (pseudo)scalar four-fermion
models like the 3 + 1-dimensional Nambu-Jona-Lasinio model,
when considering chemical potentials which are larger than the
regulator [46]. However, we are not aware that these models also
exhibit such properties in the fully renormalized limit and, thus,
the wave-function renormalization appears as an appropriate cri-
terion.
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FIG. 2. The two-point function Γ(2) evaluated at the global
homogeneous minimum Σ̄(µ, T ) at µ/σ̄0 = 1.2 and d = 2.5
for various temperatures T/σ̄0 as a function of the bosonic
momentum q/σ̄0.

bosonic momentum q. We chose µ/σ̄0 = 1.2 and various
temperatures for d = 1.8 in Fig. 1 and for d = 2.5 in
Fig. 2, because most of the relevant effects are visible
for these choices of µ and T and the two values of d are
representative for the behavior for 1 ≤ d < 2 and 2 < d
respectively.

We find that the non-analytic points at q = 2µ,
which are present at T = 0, see Ref. [1], are completely
smoothed out already at rather low temperatures. For
d < 2, the former nonanalytic point turns into a nontriv-
ial global minimum for some temperature range, while
at d > 2 no structure reminiscent of the cusp at T = 0
remains. In this way for d < 2 the instability towards an
IP signaled by a negative Γ(2) at T = 0 (blue curve in
Fig. 1) vanishes at some T > 0. A moat regime remains
signaled by the negative curvature of Γ(2) at q = 0 (red
curve in Fig. 1), which results in a nontrivial global pos-
itive minimum. For large temperatures we universally
find a convex shape with no remains of the IP or a moat
regime. Before we close the discussion, let us remark that
the T -order of the curves in Fig. 2 is correct: The offset
of the two-point function is the bosonic curvature mass,
which vanishes at the second order PT. At µ/σ̄0 = 1.4
one starts in the HBP at T/σ̄0 = 0 and crosses the PT
to the SP at approximately T/σ̄0 = 0.6 by increasing
T , see also Fig. 7. Of course, we could have plotted
the two-point function for d = 2.5 in a region, where the
global minimum of the potential is trivial, hence for some
µ/σ̄0 ≳ 1.5 similar to d = 1.8. This, however, would have
been even less interesting and we therefore opted for a
comparison of d = 1.8 and d = 2.5 at the same µ/σ̄0.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

FIG. 3. The wave-function renormalization Z evaluated at the
minimum of the potential for d = 1.8 for various temperatures
T as a function of the chemical potential µ. The dots mark the
chemical potential, where the spatially homogeneous global
minimum of the potential turns (non)trivial, see Fig. 7.

B. The wave-function renormalization

The second quantity of interest is the wave-function
renormalization Z, which serves as the indicator for the
moat regime. It is shown as a function of the chemical
potential evaluated at the global homogeneous minimum
Σ̄(µ, T ) at various temperatures for d = 1.8 in Fig. 3
and for d = 2.5 in Fig. 4. The two values of d are again
representative for the behavior for 1 ≤ d < 2 and 2 < d
respectively. The dots on the curves indicate the chemical
potential that corresponds to the homogeneous PT at the
given temperature.

For d < 2, one finds at T = 0 that Z is constant for
small µ/σ̄0 and jumps to a negative value at the homo-
geneous PT. The constant behavior is a consequence of
the Silver blaze property as [67–70], which is no longer
fulfilled for nonzero T . The jump vanishes exactly at
temperatures, where one does no longer find a first or-
der PT in µ-direction under the assumption of homoge-
neous condensation, i.e., at the temperature of the criti-
cal endpoint, see also Fig. 7. Above this temperature, one
finds that the chemical potential beyond which the wave-
function renormalization is negative moves to higher val-
ues. This is the behavior that we would expect based
on the results for d = 1 as presented in Ref. [25]. How-
ever, one finds a moat regime for all temperatures for
sufficiently large µ/σ̄0.

For d > 2, one finds at T = 0 that Z is constant
for small µ and diverges at µ = σ̄0, which is again a
manifestation of Silver Blaze. This nonanalytic behav-
ior is smoothened already for small temperatures and
one finds that Z smoothly changes with µ. However,
most importantly for the present investigation is, that
the wave-function renormalization is always positive for
arbitrary values of T and µ. This implies the total ab-
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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0.04

FIG. 4. The wave-function renormalization Z evaluated at
the minimum of the potential for d = 2.5 for various tem-
peratures T as a function of the chemical potential µ. The
(T = 0)-curve only stays finite due to finite computational
µ-resolution. The dots mark the chemical potential, where
the spatially homogeneous global minimum of the potential
turns (non)trivial, see Fig. 7.

sence of an IP and also the total absence of a moat regime
for d > 2.

For the sake of clearness, we also provide two density
plots of the wave-function renormalization in the µ, T -
plane for d = 1.8 and d = 2.5 in Figs. 5 and 6. (The
Figs. 3 and 4 are just sections of these density plots at
constant T .) Here, it is again clearly visible that there
is no moat regime and IP for d > 2, where Z is always
positive. For d = 1.8, however, we find a similar struc-
ture as for d = 1 (see Ref. [25]). The moat regime is
present in the region of the IP and SP below the straight
line that originates from µ = T = 0 and passes through
the critical point. This straight line is associated with
a vanishing quartic coefficient of the effective potential.
Hence, the coefficient in front of σ̄4 changes its sign along
this line as a function of µ and T , if one expands Eq. (21)
in σ̄, see Refs. [12, 71, 72]. It can be shown [71] that this
coefficient is proportional to the bosonic wave-function
renormalization (14), if the wave-function renormaliza-
tion z is evaluated at the trivial point σ̄/σ̄0 = 0. This is
the correct evaluation point only in the SP, which is how-
ever the important region for the moat regime. Hence,
the straight line separates the regime of negative and
positive Z in the SP.

C. The phase diagram

Next, we turn to the full phase diagram of the GN
model as a function of the spatial dimension d. Indeed,
already in Figs. 5 and 6 we basically plotted the phase
structure for d = 1.8 and d = 2.5, which served as exam-
ples for 1 ≤ d < 2 and d > 2. For 1 ≤ d < 2 one always

FIG. 5. The wave-function renormalization Z at d = 1.8 in
the (µ, T )-plane. The yellow curve corresponds to the second
order HBP-SP PT, the red curve to the first order HBP-SP
PT, the green curve to the second order IP-SP PT, and the
orange curve separates regions of positive and negative wave-
function renormalization.

FIG. 6. The wave-function renormalization Z at d = 2.5 in
the (µ, T )-plane. The yellow curve marks the second order
HBP-SP PT

finds a first order PT between HBP and SP at low tem-
peratures and a second order PT for large temperatures,
if one assumes spatially homogeneous condensation in the
entire µ, T -plane. On the other hand, for d ≥ 2 the PT
between the HBP and SP is always of second order (ex-
cept for d = 2 and T = 0 [17, 18]). This result was
already found in Ref. [11], where it was also observed
that the critical point moves down to T = 0 and that
the HBP enlarges, while going continuously from d = 1
to d = 2. However, when allowing for the formation of
spatially inhomogeneous condensates and searching for
these via the stability analysis, this picture is modified
for 1 ≤ d < 2, while nothing happens at d ≥ 2. Already
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at T = 0 it was found in Ref. [1] that the stability anal-
ysis reveals an IP for 1 ≤ d < 2. This phase extends to
µ/σ̄0 = ∞ for d = 1 at T = 0 but shrinks and has a
second order PT to the SP at some finite critical µ when
1 < d < 2. The PT between the HBP and the IP cannot
be resolved correctly with this method as is discussed in
detail in Refs. [25, 38]. Still, for d = 1 the analytic so-
lution is well-known [9, 73] and served as a test field for
the stability analysis in Ref. [25]. For a direct compari-
son, of the situation in 1 ≤ d < 2 and d > 2, we again
used d = 1.8 and d = 2.5 and plotted both phase dia-
grams together in Fig. 7. For reference, we also included
the spinodal lines (the lines that engulf the region in the
phase diagram, where the effective potential has a global
and local minimum/minima), plotted in blue.

However, to really observe the effect of dimensionality
on the IP and the moat regime, we prepared Figs. 8 and 9,
which clearly show that the phase diagram for 1 < d < 2
is similar to the phase diagram at d = 1 (except for the
finite extent of the IP at T = 0) and that d = 2 is the
strict upper bound for the existence of an IP. Still, it is re-
markable that the IP and the moat regime vanish rather
slowly as a function of d and an IP is still clearly visible
for our last plotted curve at d = 1.95. Nonetheless, this
behavior was actually expected, because the same slow
convergence was already observed for the critical point
in Ref. [11], which turns into the Lifshitz point, if one
allows for spatially inhomogeneous condensation. Let us
remark at this point that we did not prepare extra plots
for the situation at 2 < d < 3, since we do not find any
signal of spatially inhomogeneous condensation and/or a
moat regime for any T and µ (this was already observed
at T = 0 in Ref. [1]). Therefore, the situation of ex-
clusively spatially homogeneous condensation is already
fully covered by Ref. [11] with which our results agree.
We believe that the example of d = 2.5 is absolutely suf-
ficient within this work to understand the situation for
2 < d < 3.

We close this section by summarizing that we find moat
regimes and phases, where the condensate varies in space,
in the GN model for N → ∞ for 1 ≤ d < 2, while they
are absent for d ≥ 2.

IV. CONCLUSIONS AND OUTLOOK

Finally, we want to summarize our results, draw several
conclusions, and provide an outlook to possible follow-up
projects.

A. Summary

In the present work, we investigated the phase diagram
of the GN model at (non)zero fermion chemical potential
µ and (non)zero temperature T in the limit of an infinite
number of fermion species, N → ∞, as a function of the
spatial dimension d. We focused on 1 ≤ d < 3, where

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 7. The phase diagram at d = 1.8 (colored lines) and
d = 2.5 (black line) in the (µ, T )-plane. The plot shows for
d = 1.8: the second order PT (HBP ↔ SP) in yellow, first
order phase PT (HBP ↔ SP) red, the second order PT (IP ↔
SP) in green, the spinodal lines in blue, the line of vanishing
quartic coefficient of the potential (= vanishing z(σ̄ = 0)) in
orange. The black line is the second order PT (HBP ↔ SP)
for d = 2.5. Black dots mark the endpoints of the lines.
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FIG. 8. The boundaries of the HBP (assuming homoge-
neous condensation), the boundary IP to the SP, and the
moat regime, and the spinodal lines for spatial dimensions
d ∈ {1.0, 1.25, 1.5, 1.75, 2.0} in the (µ, T )-plane.

the model is renormalizable and solely depends on the
fixation of a single dimensionful parameter. We used the
vacuum fermion mass to fix the scales and worked in the
renormalized limit. The focus of this work is the detec-
tion and the dependence on the number of spatial dimen-
sions of the IPs and a possible moat regime. We found
that the well-known result for d = 1 [9, 10, 73, 74] gener-
alizes to 1 < d < 2 and one detects an instability of the
SP that signals the presence of an IP. Furthermore, one
always finds an even larger moat regime at large chemi-
cal potential. Both, the IP and the moat regime vanish,
when d approaches d = 2. For d ≥ 2 we do not find
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FIG. 9. The first and second order phase boundary of the
HBP-SP PT for a translational invariant bosonic field and
the phase boundary between the IP and SP in the (µ, T, d)-
space. Different colored lines correspond to different values of
d. (The HBP-IP PT is not plotted and not detectable within
our approach.)

any indication of an IP in terms of an instability. The
same applies to the moat regime. While, we cannot ex-
clude any kind of inhomogeneous condensation, which is
not detectable via a stability analysis, such a situation is,
however, highly unlikely to be present in this model. The
reason is that the PT between the SP and an IP is gen-
erally expected to be of second order, which enables the
use of this method (see Ref. [25] for a detailed discussion
about the range of validity of this method).

Apart from these novel results, we implicitly and ex-
plicitly confirmed various existing literature results for
the GN model for integer d = 1 [4, 8, 9, 23] and d = 2
[13, 14, 17, 18, 51] as well as some of the results from
Ref. [11] for continuous d.
We also provide several appendices with detailed ma-

terial that may be of general use for follow-up or related
projects.

B. Conclusion

Already in Ref. [1] we speculated about the relevance
of the number of spatial dimensions d on the formation
of spatially inhomogeneous ground states in the GN and
other models. Furthermore, Refs. [13, 14, 45] showed
that the effects of the presence of a finite regulator or
an effective UV/IR cutoff in terms of a spatial lattice or
a finite spatial box play an important role for the pres-
ence/absence of spatially inhomogeneous condensation.
Here, we want to continue this discussion and believe that
the present investigation sheds light on the previous find-
ings. Let us therefore briefly summarize the findings for
the GN model at N → ∞ up to this point: In d = 1 there
is an exact solution for the phase diagram and one finds

spatially inhomogeneous condensation [9, 73]. This fea-
ture seems to be robust atN → ∞ even in the presence of
a spatial lattice etc. [28, 75]. For d = 2 and for N → ∞
there is also an exact solution for the phase diagram, but
there are no IPs in the renormalized limit [13, 14]. How-
ever, in the presence of some UV or IR regulator/cutoff
one recovers an IP and a phase diagram that has some
similarities with the situation in d = 1 [13, 14]. The size
of the IP and the shape of the HBP thereby strongly de-
pends on the value of the regulator/cutoff and one finds
results that are closer to d = 1 or d = 2 depending on
the strength of the regularization. In d = 3 there are sev-
eral models that are similar to the GN model at N → ∞
which support the presence of spatially inhomogeneous
condensation, while the extent of the IP usually depends
on the cutoff/model parameters (renormalization like in
this work is not possible and the phase diagram usu-
ally depends on at least two parameters). If we compare
these results to our findings, we come to the conclusion
that spatially inhomogeneous condensation seems to be
a dimensional effect. For the studies discussed previously
and for the present study the situation is always the same:
As soon as the (effective) dimensionality of the model is
reduced to 1+∆d dimensions, where ∆d ∈ [0, 1), we find
an IP. However, as soon as there are two or more full-
featured spatial dimensions available, the IP vanishes.
In fact, it does not play a role if the number of spatial
dimensions is directly reduced via dimensional regular-
ization or as worked out in the present study using d as
a continuous parameter or even via an UV/IR cutoff as,
e.g., in Refs. [13, 14, 24, 45, 46, 63, 76]. In particular, the
latter case can be viewed as a reduction of a full dimen-
sion to a fractional/part of a dimension by restricting the
system to a finite spatial box (IR cutoff) or coarse lat-
tice (UV cutoff). A similar effect is observed in a recent
work Ref. [77], which analyzed the homogeneous phase
structure of the 2 + 1-dimensional GN model in a finite
volume. The finite volume causes the critical endpoint
to be located at a finite temperature, which is a feature
that is limited to d < 2 in the infinite volume.

These results also seem to be in line with the obser-
vation that one-dimensional ansatz functions for inho-
mogeneous condensates usually appear to be the most
promising and energetically favored solutions, if an IP is
present at all [36, 51, 63, 78].

Of course, at this point the immediate question that
arises is: What is the underlying nature and physical
principle behind this strong relation to a single spatial
dimension? So far, we were not able to come up with
a conclusive answer, but we hope that this work might
be an important step to start the search in the right di-
rection. The Peirls instability, which is the origin of the
IP in d = 1 [9, 21] and a one-dimensional effect that
cannot be directly generalized to higher dimensional sys-
tems, might be a good starting point in terms of a physics
understanding and correct interpretation.
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C. Outlook

Now, that we have mostly settled the situation for the
GN model at N → ∞ there are basically four main di-
rections to proceed.

1. One-dimensional ansatz functions

It was found in d = 1, that the stability analysis is not
able to detect the portion of the IP, where it is energeti-
cally favored, but the homogeneous expansion point Σ̄ is
finite [25]. As mentioned in Section III C, we expect the
same situation to occur for 1 < d < 2 in our calculations
with some part of the IP in the vicinity of the first or-
der PT between HBP and SP to be missing. A way to
improve on this would be to consider a one-dimensional
ansatz function embedded in the d-dimensional space.
Such a procedure was considered in (3 + 1)-dimensional
models in Ref. [63], which treats the perpendicular space
in such a general way that it can be generalized from
d⊥ = 2 to noninteger d⊥ = d − 1 dimensions. It is ex-
pected that the additional portion of the IP is not partic-
ularly large, because it quite limited in size in d = 1 and
likely shrinks even further with increasing d. Neverthe-
less, this step would yield the complete phase diagram of
this model.4

2. Finite regulator or finite volume

To solidify the concept of effective dimensionality, it
would be fascinating to carry out the present investiga-
tion not in the renormalized limit, but at a finite UV reg-
ulator. In this way, one could (a) connect smoothly to
the 3+1 model results by extending our analysis to d = 3
and (b) one could investigate the interplay between the
explicit number of spatial dimension d and the effective
dimensional reduction introduced by the UV regulator.
The latter could also be investigated by considering a fi-
nite volume, which introduces an IR regularization that
should also lead to an effective dimensional reduction.

3. Finite N

While the N → ∞ limit was essential to investigate the
analytic structure of the GN model for noninteger d, this
semi-classical limit is fairly different from the behavior
that we would expect of a QFT. The general observa-
tion is that bosonic quantum fluctuations as they would

4 This is based on the assumption that also in noninteger dimen-
sions 1-dimensional kink-antikink modulations motivated from
the solution of the GN model in d = 1 are the preferred shape of
the inhomogeneous condensate.

occur for finite N weaken ordered phases in such models
(see, e.g. Refs. [29, 72, 79–81]) and therefore likely do not
enable the emergence of an IP for d ≥ 2.

For d < 2, it is highly likely that the IP vanishes al-
together. The most pathological aspect of the N → ∞
limit is the fact that it circumvents the Coleman-Mermin-
Wagner-Hohenberg-Berezinskii theorem [28, 82–85] (or
related arguments for discrete symmetries [4, 22, 86–88])
in d = 1, which would normally forbid any type of con-
densation at a finite temperature. Accordingly, it was
found in Refs. [22, 72], that there is no symmetry break-
ing at finite T and N in d = 1. These effects likely
suppress any IP for d < 2, which all in all suggests that
these models do not exhibit an IP in any dimensions for
finite N .

Nevertheless, it might be interesting to consider this
model for finite N . While there is no condensation in
d = 1 at finite T , one finds an HBP in d = 2 [80]. Thus,
considering the GN model for noninteger d might be in-
structive to observe how the theory evolves from a sys-
tem without any symmetry breaking to the system with a
broken symmetry. A functional method that admits the
formulation of the theory for an arbitrary d such as the
Functional Renormalization Group [89–91] might be the
optimal framework for extending our analysis to finite N .

4. Consequences for higher dimensional models and QCD

Our analysis shows that four-fermion models with
scalar interaction channels in the limit of N → ∞ only
exhibit an IP for d < 2 or via an effective reduction of
the dimensionality of the system. This suggests that an
IP might exist in QCD only when the low-energy behav-
ior of QCD is not only described by scalar-pseudoscalar
four-fermion interactions, but by interactions that would
admit an IP for higher dimensions in other than the
scalar and pseudoscalar channel. This is most likely the
case at finite chemical potential, where it was found that
the relevant interaction channels are diquark interactions
[92, 93], which have not been systematically studied with
respect to the IP. Moreover, in this regime vector inter-
actions become relevant, which were found to mix with
scalar modes at finite densities and to play an important
role in the homogeneous phase transition near the crit-
ical endpoint in QCD [94]. Such a mixing might even
induce an instability that results in a spatial modulation
of the condensates [95, 96]. Another mechanism that
could cause the existence of an IP in QCD is that it has
in fact a lower effective dimension, e.g., caused by ad-
ditional strong magnetic fields. While these are aspects
that are yet to be understood, they certainly imply im-
portant questions that should be answered in an effort
to investigate IPs and the moat regime in QCD. How-
ever, there are also indications that a possible IP would
be completely destabilized by the Goldstone bosons from
chiral symmetry breaking [97].



13

ACKNOWLEDGMENTS

A. K. and L. P. thank J. Braun, H. Gies, G. Markó,
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Appendix A: Conventions

a. Fourier transformations

In this work, we use the following conventions for
Fourier transformations. For the bosonic field we have

φ(τ, x⃗ ) = (A1)

= T

∞∑
n=−∞

∫ ∞

−∞

ddp

(2π)d
φ̃(ωn, p⃗ ) e

+i(ωnτ+p⃗·x⃗ ) ,

φ̃(ωn, p⃗ ) = (A2)

=

∫ 1
T

0

dτ

∫ ∞

−∞

ddx

(2π)d
φ(τ, x⃗ ) e−i(ωnτ+p⃗·x⃗ ) ,

while the fermion fields are Fourier-transformed accord-
ing to

ψ(τ, x⃗ ) = (A3)

= T

∞∑
n=−∞

∫ ∞

−∞

ddp

(2π)d
ψ̃(νn, p⃗ ) e

+i(νnτ+p⃗·x⃗ ) ,

ψ̃(νn, p⃗ ) = (A4)

=

∫ 1
T

0

dτ

∫ ∞

−∞

ddx

(2π)d
ψ(τ, x⃗ ) e−i(νnτ+p⃗·x⃗ ) ,

ψ̄(τ, x⃗ ) = (A5)

= T

∞∑
n=−∞

∫ ∞

−∞

ddp

(2π)d
˜̄ψ(νn, p⃗ ) e

−i(νnτ+p⃗·x⃗ ) ,

˜̄ψ(νn, p⃗ ) = (A6)

=

∫ 1
T

0

dτ

∫ ∞

−∞

ddx

(2π)d
ψ̄(τ, x⃗ ) e+i(νnτ+p⃗·x⃗ ) .

Hereby, the corresponding Matsubara frequencies for the
discretized energies are

ωn = 2πTn , νn = 2πT
(
n+ 1

2

)
, (A7)

which stem from the (anti-)periodic boundary conditions
in τ -direction at τ = 1

T for (fermions) bosons.

b. Fermi-Dirac distribution function

We define the Fermi-Dirac distribution function as fol-
lows [99, 100]

nf(x) =
1

ex+1 = 1
2

[
1− tanh

(
x
2

)]
. (A8)

Especially for the numeric implementation we exclusively
use the representation in terms of tanh. In addition, we
present two useful identities, which are also part of the
derivation of the explicit analytic expressions in this work
as well as the numeric implementation,

n′f(x) = n2f (x)− nf(x) = − 1
4 cosh2( x

2 )
, (A9)

n′′f (x) = 2n3f (x)− 3n2f (x) + nf(x) =
sinh( x

2 )

4 cosh3( x
2 )
. (A10)

“Primes” denote derivatives w.r.t. x.
For the derivation of the zero-temperature limits of

some formulae of this work, we repeatedly need the fol-
lowing limits.

lim
T→0

nf
(E±|µ|

T

)
=

0 ,

Θ
(

|µ|
E − 1

)
.

(A11)

Here, E is the energy, µ the chemical potential, and Θ is
the Heaviside function. In addition,

lim
T→0

E
T

[
n2f
(
E±µ
T

)
− nf

(
E±µ
T

)] (A9)
= (A12)

= lim
T→0

− E
4T cosh2(E±µ

2T )
=

= − E
|µ| δ

(
E
|µ| ± sgn(µ)

)
,

where δ is the Dirac-delta distribution.
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c. Abbreviations and definitions

For the sake of a compact notation and better read-
ability, we define several quantities. First, we introduce
the fermion energy/dispersion relation

E ≡
√
p2 + σ̄2 , (A13)

where σ̄ is the background field and fermion mass. For
calculations at nonzero chemical potential, in particular
at T = 0, it is useful to define the reduced chemical
potential,

µ̄ ≡
√
µ2 − σ̄2 , (A14)

which reduces the chemical potential by the fermion
mass. In the presence of an external momentum with
absolute value q the shifted fermion energy/dispersion
relation is defined by

Ẽ ≡
√
p2 + ∆̃2 . (A15)

Here,

∆̃ ≡
√
σ̄2 + q2 x (1− x) (A16)

is the shifted squared fermion mass and x ∈ [0, 1] the
Feynman parameter. For σ̄ = 0, this reduces to a shifted
momentum

p̃ =
√
p2 + q2x(1− x). (A17)

Finally, we also need the reduced and shifted chemical
potential,

µ̃ ≡
√
µ2 − ∆̃2 . (A18)

Appendix B: Formulary

In this appendix we present a collection of useful for-
mulae, integral evaluations, and expansions that are re-
peatedly used in our calculations.

1. Spherical symmetric integration

Most of the momentum integrals in this work are of
the hyperspherical type. The integrand is usually only
a function of the absolute value of the momentum such
that the angular integration can be performed,∫

ddp

(2π)d
f(|p⃗ |) = Sd

(2π)d

∫ ∞

0

dp pd−1 f(p) . (B1)

Here, we introduced

Sd = 2π
d
2

Γ( d
2 )
, (B2)

which is the surface of the d-dimensional sphere.

2. Transcendental functions

A lot of the explicit formulae for the effective potential,
bosonic wave-function renormalization, and the bosonic
two-point function can be expressed in terms of known
functions. For the sake of a self-contained presentation,
we provide these functions with links to references for
further reading in this appendix. We hope that this re-
duces unnecessary look ups and literature searches to a
minimum for the reader.

a. Gamma functions

The gamma function is given in terms of its inte-
gral representation by the following expression [101,
Eq. 6.1.1],

Γ(z) =

∫ ∞

0

dt tz−1 e−t . (B3)

It fulfills the defining relation,

Γ(z + 1) = z Γ(z) . (B4)

For this work, we make use of the Laurent series repre-
sentation [102, Eq. 5.7.1]

Γ(z) = 1
z − γ+O(z) , (B5)

which we use for an expansion about z = 0.
The polygamma function with integer index is defined

in terms of derivatives of the conventional gamma func-
tion. However, there is also an integral representation
[101, Eq. 6.4.1].

ψ(n)(s) = dn

dsn ψ(s) =
dn+1

dsn+1 ln Γ(s) = (B6)

= (−1)n+1

∫ ∞

0

dt
tn e−st

1− e−t

b. Riemann zeta function

Some formulae of this work can be expressed in terms
of the Riemann zeta function [101, Eq. 23.2.7],

ζ(s) =
1

Γ(s)

∫ ∞

0

dt
ts−1

et − 1
. Re(s) > 1 . (B7)

c. Dirichlet eta function

We also define the Dirichlet eta function via the Rie-
mann zeta function [101, Eq. 23.2.19] and in terms of an
integral,

η(s) =
(
1− 21−s

)
ζ(s) =

1

Γ(s)

∫ ∞

0

dt
ts−1

et + 1
. (B8)
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d. Polylogarithm

It is well-known that some integrals over Bose-Einstein
or Fermi-Dirac distribution functions can be expressed
in terms of (incomplete) polylogarithms. The poly-
logarithm is defined via the following integral [102,
Eq. 25.12.10],

Lis(z) =
1

Γ(s)

∫ ∞

0

dt
ts−1

et/z − 1
, (B9)

which reduces to the Dirichlet eta function (B8) for z =
−1,

Lis(−1) = −η(s) . (B10)

A special definition, which is used in this work is the
symmetrized derivative of the polylogarithm w.r.t. its
index s,

DLi2n(y) = (B11)

=
[

∂
∂s Lis

(
− ey

)
+ ∂

∂s Lis
(
− e−y

)]
s=2n

=

= − δ0,n
(
log(2π) + γ

)
+

+ (−1)1−n (2π)2n Re
(
ψ(−2n)

(
1
2 + i

2π y
))
.

Here, γ is the Euler-Mascheroni constant, ψ(n)(s) is the
polygamma function (B6), and the last equality holds for
2n ≤ 0. It turned out that using the last relation is more
stable and accurate when it comes to numeric evaluation
[25, 72].

e. Hypergeometric Function

The hypergeometric function is defined by [101,
Eq. 15.1.1]

2F1(α, β; γ; z) =
Γ(γ)

Γ(α) Γ(β)

∞∑
n=0

Γ(α+n) Γ(β+n)
Γ(γ+n)

zn

n! , (B12)

where |z| < 1. The integral representation (and analytic
continuation of Eq. (B12)) reads [101, Eq. 15.3.1],

2F1(α, β; γ; z) = (B13)

= Γ(γ)
Γ(β) Γ(γ−β)

∫ 1

0

dt tβ−1 (1− t)γ−β−1 (1− tz)−α .

This formula is valid as long as Re(γ) > Re(β) > 0.
A particular useful (linear) transformation formula is

[101, Eq. 15.3.7]

2F1(α, β; γ; z) = (B14)

= Γ(γ) Γ(β−α)
Γ(β) Γ(γ−α) (−z)

−α
2F1

(
α, 1− γ + α; 1− β + α; 1

z

)
+

+ Γ(γ) Γ(α−β)
Γ(α) Γ(γ−β) (−z)

−β
2F1

(
β, 1− γ + β; 1− α+ β; 1

z

)
and is valid for |arg(−z)| < π. It can be used to expand
the hypergeometric function for large |z|.

3. Integrals and an expansion

Next, we present two important integrals for this work
as well as an expansion that is used several times.

a. First special integral

Repeatedly, we are confronted with integrals that are
of the type∫ Λ

0

dp pd−1 1
En = (B15)

=

∫ Λ

0

dp pd−1 (p2 + ∆2)−
n
2

(B16)
=

= Λd

|∆|n
1
2

∫ 1

0

dt t
d−2
2

(
1 + t Λ2

∆2

)−n
2 =

= Λd

|∆|n
1
2

∫ 1

0

dt t
d
2−1

(
1− t

) d+2
2 − d

2−1 (
1 + t Λ2

∆2

)−n
2

(B13)
=

= Λd

|∆|n
1
2

Γ( d
2 ) Γ(

d+2
2 − d

2 )

Γ( d+2
2 ) 2F1

(
n
2 ,

d
2 ;

d+2
2 ;−Λ2

∆2

) (B4)
=

= Λd

|∆|n
1
d 2F1

(
n
2 ,

d
2 ;

d+2
2 ;−Λ2

∆2

)
.

We used the substitution

tΛ2 = p2 , dtΛ2 = 2p dp , (B16)

as well as Eqs. (B4) and (B13).

b. Second special integral

Another integral that appears several times during our
calculations is∫ Λ

0

dp pa 1
En δ

(
E
|µ| − 1

)
= (B17)

=

∫ Λ

0

dp pa 1
En

1
|f ′(p0)| δ(p− p0) =

= µa−1 |µ|2−n .
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We used that E2 = p2 + ∆2 and defined

µ2 = µ2 − ∆2 . (B18)

The integral was evaluated using

δ
(
f(x)

)
=
∑
i

1
|f ′(xi)| δ(x− xi) , (B19)

where xi are the roots of f(x). For µ2 > ∆2, thus µ > 0,

p0 =
√
µ2 − ∆2 = µ (B20)

is the zero of

f = E
|µ| − 1 , (B21)

while

f ′ = p
|µ|E . (B22)

Evaluating pa, 1
En , and f ′ at p0 one obtains the above

results.

4. Expansion

At several points in this work, e.g., for sending the
UV cutoff Λ to infinity or to evaluate certain expres-
sions at the symmetric point σ̄ → 0, we need an asymp-
totic expansion formula for the hypergeometric function

2F1(α, β; γ; z) for large |z|. This formula is found by in-
serting the series representation (B12) in the linear trans-
formation formula (B14). In particular, we find,

lim
Λ2

∆2 →∞
2F1

(
n
2 ,

d
2 ;

d+2
2 ;−Λ2

∆2

)
= (B23)

= d
[∣∣∆

Λ

∣∣d Γ( d+2
2 ) Γ(n−d

2 )

dΓ(n
2 ) +

∣∣∆
Λ

∣∣n ( 1
d−n + 1

2−d+n
n
2

∆2

Λ2 +

− 1
8−2d+2n

n
2

(
n
2 + 1

)
∆4

Λ4 +O
(
∆6

Λ6

)]
.

Appendix C: Evaluation of l0(σ̄, µ, T, d)

In this appendix we provide details on the l0(σ̄, µ, T, d)-
Matsubara sum and integral which occurs in the expres-
sion for the effective potential (10). It is defined as follows

l0(σ̄, µ, T, d) ≡ (C1)

≡
∫

ddp

(2π)d
1
β

∞∑
n=−∞

ln
(
β2
[
(νn − iµ)2 + E2

])
=

=

∫
ddp

(2π)d
(
E + T ln

[
1 + exp

(
− E+µ

T

)]
+

+ T ln
[
1 + exp

(
− E−µ

T

)])
+ const. .

Here, νn denotes the fermionic Matsubara frequencies
(A7) and E is the fermion energy (A13). We used con-
tour integration to evaluate the Matsubara sum. The
infinite constant term can be ignored in what follows. It
corresponds to an arbitrary normalization of the effective
potential.

1. For T = 0

The zero temperature limit of Eq. (C1)

l0(σ̄, µ, 0, d) = (C2)

= Sd

(2π)d

∫ ∞

0

dp pd−1
[
E − (E − |µ|)Θ

(
|µ|
E − 1

)]
,

where we used Eq. (B1) to simplify the momentum in-
tegration with hyperspherical coordinates. Regularizing
the UV divergence with a sharp UV cutoff and splitting
the integral in µ-(in)-dependent parts one obtains with
Eq. (B15),

lΛ0 (σ̄, µ, 0, d) = (C3)

= Sd

(2π)d

(∫ Λ

0

dp pd−1E +

−Θ
(
µ̄2

σ̄2

) ∫ µ̄

0

dp pd−1 (E − |µ|)
)

=

= Sd

(2π)d

(
|σ̄|d+1

d

[∣∣Λ
σ̄

∣∣d
2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;−Λ2

σ̄2

)
+

−Θ
(
µ̄2

σ̄2

) ∣∣ µ̄
σ̄

∣∣d (
2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
−
∣∣µ
σ̄

∣∣)]) .
Here, we used the Def. (A14) to facilitate a compact no-
tation.

2. For T ̸= 0

In general, for nonzero T we can still evaluate the vac-
uum contribution in Eq. (C1) and find with the (µ = 0)-
part of Eq. (C3),

lΛ0 (σ̄, µ, T, d) = (C4)

= Sd

(2π)d

∫ Λ

0

dp pd−1
(
E + T ln

[
1 + exp

(
− E+µ

T

)]
+
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+ T ln
[
1 + exp

(
− E−µ

T

)])
=

= Sd

(2π)d

[
|σ̄|d+1

d

∣∣Λ
σ̄

∣∣d
2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;−Λ2

σ̄2

)
+

+

∫ Λ

0

dp pd−1
(
T ln

[
1 + exp

(
− E+µ

T

)]
+

+ T ln
[
1 + exp

(
− E−µ

T

)])]
.

Further evaluation of Eqs. (C3) and (C4) is performed
after renormalization of the effective potential in Ap-
pendix G.

Appendix D: Evaluation of l1(σ̄, µ, T, d)

In this appendix, we present explicit expressions for the
l1(σ̄, µ, T, d)-Matsubara sum and integral which is part of
the gap equation (11), the regularized effective potential
(19), and the (regularized) bosonic two-point function
Eqs. (12) and (22). It is defined and evaluated as follows

l1(σ̄, µ, T, d) ≡ (D1)

≡
∫

ddp

(2π)d
1
β

∞∑
n=−∞

1

(νn − iµ)2 + E2
=

=

∫
ddp

(2π)d
1
2E

[
1− nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
=

=

∫
ddp

(2π)d
1
2E

[
1
2 tanh

(
E+µ
2T

)
+ 1

2 tanh
(
E−µ
2T

)]
.

Again, νn are the fermionic Matsubara frequencies (A7)
and E is the fermion energy (A13). Additionally, we
introduced the Fermi-Dirac distribution (A8), while it
turned out that the tanh-representation seems to be more
stable and accurate for numeric computations.

1. For T = 0

In the zero-temperature limit Eq. (D1) reduces to

l1(σ̄, µ, 0, d) = (D2)

= Sd

(2π)d

∫ ∞

0

dp pd−1 1
2E

[
1−Θ

(
|µ|
E − 1

)]
where we made use of hyperspherical coordinates in mo-
mentum space, see Eq. (B1). Splitting µ-(in)-dependent

terms, using the abbreviation (A14), and introducing the
UV cutoff Λ one can make use of Eq. (B15) to arrive at

lΛ1 (σ̄, µ, 0, d) = (D3)

= Sd

(2π)d
1
2

(∫ Λ

0

dp pd−1 1
E −Θ

(
µ̄2

σ̄2

) ∫ |µ̄|

0

dp pd−1 1
E

)
=

= Sd

(2π)d
1
2

(
|σ̄|d−1

d

[∣∣Λ
σ̄

∣∣d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;−Λ2

σ̄2

)
+

−Θ
(
µ̄2

σ̄2

) ∣∣ µ̄
σ̄

∣∣d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)])
.

2. For T ̸= 0

Again, for T ̸= 0 we solely evaluate the vacuum con-
tribution of Eq. (D1) and again use the previous result
Eq. (D3) for µ = 0. For the regularized expression one
finds,

lΛ1 (σ̄, µ, T, d) = (D4)

= Sd

(2π)d

∫ Λ

0

dp pd−1 1
2E

[
1− nf

(
E+µ
T

)
− nf

(
E−µ
T

)]
=

= Sd

(2π)d
1
2

(
1

d|σ̄| Λ
d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;−Λ2

σ̄2

)
+

−
∫ Λ

0

dp pd−1 1
E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)])
.

Further evaluation of Eqs. (D3) and (D4) is postponed
to Appendices G to I.

Appendix E: Evaluation of l2(σ̄, µ, T, q, d)

In the expression for the bosonic two-point function
(12) contains a q⃗-dependent part. Here, we show some
simplifications for this contribution that reads

l2(σ̄, µ, T, q, d) = (E1)

=

∫
ddp

(2π)d
1
β

∞∑
n=−∞

1

(νn − iµ)2 + p⃗ 2 + σ̄2
×

× 1

(νn − iµ)2 + (p⃗+ q⃗ )2 + σ̄2
.

We already used q = |q⃗ | as an argument of l2 instead of q⃗.
This becomes clear in the following lines. In order to get
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rid of the nasty vectorial q⃗-shift in the second propagator
we use the following Feynman parameter integral

1

a1 a2
=

∫ 1

0

dx
1

[a1 x+ a2 (1− x)]2
. (E2)

Applying this to Eq. (E1) one obtains,

l2(σ̄, µ, T, q, d) = (E3)

=

∫
ddp

(2π)d
1
β

∞∑
n=−∞

∫ 1

0

dx×

× 1

[(νn − iµ)2 + (p⃗+ q⃗ )2 x+ p⃗ 2 (1− x) + σ̄2]2
=

=

∫ 1

0

dx

∫
ddp

(2π)d
1
β

∞∑
n=−∞

×

× 1

[(νn − iµ)2 + (p⃗+ q⃗ x)2 + q⃗ 2 x (1− x) + σ̄2]2
=

=

∫ 1

0

dx

∫
ddp

(2π)d
1
β

∞∑
n=−∞

×

× 1

[(νn − iµ)2 + p⃗ 2 + q⃗ 2 x (1− x) + σ̄2]2
.

We exchanged the order of integration, substituted p⃗ ′ =
p⃗ + q⃗ x, and immediately returned to the “unprimed”
notation for p⃗. Using the Defs. (A8), (A9), (A15), (A16),
and (A18),

l2(σ̄, µ, T, q, d) = (E4)

=

∫ 1

0

dx

∫
ddp

(2π)d
1

4Ẽ3

[
1− nf

(
Ẽ+µ
T

)
+

+ Ẽ
T

[
n2f
(
Ẽ+µ
T

)
− nf

(
Ẽ+µ
T

)]
+ (µ↔ −µ)

]
=

=

∫ 1

0

dx

∫
ddp

(2π)d
1

4Ẽ3

(
1
2 tanh

(
Ẽ+µ
2T

)
+

− Ẽ
T

1

4 cosh2( Ẽ+µ
2T )

+ (µ↔ −µ)
)
.

Thus, the dependence on q⃗ is actually a dependence on
its absolute value q.

1. For: T = 0

For T = 0 Eq. (E1) further reduces to

l2(σ̄, µ, 0, q, d) = (E5)

= Sd

(2π)d
1
4

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
Ẽ3

[
1−Θ

(
|µ|
Ẽ

− 1
)
+

− Ẽ
|µ|

[
δ
(

Ẽ
|µ| + 1

)
+ δ
(

Ẽ
|µ| − 1

)]]
,

where we already used Eq. (B1), the hyperspherical co-
ordinates for the momentum integration. UV regulariza-
tion of this expression is not needed for d < 3. However,
it can be useful to (1.) introduce an UV cutoff Λ, (2.) use
Eq. (B15), and (3.) study Λ → ∞ with Eq. (B23). Split-
ting the integration into µ-(in)-dependent parts leads to

l2(σ̄, µ, 0, q, d) = (E6)

= Sd

(2π)d
1
4

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
Ẽ3

+

−Θ
(
µ̃2

∆̃2

) ∫ µ̃

0

dp pd−1 1
Ẽ3

+

− 1
|µ|

∫ ∞

0

dp pd−1 1
Ẽ2

δ
(

Ẽ
|µ| − 1

)]
=

= Sd

(2π)d
1
4

∫ 1

0

dx
[
∆̃d−3 Γ( 3−d

2 ) Γ( d
2 )√

π
+

−Θ
(

µ̃2

∆̃2

)(
µ̃d

∆̃3

1
d 2F1

(
3
2 ,

d
2 ;

d+2
2 ;− µ̃2

∆̃2

)
+ µ̃d−2

|µ|

)]
.

For the µ-dependent medium part we used Eqs. (B15)
and (B17).

2. For: T ̸= 0

Of course, we also provide a simplification of Eq. (E1)
for T ̸= 0 by using the vacuum contribution of the pre-
vious result (E6),

l2(σ̄, µ, T, q, d) = (E7)

= Sd

(2π)d
1
4

∫ 1

0

dx

(
∆̃d−3 Γ( 3−d

2 ) Γ( d
2 )√

π
+

−
∫ ∞

0

dp pd−1 1
Ẽ3

[
nf
(
Ẽ+µ
T

)
+

− Ẽ
T

[
n2f
(
Ẽ+µ
T

)
− nf

(
Ẽ+µ
T

)]
+ (µ↔ −µ)

])
.

Appendix F: Evaluation of l3(σ̄, µ, T, d)

In complete analogy to the previous appendices,
we present an appendix for the partial evaluation of
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l3(σ̄, µ, T, d) that is part of Eq. (14) for the bosonic wave-
function renormalization. In terms of the (un)evaluated
Matsubara sum and momentum integral it reads

l3(σ̄, µ, T, d) = (F1)

=

∫
ddp

(2π)d
1
β

∞∑
n=−∞

1

[(νn − iµ)2 + E2]3
=

=

∫
ddp

(2π)d
3

16E5

[
1− nf

(
E+µ
T

)
+

+ E
T

[
n2f
(
E+µ
T

)
− nf

(
E+µ
T

)]
+

−
(
E
T

)2 [ 2
3 n

3
f

(
E+µ
T

)
− n2f

(
E+µ
T

)
+ 1

3 nf
(
E+µ
T

)]
+

+ (µ↔ −µ)
]
=

=

∫
ddp

(2π)d
3

16E5

[
1
2 tanh

(
E+µ
2T

)
− E

T
1

4 cosh2(E+µ
2T )

+

−
(
E
T

)2 sinh(E+µ
2T )

12 cosh3(E+µ
2T )

+ (µ↔ −µ)
]
.

In this expression we used Eqs. (A7) to (A10) and (A13).

1. For T = 0

In the zero-temperature limit Eq. (F1) turns into

l3(σ̄, µ, 0, d) = (F2)

= Sd

(2π)d

∫ ∞

0

dp pd−1 3
16E5

[
1−Θ

(
|µ|
E − 1

)
+

− E
|µ|

[
δ
(

E
|µ| + 1

)
+ δ
(

E
|µ| − 1

)]
+

+ 1
3

(
E
µ

)2 [
δ′
(

E
|µ| + 1

)
+ δ′

(
E
|µ| − 1

)]]
,

where we already made use of hyperspherical coordi-
nates via Eq. (B1). Again, it is not necessary though
still useful to introduce a UV cutoff regulator Λ to use
Eq. (B15) also for the vacuum contribution. Afterwards,
the cutoff can be removed with the help of Eq. (B23).
Splitting and evaluating the integrals in µ-(in)-dependent
contributions, one finds, using integration by parts and
Eqs. (B15) and (B17),

l3(σ̄, µ, 0, d) = (F3)

= Sd

(2π)d
3
16

(∫ ∞

0

dp pd−1 1
E5 −Θ

(
µ̄2

σ̄2

) ∫ µ̄

0

dp pd−1 1
E5 +

− d−2
3|µ|

∫ ∞

0

dp pd−3 1
E2 δ

(
E
|µ| − 1

)
+

− 1
3|µ|

∫ ∞

0

dp pd−1 1
E4 δ

(
E
|µ| − 1

)]
=

= Sd

(2π)d
3
16

[
2
3 |σ̄|

d−5 Γ( 5−d
2 ) Γ( d

2 )√
π

+

−Θ
(

µ̄2

σ̄2

)(
µ̄d

|σ̄|5
1
d 2F1

(
5
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
+

+ d−2
3|µ| µ̄

d−4 + 1
3|µ| µ̄

d−2 µ−2
)]
.

Again, we used the compact notation Eq. (A14).

2. For T ̸= 0

At nonzero temperature we can use the vacuum part
of Eq. (F3) to simplify Eq. (F1),

l3(σ̄, µ, T, d) = (F4)

= Sd

(2π)d
3
16

(
2
3 |σ̄|

d−5 Γ( 5−d
2 ) Γ( d

2 )√
π

+

−
∫ ∞

0

dp pd−1 1
E5

[
nf
(
E+µ
T

)
+

− E
T

[
n2f
(
E+µ
T

)
− nf

(
E+µ
T

)]
+

+
(
E
T

)2 [ 2
3 n

3
f

(
E+µ
T

)
− n2f

(
E+µ
T

)
+ 1

3 nf
(
E+µ
T

)]
+

+ (µ↔ −µ)
])

.

Appendix G: The effective potential

In this appendix we turn to the detailed evaluation of
the effective potential Eq. (10). To this end, we calculate
the renormalized limits of Eq. (19), where we remove the
UV cutoff by sending Λ → ∞. Explicit expressions for
σ̄, µ, T being zero or nonzero as well as the limiting
cases of d = 1 and d = 2 are provided. For the sake of
the conciseness, we collected links to every special case
in Table I and subdivide the appendix according to the
table.
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TABLE I. Quick links to the equations for explicit evaluation
of the effective potential U(σ̄, µ, T, d). The formulae are sim-
plified in terms of known functions as far as possible.

T σ̄ µ 1 ≤ d < 3 d = 1 d = 2

̸= 0

̸= 0
̸= 0 Eq. (G2) Eq. (G3) Eq. (G4)

= 0 Eq. (G5) Eq. (G6) Eq. (G7)

= 0
̸= 0 Eq. (G8) Eq. (G9) Eq. (G10)

= 0 Eq. (G11) Eq. (G12) Eq. (G13)

= 0

̸= 0
̸= 0 Eq. (G15) Eq. (G16) Eq. (G17)

= 0 Eq. (G18) Eq. (G19) Eq. (G20)

= 0
̸= 0 Eq. (G21) Eq. (G22) Eq. (G23)

= 0 Eq. (G24) Eq. (G24) Eq. (G24)

1. T ̸= 0

We start with the T ̸= 0 cases.

a. T ̸= 0, σ̄ ̸= 0

Considering σ̄ ̸= 0 there are two cases to be distin-
guished.

a. T ̸= 0, σ̄ ̸= 0, µ ̸= 0 Inserting Eqs. (C4) and (D4)
in Eq. (19) one finds for the regularized potential

UΛ(σ̄, µ, T, d) = (G1)

=
dγ

2

[
σ̄2 lΛ1 (σ̄0, 0, 0, d)− lΛ0 (σ̄, µ, T, d)

]
=

=
dγ

2
Sd

(2π)d

[
σ̄2 1

2
|σ̄0|d−1

d

∣∣ Λ
σ̄0

∣∣d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;−Λ2

σ̄2
0

)
+

− |σ̄|d+1

d

∣∣Λ
σ̄

∣∣d
2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;−Λ2

σ̄2

)
+

−
∫ Λ

0

dp pd−1
(
T ln

[
1 + exp

(
− E+µ

T

)]
+

+ (µ→ −µ)
)
+ const.

]
=

=
dγ

2
Sd

(2π)d

[
|σ̄|
d Λd

(
1
2

|σ̄|
σ̄0

2F1

(
1
2 ,

d
2 ;

d+2
2 ;−Λ2

σ̄2
0

)
+

− 2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;−Λ2

σ̄2

))
+

−
∫ Λ

0

dp pd−1
(
T ln

[
1 + exp

(
− E+µ

T

)]
+

+ (µ→ −µ)
)]
.

Using the expansion of the hypergeometric function
(B23) we obtain the renormalized result by sending Λ →
∞,

Ū(σ̄, µ, T, d) = (G2)

=
dγ

2
Sd

(2π)d

[
Γ( d

2 )Γ(−
d+1
2 )(d+1)

4
√
π

(
1

d+1 |σ̄|
d+1 − 1

2 σ̄
d−1
0 σ̄2

)
+

− T

∫ ∞

0

dp pd−1 ln
[
1 + exp

(
− E+µ

T

)]
+

+ (µ→ −µ)
]
.

We remark that sending Λ → ∞ is only possible for d <
3, while for d ≥ 3 there are divergent σ̄-dependent terms.
Carefully taking the limit d→ 1, we recover the result

[72]

Ū(σ̄, µ, T, 1) = (G3)

=
dγ

2π

[
σ̄2

4

(
ln
(
σ̄2

σ̄2
0

)
− 1
)
+

− T

∫ ∞

0

dp ln
[
1 + exp

(
− E+µ

T

)]
+ (µ→ −µ)

)]
.

Also for d → 2 one recovers a well-known literature re-
sults [103].

Ū(σ̄, µ, T, 2) = (G4)

=
dγ

4π

[
σ̄2
(

|σ̄|
3 − |σ̄0|

2

)
+ T 2 |σ̄|Li2

(
− exp

(
− |σ̄|+µ

T

))
+

+ T 3 Li3
(
− exp

(
− |σ̄|+µ

T

))
+ (µ→ −µ)

]
.

b. T ̸= 0, σ̄ ̸= 0, µ = 0 Yet, it is straightforward
to evaluate the previous expressions for µ = 0. From
Eq. (G2) we find

Ū(σ̄, 0, T, d) = (G5)

=
dγ

2
Sd

(2π)d

[
Γ( d

2 )Γ(−
d+1
2 )(d+1)

4
√
π

(
1

d+1 |σ̄|
d+1 − 1

2 σ̄
d−1
0 σ̄2

)
+

− 2T

∫ ∞

0

dp pd−1 ln
[
1 + exp

(
− E

T

)]]
,

while for d→ 1 we can simply set µ = 0 in Eq. (G3),

Ū(σ̄, 0, T, 1) =
dγ

2π

[
σ̄2

4

(
ln
(
σ̄2

σ̄2
0

)
− 1
)
+ (G6)
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− 2

∫ ∞

0

dp T ln
[
1 + exp

(
− E

T

)]]
.

Similarly, for d → 2 and µ = 0 we can use Eq. (G4) and
find

Ū(σ̄, µ, T, 2) = (G7)

=
dγ

4π

[
σ̄2
(

|σ̄|
3 − |σ̄0|

2

)
+ 2T 2 |σ̄|Li2

(
− exp

(
− |σ̄|

T

))
+

+ 2T 3 Li3
(
− exp

(
− |σ̄|

T

))]
.

b. T ̸= 0, σ̄ = 0

Next, we turn to the cases where σ̄ = 0, hence, the
potential at the origin of field space.

a. T ̸= 0, σ̄ = 0, µ ̸= 0 From Eq. (G2) for σ̄ → 0 we
can directly infer

Ū(0, µ, T, d) = (G8)

= − dγ

2
Sd

(2π)d
T

∫ ∞

0

dp pd−1 ln
[
1 + exp

(
− p+µ

T

)]
+

+ (µ→ −µ) .

Similarly, the limit σ̄ → 0 of Eq. (G3) for d = 1 is well
defined and the remaining integral can be evaluated an-
alytically [22],

Ū(0, µ, T, 1) = (G9)

= − dγ

2π

∫ ∞

0

dp
[
T ln

[
1 + exp

(
− p+µ

T

)]
+

+ (µ→ −µ)
]
=

= − dγ

2π

(
π2

6 T 2 + 1
2 µ

2
)
.

For d = 2 one arrives at

Ū(0, µ, T, 2) = (G10)

=
dγ

4π T
3
[
Li3
(
− exp

(
− µ

T

))
+ (µ→ −µ)

]
by taking the σ̄ → 0 limit of Eq. (G4).

b. T ̸= 0, σ̄ = 0, µ = 0 It is straight forward to also
set µ = 0 in the previous formulae. For general 1 ≤ d < 3
we find

Ū(0, 0, T, d) = (G11)

= − dγ

2
Sd

(2π)d
2

∫ ∞

0

dp pd−1 T ln
[
1 + exp

(
− p

T

)]
,

while the special case d = 1 evaluates to

Ū(0, 0, T, 1) = − dγ

2π
π2

6 T 2 . (G12)

For d = 2 we have

Ū(0, 0, T, 2) = − dγ

4π
3
2 ζ(3)T

3 . (G13)

2. T = 0

Next, we turn to the special cases, where T = 0.

a. T = 0, σ̄ ̸= 0

We start off with nonzero background field σ̄.
a. T = 0, σ̄ ̸= 0, µ ̸= 0 Using the explicit regular-

ized expressions Eqs. (C3) and (D3) and inserting these
in Eq. (19) we find

ŪΛ(σ̄, µ, 0, d) = (G14)

=
dγ

2

[
σ̄2 lΛ1 (σ̄0, 0, 0, d)− lΛ0 (σ̄, µ, 0, d)

]
=

=
dγ

2
Sd

(2π)d

[
σ̄2 1

2
|σ̄0|d−1

d

∣∣ Λ
σ̄0

∣∣d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;−Λ2

σ̄2
0

)
+

− |σ̄|d+1

d

[∣∣Λ
σ̄

∣∣d
2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;−Λ2

σ̄2

)
+

−Θ
(
µ̄2

σ̄2

) ∣∣ µ̄
σ̄

∣∣d (
2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
−
∣∣µ
σ̄

∣∣)]] =
=

dγ

2
Sd

(2π)d

[
|σ̄|
d Λd

[
1
2

|σ̄|
σ̄0

2F1

(
1
2 ,

d
2 ;

d+2
2 ;−Λ2

σ̄2
0

)
+

− 2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;−Λ2

σ̄2

)]
+

+Θ
(
µ̄2

σ̄2

) |σ̄|
d |µ̄|d

(
2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
−
∣∣µ
σ̄

∣∣)] .
Here, by sending Λ → ∞ we remove the cutoff and find

Ū(σ̄, µ, 0, d) = (G15)
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=
dγ

2
Sd

(2π)d

[
Γ( d

2 )Γ(−
d+1
2 )(d+1)

4
√
π

(
1

d+1 |σ̄|
d+1 − 1

2 σ̄
d−1
0 σ̄2

)
+

+Θ
(
µ̄2

σ̄2

) |σ̄|
d |µ̄|d

(
2F1

(
− 1

2 ,
d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
−
∣∣µ
σ̄

∣∣)] .
The equivalent expressions can be found by taking the
limit T → 0 of Eq. (G2). For the special case d = 1 we
recover [72]

Ū(σ̄, µ, 0, 1) =
dγ

2π

[
σ̄2

4

(
ln
(
σ̄2

σ̄2
0

)
− 1
)
+ (G16)

+ Θ
(
µ̄2

σ̄2

) (
σ̄2

2 arsinh
(
µ̄
σ̄

)
− 1

2 µ̄ |µ|
)]]

,

and for d = 2 [103, Eq. 4.38]

Ū(σ̄, µ, 0, 2) =
dγ

4π

[
σ̄2
(

|σ̄|
3 − σ̄0

2

)
+ (G17)

+ Θ
(
µ̄2

σ̄2

) (
− σ̄3

3 − |µ|3
6 + σ̄2|µ|

2

)]
.

b. T = 0, σ̄ ̸= 0, µ = 0 The results for µ = 0 are a
direct consequence of the previous results. In general, we
find

Ū(σ̄, 0, 0, d) = (G18)

=
dγ

2
Sd

(2π)d
Γ( d

2 )Γ(−
d+1
2 )(d+1)

4
√
π

(
1

d+1 |σ̄|
d+1 − 1

2 σ̄
d−1
0 σ̄2

)
,

which reduces for d = 1 to

Ū(σ̄, 0, 0, 1) =
dγ

2π
σ̄2

4

(
ln
(
σ̄2

σ̄2
0

)
− 1
)

(G19)

and for d = 2 to

Ū(σ̄, 0, 0, 2) =
dγ

4π σ̄
2
(

|σ̄|
3 − |σ̄0|

2

)
. (G20)

b. T = 0, σ̄ = 0

Last, we turn to the case, where we study the potential
again for σ̄ = 0.

a. T = 0, σ̄ = 0, µ ̸= 0 Here, one finds from
Eq. (G15) with Eq. (B23)

Ū(0, µ, 0, d) =
dγ

2
Sd

(2π)d

[
− |µ|d+1

d(d+1)

]
(G21)

For d = 1 this is

Ū(0, µ, 0, 1) = − dγ

2π
µ2

2 , (G22)

while for d = 2 we have

Ū(0, µ, 0, 2) = − dγ

4π
|µ|3
6 . (G23)

The latter special cases can also be derived from the T ̸=
0 formulas Eqs. (G9) and (G10) by sending T → 0.

b. T = 0, σ̄ = 0, µ = 0 The trivial and last case is

Ū(0, 0, 0, d) = 0 . (G24)

(Certainly, one could always add an arbitrary constant to
the potential without changing the physical observables.)

Appendix H: The bosonic wave-function
renormalization

This appendix is dedicated to calculations as well
as the presentation of detailed expressions and limiting
cases for the bosonic wave-function renormalization (14).
We calculate the renormalized limits, such that the fi-
nal results do not contain any UV cutoff. Step by step,
we provide expressions for the cases where σ̄, µ, and T
are zero or nonzero. Additionally, we evaluate the wave-
function renormalization for the special cases d = 1 and
d = 2 and demonstrate that we reproduce known liter-
ature results. All cases are collected in Table II, which
links to the explicit formulae.
However, we start by providing some useful interme-

diate steps for the derivation of the general formula for
the bosonic wave-function renormalization Eq. (14). The
starting point is

z(σ̄, µ, T, d) = 1
2

d2

dq2 Γ
(2)(σ̄, µ, T, q, d)

∣∣∣
q=0

, (H1)

We note that the bosonic two-point function solely de-
pends on the absolute/square of the spatial external mo-
mentum, we can use

u = q2 , ⇒ 1
2

d2

dq2 = d
du + 2u d2

du2 (H2)

to evaluate the derivative,

z(σ̄, µ, T, d) =
(

d
du + 2u d2

du2

)
Γ(2)(σ̄, µ, T, u, d)

∣∣∣
u=0

.

(H3)

Inserting the general expression (12) for the bosonic two-
point function, we obtain,

z(σ̄, µ, T, d) = (H4)

=
(

d
du + 2u d2

du2

) (dγ

2 (u+ 4 σ̄2) l2(σ̄, µ, T, u, d)
)∣∣∣

u=0
=

=
dγ

2

[
l2(σ̄, µ, T, u, d) + 4σ̄2 d

du l2(σ̄, µ, T, u, d)
]∣∣∣

u=0
=

=
dγ

2

[
l2(σ̄, µ, T, 0, d)− 8

6 σ̄
2 l3(σ̄, µ, T, d)

]
where we defined the Matsubara sum and integral for-
mula (F1).

1. T ̸= 0

We start with the wave-function renormalization in the
heat bath with T ̸= 0.
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TABLE II. Direct links to the formulae for the bosonic wave-
function renormalization z(σ̄, µ, T, d). The formulae are sim-
plified in terms of known functions as far as possible.

T σ̄ µ 1 ≤ d < 3 d = 1 d = 2

̸= 0

̸= 0
̸= 0 Eq. (H5) Eq. (H6) Eq. (H7)

= 0 Eq. (H8) Eq. (H9) Eq. (H10)

= 0
̸= 0 Eq. (H11) Eq. (H12) Eq. (H13)

= 0 Eq. (H14) Eq. (H15) Eq. (H16)

= 0

̸= 0
̸= 0 Eq. (H17) Eq. (H18) Eq. (H19)

= 0 Eq. (H20) Eq. (H21) Eq. (H22)

= 0
̸= 0 Eq. (H23) Eq. (H24) Eq. (H25)

= 0 Eq. (H26) Eq. (H26) Eq. (H26)

a. T ̸= 0, σ̄ ̸= 0

First, we study the wave-function renormalization for
nontrivial background field configurations σ̄ ̸= 0, e.g., in
the phase of symmetry breaking.

a. T ̸= 0, σ̄ ̸= 0, µ ̸= 0 For general µ ̸= 0 we simply
insert Eq. (E7) for q = 0 and Eq. (F1) in Eq. (14). For
continuous d we find

z(σ̄, µ, T, d) = (H5)

=
dγ

2

[
l2(σ̄, µ, T, 0, d)− 8

6 σ̄
2 l3(σ̄, µ, T, d)

]
=

=
dγ

8
Sd

(2π)d

(
|σ̄|d−3 Γ( 3−d

2 ) Γ( d
2 )√

π

[
1− 2

3

(
3−d
2

)]
+

−
∫ ∞

0

dp pd−1
(

1
E3

[
nf
(
E+µ
T

)
+

− E
T

[
n2f
(
E+µ
T

)
− nf

(
E+µ
T

)]]
+

− σ̄2 1
E5

[
nf
(
E+µ
T

)
− E

T

[
n2f
(
E+µ
T

)
− nf

(
E+µ
T

)]
+

+
(
E
T

)2 [ 2
3 n

3
f

(
E+µ
T

)
− n2f

(
E+µ
T

)
+ 1

3 nf
(
E+µ
T

)]
+

+ (µ→ − µ)
)
.

Setting d = 1 leads to the known result [25]

z(σ̄, µ, T, 1) = (H6)

=
dγ

8π

[
1
3

1
σ̄2 −

∫ ∞

0

dp
(

1
E3

[
nf
(
E+µ
T

)
+

− E
T

[
n2f
(
E+µ
T

)
− nf

(
E+µ
T

)]]
+

− σ̄2 1
E5

[
nf
(
E+µ
T

)
− E

T

[
n2f
(
E+µ
T

)
− nf

(
E+µ
T

)]
+

+
(
E
T

)2 [ 2
3 n

3
f

(
E+µ
T

)
− n2f

(
E+µ
T

)
+ 1

3 nf
(
E+µ
T

)]
+

+ (µ→ −µ)
]

On the other hand, for d = 2, all integrals can be evalu-
ated analytically,

z(σ̄, µ, T, 2) = (H7)

=
dγ

24π
1
|σ̄|

(
1− nf

( |σ̄|+µ
T

)
+

− 1
2

|σ̄|
T

[
n2f
( |σ̄|+µ

T

)
− nf

( |σ̄|+µ
T

)]
+ (µ→ −µ)

)
.

b. T ̸= 0, σ̄ ̸= 0, µ = 0 The cases for µ = 0 can be
inferred from the previous results. Hence,

z(σ̄, 0, T, d) = (H8)

=
dγ

8
Sd

(2π)d

[
|σ̄|d−3 Γ( 3−d

2 ) Γ( d
2 )√

π

[
1− 2

3

(
3−d
2

)]
+

− 2

∫ ∞

0

dp pd−1
(

1
E3

[
nf
(
E
T

)
+

− E
T

[
n2f
(
E
T

)
− nf

(
E
T

)]]
+

− σ̄2 1
E5

[
nf
(
E
T

)
− E

T

[
n2f
(
E
T

)
− nf

(
E
T

)]
+

+
(
E
T

)2 [ 2
3 n

3
f

(
E
T

)
− n2f

(
E
T

)
+ 1

3 nf
(
E
T

)])]
.

Furthermore, in the limit d = 1 we have

z(σ̄, 0, T, 1) = (H9)

=
dγ

8π

[
1
3

1
σ̄2 − 2

∫ ∞

0

dp
(

1
E3

[
nf
(
E
T

)
+

− E
T

[
n2f
(
E
T

)
− nf

(
E
T

)]]
+

− σ̄2 1
E5

[
nf
(
E
T

)
− E

T

[
n2f
(
E
T

)
− nf

(
E
T

)]
+



24

+
(
E
T

)2 [ 2
3 n

3
f

(
E
T

)
− n2f

(
E
T

)
+ 1

3 nf
(
E
T

)])]
,

and

z(σ̄, 0, T, 2) = (H10)

=
dγ

24π
1
|σ̄|

(
1− 2nf

( |σ̄|
T

)
− |σ̄|

T

[
n2f
( |σ̄|

T

)
− nf

( |σ̄|
T

)])
for d = 2.

b. T ̸= 0, σ̄ = 0

Next, we turn to the wave-function renormalization in
the symmetric phase for σ̄ = 0.
a. T ̸= 0, σ̄ = 0, µ ̸= 0 We start at nonzero chemical

potential. Both the vacuum and the medium contribu-
tion separately exhibit an IR divergence, which cancel
each other. To account for this, we consider the vacuum
part in its integral form together with the medium part
and write

z(0, µ, T, d) = (H11)

=
dγ

8
Sd

(2π)d

∫ ∞

0

dp pd−4
[
1− nf

(
p+µ
T

)
+

+ p
T

[
n2f
(
p+µ
T

)
− nf

(
p+µ
T

)]
+ (µ→ −µ)

]
.

The tricky evaluation of this expression for d = 1 is pre-
sented in Ref. [22, Eq. F.65] and one finds

z(0, µ, T, 1) = − dγ

2π
1

8T 2 DLi−2

(
µ
T

)
, (H12)

where we used the definition (B11). While for d = 2
integration by parts leads to

z(0, µ, T, 2) =
dγ

8π
1

4T cosh2
( µ
2T

) . (H13)

b. T ̸= 0, σ̄ = 0, µ = 0 At vanishing chemical po-
tential Eq. (H11) simplifies to

z(0, 0, T, d) =
dγ

8
Sd

(2π)d

∫ ∞

0

dp pd−4
[
1− 2nf

(
p
T

)
+

+ 2 p
T

[
n2f
(
p
T

)
− nf

(
p
T

)]]
. (H14)

It is possible to show that the integral approaches a zeta
function for d→ 1,

z(0, 0, T, 1) =
dγ

2π
7

16π2 ζ(3)
1
T 2 . (H15)

For d = 2 we can simply use Eq. (H13) and set µ = 0,

z(0, 0, T, 2) =
dγ

16π
1
2T . (H16)

2. T = 0

Having discussed all cases with a heat bath, we can
next turn to T = 0.

a. T = 0, σ̄ ̸= 0

Again, we start in the phase with a nontrivial expecta-
tion value of the bosonic field and therefore evaluate the
wave-function renormalization at σ̄ ̸= 0.
a. T = 0, σ̄ ̸= 0, µ ̸= 0 Keeping µ ̸= 0 the general

expression for continuous d reads

z(σ̄, µ, 0, d) = (H17)

=
dγ

2

[
l2(σ̄, µ, 0, 0, d)− 8

6 σ̄
2 l3(σ̄, µ, 0, d)

]
=

=
dγ

2
Sd

(2π)d
1
4

[
|σ̄|d−3 Γ( 3−d

2 ) Γ( d
2 )√

π

[
1− 2

3

(
3−d
2

)]
+

−Θ
(
µ̄2

σ̄2

)(
µ̄d

σ̄3
1
d 2F1

(
3
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
+

− µ̄d

|σ̄|3
1
d 2F1

(
5
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
+ µ̄d−2

|µ| +

− d−2
3

σ̄2 µ̄d−4

|µ| − σ̄2

3
µ̄d−2

|µ|3

)]
where we used Eq. (E6) for q = 0 and Eq. (F3). For d = 1
this simplifies drastically, see also Ref. [22, Eq. F.68]

z(σ̄, µ, 0, 1) =
dγ

2π
1
12

1
σ̄2

[
1−Θ

(
µ̄2

σ̄2

) ∣∣µ
µ̄

∣∣3] (H18)

and for d = 2

z(σ̄, µ, 0, 2) =
dγ

4π
1
6

1
|σ̄|

[
1−Θ

(
µ̄2

σ̄2

)]
. (H19)

b. T = 0, σ̄ ̸= 0, µ = 0 Having zero chemical po-
tential, the previous expressions are even simpler. For
continuous d only the vacuum contribution remains

z(σ̄, 0, 0, d) = (H20)

=
dγ

2
Sd

(2π)d
1
4 |σ̄|

d−3 Γ( 3−d
2 ) Γ( d

2 )√
π

[
1− 2

3

(
3−d
2

)]
,

which again simplifies for d = 1,

z(σ̄, 0, 0, 1) =
dγ

2π
1
12

1
σ̄2 , (H21)

and for d = 2,

z(σ̄, 0, 0, 2) =
dγ

4π
1
6

1
|σ̄| . (H22)
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b. T = 0, σ̄ = 0

Next, we turn to the symmetric phase at T = 0, hence
σ̄ = 0.

a. T = 0, σ̄ = 0, µ ̸= 0 Using the expansion
Eq. (B23) for Eq. (H17) one finds

z(0, µ, 0, d) = − dγ

2
Sd

(2π)d
1
4

d−2
d−3 |µ|

d−3 . (H23)

This is easily evaluated for d = 1,

z(0, µ, 0, 1) = − dγ

2π
1
8

1
µ2 , (H24)

and d = 2,

z(0, µ, 0, 2) = 0 . (H25)

b. T = 0, σ̄ = 0, µ = 0 Lastly, if one evaluates the
wave-function renormalization in vacuum at the trivial
evaluation point it is ill conditioned,

z(0, 0, 0, d) ∈ { ±∞, 0} , (H26)

when taking the respective limits from the previous re-
sults.

Appendix I: The bosonic two-point function

In this appendix we calculate the bosonic two-point
function (12). We use the regularized integrals (D4)
and (E7) as well as (F1) and calculate the renormalized
limits. Here, we present results for q ̸= 0 and the limit
q = 0. For the sake of clearness, we prepared Table III
which links to the different cases with (non-)vanishing σ̄,
µ, T , as well as the special cases with d = 1 and d = 2.
The limiting cases for d = 1 are discussed in detail in
Refs. [22, 25], whereas the d = 2 formulae are briefly
discussed in Refs. [13, 44].

1. T ̸= 0

We start at nonzero temperature.

a. T ̸= 0, σ̄ ̸= 0

Furthermore, we first consider points in the regime,
where σ̄ ̸= 0.

a. T ̸= 0, σ̄ ̸= 0, µ ̸= 0 For µ ̸= 0 and general d, we
simply insert Eqs. (D4), (E7), and (F1) in the regularized
expression (22) and send Λ → ∞. We use Eq. (B23) and
obtain,

Γ(2)(σ̄, µ, T, q, d) = (I1)

TABLE III. Quick links to the equations for explicit evalua-
tion of the bosonic two-point function Γ(2)(σ̄, µ, T, q, d). The
formulae are simplified in terms of known functions as far as
possible.

T σ µ q 1 ≤ d < 3 d = 1 d = 2

̸= 0

̸= 0

̸= 0
̸= 0 Eq. (I1) Eq. (I3) Eq. (I5)

= 0 Eq. (I2) Eq. (I4) Eq. (I6)

= 0
̸= 0 Eq. (I7) Eq. (I9) Eq. (I11)

= 0 Eq. (I8) Eq. (I10) Eq. (I12)

= 0

̸= 0
̸= 0 Eq. (I13) Eq. (I15) Eq. (I17)

= 0 Eq. (I14) Eq. (I16) Eq. (I18)

= 0
̸= 0 Eq. (I19) Eq. (I21) Eq. (I23)

= 0 Eq. (I20) Eq. (I22) Eq. (I24)

= 0

̸= 0

̸= 0
̸= 0 Eq. (I25) Eq. (I27) Eq. (I29)

= 0 Eq. (I26) Eq. (I28) Eq. (I30)

= 0
̸= 0 Eq. (I31) Eq. (I33) Eq. (I35)

= 0 Eq. (I32) Eq. (I34) Eq. (I36)

= 0

̸= 0
̸= 0 Eq. (I37) Eq. (I39) Eq. (I41)

= 0 Eq. (I38) Eq. (I40) Eq. (I42)

= 0
̸= 0 Eq. (I43) Eq. (I46) Eq. (I47)

= 0 Eq. (I44) Eq. (I45) Eq. (I48)

= 1
λ − dγ

[
l1(σ, µ, T, d)− 1

2 (q
2 + 4 σ̄2) l2(σ̄, µ, T, q, d)

]
=

= dγ
[
l1(σ̄0, 0, 0, d)− l1(σ, µ, T, d) +

+ 1
2 (q

2 + 4 σ̄2) l2(σ̄, µ, T, q, d)
]
=

= lim
Λ→∞

dγ

[
Sd

(2π)d
1
2

|σ̄0|d−1

d

∣∣ Λ
σ̄0

∣∣d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;−Λ2

σ̄2
0

)
+

− Sd

(2π)d
1
2

(
1

d|σ̄| Λ
d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;−Λ2

σ̄2

)
+

−
∫ ∞

0

dp pd−1 1
E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)])
+

+ 1
2 (q

2 + 4 σ̄2) Sd

(2π)d

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
4Ẽ3

×

×
[
1− nf

(
Ẽ+µ
T

)
+ Ẽ

T

[
n2f
(
Ẽ+µ
T

)
− nf

(
Ẽ+µ
T

)]
+

+ (µ→ −µ)
]]

=

=
dγ

2
Sd

(2π)d

[(
|σ̄0|d−1 − |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

+
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+

∫ ∞

0

dp pd−1 1
E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]
+

+
(
q2

4 + σ̄2)

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
Ẽ3

×

×
[
1− nf

(
Ẽ+µ
T

)
+ Ẽ

T

[
n2f
(
Ẽ+µ
T

)
− nf

(
Ẽ+µ
T

)]
+

+ (µ→ −µ)
]]
.

For q → 0 the x-integral is trivial and we find by evalu-
ating another vacuum contribution,

Γ(2)(σ̄, µ, T, 0, d) = (I2)

=
dγ

2
Sd

(2π)d

[(
|σ̄0|d−1 − d |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

+

+

∫ ∞

0

dp pd−1 1
E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]
+

− σ̄2

∫ ∞

0

dp pd−1 1
E3

[
nf
(
E+µ
T

)
+

− E
T

[
n2f
(
E+µ
T

)
− nf

(
E+µ
T

)]
+ (µ→ −µ)

]]
.

For d = 1 we obtain

Γ(2)(σ̄, µ, T, q, 1) = (I3)

=
dγ

2π

[
1
2 ln

(
σ̄2

σ̄2
0

)
+

∫ ∞

0

dp 1
E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]
+

+
(
q2

4 + σ̄2
) ∫ 1

0

dx

∫ ∞

0

dp 1
Ẽ3

[
1− nf

(
Ẽ+µ
T

)
+

+ Ẽ
T

[
n2f
(
Ẽ+µ
T

)
− nf

(
Ẽ+µ
T

)]
+ (µ→ −µ)

]
.

Here, in the limit q → 0,

Γ(2)(σ̄, µ, T, 0, 1) = (I4)

=
dγ

2π

[
1
2 ln

(
σ̄2

σ̄2
0

)
+ 1 +

∫ ∞

0

dp 1
E

[
nf
(
E+µ
T

)
+ nf

(
E−µ
T

)]
+

− σ̄2

∫ ∞

0

dp 1
E3

[
nf
(
E+µ
T

)
+

− E
T

[
n2f
(
E+µ
T

)
− nf

(
E+µ
T

)]
+ (µ→ −µ)

]
.

For the special case d = 2 the momentum integrals can
be evaluated analytically,

Γ(2)(σ̄, µ, T, q, 2) = (I5)

=
dγ

4π

[
|σ̄| − |σ̄0|+ T ln

[
1 + exp

(
− |σ̄|+µ

T

)]
+

+ ( q
2

4 + σ̄2)

∫ 1

0

dx 1
∆̃

[
1− nf

( |∆̃|+µ
T

)]
+

+ (µ→ −µ)
]

In the limit q → 0, we find

Γ(2)(σ̄, µ, T, 0, 2) = (I6)

=
dγ

4π

[
2 |σ̄| − |σ̄0|+ T ln

[
1 + exp

(
− |σ̄|+µ

T

)]
+

− |σ̄|nf
( |σ̄|+µ

T

)
+ (µ→ −µ)

]
b. T ̸= 0, σ̄ ̸= 0, µ = 0 For studying the cases with

vanishing chemical potential, we simply have to insert
µ = 0 in the previous expressions,

Γ(2)(σ̄, 0, T, q, d) = (I7)

=
dγ

2
Sd

(2π)d

[(
|σ̄0|d−1 − |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

+

+ 2

∫ ∞

0

dp pd−1 1
E nf

(
E
T

)
+

+
(
q2

4 + σ̄2)

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
Ẽ3

×

×
[
1− 2nf

(
Ẽ
T

)
+ 2 Ẽ

T

[
n2f
(
Ẽ
T

)
− nf

(
Ẽ
T

)]]]
.

In the limit of vanishing external momentum, this re-
duces to

Γ(2)(σ̄, 0, T, 0, d) = (I8)

=
dγ

2
Sd

(2π)d

[(
|σ̄0|d−1 − d |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

+

+ 2

∫ ∞

0

dp pd−1 1
E nf

(
E
T

)
+

− 2 σ̄2

∫ ∞

0

dp pd−1 1
E3 ×
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×
[
nf
(
E
T

)
− E

T

[
n2f
(
E
T

)
− nf

(
E
T

)]]]
.

For d = 1 we find

Γ(2)(σ̄, 0, T, q, 1) = (I9)

=
dγ

2π

[
1
2 ln

(
σ̄2

σ̄2
0

)
+ 2

∫ ∞

0

dp 1
E nf

(
E
T

)
+

+
(
q2

4 + σ̄2)

∫ 1

0

dx

∫ ∞

0

dp 1
Ẽ3

×

×
[
1− 2nf

(
Ẽ
T

)
+ 2 Ẽ

T

[
n2f
(
Ẽ
T

)
− nf

(
Ẽ
T

)]]]
,

which has the q → 0 limit

Γ(2)(σ̄, 0, T, 0, 1) = (I10)

=
dγ

2π

[
1
2 ln

(
σ̄2

σ̄2
0

)
+ 1 + 2

∫ ∞

0

dp 1
E nf

(
E
T

)
+

− 2 σ̄2

∫ ∞

0

dp 1
E3 ×

×
[
nf
(
E
T

)
+ E

T

[
n2f
(
E
T

)
− nf

(
E
T

)]]]
,

For d = 2 the explicit expression reads

Γ(2)(σ̄, 0, T, q, 2) = (I11)

=
dγ

4π

[
|σ̄| − |σ̄0|+ 2T ln

[
1 + exp

(
− |σ̄|

T

)]]
+

+
(
q2

4 + σ̄2
) ∫ 1

0

dx 1
|∆̃|

[
1− 2nf

( |∆̃|
T

)]]
,

which is

Γ(2)(σ̄, 0, T, 0, 2) = (I12)

=
dγ

4π

[
2 |σ̄| − |σ̄0|+ 2T ln

[
1 + exp

(
− |σ̄|

T

)]]
+

− 2 |σ̄|nf
( |σ̄|

T

)]
,

in the q → 0 limit.

b. T ̸= 0, σ̄ = 0

Next, we turn to the symmetric regime, σ̄ = 0, at
nonzero temperature.

a. T ̸= 0, σ̄ = 0, µ ̸= 0 Here, we start with the cases
with µ ̸= 0. For general d we find,

Γ(2)(0, µ, T, q, d) = (I13)

=
dγ

2
Sd

(2π)d

[
|σ̄0|d−1 Γ( 1−d

2 ) Γ( d
2 )

2
√
π

+

+

∫ ∞

0

dp pd−2
[
nf
(
p+µ
T

)
+ nf

(
p−µ
T

)]
+

+ q2

4

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
p̃3

[
1− nf

(
p̃+µ
T

)
+

+ p̃
T

[
n2f
(
p̃+µ
T

)
− nf

(
p̃+µ
T

)]
+ (µ→ −µ)

]]
.

=
dγ

2
Sd

(2π)d

[
|σ̄0|d−1 Γ( 1−d

2 ) Γ( d
2 )

2
√
π

+

− T d−1 Γ(d− 1)
[
Lid−1

(
− e

µ
T

)
+ Lid−1

(
− e−

µ
T

)]
+

+ q2

4

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
p̃3

[
1− nf

(
p̃+µ
T

)
+

+ p̃
T

[
n2f
(
p̃+µ
T

)
− nf

(
p̃+µ
T

)]
+ (µ→ −µ)

]]
.

At q = 0 the remaining integral (the last term) vanishes
and we find

Γ(2)(0, µ, T, 0, d) = (I14)

=
dγ

2
Sd

(2π)d

[
|σ̄0|d−1 Γ( 1−d

2 ) Γ( d
2 )

2
√
π

+

− T d−1 Γ(d− 1)
[
Lid−1

(
− e

µ
T

)
+ Lid−1

(
− e−

µ
T

)]]
.

The limit d = 1 is special, because of a tricky cancellation
of IR divergences. We obtain

Γ(2)(0, µ, T, q, 1) = (I15)

=
dγ

2π

[
1
2 ln

(
(2T )2

σ̄2
0

)
− γ−DLi0

(
µ
T

)
+

+ q2

4

∫ 1

0

dx

∫ ∞

0

dp 1
p̃3

[
1− nf

(
p̃+µ
T

)
+

+ p̃
T

[
n2f
(
p̃+µ
T

)
− nf

(
p̃+µ
T

)]
+ (µ→ −µ)

]]
,
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while the q → 0 limit is easily obtained by discarding the
integral,

Γ(2)(0, µ, T, 0, 1) = (I16)

=
dγ

2π

[
1
2 ln

(
(2T )2

σ̄2
0

)
− γ−DLi0

(
µ
T

)]
,

On the other hand, for d = 2,

Γ(2)(0, µ, T, q, 2) = (I17)

=
dγ

4π

[
− |σ̄0|+ T ln

[
1 + exp

(
µ
T

)]
+ (µ→ −µ) +

+ q2

4

∫ 1

0

dx 1√
q2 x (1−x)

[
1− nf

(√
q2 x (1−x)+µ

T

)
+

− nf

(√
q2 x (1−x)−µ

T

)]]
.

Also here, we can simply drop the remaining integral to
study q = 0,

Γ(2)(0, µ, T, 0, 2) = (I18)

=
dγ

4π

[
− |σ̄0|+ T ln

[
1 + exp

(
µ
T

)]
+ (µ→ −µ)

]
.

b. T ̸= 0, σ̄ = 0, µ = 0 Setting also µ = 0 in the
previous formulae, we find for general d,

Γ(2)(0, 0, T, q, d) = (I19)

=
dγ

2
Sd

(2π)d

[
|σ̄0|d−1 Γ( 1−d

2 ) Γ( d
2 )

2
√
π

+

+ 2T d−1 Γ(d− 1) η(d− 1) +

+ q2

4

∫ 1

0

dx

∫ ∞

0

dp pd−1 1
p̃3

[
1− 2nf

(
p̃
T

)
+

+ 2 p̃
T

[
n2f
(
p̃
T

)
− nf

(
p̃
T

)]]]
.

Here, η(s) is the Dirichlet eta function (B8). In the q → 0
limit, the expression reduces to

Γ(2)(0, 0, T, 0, d) = (I20)

=
dγ

2
Sd

(2π)d

[
|σ̄0|d−1 Γ( 1−d

2 ) Γ( d
2 )

2
√
π

+

+ 2T d−1 Γ(d− 1) η(d− 1)
]
.

Taking the limit of d = 1 carefully, we find

Γ(2)(0, 0, T, q, 1) = (I21)

=
dγ

2π

[
1
2 ln

(
(πT )2

σ̄2
0

)
− γ+ q2

∫ 1

0

dx

∫ ∞

0

dp 1
4p̃3 ×

×
[
1− 2nf

(
p̃
T

)
+ 2 p̃

T

[
n2f
(
p̃
T

)
− nf

(
p̃
T

)]]]
,

and

Γ(2)(0, 0, T, 0, 1) =
dγ

2π

[
1
2 ln

(
(πT )2

σ̄2
0

)
− γ

]
, (I22)

while for d = 2 we have

Γ(2)(0, 0, T, q, 2) = (I23)

=
dγ

4π

[
− |σ̄0|+ T ln(4) + q2 1

4

∫ 1

0

dx 1√
q2 x (1−x)

×

×
[
1− 2nf

(√
q2 x (1−x)

T

)]]
.

For q = 0, this reduces to

Γ(2)(0, 0, T, 0, 2) =
dγ

4π

[
− |σ̄0|+ T ln(4)

]
. (I24)

2. T = 0

Having completed the T ̸= 0 cases, we turn to the
zero-temperature limit.

a. T = 0, σ̄ ̸= 0

We start at nonzero background field σ̄ ̸= 0.
a. T = 0, σ̄ ̸= 0, µ ̸= 0 For µ ̸= 0 we can insert the

zero-temperature integrals (D3) and (E6) in Eq. (22) and
take the limit Λ → ∞ by using Eq. (B23). This results
in

Γ(2)(σ̄, µ, 0, q, d) = (I25)

= 1
λ − dγ

[
l1(σ, µ, 0, d)− 1

2 (q
2 + 4 σ̄2) l2(σ̄, µ, 0, q, d)

]
=

= lim
Λ→∞

dγ
[
lΛ1 (σ̄0, 0, 0, d)− lΛ1 (σ, µ, 0, d) +
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+ 1
2 (q

2 + 4 σ̄2) l2(σ̄, µ, 0, q, d)
]
=

= dγ
Sd

(2π)d
1
2

[(
|σ̄0|d−1 − |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

+

+Θ
(
µ̄2

σ̄2

) |σ̄|d−1

d

∣∣ µ̄
σ̄

∣∣d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
+

+
(
q2

4 + σ̄2)

∫ 1

0

dx
[
∆̃d−3 Γ( 3−d

2 ) Γ( d
2 )√

π
+

−Θ
(

µ̃2

∆̃2

)(
µ̃d

∆̃3

1
d 2F1

(
3
2 ,

d
2 ;

d+2
2 ;− µ̃2

∆̃2

)
+ µ̃d−2

|µ|

)]]
.

In the limit of vanishing external momentum q the result
reduces to

Γ(2)(σ̄, µ, 0, 0, d) = (I26)

= dγ
Sd

(2π)d
1
2

[(
|σ̄0|d−1 − |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

+

+Θ
(
µ̄2

σ̄2

) |σ̄|d−1

d

∣∣ µ̄
σ̄

∣∣d
2F1

(
1
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
+

+ σ̄2
[
|σ̄|d−3 Γ( 3−d

2 ) Γ( d
2 )√

π
+

−Θ
(

µ̄2

σ̄2

)(
µ̄d

σ̄3
1
d 2F1

(
3
2 ,

d
2 ;

d+2
2 ;− µ̄2

σ̄2

)
+ µ̄d−2

|µ|

)]]
.

For d = 1 the two-point function at vanishing tempera-
ture reads

Γ(2)(σ̄, µ, 0, q, 1) = (I27)

=
dγ

2π

[
1
2 ln

(
σ̄2

σ̄2
0

)
+
√
1 + 4σ̄2

q2 arcoth
(√

1 + 4σ̄2

q2

)
+

+Θ
(

µ̄2

σ̄2

)(
artanh

(∣∣ µ̄
µ

∣∣)− 1
2

√
1 + 4σ̄2

q2 ×

×

[
artanh

(
2σ̄2

µq + | µ̄µ |√
1 + 4σ̄2

q2

)
+ (µ→ −µ)

])]
,

and for q = 0,

Γ(2)(σ̄, µ, 0, 0, 1) = (I28)

=
dγ

2π

[
1
2 ln

(
σ̄2

σ̄2
0

)
+ 1 + Θ

(
µ̄2

σ̄2

)(
artanh

(∣∣ µ̄
µ

∣∣)− ∣∣µµ̄ ∣∣)] .
For d = 2,

Γ(2)(σ̄, µ, 0, q, 2) = (I29)

=
dγ

4π

[
|σ̄| − |σ̄0|+Θ

(
µ̄2

σ̄2

)
(|µ| − |σ̄|) +

+
(
q2

4 + σ̄2
)
Θ

(
q2

4 −µ̄2

σ̄2

)
1

2|q| arctan


√√√√ q2

4 −Θ
(
µ̄2

σ̄2

)
µ̄2

σ̄2+Θ
(
µ̄2

σ̄2

)
µ̄2

] ,
which simplifies to

Γ(2)(σ̄, µ, 0, 0, 2) = (I30)

=
dγ

4π

[
2|σ̄| − |σ̄0|+Θ

(
µ̄2

σ̄2

)
(|µ| − 2|σ̄|)

]
for q = 0.
b. T = 0, σ̄ ̸= 0, µ = 0 Next, we use the previous

expressions and set µ = 0. First, we obtain

Γ(2)(σ̄, 0, 0, q, d) = (I31)

= dγ
Sd

(2π)d
1
2

[(
|σ̄0|d−1 − |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

+

+
(
q2

4 + σ̄2
) ∫ 1

0

dx ∆̃d−3 Γ( 3−d
2 ) Γ( d

2 )√
π

]
,

and

Γ(2)(σ̄, 0, 0, 0, d) = (I32)

= dγ
Sd

(2π)d
1
2

[(
|σ̄0|d−1 − d |σ̄|d−1

) Γ( 1−d
2 ) Γ( d

2 )

2
√
π

]
.

For spatial dimension d = 1 the µ = 0 case reads

Γ(2)(σ̄, 0, 0, q, 1) = (I33)

=
dγ

2π

[
1
2 ln

(
σ̄2

σ̄2
0

)
+
√
1 + 4σ̄2

q2 arcoth
(√

1 + 4σ̄2

q2

)]
and the corresponding q → 0 limit is

Γ(2)(σ̄, 0, 0, 0, 1) =
dγ

2π

[
1
2 ln

(
σ̄2

σ̄2
0

)
+ 1
]
. (I34)

The other special case, d = 2, simplifies to

Γ(2)(σ̄, 0, 0, q, 2) = (I35)

=
dγ

4π

[
|σ̄| − |σ̄0|+ |q|

(
1 + 4σ̄2

q2

)
1
2 arctan

(√
q2

4σ̄2

)]
,

and has the q = 0 limit

Γ(2)(σ̄, 0, 0, 0, 2) =
dγ

4π

(
2 |σ̄| − |σ̄0|

)
. (I36)
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b. T = 0, σ̄ = 0

Finally, we turn to the expressions in the symmetric
phase, where the evaluation point is σ̄ = 0.

a. T = 0, σ̄ = 0, µ ̸= 0 In a first step, we again
study the cases with µ ̸= 0 and start with general d,

Γ(2)(0, µ, 0, q, d) = (I37)

= dγ
Sd

(2π)d
1
2

[
|σ̄0|d−1 Γ( 1−d

2 ) Γ( d
2 )

2
√
π

+ |µ|d−1

d−1 +

+ q2

4
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0

dx
[
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2
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π

+

−Θ
(

µ2−q2 x (1−x)
q2 x (1−x)

)(
[µ2−q2 x (1−x)]
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2

[q2 x (1−x)]
3
2

1
d ×

× 2F1

(
3
2 ,

d
2 ;

d+2
2 ;−µ2−q2 x (1−x)

q2 x (1−x)

)
+

+ [µ2−q2 x (1−x)]
d−2
2

|µ|

)]]
.

The limit q → 0 of this expression is,

Γ(2)(0, µ, 0, 0, d) = (I38)

= dγ
Sd

(2π)d
1
2

[
|σ̄0|d−1 Γ( 1−d

2 ) Γ( d
2 )

2
√
π

+ |µ|d−1

d−1

]
.

However, if we study d = 1 we can use

Γ(2)(0, µ, 0, q, 1) =
dγ

4π ln
( |4µ2−q2|

σ̄2
0

)
, (I39)

and

Γ(2)(0, µ, 0, 0, 1) =
dγ

4π ln
(
4µ2

σ̄2
0

)
. (I40)

For the d = 2 limiting case,

Γ(2)(0, µ, 0, q, 2) = (I41)

=
dγ

4π

[
|µ| − |σ̄0|+

+Θ
(

q2−4µ2

4q2

)
|q|
[
π
4 − 1

2 arctan

(√
4µ2

q2−4µ2

)]]

with

Γ(2)(0, µ, 0, 0, 2) =
dγ

4π

(
|µ| − |σ̄0|

)
. (I42)

b. T = 0, σ̄ = 0, µ = 0 Lastly, we consider µ = T =
σ̄ = 0. For continuous d, we find

Γ(2)(0, 0, 0, q, d) = (I43)

= dγ
Sd

(2π)d
1
2

[
|σ̄0|d−1 Γ( 1−d

2 ) Γ( d
2 )

2
√
π

+

+
(
q2

4

) d−1
2 Γ( 3−d

2 ) Γ( d−1
2 )

2

]
.

In the limit of q = 0, this reduces to

Γ(2)(0, 0, 0, 0, d) = dγ
Sd

(2π)d
1
2 |σ̄0|

d−1 Γ( 1−d
2 ) Γ( d

2 )

2
√
π

. (I44)

For d = 1 we find

Γ(2)(0, 0, 0, 0, 1) =
dγ

4π ln
(

q2

σ̄2
0

)
, (I45)

while the q → 0 limit is manifestly IR divergent in one
spatial dimension,

Γ(2)(0, 0, 0, q, 1) = −∞ . (I46)

On the other hand, for d = 2, we find

Γ(2)(0, 0, 0, q, 2) =
dγ

4π

(
− |σ̄0|+ π

4 |q|
)
, (I47)

which simplifies to

Γ(2)(0, 0, 0, 0, 2) = − dγ

4π |σ̄0| . (I48)
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the Functional Renormalization Group, Lecture Notes
in Physics, Vol. 798 (Springer-Verlag Berlin Heidelberg,
2010).

[91] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M.
Pawlowski, M. Tissier, and N. Wschebor, The nonper-
turbative functional renormalization group and its ap-
plications, Phys. Rept. 910, 1 (2021), arXiv:2006.04853
[cond-mat.stat-mech].

[92] S. B. Ruester, V. Werth, M. Buballa, I. A. Shovkovy,
and D. H. Rischke, The Phase diagram of neutral quark
matter: Self-consistent treatment of quark masses,
Phys. Rev. D 72, 034004 (2005), arXiv:hep-ph/0503184.

[93] J. Braun, M. Leonhardt, and M. Pospiech, Fierz-
complete NJL model study III: Emergence from quark-
gluon dynamics, Phys. Rev. D 101, 036004 (2020),
arXiv:1909.06298 [hep-ph].

[94] M. Haensch, F. Rennecke, and L. von Smekal, Medium
Induced Mixing and Critical Modes in QCD (2023),
arXiv:2308.16244 [hep-ph].

[95] M. A. Schindler, S. T. Schindler, L. Medina, and M. C.
Ogilvie, Universality of Pattern Formation, Phys. Rev.
D 102, 114510 (2020), arXiv:1906.07288 [hep-lat].

[96] M. A. Schindler, S. T. Schindler, and M. C. Ogilvie, PT
symmetry, pattern formation, and finite-density QCD
(2021) arXiv:2106.07092 [hep-lat].

[97] R. D. Pisarski, A. M. Tsvelik, and S. Valgushev, How
transverse thermal fluctuations disorder a condensate of
chiral spirals into a quantum spin liquid, Phys. Rev. D
102, 016015 (2020), arXiv:2005.10259 [hep-ph].

[98] Wolfram Research, Inc., Mathematica, Version 13.0
(2023).

[99] P. A. M. Dirac, On the theory of quantum mechanics,
Proc. Roy. Soc. Lond. A 112, 661 (1926).

[100] E. Fermi, Sulla quantizzazione del gas perfetto
monoatomico, Rend. Lincei 3, 145 (1926).

[101] M. Abramowitz and I. A. Stegun, Handbook of Mathe-
matical Functions with Formulas, Graphs, and Mathe-
matical Tables, ninth dover printing, tenth gpo printing
ed. (Dover Publications Inc., Mineola, NY, USA, 1964).

[102] F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,
B. V. Saunders, H. S. Cohl, and M. A. McClain, NIST
Digital Library of Mathematical Function, Release 1.1.2
of 2021-06-15 (2021), [Online; accessed 2020.06.24].

[103] J. J. Lenz, Spontaneous Symmetry Breaking In Four
Fermion Theories, Master thesis, Schiller Universitty
Jena (2018).

https://arxiv.org/abs/2108.10616
https://doi.org/10.1103/PhysRevD.69.067703
https://arxiv.org/abs/hep-th/0308164
https://arxiv.org/abs/hep-th/0507120
https://doi.org/10.1103/PhysRevD.93.014007
https://doi.org/10.1103/PhysRevD.93.014007
https://arxiv.org/abs/1508.06057
https://doi.org/10.1103/PhysRevD.90.014033
https://arxiv.org/abs/1404.0057
https://doi.org/10.1103/PhysRevD.108.074508
https://doi.org/10.1103/PhysRevD.108.074508
https://arxiv.org/abs/2304.14812
https://doi.org/10.1103/PhysRevD.86.074018
https://doi.org/10.1103/PhysRevD.86.074018
https://arxiv.org/abs/1203.5343
https://doi.org/10.1103/PhysRevD.101.094512
https://arxiv.org/abs/2004.00295
https://arxiv.org/abs/2004.00295
https://doi.org/10.1088/1751-8113/46/28/285002
https://arxiv.org/abs/1212.4624
https://doi.org/10.21248/gups.62534
https://doi.org/10.21248/gups.62534
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://inspirehep.net/literature/61186
https://doi.org/10.1007/BF01646487
https://doi.org/10.1103/PhysRev.158.383
http://archive.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
http://archive.ujp.bitp.kiev.ua/files/journals/53/si/53SI08p.pdf
https://doi.org/10.1016/0550-3213(78)90416-9
https://doi.org/10.1016/0550-3213(78)90416-9
https://doi.org/10.1016/0370-2693(93)90726-X
https://arxiv.org/abs/1710.05815
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1007/978-3-642-05094-7
https://doi.org/10.1016/j.physrep.2021.01.001
https://arxiv.org/abs/2006.04853
https://arxiv.org/abs/2006.04853
https://doi.org/10.1103/PhysRevD.72.034004
https://arxiv.org/abs/hep-ph/0503184
https://doi.org/10.1103/PhysRevD.101.036004
https://arxiv.org/abs/1909.06298
https://arxiv.org/abs/2308.16244
https://doi.org/10.1103/PhysRevD.102.114510
https://doi.org/10.1103/PhysRevD.102.114510
https://arxiv.org/abs/1906.07288
https://arxiv.org/abs/2106.07092
https://doi.org/10.1103/PhysRevD.102.016015
https://doi.org/10.1103/PhysRevD.102.016015
https://arxiv.org/abs/2005.10259
https://www.wolfram.com/mathematica
https://doi.org/10.1098/rspa.1926.0133
http://operedigitali.lincei.it/Fermi/Fermi-omnia1_4_178-385.pdf
http://dlmf.nist.gov/
http://dlmf.nist.gov/
https://www.tpi.uni-jena.de/~wipf/abschlussarbeiten/lenz_master_18.pdf

	Abstract
	 Inhomogeneous condensation in the Gross-Neveu model in noninteger spatial dimensions 1 leq d less 3. II. Nonzero temperature and chemical potential 
	 Contents
	I Introduction
	A General contextualization
	B Recap of central results
	C Research objective
	D Structure

	II The Gross-Neveu model in 1 <= d < 3 spatial dimensions in medium
	A The action and the potential
	B The bosonic two-point function
	C The bosonic wave-function renormalization
	D Regularization of vacuum contributions
	E Renormalization
	1 The gap equation
	2 Renormalization of the effective potential
	3 Renormalization of the two-point function

	F The stability analysis

	III Results
	A The two-point function
	B The wave-function renormalization
	C The phase diagram

	IV Conclusions and outlook
	A Summary
	B Conclusion
	C Outlook
	1 One-dimensional ansatz functions
	2 Finite regulator or finite volume 
	3 Finite N
	4 Consequences for higher dimensional models and QCD


	 Acknowledgments
	A Conventions
	a Fourier transformations
	b Fermi-Dirac distribution function
	c Abbreviations and definitions

	B Formulary
	1 Spherical symmetric integration
	2 Transcendental functions
	a Gamma functions
	b Riemann zeta function
	c Dirichlet eta function
	d Polylogarithm
	e Hypergeometric Function

	3 Integrals and an expansion
	a First special integral
	b Second special integral

	4 Expansion

	C Evaluation of l 0
	1 For T = 0
	2 For T != 0

	D Evaluation of l 1
	1 For T = 0
	2 For T != 0

	E Evaluation of l 2
	1 For: T = 0
	2 For: T != 0

	F Evaluation of l 3
	1 For T = 0
	2 For T != 0

	G The effective potential
	1 T != 0
	a T != 0, sigma != 0
	b T != 0, sigma = 0

	2 T = 0
	a T != 0, sigma != 0
	b T != 0, sigma = 0


	H The bosonic wave-function renormalization
	1 T != 0
	a T != 0, sigma != 0
	b T != 0, sigma = 0

	2 T = 0
	a T = 0, sigma != 0
	b T = 0, sigma = 0


	I The bosonic two-point function
	1 T != 0
	a T != 0, sigma != 0
	b T != 0, sigma = 0

	2 T = 0
	a T = 0, sigma != 0
	b T = 0, sigma = 0


	 References


