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Zusammenfassung

0.1 Das QCD-Phasendiagramm und Experimente zur
Schwerionenkollision

Die Quantenchromodynamik ist die Theorie der starken Wechselwirkung, einer der funda-
mentalen Wechselwirkungen im Standardmodell der Teilchenphysik. Die Untersuchung der
Eigenschaften von QCD-Materie unter verschiedenen thermodynamischen Bedingungen ist
ein wichtiger Schwerpunkt der Forschung in der Kernphysik. Stark wechselwirkende Ma-
terie existiert als ein Gas aus wechselwirkenden Hadronen und ihren Resonanzen bei niedri-
gen Temperaturen und kleinen chemischen Potentialen. Durch Erhöhung der Temperatur
und/oder des chemischen Potenzials kann das Hadronengas in einen Zustand quasi-freier
Quarks und Gluonen übergehen, das so genannte Quark-Gluon-Plasma (QGP). Gitter-
Eich-Simulationen der QCD, bei kleinen baryo-chemischen Potentialen sagen einen kon-
tinuierlichen Übergang von einem heißen Gas aus hadronischen Resonanzen zu einer Phase
stark wechselwirkender Quarks und Gluonen, mit spontan gebrochener chiraler Symme-
trie, voraus. In QCD Materie bei hoher netto Baryonendichte werden mehrere interessante
Eigenschaften, wie z.B. ein Phasenübergang erster Ordnung vom hadronischen Gas zum
QGP oder ein kritischer Endpunkt, vermutet. Direkte Gitter-QCD-Simulationen sind hier,
aufgrund des fermionischen ’Sign-problems’ derzeit nicht möglich. Daher werden sowohl
QCD-motivierte effektive Modelle in Verbindung mit direkten experimentellen Messungen
verwendet, um nach einem Phasenübergang oder einem kritischen Endpunkt zu suchen.

Experimentell werden die Eigenschaften der QCD-Materie mit Hilfe von Schwerionenkolli-
sionen oder Beobachtungsstudien von Verschmelzungen von Neutronensternen untersucht.
Beide Systeme erzeugen stark wechselwirkende Materie mit hoher Temperatur und/oder
Dichte. Das ultimative Ziel der Schwerionenkollisionsprogramme ist es, ein Phasendia-
gramm für QCD-Materie zu erstellen, das die Phasengrenzen, die Art der Übergänge an
der Grenze und die kritischen Regionen aufzeigt. Derzeit liegt das Hauptaugenmerk auf
Schwerionenkollisionen mit mittlerer Energie, die QCD-Materie bei hohen Baryonendichten
und Temperaturen erzeugen können.

Die experimentellen Messungen verschiedener Beobachtungsgrößen wie der kollektive Fluss,
Teilchenzahlfluktuationen usw. werden mit aufwendigen Modellrechnungen verglichen, um
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die physikalischen Grundlagen für die Entwicklung der, in den Kollisionen erzeugten,
Materie zu ermitteln. Dieser Vergleich ist jedoch nicht ganz einfach. Experimentelle
Daten müssen mehrere Verarbeitungsschritte durchlaufen, wie z.B. die Rekonstruktion
von Spuren, die Identifizierung von Teilchen und die Auswahl der Zentralität, bevor ver-
schiedene Beobachtungsgrößen extrahiert werden können. Die Modellrechnungen sollten
die Phasenraumakzeptanz und die Detektoreffizienz des Experiments, wenigstens durch
vereinfachte Akzeptanz- und Effizienzschnitte oder ausgefeilte Detektorsimulationen, berück-
sichtigen um einen konsistenten Vergleich dieser experimentellen Observablen mit theoretis-
chen Modellvorhersagen zu gewährleisten. Die Verarbeitungsalgorithmen können zusät-
zliche Unsicherheiten und Verzerrungen in die Daten einbringen, die die Ergebnisse der
Analyse verfälschen können. Darüber hinaus verwenden solche Methoden iterative Al-
gorithmen, die extrem langsam und unpraktisch für zukünftige Experimente, mit hoher
Ereignisrate, sein können welche eine Online-Verarbeitung der experimentellen Daten er-
fordern. Darüber hinaus erschwert die Notwendigkeit kombinierter Schlussfolgerungen auf
der Grundlage mehrerer Beobachtungsgrößen häufig den Analyseprozess.

Um diese Probleme zu lösen, werden neue Analysetechniken benötigt, um experimentelle
Daten mit Modellvorhersagen zu vergleichen. Das Ziel dieser Arbeit ist es, neuartige
Künstliche Intelligenz (KI)-basierte Methoden zu entwickeln, um diese Lücke zwischen
Theorie und Experiment zu schließen. Das Hauptaugenmerk liegt dabei auf der Entwick-
lung von KI-Tools, die direkt mit den Ergebnissen von Detektoren arbeiten können, z.B.
mit Teilchentreffern und -spuren, die bei Schwerionen-Kollisionsexperimenten mit mittlerer
Energie gemessen werden. Zusätzlich zur KI, die direkt mit experimentellen Daten auf
Detektorebene arbeitet, werden auch Methoden entwickelt um Modellvorhersagen für kon-
ventionelle Beobachtungsgrößen konsistent mit experimentellen Daten zu vergleichen. Als
einzigartiges Experiment der nächsten Generation, das Kollisionen mittlerer Energie bei
noch nie dagewesenen Intensitäten messen wird, wurde das CBM-Experiment bei FAIR
als Beispiel verwendet, um die Fähigkeiten der entwickelten AI/DL-Modelle zu veran-
schaulichen.

Eine kurze Einführung in die QCD, Schwerionenkollisionen und KI für Schwerionenkolli-
sionen findet sich in Kapitel 1. In Kapitel 2 werden die verschiedenen weltweiten Schw-
erionenprogramme vorgestellt, wobei der Schwerpunkt auf dem Physikprogramm an der
FAIR-Beschleunigeranlage und dem CBM-Experiment liegt. Auch die experimentellen
Herausforderungen im Zusammenhang mit der Analyse der Messdaten wurden in Kapitel
2 kurz erörtert.

0.2 Modelle für Schwerionen-Kollisionen

Kapitel 3 enthält eine detaillierte Diskussion über die verschiedenen Modelle zur Simulation
von Schwerionenkollisionen bei mittleren Strahlenergien. Die Vorteile und Limitationen der
verschiedenen Modelle wurden untersucht. Der Schwerpunkt lag darauf, zu verstehen, wie
die verschiedenen Modelle die Zustandsgleichung (Equation of State, EoS) einbeziehen, die
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die zeitliche Entwicklung des Systems bestimmt. Die Zustandsgleichung ist ein wesentlicher
Input für theoretische Modelle von Schwerionenkollisionen, da sie die mikroskopischen und
makroskopischen Eigenschaften des erzeugten Systems verknüpft. Die EoS liefert den
Druck des Mediums für jede gegebene Energie- und Nettobaryonenzahldichte. Bei der
hydrodynamischen Beschreibung von Kollisionen geht die EoS als zusätzliche Gleichung
ein, und wird direkt zur Lösung der hydrodynamischen Bewegungsgleichungen verwen-
det. Dies gilt auch für das UrQMD-Hybridmodell, das aus eine hydrodynamische Phase
mit einer nicht-gleichgewichts Initialisierung und Ausfrierphase kombiniert. Im UrQMD-
Hybridmodell ist der Einfluss der Zustandsgleichung jedoch auf die heiße und dichte Gle-
ichgewichtsphase der Entwicklung beschränkt.

Die Einbindung einer nicht-trivialen Zustandsgleichung in mikroskopische Transportmod-
elle ist jedoch nicht einfach. Eine Methode zur konsistenten Einführung einer beliebigen
EoS in das UrQMD-Transportmodell wird erstmals in dieser Arbeit vorgestellt. Nicht-
triviale hadronische Wechselwirkungen können im UrQMD Transportmodelö durch die an-
passung des Terms der potentiellen Energie, in der semi-klassischen Bewegungsgleichung
der Quanten-Molekular-Dynamik (QMD) eingeführt werden. So kann eine beliebige Zus-
tandsgleichung in den QMD-Teil von UrQMD implementiert werden, wenn die potentielle
Energie pro Baryon für das Modell bekannt ist. Es wurde diese Methode verwendet,
um das realistische CMF Modell in UrQMD zu implementieren und dessen Einfluss auf
die Entwicklung der Eigenschaften der Materie, die bei der Kollision entsteht, zu unter-
suchen. Die Ergebnisse wurden auch mit hydrodynamischen Simulationen unter Verwen-
dung der gleichen Zustandsgleichung verglichen, um die Zuverlässigkeit der Methode zu
zeigen. Die zeitliche Entwicklung der Baryondichte zeigte eine gute Übereinstimmung
mit den hydrodynamischen Simulationen, wenn in beiden Fällen die gleiche Zustandsgle-
ichung verwendet wird. Gleichzeitig ist die Kompression stark von der verwendeten EoS
abhängig. Dies deutet darauf hin, dass Beobachtungen, die auf die anfängliche Kom-
pressionsphase der Schwerionenkollision und die maximal erreichte Kompression sensitiv
sind, zur Untersuchung der EoS bei hohen Baryonendichten verwendet werden können.
Die Nicht-Gleichgewichtseffekte führen jedoch dazu, dass die Temperatur des Systems in
UrQMD höher ist als die in hydrodynamischen Simulationen erhaltene. Dennoch bietet
die Methode eine konsistente Behandlung der Zustandsgleichung während der gesamten
Entwicklung des Systems. Sie kann verwendet werden, um die Auswirkungen einer EoS in
der anfänglichen Kompressionsphase der Kollision bei niedrigen Energien zu untersuchen.

0.3 Künstliche Intelligenz für Schwerionenkollisionen

Die Grundprinzipien der KI und verschiedene KI-Methoden werden in Kapitel 4 vorgestellt.
Die Grundprinzipien der Funktionsweise von Deep Learning (DL)-Modellen auf der Ba-
sis neuronaler Netzwerke werden dort auch eingeführt. Ein neuronales Netzwerk ist eine
Architektur des maschinellen Lernens, die aus einer Sammlung miteinander verbundener
Knoten, den Neuronen, besteht. Ein neuronales Netzwerk nimmt verschiedene Eingaben
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auf und verarbeitet sie durch das miteinander verbundene Netzwerk von Neuronen, um eine
Ausgabe zu erzeugen. Die grundlegende Funktionsweise eines Neurons, eines vollständig
verbundenen neuronalen Netzwerks und eines neuronalen Faltungsnetzwerks (Convolution
Neural Networks, CNN) wird ausführlich erläutert. CNNs sind spezialisierte neuronale
Netzwerke, die für das Lernen aus Bilddaten optimiert sind. CNN-basierte Deep Learning-
Modelle sind jedoch nicht für das Lernen aus experimentellen Detektordaten optimiert.

Die auf PointNet basierenden Modelle wurden als eine neuartige DL-Methode vorgestellt,
die direkt auf Treffer-/Spurinformationen von in einem Detektor gemessenen Partikeln
trainiert werden kann. In diesem Kapitel wurden die allgemeine Struktur der PointNet-
Architektur und ihre Funktionsweise im Detail beschrieben. Das PointNet ist eine DL-
Architektur, die auf das Lernen aus Punktwolkendaten spezialisiert ist. Punktwolken sind
Sammlungen von ordnungsinvarianter Punkte im Raum. Die experimentellen Daten haben
eine inhärente Punktwolkenstruktur (z.B. sind die Partikeltreffer in den Detektorebenen
einfach eine Punktwolke der Trefferkoordinaten). Das PointNet-Modell verwendet 1-D-
Faltungsoperationen, um ordnungsinvariante Merkmale pro Punkt zu extrahieren, die dann
durch symmetrische Operationen wie ’Average Pooling’, ’Max Pooling’ usw. in eine glob-
ale Event-Eigenschaft umgewandelt werden. Die extrahierten Event-Eigenschaften werden
dann in ein konventionelles neuronales Netzwerk eingespeist, um die Zielvariable zu re-
gressieren oder zu klassifizieren. Als statistische Lernmethode zur Parameterschätzung
werden in diesem Kapitel auch die Bayes’sche Inferenztechnik und ihre Funktionsprinzip-
ien erläutert.

0.4 PointNet-basierte Ereignis-Charakterisierung

In Kapitel 5 werden die Ergebnisse mehrerer AI-Analysen vorgestellt. Das Kapitel beginnt
mit einer vergleichenden Studie des Glauber MC-Modells und des UrQMD-Modells zur
bestimmung der Zentralitätseigenschaften von Schwerionenkollisionen. Das Glauber MC-
Modell ist eine vereinfachte Beschreibung von Kollisionen, die in Experimenten verwendet
wird, um Beobachtungsgrößen wie die Anzahl der geladenen Spuren auf die Zentralität der
Kollision abzubilden. In dieser Studie wurde festgestellt, dass die Bestimmung der Zen-
tralität und die geschätzten Fluktuationen von Npart für Au-Au-Kollisionen bei 1,23 AGeV
unter starken Modellabhängigkeiten leiden. Die vereinfachte Glauber-MC-Beschreibung
von Kollisionen, die in den Experimenten verwendet wird, um die gemessene Spurenmul-
tiplikation mit dem Stoßparameter oder Npart in Beziehung zu setzen, sagt eine völlig an-
dere Npart-Verteilung voraus als das auf der mikroskopischen Transporttheorie basierende
UrQMD-Modell. Diese starke Modellabhängigkeit von Npart kann die Interpretation der
Ergebnisse der experimentellen Analyse erschweren, wenn das verwendete Npart während
der gesamten Analyse und dem abschließenden Modell-Daten-Vergleich nicht konsistent ist.
Um diesen Effekt zu demonstrieren, wurde die Produktion von geladenen Pionen sowie die
Rapiditäts-Spektren von Protonen und leichten Kernen bei Elab = 1, 23A GeV untersucht
und die Ergebnisse mit HADES- und STAR-Messungen verglichen. Es wurde gezeigt, dass
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die Pionenmultiplizität pro Partizipant sehr empfindlich auf das Modell reagieren kann,
das zur Schätzung der zugrundeliegenden Npart-Verteilung für eine bestimmte Zentralität-
sklasse verwendet wird. Es wird vorgeschlagen, dass die Untersuchung von Observablen
wie der Pionenmultiplizität als Funktion der Zentralität anstelle von Npart die explizite
Modellabhängigkeit von Npart, die beim Vergleich experimenteller Daten mit Modellvorher-
sagen auftritt, teilweise vermeiden kann. Allerdings ist damit nicht garantiert, dass die
experimentellen Daten und das zu vergleichende Modell eine ähnliche Verteilung von Npart

aufweisen. Die Modellabhängigkeit von Npart hat auch messbare Konsequenzen für die
beobachteten Rapiditäts-Verteilungen von freien Protonen und leichten Kernen. Auch hier
zeigen vorläufige Daten des HADES-Experiments eine signifikante Verringerung der Pro-
tonenzahl dN/dy im Vergleich zu UrQMD, was mit einem deutlich kleineren Npart übere-
instimmt, ein Effekt, der in den Daten des STAR-Experiments nicht beobachtet wurde.
Offensichtlich ist das Verständnis dieser Widersprüche auch für die Interpretation von
Beobachtungsgrößen wie der Pionenmultiplizität und Protonenzahlfluktuationen wichtig.

Die Methode, die für die Auswahl oder Charakterisierung von Ereignissen verwendet wird,
sollte mit dem theoretischen Modell übereinstimmen, mit dem die Beobachtungswerte der
ausgewählten Daten verglichen werden. In diesem Zusammenhang haben wir das Poten-
zial von PointNet-basierten DL-Methoden untersucht, um den Impaktparameter oder die
Anzahl der beteiligten Nukleonen in einem Kollisionsereignis zu rekonstruieren. PointNet-
basierte Modelle wurden trainiert, um den Impaktparameter von Kollisionen aus den Tr-
effern und/oder der rekonstruierten Spur von Teilchen in 10 AGeV Au-Au-Kollisionen am
CBM Experiment zu rekonstruieren. Das Ziel war es, diese Impaktparameter direkt aus den
experimentellen Ergebnissen auf Detektorebene zu extrahieren. Daher wurde ein Daten-
satz erstellt, der den experimentellen Daten sehr ähnlich ist. Um dies zu erreichen, wurde
die Ausgabe von UrQMD durch eine komplexe Pipeline geleitet, die aus einer GEANT-
basierten CBM-Detektorsimulation besteht, die den Transport der Teilchen, die Digital-
isierung der Treffer und die Ereignisrekonstruktion durchführt. Es wurde festgestellt, dass
die PointNet-Modelle eine genaue Rekonstruktion der Impakt-parameter im Bereich von
2-14 fm durchführen können. Ein Modell, das Treffer des MVD-Detektors und aus Tr-
effern im MVD und STS rekonstruierte Spuren zur Vorhersage des Impakt-Parameters
verwendet, hatte einen Validierungs-MSE von etwa 0,39 fm 2. Im Gegensatz zur kon-
ventionellen Glauber MC-basierten Zentralitätsauswahl, die nur eine erwartete Impact-
Parameter-Verteilung für Ereignisse liefert, die zu einer bestimmten Zentralitätsklasse
gehören, können die PointNet-Modelle eine genaue Impact-Parameter-Rekonstruktion auf
der Basis einzelner Ereignisse durchführen. Die Idee der Rekonstruktion von Impaktparam-
etern wurde auch auf das P̄ANDA-Experiment bei FAIR ausgeweitet, das Antiprotonen-
Kern-Kollisionen untersucht. Für Antiproton-Neon-Kollisionen bei plab= 15 GeV hatte ein
Modell, das auf der Punktwolke des Impuls-Vier-Vektors und der Ladung der Endzustand-
steilchen trainiert wurde, einen Validierungs-MSE von etwa 1 fm2. Es wurde auch eine Ab-
hängigkeit der Leistung von der Systemgröße beobachtet, wobei die Vorhersagegenauigkeit
mit abnehmender Systemgröße abnahm. Schließlich wurden auch PointNet-basierte Mod-
elle entwickelt, um den Npart bei Kollisionen zu bestimmen. Es wurde festgestellt, dass
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die Modelle auch eine genaue, ereignisweise Npart-Bestimmung für 10 A GeV Au-Au-
Kollisionen im CBM-Experiment mit einer Validierungs-MAE von etwa 8,2 durchführen
können. Für 1,23 AGeV Au-Au-Kollisionen am HADES-Experiment zeigten die PointNet-
Modelle einen MAE von etwa 11,6. Dennoch liefern die PointNet-basierten Modelle Ereig-
nis für Ereignis Npart, die mit einem theoretischen Modell übereinstimmen. Auf diese
Weise kann man die inkonsistente Verwendung des von Glauber MC vorhergesagten Npart

für die Ereignisauswahl vermeiden, wenn man experimentelle Daten mit einem theoretis-
chen Modell wie UrQMD vergleicht. Man kann im Wesentlichen die Glauber MC-basierte
Zentralitätsauswahl und Ereignischarakterisierung durch die überlegenen DL-Modelle er-
setzen. Solche Modelle können auch in Experimenten zur Online-Analyse und Ereignis-
charakterisierung von Free-Streaming-Detektorausgaben verwendet werden.

0.5 AI-Methoden zur bestimmung der
Zustandsgleichung bei hoher Dichte

Eines der Hauptziele der Schwerionenprogramme weltweit ist die Untersuchung der Zus-
tandsgleichung von heißer und dichter QCD-Materie. Im letzten Teil der Arbeit haben
wir verschiedene KI-Methoden zur Untersuchung der Zustandsgleichung bei hohen Bary-
onendichten diskutiert. Zunächst wurde eine Bayes’sche Inferenz durchgeführt, um die
Dichteabhängigkeit der Zustandsgleichung anhand der verfügbaren experimentellen Mes-
sungen des elliptischen Flusses und der mittleren transversalen kinetischen Energie von
Protonen mittlerer Geschwindigkeit in Kollisionen mit mittlerer Energie einzuschränken.
In dieser Studie wurde das UrQMD-Modell verwendet, das um beliebige Potentiale (oder
äquivalent dazu die EoSs) erweitert wurde. Gaußsche Emulations-Modelle wurden für
das UrQMD-Modell trainiert, um ein schnelles MCMC-Sampling durchzuführen. Ein
parametrisiertes dichteabhängiges Potenzial wird in das UrQMD-Modell eingeführt, das
zum Trainieren der Gauß-Prozess-Modelle verwendet wird. Die Bayes’sche Inferenz wurde
verwendet, um den gemeinsamen Posterior für die Parameter des Potentials zu konstru-
ieren. Es wurde festgestellt, dass das ursprüngliche Potential gut aus den experimentellen
Beobachtungsdaten von Schwerionenkollisionen rekonstruiert werden kann, die bereits aus
experimentellen Messungen verfügbar sind. Die experimentellen Daten schränken die in
unserer Methode rekonstruierte Zustandsgleichung für Dichten bis zu 4−facher Grundzus-
tandsdichte n0 ein. Jenseits von 3n0 hängt die Form des Potentials jedoch von der Wahl der
verwendeten Beobachtungsdaten ab. Dies wird in der Abbildung 1 veranschaulicht, in der
das quadrat der Schallgeschwindigkeit, die mit Hilfe der Bayes’schen Inferenz extrahiert
wurde, deutliche Unterschiede in Abhängigkeit von den zur Rekonstruktion verwendeten
Daten aufweist. Die EoS, die unter Verwendung aller verfügbaren Datenpunkte (MEAN
(13 points)) extrahiert wurde, stimmt gut mit den Einschränkungen aus der Verschmelzung
von Neutronensternen mit einer steifen Zustandsgleichung für Dichten bis zu 4n0 und ohne
Phasenübergang überein. Wenn jedoch nur ein reduzierter Datensatz von 13 Datenpunkte
verwendet wird, zeigt die extrahierte Schallgeschwindigkeit einen drastischen Abfall, der
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Figure 1: Quadrat der Schallgeschwindigkeit c2s, bei T = 0, als Funktion der Energiedichte.
Das c2s für die MEAN EoS, die aus allen Datenpunkten extrahiert wurde, ist in rot
dargestellt, wohingegen das nur aus 13 Datenpunkten extrahierte in schwarz dargestellt ist.
Das Ergebnis aus astrophysikalischen Beobachtungen sind als blaues Band dargestellt. Für
Energiedichten bis zu 270 MeV/fm3 ist die Schallgeschwindigkeit aus dem CMF als violette
Kurve aufgetragen. Die Unsicherheitsbänder entsprechen einem Intervall der warschein-
lichsten 68% aller abgeleiteten Potenzialkurven.

mit einem starken Phasenübergang erster Ordnung bei hohen Dichten übereinstimmt. Es
gibt eine Diskrepanz in den experimentellen Messungen von ⟨mT ⟩ −m0 und v2 bei einer
Kollisionsenergie von ≈ 4GeV . Dies könnte auf große Unsicherheiten in den Messun-
gen hinweisen oder auf die Unfähigkeit des zugrundeliegenden Modells, die Messwerte mit
einer gegebenen Zustrandsgleichung simultan zu beschreiben. Es ist zu beachten, dass die
Daten aus verschiedenen Experimenten stammen und über unterschiedliche Zeiträume hin-
weg durchgeführt wurden. Die Unterschiede in der Akzeptanz, der Auflösung, der Statistik
und sogar in den Analysemethoden der experimentellen Daten machen es uns schwer, die
genauen Quellen dieser Effekte zu bestimmen.

Die Bayes’sche Inferenz kann die QCD EoS mit hoher Dichte einschränken, indem sie ex-
perimentelle Daten zu v2 und ⟨mT ⟩ − m0 von Protonen verwendet. Eine solche Analyse
auf der Grundlage von HIC-Daten kann die Eigenschaften der dichten QCD-Materie aus
Neutronensternbeobachtungen verifizieren und ergänzt astrophysikalische Studien, um die
Zustandsgleichung bei endlicher Temperatur und ihre Abhängigkeit von der Symmetrieen-
ergie einzuschränken. Vollständig schlüssige Aussagen über die EoS jenseits der Dichte 3n0

erfordern jedoch hochwertigere Daten im gesamten Strahlenergiebereich von 2-10 GeV, die
hoffentlich durch das Programm von STAR-FXT am RHIC, das bevorstehende CBM-
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Experiment an FAIR und zukünftige Experimente an HIAF und NICA bereitgestellt wer-
den.

Schließlich wurde gezeigt, dass die PointNet-basierten Modelle auch zur Identifizierung
der Zustandsgleichung im CBM-Experiment verwendet werden können. PointNet-basierte
Modelle wurden trainiert, um eine Phasenübergangs-EoS von einer Crossover-EoS anhand
der rekonstruierten Spurinformationen im CBM-Experiment zu unterscheiden. Die Mod-
elle waren in der Lage, eine fast perfekte Vorhersagegenauigkeit zu erreichen. Trotz der
Unsicherheiten aufgrund der begrenzten Detektorakzeptanz und der Verzerrungen in den
Rekonstruktionsalgorithmen war das PointNet-basierte Modell in der Lage, die Merkmale
zu erlernen, die die zugrunde liegende Physik der Kollision genau identifizieren können.
Das PointNet-Modell konnte eine Genauigkeit von über 96 % bei der Klassifizierung von
Phasenübergangsereignissen von Crossover-Ereignissen erreichen, wenn es mit realistis-
chen experimentellen Einschränkungen der Detektorauflösung und -akzeptanz trainiert und
getestet wurde. Das Modell erwies sich auch als robust gegenüber einigen Änderungen der
Modellparameter. Kurz gesagt, dies demonstriert die Flexibilität von PointNet-basierten
Modellen bei der Untersuchung von Schwerionenkollisionen. Das PointNet-basierte Modell
kann nicht nur die geometrischen Merkmale des Ereignisses, wie den Stoßparameter oder
den Npart, identifizieren, sondern auch abstrakte physikalische Merkmale, wie die EoS,
direkt aus den Detektorergebnissen extrahieren.

Kurzum, in dieser Arbeit wurden verschiedene Techniken der künstlichen Intelligenz
entwickelt, um Schwerionenkollisionen bei hoher Baryonendichte zu untersuchen. Die
Bayes’sche Analyse zur Einschränkung der EoS bei hoher Dichte deutet darauf hin, dass
die Flussbeobachtungen tatsächlich wertvolle Informationen enthalten, die die EoS von
Kernmaterie mit hoher Dichte eng eingrenzen können. Wir haben auch PointNet-basierte
DL-Modelle entwickelt, die sehr komplexe universelle Ereignismerkmale aus grundlegen-
den Ereignisinformationen extrahieren können, die aus Schwerionenkollisionsexperimenten
verfügbar sind. Mit Hilfe von PointNet-basierten Modellen ist es nun möglich, die Impakt-
parameter und Npart in Schwerionen-Kollisionsexperimenten Ereignis für Ereignis genau zu
extrahieren. PointNet-basierte Modelle sind sogar in der Lage, Ereignisse anhand von sehr
abstrakten Ereignismerkmalen zu klassifizieren, wie z.B. der EoS, die während der heißen
und dichten Phase der Kollision vorhanden war, d.h. ob ein Phasenübergang vorhanden war
oder nicht. Die Verwendung von experimentellen Daten wie z.B. Teilchenspuren in diesen
Modellen kann mögliche Verzerrungen in den Daten beseitigen, die in späteren Phasen
der Datenverarbeitung auftreten können. Die Punktwolkendarstellung der Daten erfordert
nur eine minimale Vorverarbeitung, bevor sie in das DL-Modell eingespeist wird. Dadurch
kann das Modell im Experiment für eine schnelle Online-Analyse der experimentellen Daten
verwendet werden. Aufgrund ihrer Fähigkeit, globale Merkmale in den Eingabedaten zu
identifizieren, können PointNet-basierte Modelle auch leicht angepasst werden, um jedes
andere globale Ereignismerkmal von Schwerionenkollisionen zu analysieren. Obwohl sich
die in dieser Arbeit entwickelten PointNet-basierten Modelle auf die Anwendung im CBM-
Experiment konzentriert haben, können die Modelle auch leicht für die Anwendung in
anderen Experimenten erweitert werden.
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Chapter 1

Introduction

The search for a coherent description of the matter and radiation that constitute the
universe, consistent at all scales of length and energy, is a fascinating, yet unresolved,
fundamental problem in physics. Towards the latter half the last century, attempts by
physicists around the world to develop such a description resulted in the development of
the Standard Model of particle physics, which describes three of the four fundamental in-
teractions (except the gravitational interaction). The standard model identifies quarks,
leptons and gauge bosons as the fundamental particles in the universe. There exist six
different types of quarks (up, down, charm, strange, top, bottom) and their antiparticles.
The up, charm and top quarks have an electric charge of +2/3, while the down, strange
and bottom quarks have an electric charge of -1/3. There are also six different leptons
(electron, muon, tau and their associated neutrinos) and their antiparticles. The electron,
muon and tau particles have an electric charge of -1, while the neutrinos have no charge.
The gauge bosons are the force carriers with the W+− and Z0 mediating the weak inter-
action, the photon mediating the electromagnetic interaction and the gluon mediating the
strong interaction. Besides their electric charge, quarks also carry a colour charge. There
are three different colour charges: red, blue and green. The quarks interact via the ex-
change of colour charge, mediated by gluons which themselves carry colour charge. Only
combinations of all three colours, or colour-anti-colour quarks, form colour-neutral stable
hadrons found in nature. The interactions between quarks and gluons are described by
Quantum ChromoDynamics (QCD), the theory of strong interaction.

1.1 Quantum chromodynamics
Quantum chromodynamics is a non-Abelian gauge theory of colour charge based on the
SU(3) symmetry group. The QCD Lagrangian is given by:

L = −1

4

∑
a

Ga
µνG

µν
a +

∑
k

Ψk

(
iγµ∂µ − gγµ

∑
a

Aa
µ

λa

2
−mk

)
Ψk. (1.1)
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CHAPTER 1. INTRODUCTION

The Gµν
α in the first term of the Lagrangian is the gluon field strength tensor which has

the form
Gµν

a = ∂µAν
a − ∂νAµ

a − gfabcAb
µA

c
ν . (1.2)

where g is the strong coupling constant, Aa
µ are the gluon fields and fabc are the structure

constants. The index a = 1−8 denotes the colour of the gluons and the last term in eq. 1.2
incorporates the self interaction of gluons due to their non-zero colour charge. The second
term in the Lagrangian describes the interaction between quarks and gluons as well as the
self interaction of the quarks where Ψk are the quark fields with the index k = u, d, c, s, t, b
representing the flavour of the quarks, γµ are the Dirac matrices and λa are the Gell-Mann
matrices, which are the generators of the SU(3) symmetry group.

One of the interesting features of QCD is the running coupling constant

g(Q2) =
16π2(

11− 2
3
Nf

)
ln
(
Q2/Λ2

QCD

) (1.3)

where Q2 is the four-momentum transferred, ΛQCD ≈0.2 GeV is the QCD scale parameter
and Nf is the number of quark flavours.

For large values of Q2 or small distances, the coupling strength becomes extremely small
and the quarks can behave as "free" particles. This property of the strong interaction
is called "asymptotic freedom", the discovery for which David Gross, Frank Wilczek and
David Politzerwon were awarded the 2004 Nobel Prize in Physics. Perturbative methods
can be used to make quantitative predictions of QCD at extremely high energies due
to the weak coupling strengths. On the other hand, at small values of Q2 the coupling
strength becomes extremely large. This leads to the property called "confinement", which
prevents the existence of isolated quarks in nature. At large coupling strengths, it becomes
energetically more favourable to create a quark-antiquark pair than to separate a quark
from a hardon. At intermediate and large couplings, perturbative methods cannot be used
and complex numerical methods become necessary.

Lattice QCD is one such method in which different actions are evaluated on a numerical
grid using Monte Carlo methods. In lattice QCD, the quark fields are defined at discrete
points in space-time (lattice sites), while the gluon fields are represented on the links
connecting neighbouring lattice sites. Although a powerful technique for studying the non-
perturbative regime of QCD, lattice simulations require enormous computational resources,
which currently limits their practical applications to non-dynamical systems.

There are several effective models for QCD that simplify the problem by dealing directly
with hadronic degrees of freedom. These models assume the existence of hadrons and
construct an effective Lagrangian that can reproduce some fundamental symmetries and
interactions of the QCD Lagrangian. Although their applicability is limited to a certain
region of QCD, effective models provide valuable information about the structure and
properties of strongly interacting matter.
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1.2. HEAVY-ION COLLISIONS

1.2 Heavy-ion collisions

The study of the properties of QCD matter under different thermodynamic conditions is
one of the most exciting directions in QCD physics. In the laboratory, such systems can
be created for short periods of time by colliding large nuclei such as Au, U, Ag, Pb, etc.
at relativistic energies [1–3]. In Heavy-Ion Collisions (HIC), the initial kinetic energy of
the nucleons is converted to heat and compressional energy, creating a hot and/or dense
QCD fireball. The fireball then rapidly expands under its own pressure and gradually cools
down to produce the dilute gas of hadrons that is ultimately measured in experiments. The
experiments explore the properties of QCD matter at different temperatures and densities
by varying the collision energy and system size. High energy collisions tend to rapidly
heat the system to a very high temperature but the net baryon densities achieved are
lower as the nucleons are not stopped to create a thermalised system. On the other hand,
intermediate or low energy collisions produce fireballs with relatively low temperatures but
high baryon densities.

The intermediate energy collisions of heavy nuclei are of particular interest because they
offer the possibility of compressing nuclear matter to many times the nuclear saturation
density, which is otherwise expected to occur only in neutron stars, core collapse supernovae
and neutron star mergers. Early fundamental studies on the theoretical mechanisms for
the production of highly compressed nuclear matter in ion-ion collisions, mainly based
on nuclear shock waves [4–8] were complemented by the first generation of relativistic
nuclear collision experiments worldwide. Of particular interest are the plastic ball [9]
and streamer chamber [10] experiments at BEVALAC [11], Lawrence Berkeley National
Laboratory, which studied collisions in the range ≈ 100AMeV to 2 AGeV. The plastic
ball and streamer chamber experiments were the first to make full 4π measurements of
the final state particles produced in nucleus-nucleus collisions. The experiments collected
a wealth of data that observed the predicted compression effects and collective flow of
particles in nucleus-nucleus collisions [12–16]. The exciting results spurred many more
investigations into the properties of hot and dense nuclear matter via relativistic and
ultra-relativistic nucleus-nucleus collisions. BEVALAC was complemented by a number
of heavy-on experiments at GSI (UNILAC, SIS-18), BNL (AGS, RHIC) and CERN (PS,
SPS) around the world. The fixed target experiments at these facilities were/are used
to study the properties of highly compressed nuclear matter. While these facilities have
been instrumental in the growth of experimental heavy-ion physics, accurate determination
of the fundamental properties of nuclear matter, such as the Equation of State (EoS),
requires precise measurements and large statistics that were not technologically feasible at
the time. Such measurements are expected to be provided by several proposed and existing
fixed target experiments worldwide. In chapter 2 some of the major heavy-ion collision
experiments are discussed in detail, with emphasis on the heavy-ion physics programme at
the Facility for Antiproton and Ion Research (FAIR), which is a major focus of this work.
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1.3 The Phase diagram of QCD

The predictions from lattice QCD, perturbative QCD and effective models are used to con-
struct a conjectured phase diagram of QCD bulk matter, as shown in figure 1.1. Different
phases of QCD matter, their boundaries and different particle accelerators probing different
regions of the phase diagram are illustrated in terms of temperature T and baryon chemical
potential µB in figure 1.1. The QCD phase diagram has several interesting features that
are being studied by the heavy-ion programmes around the world.

1. Deconfinement transition. At low temperatures and low chemical potentials, matter
exists as a gas of interacting hadrons and their resonances. This gas is mainly com-
posed of pions. By increasing the temperature and/or the chemical potential, the
hadron gas could transition to a state of quasi-free quarks and gluons called the Quark
Gluon Plasma (QGP) [17–21]. Lattice QCD calculations suggest that the transition
from hadron gas to QGP is a smooth crossover at vanishing baryon chemical poten-
tial and high temperature [22–25]. This is similar to the thermodynamic condition
that existed in the early universe. A first-order phase transition is conjectured at
lower temperatures and moderate baryon densities [26]. The search for signals of a
first-order phase transition and a possible critical endpoint of the first-order phase
transition are the main goals of the current heavy-ion experiments.

2. Chiral symmetry restoration. In the limit of massless quarks, QCD is invariant under
the interchange of left- and right-handed quarks. Adding a mass term to the La-
grangian explicitly breaks this chiral symmetry. However, the masses of the u, d and
s quarks are very small and the breaking of the symmetry is very weak. Therefore,
the chiral symmetry is often considered to be approximate. If the chiral symmetry
is approximate or exact, there should be degenerate parity partners for the hadronic
states. However, no such partners are observed. Therefore, chiral symmetry is most
likely broken spontaneously in vacuum, during which the Lagrangian remains sym-
metric with respect to chiral transformations, while the true ground state of the
theory is not. At high temperatures and/or chemical potentials, the chiral symmetry
of QCD matter is expected to be restored. The chiral and deconfinement transitions
are expected to occur at almost the same temperature [27]. However, this may not
be the case for QCD matter at finite chemical potential. Identifying the signals of a
chiral transition is another exciting goal for heavy-ion collision experiments.

3. Nuclear Liquid-Gas Transition. Ordinary nuclear matter (the nuclear liquid) exists
at a baryon chemical potential of about 923 MeV and a temperature of about 0
MeV. When the temperature of this system is increased by a few MeVs, part of
the nuclear liquid evaporates, emitting nucleons, light nuclei and other fragments.
Alternatively, if the density is reduced below the nuclear saturation density, the
nucleus is fragmented into droplets. As the temperature is increased and the density
reduced, a mixed phase of the nuclear droplets and the gas of the emitted particles
is formed. At vanishing chemical potentials, nuclear matter exists in a "gaseous"

4



1.3. THE PHASE DIAGRAM OF QCD

Figure 1.1: The conjectured phase diagram of QCD. The smooth crossover transition at
vanishing chemical potential is shown as the vertical dashed lines, while the following solid
green line represents the conjectured first-order phase transition. The region of the phase
diagram probed by heavy-ion collisions at different accelerators is also shown. Figure taken
from the GSI website [28].

phase of nucleons. At low temperatures, this transition from nuclear liquid to gas
is a first-order phase transition associated with a latent heat of vaporisation for the
nuclear liquid. The transition becomes weaker as the temperature is increased and
finally ends in a second order critical point at T≈ 15-20 MeV and µB ≈ 923 MeV. The
nuclear liquid-gas phase transition has been studied in several nuclear experiments
and is a well-established region of the phase diagram [29,30].

4. Quarkyonic matter. It is also suggested that at high baryon chemical potentials a new
phase of matter exists between the deconfined QGP and the confined hadronic phase.
This confined phase, which behaves like a gas of quarks at high baryon density, is
known as the quarkyonic phase [31]. A triple point is also proposed where hadronic
matter, Quark Gluon Plasma and quarkyonic matter would coexist. Note that in the
figure 1.1 the quarkyonic phase is not labelled.
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5. Colour superconductor. At asymptotically large chemical potentials and low tem-
peratures, QCD matter could behave in a similar way to electrical superconductors
in condensed matter physics. The quarks could form Cooper pairs to exhibit colour
superconductivity, similar to the superconductivity in metals that arises from the
condensation of electron Cooper pairs [32,33]. Experiments cannot currently achieve
the densities required to produce a colour superconducting phase. However, such
matter is expected to be found in compact stellar structures such as neutron stars.

1.4 Theoretical models for heavy-ion collisions

One of the main objectives of heavy-ion collision experiments is to map the QCD phase
diagram by studying the final state particles measured by particle detectors. The exper-
imental observables are compared with the predictions of theoretical models to infer the
properties of the hot and/or dense matter produced in heavy-ion collisions. This is par-
ticularly true for the high net-baryon density region of the phase diagram, i.e. at large
chemical potential, where direct lattice QCD simulations are currently not possible due to
the fermionic sign problem [34]. In this regime, QCD motivated effective models as well
as direct experimental evidence are employed to search for structures in the QCD phase
diagram, such as a conjectured first-order phase transition and a corresponding critical
endpoint [35–37].

The space-time evolution of heavy-ion collisions can be broadly divided into three distinct
phases. In the initial pre-equilibrium phase, the projectile and target nuclei collide and the
nucleons begin to interact with each other, both elastically and inelastically, creating a hot
dense "fireball". Once the system has had sufficient time to interact, a phase of thermal
equilibrium could be reached. In the equilibrium phase, the fireball expands and exhibits
collective behaviour. Finally, the system becomes dilute and is no longer in chemical or
thermal equilibrium. The final interactions of the hadrons before the freeze-out take place
in this decoupled phase.

Depending on how each of these stages is implemented, there are several dynamical models
for heavy-ion collisions.

1. Transport models. Models based on relativistic transport theory explicitly calculate
the entire evolution of each microscopic degree of freedom, from the initial pre-
equilibrium state to the final freeze-out [38]. There are two main approaches to
solving the transport equations.

(a) Boltzmann-Uehling-Uhlenbeck (BUU) type approaches, which propagate the
one-body phase space density under a mean field [39].

(b) Quantum Molecular Dynamics (QMD) type approaches that propagate the po-
sition and momenta of nucleons under an n-body Hamiltonian [40–46].

One of the main challenges in modelling heavy-ion reactions using transport theory

6



1.5. ARTIFICIAL INTELLIGENCE FOR HEAVY-ION COLLISIONS

is to describe the transition between the hadronic and partonic phases. Transport
models also require the cross section values for all processes as input, since all mi-
croscopic scatterings are treated explicitly. Therefore, the cross sections must be
calculated analytically if experimental data are not available.

2. Relativistic hydrodynamics. Assuming that the system is in thermal equilibrium
throughout the evolution, a macroscopic ideal hydrodynamical description can be
used to model heavy-ion collisions [47]. However, this is only partially true for the
intermediate stage where the system is sufficiently dense. This limits the applicability
of hydrodynamics during the early and very late stages of evolution. The equilibrium
assumption can be relaxed by introducing viscosity into the model. Nevertheless,
hydrodynamical models can implement the transition from the hadronic phase to the
quark gluon plasma by providing an appropriate equation of state.

3. Hybrid models. The hybrid micro+macro models for heavy-ion collisions use a micro-
scopic description for the initial and final phases of the collision, while a macroscopic,
hydrodynamic description is applied to the intermediate dense phase [48]. This com-
bined approach to modelling the evolution is popularly known as the "standard model
for heavy-ion collisions". Using hydrodynamics only for the dense phase evolution
allows hybrid models to include different QCD transitions without using the equilib-
rium description to model the non-equilibrium dynamics during the interpenetration
and final dilute phase. One of the challenges of a hybrid description is that the
switching time from a transport model to hydrodynamics and vice versa is not well
defined. The choice of starting and stopping time of the hydrodynamic evolution can
significantly influence the final result.

Chapter 3 contains detailed discussions of different dynamical models for heavy-ion col-
lisions, which are extensively used in the studies presented in the following chapters. In
particular, a new method to consistently describe the entire evolution of the system within
a QMD-type transport model is presented.

1.5 Artificial intelligence for heavy-ion collisions

The final state spectra measured by particle detectors in heavy-ion collision experiments
carry information about the properties and dynamics of the matter created in the collision.
However, due to the transient and stochastic nature of heavy-ion collisions, extracting the
relevant physics signals from observables based on final state spectra is not straightfor-
ward. Traditional methods for analysing heavy-ion collision data require large-scale model
comparisons and multi-parameter model fits to multiple observables sensitive to a physics
phenomenon. The huge computational cost of Monte Carlo simulations is the main chal-
lenge associated with such investigations. In addition, the limited phase space coverage
and the limited positional and temporal resolution of the detectors affect the quality of
the collected data. Furthermore, different pre-processing and analysis algorithms used
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for event characterisation and selection may introduce unanticipated biases into the data.
Conventional observables that perform well in ideal model simulations could have reduced
sensitivity in the presence of these experimental effects.

The main objective of this work is to investigate novel Artificial Intelligence (AI) based anal-
ysis techniques that could overcome the aforementioned limitations of conventional physics
analyses. Artificial intelligence is a branch of computer science that deals with the develop-
ment of techniques to emulate "intelligence" in machines, thereby giving them the ability
to make decisions with minimal human intervention. Over the past few decades, there
have been tremendous advances in hardware technology for high performance computing,
particularly with Graphics Processing Units (GPUs). The advances in GPU technology
and the availability of large amounts of data have made it possible to develop extremely
complex, data-centric Artificial intelligence methods for solving a multitude of problems.
A formal introduction to the basic concepts of data-centric AI methods is presented in
chapter 4.

The success of AI in solving several computer science problems has motivated the high
energy physics and nuclear physics community to explore AI as a novel tool for both ex-
perimental and theoretical analysis. The present work explores AI methods for connecting
heavy-ion theory to experiment, with a particular emphasis on the experiments at FAIR.
The heavy-ion experiments at FAIR will study the QCD phase structure at high net-baryon
densities. The unique experimental and theoretical challenges posed by FAIR make it an
ideal testbed to investigate the capabilities of AI in heavy-ion physics.

In order to avoid bias in the data due to the pre-processing algorithms used by the exper-
iments and to speed up the analysis process, it is ideal to use AI methods that directly
process detector-level information. However, there are several challenges in processing
detector level information using conventional AI methods. These issues and proposed so-
lutions are discussed in chapter 4. Note that conventional statistical inference methods are
also considered in the context of AI in this thesis, although they use different modelling
approaches than those used by modern AI methods. The basic principles of such a method
based on Bayesian statistics is also presented in chapter 4.

Before introducing the AI methods for the analysis of experimental data, the limitations of
a conventional simplified Glauber MC model [49,50] for collisions are presented in chapter 5.
The Glauber MC model is often used for event selection in the experiments. The Glauber
MC model is compared with a transport model to shed light on the uncertainties and
ambiguities arising from the inconsistent use of different models to analyse experimental
data. Various AI based solutions to avoid such ambiguities in experimental results are then
presented in chapter 5. AI models that can accurately extract the underlying physics of
the collisions are also presented. In addition to AI methods working directly on detector
level information, a statistical learning technique is applied to experimental data to infer
the physics as described by a theoretical model for heavy-ion collisions. Such an analysis
is also presented in chapter 5. Finally, the results of the work are summarised in chapter
6.
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Chapter 2

Heavy-ion collision experiments

Experimental research in high energy/nuclear physics was revolutionised by the discovery
of particle accelerators. Today, particle accelerators are one of the fundamental tools for
experimental research in high energy/nuclear physics. By accelerating and colliding heavy
nuclei such as Au, U, Pb, etc. at velocities close to the speed of light, QCD matter
of extremely high temperature and density is produced in the laboratory, which can be
studied using particle detectors that measure the final state charged particles produced in
the collision.

The earliest particle accelerators used a static electric field to accelerate charged parti-
cles such as an electron or a proton. However, the maximum energy that particles could
achieve in such electrostatic accelerators was limited by their breakdown voltage, which
was the maximum possible acceleration voltage. This was overcome by electrodynamic
accelerators, which use time-varying electromagnetic fields to accelerate particles. Elec-
trodynamic accelerators can be broadly categorised into linear and circular accelerators.
Linear accelerators use dynamic electric fields to accelerate particles in a straight line, us-
ing an array of cavities that switch their electric polarities as the particle passes through,
so that the particle is accelerated from one cavity to the next until it reaches the target.
The main limitation of linear accelerators is that the maximum kinetic energy achieved by
the particle depends on the length of the accelerator. This was overcome by the discovery
of the cyclotron, for which Ernest O. Lawrence was awarded the Nobel Prize in Physics
(1939). In a cyclotron, a particle accelerated by an electric field follows a curved path as
it passes through a static magnetic field. In a linear accelerator, the spacing between the
gaps of the cavities must be increased to account for the increasing speed of the particle,
so that the particle always experiences an accelerating voltage when it is at the gap. In a
cyclotron, however, as the particle follows an outward spiral trajectory, the same gap can
be reused and the increasing distance the particle has to travel before reaching the gap
again compensates for the increasing speed. Thus the particle reaches the gap at the same
point in the voltage cycle each time, accelerating the particle further.
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The principle of cyclotron can be extended to accelerate particles in a fixed closed loop.
To ensure that the accelerated particle follows the fixed closed trajectory, the magnetic
field strength is increased as the kinetic energy of the particle increases. Such accelera-
tors, in which the magnetic field is synchronised with the increase in particle energy, are
known as synchrotrons. Several of the world’s most powerful particle accelerators are syn-
chrotrons. The Large Hadron Collider (LHC) and the Super Proton Synchrotron (SPS) at
CERN, the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory,
and the Schwerionensynchrotron-18 (SIS-18) at GSI are the major synchrotrons currently
performing nucleus-nucleus collisions at relativistic and ultrarelativistic energies.

The LHC, which began its first operational run in 2009, is the largest accelerator at CERN
with a circumference of about 27 km. The LHC has performed proton-proton (p-p), proton-
nucleus (p-A) and nucleus-nucleus (A-A) collisions at incredibly high beam energies of
several TeV. Recently, in its Run-3, the LHC operated at record collision energies of 13.6
TeV for p-p collisions and

√
sNN = 5.36 TeV for lead-lead (Pb-Pb) collisions [51]. The

LHC is home to four major experiments: ALICE, CMS, ATLAS and LHCb. ALICE,
which stands for A Large Ion Collider Experiment, is an experiment dedicated to heavy-
ion physics. Although CMS, ATLAS and LHCb focus mainly on p-p collisions, they also
collect heavy-ion data for a limited part of the run.

The Super Proton Synchrotron (SPS) is the second largest synchrotron in operation at
CERN. The SPS has a circumference of about 7 km and accelerates protons up to 450 GeV
and heavy-ions in the intermediate energy range (Elab ≈ 20 − 160A GeV). Experiments
such as NA-49, NA-60 and NA-45/ CERES have collected data in this intermediate energy
range [52–56]. The SPS is currently operating as the final injector for the LHC and also
provides beams for several fixed target experiments such as NA-61/ SHINE, NA-62 and
NA-58/ COMPASS.

RHIC operates at intermediate collision energies and is home to four heavy-ion experi-
ments: STAR, PHENIX, BRAHMS and PHOBOS. All experiments except STAR are now
decommissioned and PHENIX is being upgraded to the sPHENIX detector. In 2011, RHIC
completed data collection for the first phase of its Beam Energy Scan (BES) programme
with STAR, which aims to explore the phase diagram by varying the beam energies. In
addition to the data already collected at beam energies of

√
sNN = 62, 130 and 200 GeV,

data were collected at collision energies of
√
sNN = 7.7- 39 GeV during the BES-I [57,58]. In

2021, the RHIC also concluded the BES-II programme in which high luminosity Gold-Gold
(Au-Au) data was collected for energies

√
sNN = 9.8, 7.3, 5.75, 4.59 and 3.85 GeV [59].

The STAR experiment also has a fixed target programme to extend the range of BES-II
to lower beam energies (

√
sNN ⪅ 7 GeV) [60].

The Alternating Gradient Synchrotron (AGS), which is the predecessor to RHIC, currently
operates as the pre-accelerator of RHIC. The AGS has a circumference of about 800 m. The
AGS has performed several experiments in the energy range Elab ≈ 2− 11A GeV [61–63].

The SIS-18 at GSI carries out fixed target experiments at lower energies of 1 − 2A GeV
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[64–69]. The synchrotron has a maximum magnetic rigidity of 18 Tm and a circumference
of 216 m. The SIS-18 is currently being upgraded to serve as an injector for the future SIS-
100 accelerator. SIS-100 is the heavy-ion synchrotron under construction at the Facility
for Antiproton and Ion Research (FAIR) [70,71].

The heavy-ion collision programmes such as BES at RHIC, CBM at GSI/ FAIR, NA61/
SHINE at CERN, HIAF in China, NICA in Russia and J-PARC-HI in Japan aim to explore
the phase diagram of nearly isospin symmetric QCD matter at high baryon densities and
temperatures. The matter produced in these collisions is expected to have temperatures
between 50 and more than 250 MeV and densities several times the ground state density of
nuclear matter. The experiments will mainly focus on exploring the nature of the transition
of QCD matter from a confined hadronic phase to a phase where chiral symmetry is restored
and quarks are eventually deconfined.

The terrestrial experiments are complemented by astrophysical observations of Binary Neu-
tron Star Mergers (BNSM) and supernova explosions which create (isospin asymmetric)
matter of high densities and temperatures up to 50 MeV [72]. The cold neutron star matter,
similar to the matter formed in heavy-ion collisions, is dynamically compressed and heated
in binary neutron star mergers. The gravitational waves produced during the mergers are
then measured by ultra-sensitive gravitational wave detectors to infer the properties of the
hot, compressed neutron star matter [73–76].

While the systems created in such different scenarios vary in size over many orders of
magnitude, they share a common unknown and defining property, the equation of state of
dense nuclear matter. The equation of state is an input to theoretical models of heavy-ion
collisions. It combines the microscopic and macroscopic properties of the created system
and provides the pressure of the medium for any given energy and net baryon number
density. Various types of QCD transitions are implemented in theoretical models via
the equation of state. Extracting the equation of state and its properties, such as phase
transitions or softest points, has been a defining challenge for many experimental and
theoretical programmes over the last decade.

In the following, we discuss some of the major heavy-ion experiments, their physics goals
and detectors with focus on the experiments at FAIR. Part of the contents in this chapter
are based on [77–80].

2.1 Physics at FAIR

FAIR is an international research facility under construction next to GSI in Darmstadt,
Germany [82–84]. A schematic diagram of the proposed FAIR accelerator complex is shown
in figure 2.1. The heart of the facility is the SIS-100 synchrotron, which will be able to
provide ion beams of unprecedented intensity for all the natural elements of the periodic
table, as well as antiprotons. The existing linear accelerator UNILAC (120 m long) and
the SIS-18 synchrotron at GSI will pre-accelerate the heavy-ion beams for the SIS-100
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Figure 2.1: The proposed FAIR accelerator complex. The existing accelerators UNILAC
and SIS-18 (shown in blue) will act as injectors and pre-accelerators for SIS-100. The
accelerated beams from SIS-100 will then be directed to the experimental cavities for use
in fixed target experiments or for the production of secondary particles. Figure taken from
the GSI website [81].

accelerator. A new proton linear accelerator (LINAC) will be built in front of SIS-18 to
provide the high-intensity proton beam required for antiproton production. The SIS-100
has a circumference of about 1.1 km and a maximum magnetic rigidity of 100 Tm. The
SIS-100 is capable of producing proton beams of energy up to Elab ≈ 29AGeV, calcium
beams up to Elab ≈ 14AGeV and gold and uranium beams up to Elab ≈ 11AGeV [85].
The SIS-100 will produce extremely high intensity protons and heavy-ions at intermediate
beam energies. The proton beam at 29 GeV will have an intensity of about 2.5×1013

protons/cycle, while the uranium U92+ at 10 GeV will have an intensity of about 4 ×1010
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ions/cycle [71].

The accelerated beams from the SIS-100 either go directly to the experimental caves, where
different fixed target experiments are performed, or to the production targets for antiproton
or radioactive nuclei. The Superconducting Fragment Separator (Super-FRS) will then be
used to provide spatially separated isotopic beams of the radioactive ions [86]. A Collector
Ring (CR) will be used to cool the antiproton or radioactive ion beams, and an accumulator
ring (RESR) will accumulate the antiprotons as well as decelerate the radioactive nuclei.
The beam will then enter the New Experimental Storage Ring (NESR), which will house
several antiproton and ion experiments. The NESR will also further cool the beams for
use in the Facility for Low energy Antiproton and Ion Research (FLAIR) [87]. FLAIR will
carry out studies with very low energy antimatter beams. There is also a High Energy
Storage Ring (HESR), which will accelerate and store antiproton beams up to 15 GeV [88].

The experimental programme at FAIR comprises four main directions:

1. APPA. The Atomic, Plasma Physics and Applications (APPA) collaboration will
investigate a wide range of topics from biophysics and materials research to plasma
physics [89]. Using proton and heavy-ion beams, biophysicists at APPA will inves-
tigate new techniques for cancer treatment and imaging. APPA will also study the
effects of radiation damage on the human body and on electronic equipment in space.
Such studies of how cells react to cosmic radiation would be useful for our future mis-
sions to nearby planets and into space. Materials scientists at APPA will also study
the structure of the Earth’s interior by bombarding minerals in high-pressure cells
with high-energy ions. This will mimic conditions in the Earth’s interior. Studying
the properties of bulk matter in the high density plasma state and testing the theory
of quantum electrodynamics for extremely strong electromagnetic fields are other
major goals of the APPA collaboration.

2. CBM. The Compressed Baryonic Matter (CBM) experiment [85, 90–93] is the dedi-
cated heavy-ion collision experiment at FAIR. In its first phase, the CBM experiment
will study the properties of highly compressed baryonic matter using high-energy
nucleus-nucleus collisions with beam energies from 2 to 10 AGeV at the SIS-100
accelerator. The physics goals of the CBM experiment are to study the equation
of state of nuclear matter at densities similar to neutron star cores, to search for
the conjectured phase transition and its critical endpoint, to study the in-medium
properties of hadrons and to search for exotic objects such as multi strange hyper-
nuclei. The CBM experiment will study observables sensitive to the early and dense
phases of fireball evolution. This includes precise measurements of short-lived vector
mesons (ρ, ϕ and ω) decaying into di-lepton pairs, multi strange hyperons (λ, Ξ and
Ω), direct photons, charmed mesons (D. λc and J/ψ), collective flow and particle
number fluctuations. However, extremely high interaction rates are required to study
some of these probes, which have very small cross sections (for charmed particles)
or small branching fractions (for di-leptons). The experimental challenge of CBM is
therefore to develop state-of-the-art, radiation-hard detectors capable of precise and
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fast measurements of these rare probes at unprecedented interaction rates, and to
develop analysis methods to efficiently process the collected data in real time.

3. NUSTAR. The NUclear Structure Astrophysics and Reactions collaboration, abbre-
viated NUSTAR, focuses on experiments to study the properties of exotic nuclei [94].
A key element of the NUSTAR experiments is the Super-FRS, which separates dif-
ferent exotic nuclei produced in the collision of the primary ion beam with a target.
The cooling and storage rings of the FAIR facility allow the rare nuclei produced
to be reused in the experiments without additional beam time. The experiments at
NUSTAR are crucial for understanding the formation and evolution of stellar matter
and the properties of rare nuclei created in violent astrophysical phenomena.

4. P̄ANDA. The antiProton ANnihilations at DArmstadt (P̄ANDA) [95] collaboration
will study antiproton-proton and antiproton-nucleus reactions up to 15 GeV/c. The
high-intensity, cooled antiproton beams provided by the HESR will be collided with
a proton or nuclear target to perform various exciting studies in hadron physics. The
P̄ANDA will perform precision studies on the bound states of QCD. This includes
charmonium, D-meson and baryon spectroscopy and the search for gluonic excita-
tions. The high-intensity antiproton beam will also enable the P̄ANDA experiment
to study the in-medium modifications of hadrons in the charm sector, to study nu-
clear structure in the framework of generalised parton distributions and to search for
new states of Λ hypernuclei.

2.1.1 HADES

The High Acceptance Di-Electron Spectrometer (HADES) is a versatile detector currently
operating at the SIS-18 accelerator at GSI. The primary goal of HADES is to study in-
medium modifications of hadrons in hot and dense nuclear matter. HADES will primarily
measure the di-electron decays of light vector mesons such as ρ, ϕ and ω. The lifetimes of
these short-lived particles are similar to the duration of the compression phase of collisions
at SIS-18 energies. In addition, the di-electron decay channels are not affected by the
strong interaction. Thus, accurate measurements of vector meson decays can be used to
study the properties of matter during the compression phase of the system.

The HADES detector has an almost complete azimuthal acceptance and a polar angle
acceptance of 18- 85°. The detector consists of six identical detection sections defined
by a six-coil superconducting magnet that produces a toroidal magnetic field. A Ring
Imaging CHerenkov (RICH) detector is placed after the target for electron identification.
The momentum of the hadrons is reconstructed using the two sets of Multi-wire Mini Drift
Chambers (MDC) placed before and after the magnets. Behind the MDCs are the Resistive
Plate Chambers (RPC) covering the polar angles 18- 45° and the scintillator Time of Flight
(TOF) detector covering the polar angles 45- 85°. The MDC together with the TOF and
RPCs are used for hadron identification. A START detector is placed in front of the target
to measure reaction times, and the signal from the START detector is used to define a
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minimum bias trigger.

HADES currently measures nucleus-nucleus collisions in the beam energy range of 1- 2
AGeV. Over the years, HADES has already collected large amounts of data for p + p [96,97],
p + Nb [98, 99], C + C [65, 100, 101], Ar + KCl [102–104] and Au-Au [105–107] reactions
at different beam energies. In the future, HADES will also be operated at low SIS-100
energies.

2.1.2 The CBM detector

The CBM is a fixed target experiment that can be configured for both electron-hadron
and muon-hadron measurements. The CBM detector is designed for fast and precise mea-
surements of hadrons, muons and electrons produced in nucleus-nucleus collisions. The
experiment will use advanced radiation-hard detectors with self-triggered readout elec-
tronics to achieve the desired performance. A microstrip detector based Silicon Tracking
System (STS) [108,109], which reconstructs the momenta and tracks of charged particles,
is one of the key components of the CBM experiment. The STS consists of 8 equidis-
tant planar detector stations placed 30-100 cm behind the target. The STS provides a
single hit resolution of 25 µm and a momentum resolution of 1%. The CMOS pixel
based Micro Vertex Detector (MVD) [109] is designed to reconstruct open charm decays
with a secondary vertex resolution of 50 µm and has an excellent position resolution of
3.5 - 6 µm. The MVD consists of 4 layers of Monolithic Active Pixel Sensors (MAPS)
located 5-20 cm behind the target. The MVD is placed together with the STS in the
gap of a superconducting dipole magnet with a magnetic field integral of 1 Tm. A Ring
Imaging CHerenkov (RICH) [110] detector is used to identify electrons from decay of low
mass vector meson decay while high energy electrons and positrons are identified using the
Transition Radiation Detector (TRD). RPC based time of flight measurements are used to
identify hadrons [111] and Projectile Spectator Detector (PSD) will be used for centrality
and event plane determination. 1. The collisions will produce up to 1000 charged particles
at a maximum interaction rate of 10 MHz. This will produce 1 Tbytes/s of raw data.
The data will then be processed using a First Level Event Selector (FLES) [112], which
performs online particle tracking, event reconstruction and event selection. It is interesting
to note that a full system CBM test setup called mCBM has been built at the SIS18 facility
of GSI/FAIR. As this setup provides additional high-rate detector tests in nucleus-nucleus
collisions under realistic experimental conditions, it can be used to test the present analysis
also at lower energies than at the full CBM detector.

An important feature of the CBM experiment is the very high event and trigger rate, which
allows the detection of rare particles as well as the study of observables that require large
event samples, such as higher order fluctuations and correlation functions. To take full
advantage of these properties of the CBM detector, new analysis techniques are needed

1These detector systems form the basis of the electron-hadron configuration considered in the rest of
this thesis.
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that allow the ultrafast analysis of the continuous stream of events produced at the detector.

2.2 Other major experiments

There are several major heavy-ion collision experiments currently operating and collecting
data around the world. In this section we briefly describe some of these experiments at
RHIC, LHC and SPS. A short description of the physics goals of each experiment and its
detector is given. Note that the detectors described below have undergone several upgrades
over the years of data collection. Only the basic detector components and geometry are
presented here.

2.2.1 NA61/ SHINE

The NA61 experiment [113], also known as the SPS Heavy Ion and Neutrino Experiment
(SHINE), is the successor to the NA49 experiment at the SPS, CERN. The NA49 measured
strong signals for the minimum collision energy threshold for the production of deconfined
matter to be around 30 AGeV for Pb-Pb, known as the onset of deconfinement [55]. NA61
performs a 2-D scan in collision energy and size of the colliding nuclei to study the energy
dependence of the onset of deconfinement and to search for a critical endpoint in the QCD
phase diagram [114]. Proton-proton and various nucleus-nucleus collisions in the beam
energy range 13- 150 AGeV are studied by the SHINE experiment. The NA61 detector is
a large acceptance hadron spectrometer consisting mainly of Time Projection Chambers
(TPC), TOF detectors and a PSD. Two TPCs, known as Vertex TPCs (VTPCs), are
placed inside superconducting magnets behind the target. Behind the VTPCs, the two
Main TPCs (MTPCs) are placed symmetrically on either side of the beamline. Behind the
MTPCs are two TOF walls, one on each side of the beamline. Finally, the PSD, a forward
calorimeter used to estimate the centrality of collisions, is placed at the very end.

2.2.2 ALICE

ALICE [115–117] is a heavy-ion experiment at the LHC that studies the physics of strongly
interacting matter at extreme temperatures and energy densities. ALICE measures heavy-
ion collisions at beam energies of several TeV. The ALICE detector is designed to accurately
reconstruct the hadrons, electrons, muons and photons produced in the heavy-ion collisions
at the LHC. The ALICE detector has dimensions of 16×16×26 m3 and weighs about 1000
tonnes. The main part of the detector is the inner barrel, which contains the Inner Track-
ing System (ITS), the transition radiation detector, the time projection chamber, the time
of flight detector, the PHOton Spectrometer (PHOS), the Electromagnetic Calorimeter
(EMCal) and the High Momentum Particle Identification Detector (HMPID). All these
detectors are housed in a solenoid magnet. The ITS and the TPC are the main tracking
detectors for ALICE. The multigap RPC-based TOF is used for intermediate momentum
particle identification. The TRD is used for electron identification and charged particle
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tracking. The HMPID, PHOS and EMCal will identify hadrons at intermediate momenta.
Other major ALICE sub-detectors include a Photon Multiplicity Detector (PMD) and a
silicon Forward Multiplicity Detector (FMD) measuring photons and charged particles at
|η| ≈ 3, a Zero Degree Calorimeter (ZDC) for centrality estimation and a muon spectrom-
eter.

2.2.3 STAR

The Solenoid Tracker At RHIC (STAR) was built at RHIC to study the properties of
strongly interacting matter at high energy densities [21, 60, 118]. The physics goals of the
experiment include studying the properties of the fireball produced in the collision, observ-
ing the disappearance of QGP formation, searching for signatures of a phase transition and
the critical point. The STAR detector consists of several sub-detector systems for specific
tasks [119]. The heart of the detector are the TPCs, which are used for charged particle
tracking and particle identification by measuring the dE/dx. Surrounding the TPCs are
TOF detectors, which help in particle identification for high momenta particles. A plastic
scintillator based event plane detector has recently been incorporated into the STAR detec-
tor for improved event plane determination. A recent upgrade of the forward calorimeter
system, consisting of a forward tracking system, a hadron calorimeter and an electromag-
netic calorimeter, has been carried out to improve the detection capabilities of the detector
for neutral pions, photons, leading hadrons, electrons and jets in the pseudorapidity range
2.5< η < 4 [120].

2.3 Challenges in the analysis of experimental data

Experiments reconstruct a collision event by measuring the position, momentum, charge
and mass of the particles produced in the collision using a variety of particle detectors.
However, the detection efficiency, dead time and phase space coverage of the detectors
make these measurements noisy and incomplete. In addition, the efficiency of event re-
construction is ultimately limited by the position, momentum and time resolution of the
detectors. Additional uncertainties are introduced by the algorithms used to process the
detector data. The ultimate goal is then to trace back the physics embedded in this par-
tial, noisy information recorded by the experiments by comparing various observables such
as flow coefficients, baryon number fluctuations, etc. with the predictions of theoretical
models [121]. Although these observables have proven useful for studying the properties
and dynamics of matter produced in heavy-ion collisions, experimental effects can signifi-
cantly reduce the sensitivity of these observables. This requires the development of novel
methods to analyse and characterise heavy-ion collision data. Such methods should not
only be accurate and robust in the presence of experimental uncertainties, but also fast and
flexible enough to be used in the next generation of high-luminosity experiments without
the need for dedicated, expensive computational resources. In this thesis, we will focus on
the development of such methods using AI techniques. As an ambitious experiment that
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CHAPTER 2. HEAVY-ION COLLISION EXPERIMENTS

will study heavy-ion collisions at unprecedented intensities, the CBM experiment requires
fast and accurate analysis methods to deal with the large amounts of data collected in the
experiment in real time. Therefore, we will use the future FAIR experiments, in particular
the CBM experiment, as an example and baseline to develop and test the performance of
various AI methods.

18



Chapter 3

Models for heavy-ion collisions

The main focus of heavy-ion programmes in laboratories and astrophysical data from neu-
tron star radii and binary neutron star mergers is to constrain the properties of hot and
dense QCD matter. Experiments compare observables such as collective flow, particle
yields, multiplicity fluctuations and correlations etc. with theoretical model predictions to
infer the underlying equation of state and its properties [1, 8, 122–124]. However, at inter-
mediate beam energies, the predictions for these observables are strongly model-dependent
due to the lack of first-principles calculations.

The equation of state, which is an essential component of theoretical models, drives the
evolution of the system created in the collision. Various types of QCD transition are also
incorporated into theoretical models via the EoS. However, in order to extract the EoS
from experimental data, model simulations are required that can incorporate different pos-
sible equations of state. Such models can be based on a microscopic description such as
UrQMD, a macroscopic fluid dynamic description or a combined micro+macro descrip-
tion for the evolution of the system. In order to draw reliable and consistent conclusions
about the equation of state and its properties by comparing experimental data with model
simulations, it is therefore important to systematically analyse how different theoretical
models treat collisions and the resulting differences in model predictions. In this chapter
we introduce different dynamical models for heavy-ion collisions, with emphasis on how
these models incorporate the equation of state to model the evolution of the system. In
particular, a method for the consistent introduction of arbitrary EoS within a microscopic
transport simulation is also presented in this chapter.

Part of the results and model descriptions presented in this chapter are based on [79,125–
127].
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3.1 The UrQMD (cascade) model
Early microscopic transport approaches to describe nucleus-nucleus collisions were mainly
based on the Vlasov-Uehling-Uhlenbeck (VUU) theory [39]. The time evolution of the
single particle distribution function f(r, p, t) in the VUU model is given by

∂f

∂t
+ v · ∂f

∂r
−∇U · ∂f

∂p
=−

∫
d3p2d

3p
′
1d

3p
′
2

(2π)6
σv12

[
ff2(1− f

′

1)(1− f
′

2)

− f
′

1f
′

2(1− f)(1− f2)
]
δ3
(
p+ p2 − p

′

1 − p
′

2

)
.

(3.1)

The VUU based models include single particle dynamics in a mean field but don’t include n-
body interactions which are essential to describe mechanisms such as fragment formation
and multifragmentation [128]. This was addressed by the QMD models [40–44] which
included n-body correlations as they solved Hamilton’s equations of motion for n particles
in a mean field.

In equation 3.1, neglecting the real part of the retarded self-energy and approximating the
Pauli blocking factor to 1, gives the Boltzman equation. Most of the modern transport
models for heavy-ion collisions are based on an effective solution of the Boltzman equation,
which describes the time evolution of the distribution function of different particle species
by a collision integral [129].

UrQMD [45,46] is a microscopic non-equilibrium N-body transport model based on an effec-
tive solution of the relativistic Boltzman equation, augumented by a QMD part. UrQMD
initialises the projectile and target nucleons using a Wood-Saxon distribution

ρ(r) =
ρ0

1 + exp( r−R
a

)
, (3.2)

where R is the radius parameter, ρ0 is the charge density at the center and a is the dif-
fuseness parameter. The sampled nucleons also have a randomly chosen Fermi momentum
between 0 and Pmax

F , where

Pmax
F = ℏc(3π2ρ)

1
3 . (3.3)

UrQMD is based on the covariant propagation of hadrons and their resonances on straight
trajectories. In its default setup, the model corresponds to a hadronic cascade and can
be readily used to describe the final state spectra of hadrons over a wide range of beam
energies. The hadron interactions are determined based on the geometric interpretation of
the cross section. The transverse separation between each particle pair (dij) is calculated
at the point of closest approach, and the particles are considered to undergo a collision
if the geometric area defined by (dij) is smaller than the total cross section (σab

tot) for the
particle species involved, i.e,

i.e., πd2ij ≤ σab
tot . (3.4)
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3.1. THE URQMD (CASCADE) MODEL

The σab
tot here depends on the center of mass energy of the pair as well as the species of

particles involved (a, b). Particle production in this model occurs via resonance decays
or string excitation and fragmentation. The decomposition of the collisions into elastic or
inelastic collisions, subsequent particle production and decays are then performed according
to their respective cross sections, which are taken either from experimental h-h data [130]
if available, or from effective parameterisation based on phase space considerations and
continuations of known cross sections, i.e. by the additive quark model. In UrQMD, any
nucleon that has undergone at least one elastic or inelastic interaction during its evolution
is considered to be a participant nucleon, i.e. to have undergone a collision.

The UrQMD model in the cascade mode has an equilibrium state that is equivalent to the
HRG model description of QCD matter [131]. Since only elastic scattering and resonance
excitations occur in the cascade mode of UrQMD, the HRG is a good approximation for the
effective EoS of the model. More details on the HRG model can be found in the appendix
A.1. It is the cascade mode that is commonly used to calculate the initial compression
phase in the prevalent hybrid models of heavy-ion collisions [132].

Note that the UrQMD cascade does not include potential interactions. UrQMD with
potential interactions will be discussed later in this chapter.

3.1.1 Coarse grained UrQMD

It is interesting to study the macroscopic properties such as the local energy densities or
the temperature reached in the system during the evolution dictated by the microscopic
transport theory. This allows a systematic comparison of the evolution of the system in
microscopic models with that in macroscopic models. In the microscopic transport treat-
ment, the equivalent expectation values for the local energy and baryon number densities
can be calculated by a coarse graining procedure [133]. The calculations are performed on
a space-time grid, where the total energy and baryon density in a given cell can be calcu-
lated as the sum of the energy and net baryon charge of the participants in that volume.
These quantities are averaged over a large number of events of a given beam energy and
centrality. To further extract the thermodynamic quantities such as temperature, pressure
and entropy density, a mapping to the effective equation of state used is performed.

The temperatures and densities extracted from UrQMD cascade simulations by this coarse-
graining procedure are demonstrated in Figure 3.1, which shows the space-time volume
("four-volume") spent by the system at different temperatures and densities as simulated
by the UrQMD cascade model for Au-Au collisions at beam energies of 1.23- 10 AGeV.
The HRG EoS is used in this case to extract the temperature of the cell. The results shown
are based on 1000 events with impact parameter less than 3.4 fm. Note that this beam
energy range will be investigated by the upcoming CBM experiment at FAIR. As expected,
higher temperatures and densities are achieved as the collision energy is increased. At 1.23
AGeV, a large four-volume reaches temperatures of 50-80 MeV and densities up to 2.5 ρ0,
and at 10 AGeV this rises to about 80- 130 MeV in temperature and 2- 5 ρ0 in density. At
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Figure 3.1: UrQMD cascade: space-time volume(four-volume) spent by the system at
different T and ρ. The temperature and densities achieved in central Au-Au collisions at
beam energies 1.23, 2, 4, 10 AGeV are shown. Space-time cells with ∆x=1 fm and ∆t=
0.25 fm have been used for coarse graining. The results are from 1000 UrQMD events for
each collision energy.

1.23 AGeV, the maximum density reached is around 6 n0 and at 10 AGeV, this increases
to about 10 n0. Clearly, the beams at FAIR will be able to produce QCD matter with
very high baryon densities and moderate temperatures, which can then be studied with
detectors such as CBM or HADES, and UrQMD provides a reasonable and physically
motivated scenario for nucleus-nucleus collisions at FAIR beam energies.

3.2 Hydrodynamics

The full 3+1D evolution of a heavy-ion collision can be simulated by (ideal) relativistic
hydrodynamics. The hydrodynamic initial state is given by two counter streaming Lorenz-
contracted Wood-Saxon distributions of baryon charge nWS (and corresponding energy
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density) representing the two colliding (cold) nuclei:

nWS = γCM
n0

1 + exp
(
∆r−R

a

) . (3.5)

Here, γCM is defined by the collision energy in the center of mass (CM) frame. ∆r is the
distance from the nucleus center and is Lorentz contracted along the z-axis. The parameters
of the WS distribution are the nuclear saturation density n0, the nuclear radius R and the
surface thickness a. This initialisation procedure allows a hydrodynamic treatment of both
the early entropy production and the expansion stages, which is important for low collision
energies where the interpenetration times are of the same order of magnitude as the lifetime
of the system. In this work, for hydrodynamic simulations of Au-Au collisions, R = 6.6 fm
and a = 0.5 fm are used.

The equations of motion for hydrodynamics describe the conservation of energy and mo-
mentum given by

∂µT
µν = 0 , (3.6)

as well as the conservation of the baryon four current

∂µj
µ = 0 . (3.7)

In this work the SHASTA algorithm [134, 135] is used for the flux-corrected relativistic
numerical solution of the above equations. The equations are solved on a 200 × 200 ×
200 Cartesian grid with a cell size of 0.2× 0.2× 0.2 fm3 and the time step is set to
δt = 0.4× 0.2 = 0.08 fm/c. To complete this set of hydrodynamic equations, an equation
of state is necessary. The EoS can be treated as a free input to the equations, provided by
a table, using only the constraints of strangeness-neutral nS = 0 matter with a charge to
baryon fraction of nQ/nB = 0.4.

3.3 UrQMD- hybrid
The hybrid, micro+macro models are known as the ’Standard Model of ultra-relativistic
heavy-ion collisions’. In these hybrid models, the dynamical evolution of the collisions is
divided into roughly three phases [47,48,136–145]. The reaction begins with an initial non-
equilibrium phase in which the kinetic energy of the two incoming nuclei loses a fraction
of its longitudinal momentum, producing a pre-equilibrium fireball. This phase is usually
described by string models or QCD-inspired non-equilibrium approaches, e.g. via a colour
glass condensate model or quantum kinetic theory [146–153]. Due to its violent non-
equilibrium nature, this phase of the reaction is generally independent of the equation of
state. After this energy deposition and a sufficient equilibration time, the near-equilibrium
evolution can be described by (viscous) hydrodynamic or transport theoretical approaches.
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Here an equation of state and transport properties of the medium can be included in the
simulations. Finally, once the system has hadronised, hadronic rescattering and the final
freeze-out phase occur [138, 154]. As described above, in this approach the EoS enters
the well-defined equilibrium phase, in contrast to the hydrodynamic approach where the
pre-equilibrium early-stage dynamics are also influenced by the EoS.

The hybrid version of UrQMD [48] uses the microscopic UrQMD model for the initial
and final phases of evolution and a hydrodynamic intermediate phase for the hot, dense
phase. The UrQMD model, as described in section 3.1, is used to generate realistic initial
states of the collision at high baryon density. The subsequent hydrodynamic evolution
models the intermediate hot and dense stage during which the system may undergo a
phase transition [132]. The hydrodynamic evolution begins once the Lorentz contracted
nuclei have passed through each other. This time (tstart) is given in natural units by

tstart = 2R

√
2m

Elab

(3.8)

where R is the radius of the nuclei, m is the mass of the nucleon and Elab is the kinetic
energy of the beam. At this point, the UrQMD particle list is transformed into an initial
distribution of the energy-momentum and net baryon number densities required for the
subsequent hydrodynamic evolution. The necessary smoothing of the density is achieved
by treating each hadron from UrQMD as a three-dimensional Gaussian distribution of its
energy-momentum and baryon number. It should be noted that this initial state will give
reasonable event-by-event fluctuations for the initial eccentricities and is also independent
of the equation of state used for the fluid dynamical evolution. Any effect of the EoS will
therefore be confined to the expansion phase. The SHASTA [135, 155] algorithm is then
used for the 3+1D ideal fluid dynamical evolution on a Cartesian grid with ∆x = 0.2 fm
spacing and a grid size of 2003 cells.

The hydrodynamic evolution will continue until the energy density in all cells falls below a
freeze-out energy density (ϵ), whereupon the evolution will stop. The default value for ϵ is
five times the nuclear ground state energy density (ϵ0), but it can be freely adjusted. More
details on the motivation behind the chosen values for tstart and ϵ are discussed in [48,132].
Particles are then generated from an iso-energy density hypersurface created throughout
the time evolution. The density that defines this particlization hypersurface is the value
of nϵ0 defined above. The sampling of particles is done using the well-known Cooper-Frye
formula

E
dN

d3p
=

∫
σ

f(x, p)pµdσµ (3.9)

where f(x, p) is the boosted Fermi or Bose distribution and dσµ is the freeze-out hyper-
surface element. Here the global conservation of baryon number, charge and strangeness is
strictly observed. The particles are then transferred to UrQMD, where hadronic cascade
calculations take place. Important final state effects such as hadronic rescattering and
resonance decays are performed at this stage.
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3.4. URQMD WITH POTENTIAL INTERACTIONS

The challenge with the hybrid approach is that many features not related to the EoS,
such as microscopic properties, unknown transport parameters or boundary conditions,
are not well constrained. This ’standard picture’ is only well justified at very high beam
energies, i.e. when the initial interpenetration time of the incoming nuclei is very short and
can be well separated from the subsequent expansion. This is generally found to be the
case of heavy-ion collisions above

√
sNN ≈ 15 GeV (corresponding to Elab ⪆ 100AGeV),

where mainly the energy of the incoming nuclei is stopped while the baryon number of the
participant nuclei is observed far from mid-rapidity. At much lower beam energies, the
interpenetration time can last as long or even longer than the expansion phase. In such a
scenario, a large fraction of the baryon number is stopped in the central collision region
and a system of high baryon density is created around mid-rapidity.

The lower beam energies are exactly what is needed to study the EoS at the highest
baryon densities. This also means that the initial compression phase cannot be separated
from the expansion phase, and the observables will therefore also depend on the equation
of state in the initial compression phase. This will be particularly true in the presence
of a phase transition. It is therefore necessary to study the effects of the EoS on the
initial compression at lower beam energies and also to develop new methods to describe
the dynamical evolution of such a system. To achieve both of the above, a consistent
treatment of the equation of state throughout the collision is necessary.

3.4 UrQMD with potential interactions
Extending the equations of motion in transport models to non-trivial hadronic interac-
tions, and hence to any possible equation of state, is not straightforward. Early on, a
non-relativistic QMD approach [41] was developed to include a density-dependent Skyrme
interaction [156]. Here, in the QMD part of the UrQMD model, the change of momenta of
the baryons, due to a density dependent potential, is calculated using the non-relativistic
equations of motion

ṙi =
∂⟨H⟩
∂pi

, ṗi = −∂⟨H⟩
∂ri

. (3.10)

Here H =
∑

iHi is the total Hamiltonian of the system, including the kinetic energy
and the total potential energy. V =

∑
i Vi ≡

∑
i V
(
nB(ri)

)
. The Hamiltonian of each

baryon, Hi = Ekin
i + Vi, consists of the kinetic energy and the mean field potential energy

Vi = Efield/A of the baryon i. The mean field potential energy per baryon can be related
to a density dependent single particle energy:

Ui(nB) =
∂(nB · Vi(nB))

∂nB

. (3.11)

In the Skyrme UrQMD approach [41,45,156] the density dependence of the single particle
energy for all baryons is given by a simple form:
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USkyrme(nB) = α(nB/n0) + β(nB/n0)
γ . (3.12)

Two of the three parameters (α, β and γ) are usually constrained by the nuclear matter
saturation density and binding energy, while the remaining unconstrained property is the
nuclear incompressibility, which defines the so-called stiffness of the EoS.

Such a single free parameter approach to describe the equation of state of dense QCD
matter has a significant shortcoming: the equation of state for densities above nuclear
saturation is fixed by parameters defined solely at the saturation density. A similar problem
arises when a purely nuclear relativistic mean field model is implemented in QMD [157,158],
although such an approach also allows the inclusion of additional degrees of freedom and
thus a more complex phase structure. Recently, another idea has been proposed, where
additional terms are added to the equation (3.12), which allow the description of non-trivial
features such as a phase transition in the potential [159]. However, this density functional
approach suffers from a serious problem characteristic of the Skyrme potential: the speed
of sound of this EoS eventually becomes superluminal at large baryon densities, even at
T = 0. Below we introduce a different way to replace the limited Skyrme potential by a
more realistic density dependent equation of state. This method was presented in [125,127].

3.5 Density dependent EoS in UrQMD
The density-dependent EoS is realised by an effective density-dependent potential entering
the non-relativistic QMD [1, 40, 160] equations of motion, given by eq. 3.10. Once the
mean field potential is known, the change in momentum of each baryon can be calculated
according to Hamilton’s equations of motion as

ṗi = −∂H
∂ri

= −∂V (nB)

∂nB

· ∂nB(ri)

∂ri
. (3.13)

Besides the derivative of the mean field potential energy, only the local density and its
gradient for each baryon are necessary to calculate the momentum change.1 This is cal-
culated by assuming that each particle can be treated as a Gaussian wave packet [41, 45].
With such an assumption, the local interaction baryon density nB(ri) at the location ri of
the i-th particle in the computational frame is:

nB(ri) =
(α
π

)3/2 ∑
j, j ̸=i

Bj exp
(
−α(ri − rj)

2
)
, (3.14)

where α = 1
2L2 , with L =

√
2 fm, is the effective range of the interaction. The summation

runs over all baryons, Bj is the baryon charge of the j-th baryon.
1Ignoring a possible momentum dependence of the potential.
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For simplicity, it is assumed that the mean field potential for all baryon types is the same
as for nucleons in the QMD implementation. This model also assumes that only baryons
are directly affected by the potential interaction. This simplification can be supported
by the fact that at the beam energies under consideration, the EoS is dominated by the
contribution of baryons. The equations of motion are solved given the potential energy V ,
which is related to the pressure and thus to the EoS in a straightforward way [161].

P (nB) = Pid(nB) +

∫ nB

0

n′∂U(n
′)

∂n′ dn′ (3.15)

Here Pid(nB) is the pressure of an ideal Fermi gas of baryons and U(nB) =
∂
(
nB ·V (nB)

)
∂nB

is
the single particle potential.

In this framework one can study the effect of a density dependent EoS on the evolution
of the system, consistently within UrQMD. To do so, first, a realistic Chiral Mean Field
(CMF) EoS is implemented in the QMD part of UrQMD.

3.5.1 The CMF EoS in UrQMD

The Chiral Mean Field model [162–164] is an approach to describing QCD thermodynamics
for a wide range of temperatures and densities. The effective degrees of freedom of the CMF
model include a complete list of known hadrons, as well as the three light quark flavours
plus a gluon contribution. The phase diagram of the CMF model contains three critical
regions: the nuclear liquid-vapour phase transition, the chiral symmetry restoration, and
the transition to quark matter [164]. The model predicts two first-order phase transitions.
The first is associated with the nuclear liquid-vapour phase transition at nB ∼ n0. The
second one appears at about four times the normal nuclear density 4n0 due to the chiral
symmetry restoration. However, this chiral transition shows only a small latent heat and
the critical endpoint of this transition occurs already at TCP ≈ 17 MeV.

Regarding its phase structure, the CMF model has several attractive features:

1. A nuclear incompressibility compatible with experimental observations.

2. A stiff supersaturation nuclear equation of state required to explain astrophysical
observations.

3. A "softening" of the equation of state at even higher densities due to the slow ap-
proach to the high density limit of a free gas of three quark flavours.

More details on the CMF model can be found in the Appendix A.2.

In the CMF model the single nucleon potential is given by the interactions with the chiral
and repulsive mean fields. At T = 0 in the CMF model it can be calculated from the
self-energy of the nucleons as

UCMF = m∗
N −mvac

N − µ∗
N + µN , (3.16)
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where mvac
N and µN are the vacuum mass and chemical potential of the nucleon calculated

only from the charge constraints, and m∗
N and µ∗

N are the corresponding effective nucleon
mass and effective chemical potential generated by the interactions with the scalar and
vector mean fields. These quantities are described in detail in appendix A.2.

To set the stage, the CMF potential UCMF is shown in panel (a) of Fig. 3.2, where
we contrast the CMF single-particle potential UCMF , as a function of baryon density nB

in units of the ground-state baryon density, with two different Skyrme potentials USky

(resulting in different equations of state). We show the chiral mean field EoS (solid orange
line) compared with the well-known hard Skyrme potential ( dotted red line) and the soft
Skyrme potential ( dotted green line).

To implement the CMF EoS in the QMD part of the UrQMD model, we essentially need
to calculate the effective field energy per baryon of any given model, which can then
be used in the QMD equations of motion. In the CMF model, the nucleon interaction
is described relativistically via scalar and vector mean fields, which are not present in
UrQMD. Moreover, the CMF model is not restricted to nucleons only, so the single-nucleon
potential UCMF as defined in eq. (3.16) is not suitable for calculating the relevant mean-
field potential needed for the equations of motion. Fortunately, the effective field energy
per baryon Efield/A calculated from the CMF model can be used, i.e. the relevant quantity
that enters the equations of motion:

VCMF = Efield/A = ECMF/A− EFFG/A , (3.17)

where ECMF/A is the total energy per baryon at T = 0 from the CMF model and EFFG/A
is the energy per baryon from a free non-interacting Fermi gas. The resulting effective field
energy per baryon as a function of baryon density from the CMF model is shown as a solid
line in panel (b) of figure 3.2, again compared with the known curves from the hard and
soft Skyrme EoS. Finally, panel (c) of figure 3.2 shows the derivative of the field energy
per nucleon with respect to the baryon density as a function of the baryon density nB in
units of the ground-state baryon density for the three different potentials.

It can be observed that the CMF-EoS shows a behaviour similar to the soft Skyrme poten-
tial for subsaturation (up to saturation) density, then becomes even stiffer than the hard
Skyrme potential and finally shows a significant softening compared to the hard Skyrme,
which essentially becomes superluminal at large densities. At about four times the nuclear
saturation density, the CMF-EoS shows a small kink in the derivative of the field energy
per baryon due to the weak chiral phase transition at T = 0. Since this transition is very
weak, we do not expect it to have a significant effect on the dynamical evolution, especially
at finite temperatures where the kink will be smeared out by the thermal energy.

3.5.2 Results on the evolution of bulk properties

We now have two approaches, hydrodynamics and microscopic transport, to study the
effects of a density dependent EoS on the evolution of the bulk properties of the system.
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Figure 3.2: (a) Single particle potential U as a function of the baryon density nB in
units of the ground-state baryon density for three different potentials (resulting in different
equations of state). (b) The resulting field energy per baryon Efield/A for the three different
equations of state. (c) The derivative of the field energy per nucleon with respect to the
baryon density as a function of the baryon density ρB in units of the ground state baryon
density for three different potentials. The kink at around 4 n0 is the chiral phase transition.
We show the chiral mean field EoS (solid orange line) compared to the well-known hard
Skyrme potential ( dotted red line) and the soft Skyrme potential ( dotted green line).
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In the hydrodynamic model, the expected properties of the matter at different beam ener-
gies can be extracted in a straightforward way. Here, only a single event per beam energy
with an impact parameter b = 2 fm is sufficient to average the thermodynamic properties in
the central volume (a cubic volume of length l = 2 fm) of central Au+Au collisions at dif-
ferent beam energies. The local energy density and the net baryon density are propagated
explicitly in the hydrodynamic framework, and quantities such as temperature, pressure
and entropy density can be related directly and unambiguously to these volume-averaged
densities via the equation of state.

In the UrQMD model, the macroscopic quantities such as energy densities and baryon den-
sities can be calculated via the coarse-graining procedure discussed in section 3.1.1. Here,
the coarse graining is performed using 1000 events with impact parameter less than 3.4
fm. The mapping of energy density and baryon density to quantities such as temperature,
pressure or entropy is done using either the HRG-EoS (for the UrQMD cascade simula-
tions) or the CMF-EoS (for the corresponding CMF-UrQMD simulation). Note that this
procedure assumes that the system is close to local equilibrium, which is not necessarily
the case in the UrQMD transport model, especially at very early and late times. Thus
the extracted values for temperature, pressure and entropy density can (and as we will see
later will) vary due to deviations from equilibrium.

We first look at the space-time volume spent by the system at different temperatures and
densities for the UrQMD simulations with the CMF equation of state. This is shown in
figure 3.3. A similar plot for the UrQMD cascade model with HRG EoS used for mapping
has already been presented in figure 3.1. It can be seen that in both cases the temperatures
reached in the system are similar. However, at any given beam energy, the densities
achieved with the CMF EoS are lower than with the UrQMD cascade. At 10 AGeV the
maximum density of a cell is about 7 times the saturation density (n0) for UrQMD with
CMF EoS, while this is close to 10 n0 for the UrQMD cascade with HRG EoS for mapping.
This suggests a strong EoS dependence of the maximum density achieved.

This is further explored by comparing the time evolution of the baryon density in the central
volume2 of the reaction for central Au+Au reactions at Elab = 1.23, 2.0, 4.0, 6.0, 10.0A
GeV (from left to right). This is shown in Fig. 3.4. The solid lines show the results of
the coarse-grained UrQMD simulations, the dashed lines show the results of the one-fluid
3+1-dimensional hydrodynamic calculations for the same systems and energies. The green
lines show the results using the HRG-EoS in hydro and for the coarse-grained conversion
of (ε, ρB) to the thermodynamic quantities, while the red lines show the results for the
CMF-EoS. The time evolution of the baryon density in figure 3.4 clearly shows that the
full hydrodynamic simulation and the transport simulation with the CMF-EoS give almost
identical results up to the highest beam energies. Only for the beam energy Elab = 10.0A
GeV the transport simulation gives a smaller compression due to the effect of transparency,
which cannot be described in a 1-fluid simulation (although it is known that 3-fluid models
can reproduce this effect). In the case of the HRG-EoS in hydro compared to the cascade

2To study the evolution in the central volume, a cube of length 2 fm is considered for coarse graining.
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Figure 3.3: CMF in UrQMD: time-integrated space-time volume (four-volume) spent by the
system at different temperatures and densities. The temperatures and densities achieved
in central Au-Au collisions at beam energies 1.23, 2, 4, 10 AGeV are shown. The results
are obtained from 1000 UrQMD events for each collision energy. Space-time cells with
∆x=1 fm and ∆t= 0.2 fm have been used for coarse graining. Note that the temperatures
shown here are not explicitly propagated, but extracted by mapping to an effective EoS
where equilibrium is assumed. In the early stages of the collision, when the system is far
from equilibrium, this mapping may therefore be inaccurate.

model, the agreement of the density evolution is not as exact, but still comparable. This
is to be expected, as the EoS is not introduced explicitly in the cascade mode, but only
implicitly through the set of degrees of freedom. The fact that the transport model and
the hydrodynamic model agree so well on compression is not a trivial result, but clearly
shows that the maximum compression achieved, for low beam energies where transparency
can be neglected, depends to a first order on the work to be done against the pressure of
the compressed system. The compression achieved varies drastically, by almost a factor
of 2, between the two equations of state used. This finding has important consequences,
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Figure 3.4: Time evolution of the baryon density in the central volume of the reaction for
central Au+Au reactions at Elab = 1.23, 2.0, 4.0, 6.0, 10.0A GeV (from left to right). The
solid lines show the results of coarse-grained UrQMD simulations and the dashed line shows
the results of one-fluid (3+1) dimensional hydrodynamic calculations for the same systems
and energies. The green lines in the top row are calculated using the hadron resonance
gas EoS in hydro and for the conversion from (ε, ρB) to the thermodynamic quantities,
while the red lines in the bottom row show the results for the CMF EoS. The ’CG-HRG’
is from UrQMD cascade simulations with HRG EoS used for mapping to thermodynamic
quantities, while the ’CG-CMF’ is from UrQMD with potential interactions where the
CMF potential was used for both simulations and mapping to thermodynamic quantities.
The ’Hydro-HRG’ and ’Hydro-CMF’ are from fluid dynamic simulations with HRG and
CMF EoS respectively.

since it means that any observable sensitive to the maximum compression achieved in these
collisions would be a very good and almost model-independent messenger for the equation
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of state of dense QCD matter.

Figure 3.5 shows the time evolution of the equilibrium temperature in the central volume
of the same reactions. The colours and line styles are the same as in figure 3.4. When
comparing the (equilibrium) temperature, the differences between the hydro and transport
approaches are more obvious. Especially at very early times, the temperature in the coarse-
grained transport simulations is significantly higher than in the hydro simulation. This
can be understood as an effect of the non-equilibrium state of the microscopic transport,
which is then mapped to an equilibrium temperature. The effect of the non-equilibrium is
not observed in the baryon density which is explicitly propagated and conserved in both
approaches but in the temperature which is implicitly inferred. Nevertheless, after a few
fm/c, even in the non-equilibrium approach, the temperatures obtained agree within 5-10
MeV. In particular, the HRG simulations also give a systematically higher temperature,
but the increase compared to the CMF is only in the order of 10 MeV.

Much of the compression, as well as the subsequent expansion of the system, depends
strongly on the pressure reached in the initial phase. As we have seen, a higher pressure
in the EoS (harder EoS) leads to lower densities. On the other hand, the amount of radial
as well as directed and elliptic flow produced depends on the pressure that drives the
expansion stage. In figure 3.6 we show the time evolution of the pressure in units of the
ground state energy density in the central cell of the reaction for central Au+Au reactions
at Elab = 1.23, 2.0, 4.0, 6.0, 10.0A GeV (from left to right). The solid lines show the results
of coarse-grained UrQMD simulations and the dashed line shows the results of one-fluid
(3+1) dimensional hydrodynamics calculations for the same systems and energies. The
green lines show the results using the HRG-EoS, while the red lines show the results using
the CMF-EoS. Again, the extraction of the pressure from the local densities (ε, nB) is
straightforward in the hydro model, while for the coarse grained approach we assume local
equilibrium and isotropic pressure, which allows us to read the effective pressure from the
EoS table as described above.

Most notably is that the maximum pressure is reached at different times, depending on the
equation of state used. This is due to the fact that the maximum density is also reached
at different times, as shown in figure 3.4. This different time dependence of the pressure
evolution is likely to have significant consequences on observables such as the collective
flow.

The expansion dynamics of the studied systems can also be represented in the T-nB phase
diagram. Therefore, we examine the expansion trajectories along the time evolution in
the central cell in Fig. 3.7 in the temperature-baryon density plane for central Au+Au
reactions at Elab = 1.23, 2.0, 4.0, 6.0, 10.0A GeV (from left to right). The solid lines show
the results of coarse-grained UrQMD simulations and the dashed line shows the results of
one-fluid (3+1) dimensional hydrodynamics calculations for the same systems and energies.
The green lines show the results using the HRG-EoS for the conversation from (ε, nB) to the
thermodynamic quantities, while the red lines show the results for the CMF-EoS. Note that
for this comparison we start the trajectories at the point of maximum compression, after
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Figure 3.5: Time evolution of the average temperature in the central volume of the reaction
for central Au+Au reactions at Elab = 1.23, 2.0, 4.0, 6.0, 10.0A GeV (from left to right). The
solid lines show the results of coarse-grained UrQMD simulations and the dashed line shows
the results of one-fluid (3+1) dimensional hydrodynamic calculations for the same systems
and energies. The green lines in the top row are calculated using the hadron resonance
gas EoS in hydro and for the conversion from (ε, ρB) to the thermodynamic quantities,
while the red lines in the bottom row show the results for the CMF EoS. The ’CG-HRG’
is from UrQMD cascade simulations with HRG EoS used for mapping to thermodynamic
quantities, while the ’CG-CMF’ is from UrQMD with potential interactions where the
CMF potential was used for both simulations and mapping to thermodynamic quantities.
The ’Hydro-HRG’ and ’Hydro-CMF’ are from fluid dynamic simulations with HRG and
CMF EoS respectively. In the coarse-graining procedure, only the participants are used
for averaging, so the temperature appears to ’jump’ to a finite value.

which they follow lines of constant entropy per baryon in the case of ideal hydrodynamics.
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Figure 3.6: Time evolution of pressure in units of the ground state energy density in the
central cell of the reaction for central Au+Au reactions at Elab = 1.23, 2.0, 4.0, 6.0, 10.0A
GeV (from left to right). The solid lines show the results of coarse-grained UrQMD simu-
lations and the dashed line shows the results of one-fluid (3+1) dimensional hydrodynamic
calculations for the same systems and energies. The green lines show the results using
the hadron resonance gas EoS to convert (ε, ρB) into the thermodynamic quantities, while
the red lines show the results for the CMF EoS. The ’CG-HRG’ is from UrQMD cas-
cade simulations with HRG EoS used for mapping to thermodynamic quantities, while the
’CG-CMF’ is from UrQMD with potential interactions where the CMF potential was used
for both simulations and mapping to thermodynamic quantities. The ’Hydro-HRG’ and
’Hydro-CMF’ are from fluid dynamic simulations with HRG and CMF EoS respectively.

The most significant difference is that the HRG curves start at a much higher density. On
the other hand, the trajectories become very close at lower densities. This means that by
the time the systems reach freeze-out, at nB ≤ n0, the thermodynamic conditions are very
similar for the different models and equations of state.

As already shown in Fig. 3.7, the expansion in both the hydro and transport models follows
approximately the same isentropic trajectories. However, we expect the final entropy per
baryon to be different in the two approaches, since the microscopic transport has a finite
viscosity (shear and bulk) and the system is at best in partial chemical equilibrium.

To complete the comparison, Fig. 3.8 shows the entropy production per baryon as a func-
tion of beam energy for central Au+Au reactions in the energy range from Elab = 1.23A
GeV to 10A GeV. The lines denote calculations using the coarse-grained UrQMD model
with CMF-EoS (solid red line), the 3+1D one-fluid hydrodynamics calculation (dotted red

35



CHAPTER 3. MODELS FOR HEAVY-ION COLLISIONS

0 2 4 6 80

2 5

5 0

7 5

1 0 0

1 2 5

1 5 0

1 7 5

2 0 0

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

 C G - H R G  
 C G - C M F
 H y d r o - H R G
 H y d r o - C M F

Te
mp

era
tur

e T
 [M

eV
]

E l a b = 1 . 2 3  A  G e V E l a b = 2 . 0  A  G e V

D e n s i t y  n B  [ n 0 ]

E l a b = 4 . 0  A  G e V E l a b = 6 . 0  A  G e V

E x p a n s i o n  t r a j e c t o r i e s

E l a b = 1 0 . 0  A  G e V

Figure 3.7: Expansion trajectories (along the time evolution in the central cell)
in the temperature-baryon density plane for central Au+Au reactions at Elab =
1.23, 2.0, 4.0, 6.0, 10.0A GeV (from left to right). The solid lines show the results of coarse-
grained UrQMD simulations and the dashed line shows the results of one-fluid (3+1) di-
mensional hydrodynamic calculations for the same systems and energies. The green lines
show the results using the hadron resonance gas EoS for the conversion from (ε, nB) to
the thermodynamic quantities, while the red lines show the results for the CMF EoS. The
’CG-HRG’ is from UrQMD cascade simulations with HRG EoS used for mapping to ther-
modynamic quantities, while the ’CG-CMF’ is from UrQMD with potential interactions
where the CMF potential was used for both simulations and mapping to thermodynamic
quantities. The ’Hydro-HRG’ and ’Hydro-CMF’ are from fluid dynamic simulations with
HRG and CMF EoS respectively.

line) and the one-dimensional relativistic shock model, i.e. the Taub adiabate (dashed grey
line). For both the hydrodynamics and UrQMD coarse-grained simulations, the entropy
was extracted implicitly from the CMF model, as described above for the temperature,
knowing the local energy and baryon densities. In the hydro simulation, S/A as a function
of time is essentially a constant throughout the expansion phase. In the transport simula-
tion it shows only a slight increase. Here we compare the values of S/A at the end of the
expansion, i.e. when the density falls below nB = n0. The full 3+1D ideal hydrodynamic
simulation produces almost exactly the same entropy per baryon as the analytical 1-D
shock solution (Taub adiabat). In general, the entropy per baryon is smaller in the hy-
drodynamic case than in the non-equilibrium transport which is expected. The difference
between these two scenarios grows with increasing energy which is also expected from the
increasing transparency that leaves a smaller baryon number in the centre of the collision
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Figure 3.8: Entropy production per baryon as a function of beam energy for central Au+Au
reactions in the energy range from Elab = 1.23A GeV to 10A GeV. The lines denote
calculations using the coarse-grained UrQMD model with CMF EoS (solid red line), a
one-fluid hydrodynamics calculation (dotted red line) and the the semi-analytic relativistic
stationary 1D Taub adiabate solution (dashed grey line).

zone. Furthermore, it is known that at late times the system can only be described as
being in partial chemical equilibrium. Mapping such a system onto an equilibrium EoS to
calculate the entropy per baryon will yield larger values of the effective (equilibrium) S/A.

In summary, for low beam energies Elab ≤ 6A GeV, the bulk density evolution in this
new description agrees very well with a relativistic 1-fluid simulation with the same equa-
tion of state. The effective temperature from the UrQMD simulation is slightly increased
compared to the ideal hydrodynamic model due to non-equilibrium effects. Our results
highlight the importance of the equation of state for the initial compression phase in low-
energy nuclear collisions and provide a method for introducing it in a consistent manner.
This new method now allows us to study the effect of different possible equations of state
within the microscopic transport approach. This method can be easily extended to include
a strong first-order phase transition. This consistent description of the whole collision,
which does not require ad hoc matching of different phases, will allow us to study possible
observable signals of this transition in heavy-ion collisions. Nevertheless, this is a non-
relativistic model and it is assumed that the EoS is dominated by its density dependence,
i.e. fermions, and that the effective potentials governing the interactions have only a weak
explicit temperature dependence. A hybrid approach, such as UrQMD-hybrid, would be
more appropriate if a relativistic treatment of the collisions or explicit temperature depen-
dence of EoS were to be included.

37



CHAPTER 3. MODELS FOR HEAVY-ION COLLISIONS

38



Chapter 4

Artificial intelligence for heavy-ion
collisions

In the previous chapters we have discussed in detail the various theoretical and experi-
mental challenges involved in studying heavy-ion collisions at high baryon densities. We
have introduced different theoretical models for heavy-ion collisions and also presented a
new method to consistently describe the entire evolution of the system within the UrQMD
model. The experimental challenge in the analysis of heavy-ion collision data is to infer
the properties of hot, dense QCD matter from collision events reconstructed using conven-
tional algorithms that process data from detectors with limited acceptance and space-time
resolution. In this chapter, we will discuss several novel methods based on artificial in-
telligence that could be used to address these challenges. Some of the methods presented
in this chapter are based on [77–80, 165]. In particular, the focus is on the development
of AI methods that can work directly on raw detector level information, such as particle
hits/tracks, to extract the underlying properties of the collision as described by a theoreti-
cal model. The goal is to develop data-driven methods that can consistently and accurately
analyse experimental data. However, we first introduce the basic concepts and principles
of AI.

4.1 Machine learning and deep learning

The terms Machine Learning (ML) and Deep Learning (DL) are often used interchangeably
in the broader context of AI. However, machine learning refers to a broad class of AI
methods that build mathematical models from data, enabling a machine to "learn" to
perform various tasks without explicit instructions.

Depending on the nature of the training data, machine learning techniques can be broadly
divided into supervised and unsupervised learning. Supervised learning techniques rely on
labelled data to learn how to perform a task. Here, the labels refer to the target variable
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that the model needs to learn. For example, if the task is to identify images of cats from
dogs, the labels are ’cat’ and ’dog’ for each image in the dataset. Such problems can be
further classified as follows

1. Classification: In a classification problem, the variable to be predicted is categorical
in nature, e.g. distinguishing the images of cats from those of dogs.

2. Regression: In a regression problem, the model predicts a continuous variable, e.g.
predicting the future price of a stock.

On the other hand, unsupervised learning techniques identify hidden patterns in unlabelled
data. These include methods such as clustering, where the model groups similar data points
together, and anomaly detection, which identifies outliers in the data.

Deep learning [166] is a subset of machine learning inspired by the way information is
processed in biological systems. It uses multi-layer Artificial Neural Networks (ANN) to
learn higher dimensional correlations in the data. This enables the computer to find better
solutions to complex problems that traditional ML techniques cannot.

With access to unprecedented amounts of data and computing power in recent years, ML
and DL models have been found to outperform traditional algorithms for various tasks.
DeepFace [167], a face recognition system from Facebook, Google’s AlphaGo [168], a DL
program that plays the board game Go, AlphaFold [169], which accurately predicts protein
structures, and ChatGPT [170], a language model capable of having realistic conversations
with the user, are just a few examples that demonstrate the recent progress in the field
and the diverse applications of ML/DL models.

4.1.1 Artificial neural networks

An artificial neural network is a machine learning architecture that consists of a collection
of interconnected nodes called neurons. The functioning of neurons in artificial neural
networks is analogous to the functioning of biological neurons in our brain. The connections
between different neurons and the activation of different neurons in the brain in response
to different sensory inputs determine our thoughts and actions. Similarly, a neural network
takes different inputs and processes them through the interconnected network of neurons
to produce an output.

A neuron

The structure of an artificial neuron is illustrated in the figure 4.1. A neuron in an
ANN is a mathematical object that takes several inputs {x1, x2, ...xn}, to which weights
{w1, w2, ...wn} can be assigned and a bias term b. A neuron simply performs a non-linear
transformation of the sum of the weighted inputs and the bias term to produce the output

y = f

(
b+

n∑
i=1

xiwi

)
. (4.1)
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Figure 4.1: Structure of a neuron. A neuron maps the weighted sum of its inputs xi and
bias b to an output using a non-linear activation function f .

The non-linear mapping function f is called the activation function of the neuron. Some
examples of commonly used activation functions are

1. ReLU: ReLU stands for Rectified Linear Unit. It has the functional form

f(X) = max(0, X) (4.2)

where X = b +
∑n

i=1 xiwi is the input to the activation function. Evidently, relu
simply squashes negative inputs to zero.

2. Sigmoid: The functional form of the sigmoid activation function is

f(X) =
1

1 + e−X
. (4.3)

The sigmoid activation function restricts the output to the range (0,1).

3. Tanh: This activation function has the form

f(X) =
eX − e−X

eX + e−X
. (4.4)

The output of tanh is in the range (-1,1).
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4. Softmax: The softmax activation function takes a vector of numbers and converts it
to a vector of probabilities. It is given by

f(z)j =
ezj
n∑

k=1

ezk
(4.5)

where j = 1, ..n and z = (z1, z2...zn). The softmax takes the exponent of each element
in the vector and normalises it by the sum of the exponents of all the elements. Each
element of the softmax output vector will be in the range (0,1) and their sum will be
unity. Therefore, the output vector can be interpreted as probabilities.

Neural networks as function approximators

Broadly speaking, supervised machine learning techniques learn a function that can map
the given input data D to the desired output O. In terms of probabilities, the machine
has to model the probability distribution P (O|D). This mapping can be modelled with an
interconnected network of neurons. A neural network consists of several layers of neurons.
A layer of neurons consists of several neurons that process the same set of inputs, but with
different weights. Each neural network has an input layer, which takes the input data,
and an output layer, which provides the final, desired prediction. The layers of neurons
between the input and output layers that process the input data are called hidden layers.
In such networks, each neuron in a layer is connected to every other neuron in the next
layer, and the input data is processed successively through different layers, with the output
of each neuron becoming the input to the neurons in the next layer. These networks are
therefore called fully connected feed-forward neural networks. Depending on the number
of layers in the network, the networks are referred to as shallow neural networks or Deep
Neural Networks (DNNs). A shallow neural network consists of a single hidden layer, while
deep neural networks are constructed with multiple hidden layers that process the data.

The universal function approximation theorem [171–174] tells us that a neural network with
a sufficient number of neurons (" width of the network") or a sufficient number of layers ("
depth of the network") can approximate any continuous function when given appropriate
weights. Note that the theorem only states the ability of neural networks to approximate
functions. It does not tell us how to find the appropriate weights for the neurons that will
approximate the desired function. This is where cost functions and optimisation algorithms
come in.

Optimising the network

In supervised learning, building a model involves two stages: training and testing. The
entire dataset is randomly divided into the training and test datasets. During the training
stage, the model iterates through the labelled training data to iteratively update the weights
so that the error in the predictions is minimised. Finally, the performance of the trained
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model is evaluated on the unseen test data. The functions used to quantify the error in
the predictions are known as the cost function or loss function. The most commonly used
loss functions are

1. MSE: MSE stands for Mean Squared Error. MSE is the average of the square of
the difference between the true and predicted values. It is given by

MSE =
1

n

N∑
i=1

(
ytruei − ypredi

)2
(4.6)

where ytruei and ypredi are the true and predicted labels respectively.

2. MAE: MAE stands for Mean Absolute Error. MAE is calculated as the average
of the absolute value of the differences between the true and predicted values. It is
given by

MAE =
1

n

N∑
i=1

|ytruei − ypredi |. (4.7)

It can be seen that MSE would severely penalise small errors compared to MAE as
MSE takes into account the square of the error. Therefore, MAE is more appropriate
when the training data contains outliers.

3. Cross Entropy (CE): Cross entropy is a common choice of cost function for classifi-
cation problems. If we consider a multi-class classification problem and the model
predicts the output probabilities for different classes, the cross entropy loss for a
single data point is calculated as

CE = −
c∑

i=1

yi ln(y
pred
i ) (4.8)

where yi is the truth label for class i and ypredi is the predicted probability for the
true class of the datapoint. The cross-entropy loss penalises errors in predicting the
true class. Usually the loss is averaged over several data points.

The prediction error estimated by the cost function is processed by algorithms known as
optimisers to update the weights of the network. Optimisers make small changes to the
current value of the weights such that the new weights would result in a lower loss (as given
by the loss function). A very simple but commonly used optimiser algorithm is gradient
descent. It is based on the idea that the direction opposite to the gradient is the direction
of steepest descent. The gradient descent algorithm calculates the gradient of the cost
function with respect to the model parameters (weights and bias) and uses it to update
the model parameters θ = (θ1...θn) as follows

θ = θ − α∇J(θ) (4.9)
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where α is the learning rate, which controls the size of the update. One of the disadvantages
of gradient descent is that the gradients are computed for the entire training dataset,
causing the convergence to a solution to be extremely slow. This would also result in
large memory requirements to compute the gradient for a large dataset. There are several
variations of gradient descent that address these issues. A stochastic gradient descent
algorithm updates the parameters after each training sample. Although this method solves
the memory problem, the frequent updates can lead to a large variance in the model
parameters. As a result, convergence to a minimum is difficult, even though the model
is close to one. This is solved in the mini-batch gradient descent algorithm, where the
parameters are updated after gradient evaluation on mini-batches of data. There are also
many other gradient based optimisation algorithms such as ADAM [175], Adagrad [176],
Adadelta [177], RMSprop etc. which are commonly used to solve ML problems. An
overview of gradient based optimisation techniques can be found in [178].

While there are several methods for updating weights based on gradients, the computation
of the gradients themselves for the nodes in the hidden layers is not straightforward and
can be extremely slow if not done carefully. Back-propagation algorithms [179] are used
to efficiently compute the gradients of model parameters in deep neural networks. As
the name suggests, back-propagation algorithms start from the output layer, compute the
gradient of the cost function, and propagate the error in the output back to the nodes in
the hidden layer to compute their gradients.

We now have all the ingredients to properly train a neural network. If we have enough train-
ing samples, we can design and optimise DNNs to solve the problem at hand. So far we have
only discussed Fully Connected Neural Networks (FCNN), which take only a 1-dimensional
vector as input. In reality, the data available to us is often high-dimensional, for example
in the form of images. An image is a 2-dimensional array of pixels (3-dimensional if colour
is also considered), where each entry represents the intensity of a particular pixel. FCNNs
are not designed to work with this type of data. Images contain strong spatial correlations
or symmetries that cannot be efficiently extracted by a Fully Connected Neural Network.
In addition, the images need to be converted into a 1-dimensional vector before a FCNN
can process them. This does not scale well for large images.

4.1.2 Convolution Neural Networks

Convolution Neural Networks (CNN) are a type of DNN designed to learn efficiently from
image data. The core of CNNs is the convolution operation shown in figure 4.2. The
convolution operation involves a convolution kernel sliding through an image to extract a
feature map. A kernel is a 2-dimensional weight map that performs a dot product with
the pixel values in the image. As the kernel completes a pass through the entire image,
we obtain a feature map. By defining different kernels, several different feature maps
can be extracted. These extracted feature maps are usually processed by pooling layers
that perform operations such as addition (sum pooling), averaging (average pooling), and
taking the maximum value (max pooling) to summarise the extracted features and reduce

44



4.1. MACHINE LEARNING AND DEEP LEARNING

255 255 255 255 255 255 255 255

255 255 255 32 28 61 255 255

255 255 245 102 112 91 255 255

255 255 255 121 128 119 255 255

255 255 255 57 91 86 255 255

255 61 125 37 76 102 65 105

126 68 55 42 27 53 54 38

27 40 59 34 37 36 34 32

24 47 144 81 35 28 36 71

255 255 255

255 255 255

255 255 245

0 -2 0

2 0 0.1

0 0 0

25.5

Input image

Convolution operation

Extracted feature map

Figure 4.2: The convolution operation. A convolution kernel slides through the input image
and calculates dot products to extract the features from the image. Several such kernels
can be defined to extract different feature maps from the input image. The convolution
operation can also be applied to the extracted feature maps.

dimensionality. Multiple layers of convolutions can be defined to further extract even
abstract feature maps from already extracted feature maps. Finally, the extracted features
are usually fed into an FCNN to obtain the final output. The FCNN works on these
extracted features to regress or classify the input image.

CNNs are a good choice of algorithm for extracting correlations from image-like heavy-ion
collision data, i.e. data provided in the form of equally spaced multidimensional histograms
[180, 181]. However, histogramming of data can lead to loss of information. Furthermore,
converting the raw detector output into a histogram of different observables would require
several stages of data processing. As mentioned above, these processing and analysis
algorithms can introduce unwanted biases into the data. In addition, experiments such as
CBM require online analysis of the collected data, which can be slowed down significantly
by the use of conventional iterative pre-processing and analysis algorithms.

Therefore, our goal is to train DL models directly on minimally processed experimental
output, such as information from discrete reconstructed tracks of particles in a collision
event. One of the main problems in training CNN-based deep learning models on detector
output is the sparse nature of the detector data. Consider a particle detector that records
the coordinates of the particles that pass through it. This hit information from an event
can be stored as a 3-dimensional histogram of particle coordinates (x,y,z). The data is
now a three-dimensional array containing an "image-like" representation of the detector
output. However, most of the bins in such a histogram will not contain any hits. Modern
particle detectors with excellent positional resolution would further increase the size and
sparsity of these arrays. Processing such extremely sparse arrays with CNNs would require
huge amounts of memory and computing power. In addition, extending such a represen-
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tation to include more features of a hit, such as the time of the hit or the amplitude of
the signal produced by the hit in the sensor, would require the inclusion of additional
dimensions, making it even more sparse. CNNs are not efficient at learning from sparse,
high-dimensional detector data.

One solution to these problems is to use a point cloud representation of the data. Point
clouds are collections of unordered points in space. A point cloud of hits from an event
is a dense representation of the detector data in the form of an unordered list, where
each element is the set of coordinates of a hit. This can be stored in the form of a two-
dimensional array where each row stores a hit and each column stores an attribute of
the hit (e.g. x-coordinate). This representation solves the sparsity problem associated
with an image-like representation, as we only store the locations of hits, not the entire
representation of the detector volume. Furthermore, it is possible to add more features to
a hit by simply adding another column to this array. This makes point clouds ideal for
representing high-dimensional data.

4.2 Learning from experimental data with PointNet

PointNet is a deep learning architecture optimised for learning from point cloud data [182].
One of the key features of the PointNet model is that it can learn to be invariant to the
order of the input points. The PointNet architecture can be extremely useful in nuclear
and particle physics experiments, where most sensor or detector data has the geometric
structure of point clouds. PointNet can be used to train deep learning models that take
as input raw experimental data such as hits or the reconstructed tracks of particles. Here,
the predictions are independent of the order of the particle tracks or hits.

However, the lack of inherent order in the point cloud representation makes it difficult to
train CNN-based DL models using point cloud data. The PointNet is a modification of
the regular CNN that is designed to respect the order invariance in the data, allowing us
to train DL models directly on the point cloud data. Figure 4.3 illustrates the general
operation of the PointNet architecture with an example of an input point cloud of particle
hits. The PointNet model consists of the following 2 components to achieve order invariance
in the predictions, unlike regular CNNs:

1. Convolution kernels of size 1 × N , where N is the number of columns in the input
point cloud array. The advantage of using 1 × N kernels is that only single point
(hit) features are extracted, as the kernel can only span one row at a time. Similar
kernels are used in all hidden layers to ensure that the features extracted even in the
last convolution layer are order invariant.

2. Symmetric functions to extract global features. The single point feature maps ex-
tracted by the 1×N kernels are converted into global feature maps of the entire point
cloud by passing each feature map produced by the last convolution layer through
an order invariant, symmetric function such as average pooling or max pooling. The

46



4.2. LEARNING FROM EXPERIMENTAL DATA WITH POINTNET

x1 y1 z1
x2 y2 z2

xN yN zN

1 x K

1-D Convolution + Batch Normalisation Dense layers

Classify /
 Regress

Input: N x F

Global features

Average/

Sum/ Max

K feature maps
Size: (1 x N)

Figure 4.3: General structure of the PointNet model. The input point cloud is a list of
coordinates of particle hits in a detector plane. The convolution kernels (blue rectangles)
are of size 1 to extract order-invariant feature maps. The extracted feature maps are later
converted into a global feature of the point cloud using a symmetric function such as max
pooling, sum pooling, average pooling, etc. All convolution layers are followed by batch
normalisation layers.

output of these symmetric functions in the PointNet model can be interpreted as a
global feature of the point cloud (collision event).

These global features are then passed through a fully connected neural network to classify
or regress our target quantity. The original implementation of PointNet also includes
"mini-PointNets" that learn matrices that can transform the input point cloud ("input
transformation network") or the feature point cloud ("feature transformation network") in
a way that allows PointNet to respect the symmetries involved. These "mini-PointNets"
have the same structure as the PointNet described in figure 4.3, except for the input and
output. When used as an input transformation network, the input has dimensions N×F,
where N is the maximum number of hits or tracks expected in a point cloud and F is
the number of input attributes of each hit or track (e.g. F=3 if the model uses the x, y,
z coordinates of all hits as input features). The alignment network then learns an F×F
matrix. Similarly, if the network is used as a feature transformation network, the input
has dimensions N×K, where K is the number of feature maps produced by the convolution
layer preceding the feature transformation network. In this case, the network learns a
K×K matrix to transform the feature maps. Finally, these transformations are applied to
the input or feature point cloud before the next 1-D convolution is applied.

The ability to extract order-invariant, global event features that also respect the symmetries
in the data directly from a dense representation of experimental data makes PointNet an
ideal choice for training DL models on detector output.
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4.3 Bayesian Inference
Bayesian inference is a statistical learning technique based on the Bayes’ theorem. Accord-
ing to Bayes’ theorem, if we have a hypothesis H, the probability that the hypothesis is
true after we encounter evidence E is proportional to

P (H|E) ∝ P (E|H)P (H). (4.10)

Where P (H) is the prior distribution for the hypothesis, which encodes the probability
that the hypothesis is true before encountering the evidence. The P (E|H) is the likeli-
hood, which describes how well the hypothesis describes the evidence. Finally, P (H|E)
is the desired posterior, which encodes the updated knowledge about the hypothesis after
encountering the experimental evidence E.

As discussed earlier, the underlying physics of heavy-ion collisions, as described by a theo-
retical model, is often extracted by comparing model predictions for different observables
with measured data. Bayesian inference can be very useful for this purpose. Bayesian infer-
ence can quantitatively extract the model parameters that can describe the experimental
measurements. If we need to constrain the parameters of a simulation model and have
several measurements or observations that can be used to test the validity of a given pa-
rameter set, the posterior distribution for the parameters can be constructed using Markov
Chain Monte Carlo (MCMC) methods.

4.3.1 The Metropolis algorithm

The Metropolis algorithm [183] is a popular MCMC algorithm used in Bayesian inference
problems to draw samples from the posterior distribution. The distribution of the generated
samples becomes closer to the posterior distribution as more and more samples are drawn.
Metropolis sampling can be performed if we know a function g that is proportional to the
probability density from which we want to draw samples. In our case, we already know
from eq.4.10 that the posterior probability is proportional to the likelihood weighted by
the prior. Therefore, we can use the Metropolis algorithm to sample from the posterior in
the following steps:

1. Choose an arbitrary sample xt and an arbitrary proposal density P (xt+1|xt). P (xt+1|xt)
is the probability density for the next sample xt+1 given the current sample xt. This
probability is usually assumed to be a Gaussian distribution around xt.

2. Sample a candidate y for xt+1 from the proposal density.

3. Calculate the ratio α = g(y)
g(xt)

.

4. Generate a uniform random number r between 0 and 1.

Reject candidate y if r > α. Set xt+1 = xt.

Accept candidate y if r ≤ α. Set xt+1 = y.
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5. Repeat steps 2-4 until enough samples have been accepted.

The Metropolis algorithm uses the current sample to create a candidate, and rejects or
accepts the candidate depending on its probability density relative to the current sample.
As the iteration proceeds, more and more samples are drawn from regions of higher proba-
bility density, creating a population that converges to the desired probability distribution.
However, some of the initial samples may still be from a low probability region and may not
represent the posterior distribution we are interested in. Therefore, in practice, a "burn-in"
period is set to discard several initial samples.

Here we have discussed the simple Metropolis algorithm for MCMC sampling. There are
several advanced variations of the Metropolis algorithm that are faster and more efficient at
converging to the desired distribution. The DE-Metropolis algorithm [184] uses previously
generated samples from different MCMC chains to construct the proposal distribution,
while another variant called DE-Metropolis(Z) [185] uses previous samples from the same
chain to construct the proposal distribution. Since the MCMC chains converge to the
desired posterior, using the history of these chains to construct the probability density of
the next sample actually increases the acceptance ratio α, which in turn leads to faster
convergence.
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Chapter 5

AI based analysis of heavy-ion collision
data

As discussed in earlier chapters, a model-to-data comparison of conventional observables
such as particle yields, fluctuations, collective flow, etc. is carried out to determine the
fundamental properties of the strongly interacting matter produced in the collision, such as
the equation of state or the transport coefficients. However, any inconsistency in the anal-
ysis chain, especially at stages such as event selection, for which experiments use simplified
models, would introduce huge uncertainties in the final, extracted results. In addition,
the sensitivity of conventional observables may be substantially reduced by the experimen-
tal effects. Nevertheless, model-data comparison is an inevitable step in extracting the
physics of hot and dense QCD matter. In this chapter we present several AI methods that
can accurately infer the underlying physics , as described by a theoretical model, from
experimental data and potentially bridge this gap between models and experiments.

Artificial intelligence-based methods are a popular analytical tool in fundamental physics
research. In particular, ML and DL techniques have been widely used by the particle/heavy-
ion physics community to study jets and their substructures [186–193], to search for exotic
particles [194], for ultrafast simulations [195–198], to search for new physics [199–201] and
for various tasks such as particle identification, tracking, event reconstruction and extrac-
tion of various physical and theoretical quantities [180,202–214]. Furthermore, the Bayesian
inference technique has been applied to extract the transport coefficients [215,216] and the
EoS [217] of QCD matter at high temperatures. However, there have been very few studies
related to the use of ML or Bayesian techniques for high baryon density QCD. Moreover,
most of the existing DL techniques for the analysis of heavy-ion collision data require
heavily processed experimental output. The drawbacks of such an approach have been
discussed elsewhere. In this chapter we present the various applications of the PointNet
based DL models and Bayesian inference in the analysis of heavy-ion collision data.

Before exploring the possibilities of DL methods, it would be interesting to examine the
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conventional techniques for experimental analysis and their limitations. The conventional
observables used in the analysis of heavy-ion collision data often depend strongly on the size
of the interaction volume, which varies from event to event with the number of participant
nucleons (Npart) or the impact parameter (b) of the collision. Both b and Npart are not
directly measured by the experiments. Observables such as the charged track multiplicity
Nch or the number of hits in a detector Nhits are used as proxies to determine b and
Npart. This is performed using simplified models such as the Glauber MC model. The
selection of events based on collision centrality and interaction volume is often the first
step in experimental analysis. We therefore begin with a detailed study of the Glauber
MC model. The Glauber MC model is compared with the UrQMD cascade transport
model, and the uncertainties introduced into experimental analyses by the use of Glauber
MC-based event selection are studied.

The AI methods and the results presented in this chapter are based on [77–80, 125–127,
165,218].

5.1 The Glauber MC model based event selection

The Glauber MC model is a simplified description of heavy-ion collisions based on the opti-
cal interpretation of the initial interpenetration phase. The Glauber MC treats the collision
as a collection of instantaneous, independent inelastic binary scatterings of nucleons travel-
ling on straight trajectories. In this model, the collision participants are determined solely
from the transverse overlap of the nuclei, and both energy and baryon number deposi-
tion occur instantaneously along the beam axis. The model description and the results
presented in this section are based on [126].

The Glauber Monte Carlo (MC) is a simple model that is often used to relate the experi-
mentally measured Nch to the b and Npart of the collision. At LHC or RHIC beam energies,
the Glauber MC provides a reliable approximation of the initial state of a heavy-ion colli-
sion to characterise events based on collision centrality. However, at low and intermediate
beam energies (

√
sNN ⪅ 5-10 GeV), several assumptions of the model become questionable.

At these energies, the dynamics of the nuclei during the interpenetration and compression
phases are relevant to the modelling of the collision. Early hydrodynamic simulations even
showed a complete disintegration of the spectator fragments due to the compression wave
generated, even in peripheral collisions [7]. Recent studies with transport model simula-
tions [219] as well as a hydro-hybrid model [220], show a strong interaction between the
stopped and compressed system and the spectators, leading to the large directed flow ob-
served at low beam energies (see e.g. [2, 221–224]). The Glauber MC model does not take
this effect into account. Furthermore, the Glauber MC model neglects the elastic interac-
tions between the nucleons when mapping Npart onto the measured particle spectra. For
collision energies of

√
sNN ⪅ 3 GeV, where the elementary nucleon-nucleon elastic cross

section σNN
el and the nucleon-nucleon inelastic cross section σNN

inel are nearly equal, this
assumption is no longer valid. Nucleons undergoing only elastic interactions during the
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initial compression and subsequent expansion phases will have a significant contribution
to the final state spectra. Despite these inconsistencies, the Glauber MC model is used
to fit the experimental data using several parameters with little physical interpretation,
which are then used to estimate the centrality, the interaction volume and its fluctuations.
Therefore, at low collision energies, it is important to systematically test the Glauber MC
model against transport models to which the experimental data are compared.

In particular, Au-Au collisions at 1.23 A GeV are analysed, as this data was recently
collected by the HADES collaboration at the SIS-18 accelerator at GSI. The Glauber MC
model is used by HADES to characterise event centrality [225]1. In addition to HADES,
the STAR collaboration at BNL’s RHIC has recently measured Au-Au collisions at an
intermediate energy of

√
sNN = 3 GeV. It was shown that the strong model dependence of

the volume fluctuations leads to large uncertainties in the analysis of higher order proton
cumulants [106,226]. In this context, the present study will be useful not only for HADES
or STAR, but also for all future HIC experiments at intermediate energies, to understand
the implications of a Glauber MC-based centrality selection for the analysis of data at
intermediate collision energies.

5.1.1 Glauber MC based centrality selection in HADES

In order to study in detail the differences between Glauber MC and the fully dynamic
UrQMD model, a Glauber MC based centrality selection is implemented for 1.23 AGeV
Au-Au collisions at HADES .

Initialisation of the nuclei. In the Glauber MC model, sampling of the positions of the
nucleons in both projectile and target nuclei is performed similarly to the UrQMD model,
using a two-parameter Fermi (Wood-Saxon) distribution as the nuclear charge density
function2. The distribution is given by

ρ(r) =
ρ0

1 + exp( r−R
a

)
, (5.1)

where ρ0 is the charge density at the center, R is the radius parameter and a is the
diffuseness parameter. Following the values used in [225] for a gold nucleus, we set ρ0=1,
R=6.554 and a=0.523. The radial component (r) of the positions of the nucleons is sampled
with probability

P (r) ∝ r2ρ(r) . (5.2)
1More precisely, the HADES centrality is based on the sum of the number of hits detected by the TOF

and RPC detectors, which is not identical to the number of reconstructed charged tracks at mid-rapidity.
However, it has been shown in the Glauber MC study [225] that both quantities are strongly correlated
and both give the same results for the mean number of participants as well as the impact parameter, while
using the number of hits gives a better resolution. For simplicity, we use only the number of charged tracks
and assume that all our conclusions also apply to the centrality determination with the number of tracks
in the TOF and RPC detectors.

2Note that both the Glauber MC and UrQMD models assume the same distribution for protons and
neutrons and do not include 2-particle or short-range correlations inside the nucleus.
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The azimuthal (ϕ) and polar (θ) components of the positions of the nucleons are sampled
from uniform probability distributions. A sampled nucleon is re-sampled if there is already
another nucleon within a distance of less than dmin= 0.9 fm. This is to prevent the nuclei
from overlapping.

The impact parameters (b) of the collisions are taken from the probability distribution

P (b) ∝ b db . (5.3)

The sampled impact parameters are in the range 0 to bmax, where bmax is set to be greater
than the sum of the radii of the projectile and target. The projectile and target nuclei are
positioned such that the distance between their centre of masses in the transverse plane is
the sampled impact parameter.

The collision process. The Glauber MC also treats the binary collision process via a
geometric interpretation of the cross section. However, unlike UrQMD which uses the total
cross section, Glauber MC only considers the inelastic cross section to define collisions. A
nucleon pair is marked as participant if the transverse distance between them (dij) is less
than their radii, defined by the nucleon-nucleon inelastic cross section.

i.e.πd2ij ≤ σNN
inel . (5.4)

The value of σNN
inel is set to 23.8 mb based on [225]. In this way, all nucleons from either the

projectile or the target that have undergone at least one inelastic collision are counted as
""participant nucleons"", regardless of how many collisions they would actually undergo
in a transport model such as UrQMD. In figure 5.1, the Npart distributions for Au-Au
collisions at 1.23 AGeV predicted by Glauber MC are compared with the distributions
given by the UrQMD transport model. The top and middle panels show the Glauber
MC results, while the bottom panel shows the UrQMD results. For any given impact
parameter, the maximum Npart given by Glauber MC is smaller that the maximum Npart

given by UrQMD. For very central collisions (b < 3 fm), theNpart distribution from Glauber
MC has a large variance compared to UrQMD. However, for intermediate and peripheral
collisions ( b > 3 fm ) the Npart distribution from UrQMD has a very large variance
compared to the Glauber MC distribution.

As mentioned above, Glauber MC neglects the elastic interactions, while UrQMD con-
siders both elastic and inelastic nucleon-nucleon interactions when modelling Npart. This
assumption is only reasonable at high beam energies, where most of the newly produced
particles contribute to the measured particle multiplicity and is not a valid assumption for
the SIS-18 energies.

To study the effect of including elastic interactions in Glauber MC, we also used the total
p-p cross section value from UrQMD (47.8 mb) at 1.23 AGeV as input to the Glauber MC
collision criteria (eq. 5.4) instead of just the inelastic cross section. The resulting Npart

distribution is shown in the middle panel of Fig. 5.1. It is found that the inclusion of elastic
interactions increases the maximum Npart reached in very central collisions in the Galuber

54



5.1. THE GLAUBER MC MODEL BASED EVENT SELECTION

0

100

200

300

400

0

100

200

300

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

100

200

300

Glauber MC
σNNinel=47.8 mb

Glauber MC
σNNinel=23.8 mb

UrQMD
σpp,nntot =47.8 mb

100 101 102 103 104

Impact parameter [fm]

N
u

m
b

er
of

p
ar

ti
ci

p
an

t
nu

cl
eo

n
s

Figure 5.1: Npart vs b distributions. The top and middle panels show the results from the
Glauber MC model with σNN

inel= 23.8 and 47.8 mb respectively, while the bottom panel
shows the Npart distribution from UrQMD cascade simulations. The Npart distribution
from Glauber MC when the total proton-proton or neutron-neutron cross section used by
UrQMD (47.8 mb) at 1.23 AGeV is used as the input cross section to Glauber MC is
shown in the middle panel. It can be seen that Glauber MC and UrQMD predict different
distributions for Npart, even when elastic collisions are taken into account in Glauber MC.
Each distribution is generated from 7.5× 105 events.
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MC model. The maximum Npart achieved by Glauber MC for any given collision parameter
is now close to the UrQMD values. However, the overall width of the distribution has not
changed and is still very different and much narrower than the UrQMD results.

Mapping Npart to observables. The next step in Glauber MC is to map the number Npart

to experimental observables, usually the measured charged particle multiplicity Nch. It
is interesting to see how these differences in Npart manifest themselves when mapped to
observables such as the charged track multiplicity. Experimental analyses typically map
the Glauber MC generated Npart to the measured charged track multiplicity.

Based on the assumption of the "wounded nucleon" model that the ⟨Nch⟩ is proportional
to ⟨Npart⟩, the number of charged particles per participant (n) can be sampled from a
Negative Binomial probability Distribution (NBD)

P (n) =
Γ(n+ k)(µ/k)n

Γ(n+ 1)Γ(k)(µ/(k + 1))n+k
. (5.5)

where the values of µ and k are chosen so that the sampled Nch distribution fits the
experimental data. They are later used to sample the number of charged tracks produced
by each participant nucleon in the event.

For a consistent comparison between the models, the UrQMD distribution is assumed to
be the "measured" distribution and the Glauber MC generated Npart is mapped to the
UrQMD distribution of charged tracks within the HADES acceptance, i.e., between 18-
85° polar angle. The UrQMD data to which the Glauber model is fitted consists of 600,000
events, each with at least one inelastic collision. The result of the fit is shown in figure
5.2. The NBD parameters are fitted to minimise the deviation from the UrQMD "data"
for both central and mid-central collisions (number of tracks >90). The Glauber MC fit
shown in figure 5.2 used µ= 0.4 and k= 30 for the NBD sampling. For central events, the
Glauber MC fit agrees reasonably well with the UrQMD data, i.e. events with number of
tracks >110. However, for extremely central events, the Glauber MC fit overestimates the
number of events by an order of magnitude. The Glauber MC fit also underestimates the
number of charged tracks for intermediate collisions (25 < number of tracks <110) and
overestimates it again for extremely peripheral collisions (number of tracks <10).

In practice, experiments often fold this multiplicity distribution with additional efficiency
functions. These functions are said to take into account multiplicity dependent uncertain-
ties and other non-linear effects in the data, which would usually result in an improved
fit. However, introducing more parameters of little physical significance to improve the
Glauber MC fit would only marginally change the volume fluctuations in the Glauber
model. Therefore, such corrections are not implemented in the present work. The fit re-
sults simply indicate that a simplified Glauber MC model cannot provide as accurate a
description of collisions as a dynamical model such as UrQMD.

For ease of reading, we will refer to the true UrQMD Nch distribution within the HADES
acceptance (figure 5.2, red curve) as "UrQMD−Nch" and the Glauber fit to the UrQMD
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Figure 5.2: Glauber fit to UrQMD cascade data. The solid red curve is the UrQMD
charged track multiplicity Nch within the HADES acceptance angles (18- 85 °), for Au-Au
collisions at 1.23 AGeV. The distribution is generated from 6 × 105 inelastic events. The
dashed blue curve is the Glauber MC fit to the UrQMD data. The fit is generated from
6 × 105 inelastic events with µ= 0.4 and k= 30 for eq. 5.5. The Glauber MC Nch fits
the UrQMD data reasonably well for central collisions Nch > 110, but underestimates the
number of events for intermediate collisions ( 25 < Nch < 110) and overestimates it again
for extremely peripheral collisions (Nch < 10).

Nch distribution within the HADES acceptance (figure 5.2, blue curve) as "Glauber−Nch".

Defining centrality classes. The final, important and potentially problematic step is to de-
fine centrality percentiles on the Glauber MC sampled Nch distribution and then calculate
the mean impact parameter and mean number of participants for a centrality class from
this Glauber model.

The centrality C for events with Nch = n is defined as the fraction of the total cross section
(σtot) given by

C =
1

σtot

∫ Nmax
ch

n

dσ

dNch

dNch . (5.6)

It follows that sharp cuts in Nch, based on their percentile score, can be used to define
centrality classes. For any given centrality class, the mean impact parameter ⟨b⟩ and the
mean number of participants ⟨Npart⟩ can be calculated from the Glauber MC events. This
definition of centrality based on cuts in Nch is then applied to the experimental data to
separate events based on collision centrality, and these values of ⟨b⟩ and ⟨Npart⟩ are then
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used as the expected average impact parameter ⟨b⟩ and number of participants ⟨Npart⟩ for
the centrality class. Thus, all events in the experimental data within a range of Nchg are
grouped together and only the expected values of ⟨b⟩ and ⟨Npart⟩ are known for all events
in the centrality class. This is a drastic difference to N-body models such as UrQMD,
which can provide the impact parameter and the number of nucleons involved in collisions
on an event-by-event basis.

In figure 5.3, centrality bins of 5%, defined as sharp cuts in two different Nch distributions,
are visualised. In the top panel, the centrality classes are defined using the Glauber MC fit
to the UrQMD−Nch distribution within the HADES detector acceptance (Glauber−Nch),
while in the bottom panel the centrality classes are defined directly on the UrQMD Nch

distribution within the HADES detector acceptance (UrQMD−Nch). It can be seen that
the class boundaries defined in the two cases are slightly different, as the Glauber MC fit
to the UrQMD data is not perfect.

The collision centrality as defined by the two models, Glauber MC and UrQMD, can now
be used to understand the model dependence of volume fluctuations. Furthermore, the
Glauber MC predictions can be compared to the ground truth or "measured" distribution,
which in our case is the UrQMD data to which Glauber MC is fitted. In this way, the
biases introduced by the use of a Glauber based centrality selection in the experimental
analyses can be investigated.

5.1.2 Glauber MC vs UrQMD: Npart and b distributions

The Nch cuts shown in figure 5.3 can be used to compare the impact parameter b and Npart

distributions in the UrQMD and in the Glauber MC for different centrality classes. This
is shown in figures 5.4 and 5.5 where the following three cases are compared.

1. Npart and b are taken from Glauber MC for centrality classes defined with the Glauber
Nch distribution. These blue curves are referred to as "Glauber MC" in figures 5.4
and 5.5.

2. Npart and b are taken from UrQMD and the centrality classes are defined with the
true UrQMD Nch distribution. These red curves are referred to as "UrQMD" in
figures 5.4 and 5.5.

3. Npart and b are taken from UrQMD, but for Nch bins defined from the Glauber MC
fit to the UrQMD distribution. These green curves are referred to as "Glauber, Ur-
b" and "Glauber, Ur-Npart" in figures 5.4 and 5.5. They represent the underlying b
and Npart distributions in the model that is fit to obtain the Glauber MC centrality
classes.

The ⟨b⟩ and σb curves compared in figure 5.4 show that both Glauber MC and UrQMD
give similar impact parameter distributions for any given centrality class when the im-
pact parameter of an event is consistently taken from the same model as that used to
define the centrality classes. However, the means of the impact parameter distributions
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Figure 5.3: 5% Centrality bins. The centrality bins defined on the Glauber fit to the
UrQMD−Nch distribution (cascade) are shown in the top panel, while the centrality bins
defined directly on the UrQMD−Nch distribution are shown in the bottom panel. The ver-
tical lines represent the bin boundaries. The Glauber fit strongly overestimates extremely
peripheral and extremely central collisions and underestimates the intermediate collisions
compared to UrQMD data. As a result the bin boundaries differ in the two cases.

extracted from UrQMD using centrality classes defined by the fitted Glauber−Nch distri-
bution (dashed green curve) differ from the true impact parameter values from UrQMD
(solid red curve). This is because the Glauber MC fit to the UrQMD multiplicity distri-
bution had large deviations, especially for intermediate and peripheral collisions, and as
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Figure 5.4: Mean and standard deviation of the impact parameter distributions. The top
panel shows the mean (⟨b⟩) and the bottom panel the standard deviation (σb) of the impact
parameter distributions for different centrality classes. The dashed blue curve shows the
⟨b⟩ and σb from the Glauber MC fit for centrality classes defined on the Glauber Nch

distribution. The ⟨b⟩ and σb defined on the UrQMD−Nch distribution are shown as the
solid red curve. The dot-dashed green curve (Glauber, Ur-b) is the ⟨b⟩ and σb taken from
UrQMD for centrality bins defined from the Glauber MC fit Nch distribution.

a result the Nch cuts defining any given centrality class in the Glauber−Nch distribution
would differ from the cuts defined directly on the UrQMD−Nch distribution. The standard
deviation of the impact parameter distributions for all centralities looks similar in all three
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Figure 5.5: Mean and standard deviation of the number of participants distribution. The
top panel shows the mean (⟨Npart⟩) of the distributions of the number of participants,
while the bottom panel shows the standard deviation (σNpart) of the distributions of the
number of participants. The dashed blue line shows the ⟨Npart⟩ and σNpart from Glauber
MC for centrality classes defined on the Glauber−Nch distribution. The ⟨Npart⟩ and σNpart

from UrQMD for centrality classes defined on the UrQMD−Nch distribution is shown as
the solid red curve. The dot-dashed green curve (Glauber, Ur-Npart) shows the ⟨Npart⟩ and
σNpart from UrQMD for centrality classes defined on the Glauber−Nch distribution.

cases. For any given centrality class, there is only a difference of about 0.1 fm between the
three scenarios.
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However, as shown in figure 5.5, the results for the three scenarios differ drastically when
it comes to the Npart distributions. For all centrality classes, there is a huge difference in
the number of participants between the Glauber MC and UrQMD models, even when the
centrality classes are defined consistently using the corresponding model data. There is
a difference of up to a factor of ≈2 between the ⟨Npart⟩ from Glauber MC for centrality
classes defined on the Glauber−Nch distribution and the ⟨Npart⟩ from UrQMD for centrality
classes defined on the UrQMD−Nch distribution. A significant difference is also observed
between the Glauber MC and UrQMD Npart distributions when centrality classes defined
using the Glauber MC−Nch are used. The centrality dependence of the variance of the
Npart distributions also differs drastically between these three cases. The Glauber MC
Npart distributions have the largest standard deviation σNpart of about 30, for most central
collisions (about 0-10 %) as defined by the Glauber Nch distribution. On the other hand,
the UrQMD Npart distributions have their lowest variance for the most central collisions (as
defined by the UrQMD−Nch distribution), with a difference of a factor of ≈2. The UrQMD
Npart distributions have the largest variance for mid-central collisions (about 40-45 %).

The differences between the Npart distributions for the two models suggest that Npart (and
its fluctuations) are strongly model dependent, at least for beam energies

√
sNN ⪅ 5-10

GeV. Different models can produce similar Nch distributions even if the underlying Npart

distributions are completely different. The drastic differences in the Npart distributions
given by the two models are well illustrated in figure 5.6, where the Npart distributions of
Glauber MC and UrQMD are plotted for 0-10 % (top panel) and 0-40 % (bottom panel)
centrality classes. For the 0-10 % centrality class, the Npart distribution from UrQMD
for centrality classes defined on the UrQMD−Nch distribution peaks at about 380, while
the Npart distribution from Glauber MC for centrality classes defined on the Glauber−Nch

distribution does not show a clear maximum at all. The Glauber MC Npart distribution has
a huge variance and contains events with very small Npart even for the 0-10 % centrality
class. For the 0-40 % centrality class, the UrQMD Npart distribution peaks at about 385,
while the Glauber Npart distribution peaks at about 100. This is about a factor of 4 lower
than the UrQMD value! When centrality classes defined on the Glauber Nch distribution
are applied to the UrQMD data to select events, the resulting Npart distributions are
close to the UrQMD Npart distributions for centrality classes defined on the UrQMD−Nch

distribution. This important finding has strong implications for the volume fluctuations
and their correlations, and is relevant for the extraction of proton fluctuations for the
HADES experiment and also in the STAR-BES energy range. This is a direct consequence
of secondary particle scattering and the contribution of elastic scattering to the finally
observed protons.

5.1.3 Pion production at 1.23 AGeV

Having established the strong model dependence of the volume fluctuations at beam en-
ergies

√
sNN ⪅ 5-10 GeV, it is worth investigating how this might affect the experimental

analyses. HADES has recently published the centrality dependence of charged pion pro-
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Figure 5.6: Npart distributions for 0-10% (top panel) and 0-40 % (bottom panel) centrality
classes. The Npart distribution from Glauber MC for centrality classes defined on the
Glauber−Nch distribution is shown as the dashed blue curve, while the Npart distribution
from UrQMD for centrality classes defined on the UrQMD−Nch distribution is shown as
the solid red curve. The dot-dashed green curve (Glauber, Ur-Npart) shows the Npart from
UrQMD for centrality classes defined on the Glauber−Nch distribution.

duction measured at a beam energy of 1.23 AGeV and the comparison with transport
model simulations [227]. It was found that the measured pion yields were significantly
lower than the predictions of several theoretical models such as GiBUU, SMASH, PHSD,
IQMD and PHQMD. Apart from the introduction of explicit density dependent production
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cross sections, few ideas have been put forward to explain this discrepancy [228].

In this section, the charged pion production in 1.23 AGeV Au-Au collisions is investigated
within the framework of UrQMD cascade and the results are presented. The centrality
and the Npart dependence of the pion yields are reported for different methods used to
determine them, and the results are compared with the HADES measurements.

In figure 5.7 the charged pion multiplicity per participant predicted by UrQMD is plotted
as a function of ⟨Npart⟩ for different centrality selection methods. The values for ⟨Npart⟩
and ⟨π⟩ used in figure 5.7 are from 10% centrality bins for the different models. The last
4 points in all curves and HADES data in figure 5.7 therefore correspond to results from
centrality bins 30-40%, 20-30%, 10-20%, 0-10% respectively. It is clear that since different
models predict different Npart distributions for any given centrality class, the results vary
drastically depending on our choice of model for centrality selection and ⟨Npart⟩ estimation.
When the Glauber MC model is used for both centrality selection and ⟨Npart⟩ estimation,
the resulting pion multiplicity per participant from UrQMD is larger than the HADES
measurements for any given centrality (blue curve). However, when the UrQMD model is
used both to select the centrality and to estimate the ⟨Npart⟩, the resulting pion multiplicity
per participant from UrQMD is smaller than the HADES measurements for mid-central
and peripheral collisions (red curve) and larger than the HADES data for the most central
collisions (0-10 %). There is a large difference in ⟨Npart⟩ for each of these centrality classes
for the two models, making ⟨Npart⟩ an unreliable quantity for comparing experimental
observations such as particle yields with model predictions.

Due to the ambiguities associated with ⟨Npart⟩, it is not advisable to examine the pion
multiplicity as a function of ⟨Npart⟩. Instead, the multiplicities can be studied as a function
of the centrality, which is consistently defined by a percentile of Nch from either a Glauber
MC fit or directly from the model simulation. The charged pion multiplicities from UrQMD
are plotted as a function of centrality in figure 5.8. In the figure, the UrQMD results for
centrality classes defined from the UrQMD−Nch distribution are plotted in red ("UrQMD
bins"), while the UrQMD results for the Glauber−Nch based centrality selection are plotted
in blue ("Glauber bins"). If the Glauber MC fit to the UrQMD−Nch distribution was
perfect, both the "Glauber bins" and "UrQMD bins" curves would have looked identical.
It can be seen that UrQMD predicts significantly larger pion multiplicities for all centrality
classes than what is measured by HADES in this case. The results are similar to the
predictions of other theoretical models, as shown in [227].

The main source of uncertainty when comparing experimental observations with theoretical
models is the assumption that events with similar centrality have similar underlying Npart

distributions. However, for any given centrality class, the underlying Npart distribution or
volume fluctuations depend strongly on the model used. For example, theNpart distribution
given by the Glauber MC model for any given centrality class can be completely different
from the Npart distribution given by UrQMD, even though the Glauber MC was fitted to
the UrQMD−Nch distribution. It may be possible to fit the Glauber MC model to an
experimental or theoretical Nch distribution. However, this does not guarantee that the
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Figure 5.7: Charged pion multiplicity per participant from UrQMD cascade simulations
as a function of Npart. The red curve (UrQMD bins, Npart) shows the results for centrality
classes defined on UrQMD data with Npart also taken from UrQMD. The pion multiplicity
from UrQMD for centrality bins and the number of participants defined by Glauber MC
are shown in blue (Glauber bins, Npart). The HADES results [227] are shown as black
squares. The large difference between the blue and red curves arises from the strong model
dependency of Npart.

Npart distribution extracted from a Glauber MC for a centrality class and the true Npart

distribution are similar. To demonstrate the uncertainty this introduces into the analysis,
the events are now sampled so that the Npart distribution is similar to that predicted by
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Figure 5.8: Charged pion multiplicity as a function of centrality. The plots show the ⟨π+⟩
and ⟨π−⟩ multiplicities from UrQMD cascade and HADES. The results from UrQMD for
Glauber−Nch based centrality selections are shown as the blue curve, while the results from
UrQMD for UrQMD−Nch based centrality selections are shown as the red curve. The black
squares are the HADES measurements [227]. The dot-dashed violet curve shows the pion
multiplicities from UrQMD when the events are sampled to have Npart distribution similar
to the Glauber MC predictions for any given centrality class. Unlike Npart, "centrality" is
less model dependent quantity for model to data comparison of observables such as pion
multiplicities although this does not assure that the Glauber MC correctly predicts the
underlying Npart distribution of a centrality class(as evidenced by the difference between
red and violet curves).
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the Glauber MC for any given centrality class. The results are shown as the dot-dashed
violet curves in figure 5.8. It can be seen that the predicted pion multiplicities are now
lower than the HADES data, in contrast to the UrQMD−Nch based event selection which
predicted more pions than the HADES observations. The strong centrality dependence in
the deviation from the HADES data is also reduced in this case. This shows that if the
assumption of the underlying Npart distribution is incorrect, or at least not fully consistent,
this can lead to large uncertainties in the predicted pion multiplicities. When the model
predictions are compared with the measured data, this could then lead to incorrect or
inconsistent conclusions.

Influence of elementary cross sections

The Glauber MC and UrQMD differ in their treatment of collisions and this definitely leads
to discrepancies in the number of participant nucleons for the two models. In addition,
significant model uncertainties also arise from the treatment of elementary cross sections
at SIS-18 energies. It may be the case that experimental data for some reaction channels
are not available or that the experimental data contain large uncertainties. These would
then lead to large uncertainties in the calculated yields for the particle species involved.
To study the systematic uncertainties arising from the choice of these cross section values,
we consider two different cases in UrQMD for p-n cross sections, where the cross sections
are assumed to be known for all but one reaction channel:

Case A: The p+n→p+n∗ cross section is considered unknown. The cross section for
this channel is chosen so that the total collision cross section matches the measured
values.

Case B: The total elastic cross section (p+n→p+n) is considered unknown. The cross
sections for all other reaction channels including p+n→p+n∗ are considered known
and fixed. The cross section for this channel is chosen so that the total collision cross
section matches the measured values.

The pion yields for different elementary collisions at 1.23 AGeV for the two cases above are
tabulated in table 5.1. A significant difference in the charged pion multiplicities is observed
between the two different cases. The difference is mainly due to the p+n collisions and
case A produces about 15% more charged pions per participant than case B. This very
high uncertainty in the treatment of the elementary cross sections can therefore also lead
to very significant effects on the final state multiplicities at SIS 18 energies.

5.1.4 Protons and light nuclei at 1.23 AGeV

The unreliability of Npart due to its model dependence and its consequences for experi-
mental analyses at SIS-18 beam energies have been established in the previous section.
Nevertheless, at these beam energies, experiments may indeed be able to use the measure-
ments to check the consistency of the underlying Npart. The total baryon number in the
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Table 5.1: Pion yields for elementary collisions at 1.23 AGeV. The second part of the table
shows the average π+,π− yields over different collisions (p+n, p+p, n+n, n+p), total π
and πchg/Npart, for the two cases.

Case Collision π+ π− Ninel/Ntot

A p+n 0.262 0.259 0.429
B p+n 0.174 0.173 0.356
A p+p 0.814 0.011 0.569
B p+p 0.809 0.001 0.601
A n+n 0.012 0.828 0.547
B n+n 0.003 0.812 0.604

π+
avg π−

avg πchg/Npart πtot
A 0.337 0.339 0.338 1.090
B 0.290 0.290 0.290 1.010

system is conserved and at these energies, rarely any baryon-antibaryon pairs are produced.
Therefore, by measuring the protons and light nuclei, the number of baryons involved could
be measured directly. Since the current experiments, which measure only charged particles
cannot detect the free neutrons Nn, the experiments can ultimately measure the Npart−Nn.

Both the HADES and STAR experiments have published the data (albeit preliminary) on
the rapidity distribution of the free protons and baryons in light nuclei. These can be com-
pared with our UrQMD simulations, which have been extended to include a coalescence
mechanism to describe the production of light nuclei [229]. The comparison between the
UrQMD simulations and the experimental data for the 0− 10% most central ( b < 4.7 fm)
collisions is shown in figure 5.9. The left panel shows the comparison to STAR measure-
ments at Elab= 3 AGeV, while the right panel is the comparison to HADES measurements
at Elab= 1.23 AGeV. It is clear that the light nuclei make a significant contribution to the
total baryon number. It can also be seen that the UrQMD model gives a very good descrip-
tion of all the STAR rapidity distributions, except at rapidities close to the fragmentation
region. The sum of all measured baryons in this case is Npart − Nn ≈ 220. The HADES
data, on the other hand, show a clear suppression of proton and deuteron rapidity spectra
compared to the model simulation, and the Npart − Nn in this case is ≈ 190. Adding the
number of neutrons, the total Npart in HADES is surprisingly in agreement with the num-
ber of participants in the Glauber model. However, the total Npart given by UrQMD for
both cases is consistent with the UrQMD Npart discussed earlier. In the case of HADES,
the significant reduction in Npart is also consistent with the significant reduction in the
measured proton dN/dy compared to UrQMD. Interestingly, such an effect is not seen in
the STAR data, and the measurements are consistent with UrQMD predictions.

There are several possible reasons for this observed discrepancy between experiments and
between experiments and simulations. It could be that some of the protons are not de-
tected due to the different acceptance of STAR and HADES, or that there is a systematic
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Figure 5.9: Rapidity distributions of free protons and light nuclei in the most central
collisions of Au-Au nuclei at Elab= 1.23 and 3 AGeV. The simulations are from the UrQMD
cascade model plus coalescence and are shown as solid lines. The simulations are compared
with the preliminary data from the two respective experiments STAR [230] (left, stars) and
HADES [231, 232] (right, diamonds), shown as symbols. The beam rapidity in this frame
for STAR is ybeam ≈ 1.05 and for HADES is ybeam ≈ 0.75. The simulations reproduce the
STAR data well. However, the HADES data show significantly fewer protons and light
nuclei at all rapidities. The sum of all participating baryons minus the free neutrons is
≈ 220 for both cases in UrQMD, while for HADES it is ≈ 190.

incompatibility in the centrality determination of either experiment. It could also be due
to a large change in the underlying physics modelled by the transport description. Under-
standing these inconsistencies is also important for the interpretation of observables such as
pion multiplicity and proton number fluctuations. A possible solution to this problem is to
measure Npart explicitly in experiments, using detectors such as a zero degree calorimeter,
and then compare the model results for events with the same Npart distribution. It would
also be interesting to investigate whether Npart can be accurately extracted from models
such as UrQMD using artificial intelligence techniques.

5.2 PointNet based event characterisation in experiments

We will first use the PointNet architecture to develop DL models that can characterise col-
lision events in experiments. We have already seen how event selection based on simplified
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models fail to accurately model the underlying Npart and how this in turn leads to large
uncertainties in the results of physics analyses. The method used for event selection or
characterisation should be consistent with the theoretical model to which the observables of
the selected data are compared. Moreover, an accurate determination of the initial volume
of the system is very important for the analysis of fluctuations [233,234] and correlations,
and thus for the search for observables sensitive to a possible phase transition or critical
point. This requires novel methods that can accurately characterise events based on colli-
sion centrality or interaction volume. In future experiments such as CBM, a method that
can quickly determine the centrality of an event, before any information about the particles
produced is known, would be very important for a first step in event selection. Such fast,
accurate analysis methods that can be applied directly to detector data would be a first
step towards overcoming the challenges associated with the extremely high event rates of
the CBM experiment. The results presented in this section are based on [77,78,80,218].

5.2.1 Impact parameter determination in the CBM experiment

The impact parameter is an essential quantity for understanding the event geometry and
analysing the collected data. Although most theoretical calculations require the impact
parameter as an input, it is not directly measurable in experiments. Typically, final state
observables such as the mid-rapidity charged particle multiplicity and the number and
energy of the spectator fragments are used to determine the centrality of a collision, from
which the impact parameter is then estimated. For the CBM experiment, this was done
using a Monte Carlo Glauber (MC-Glauber) model. These estimators are then used to
group events into different centrality classes based on the centrality percentile [235]. Note
that the Glauber MC cannot determine the impact parameter or number of participants of
an individual event, but only provides the likely distribution of impact parameters within
a given centrality class.

While conventional methods of centrality determination, based on connecting the number
of charged tracks in an event with its centrality [235], can be useful for a broad grouping
of events, they lack the ability to perform accurate impact parameter determination of
individual events. This is illustrated in figure 5.10, where the track multiplicity of the
charged particles is plotted as a function of the impact parameter. For a given track
multiplicity there is a wide range of possible impact parameters. This spread in track
multiplicity is greatest for the most interesting central events. Similarly, for the most
peripheral events, a given track multiplicity could correspond to a wide range of impact
parameters. Accurate determination of impact parameters on an event-by-event basis is
therefore not a trivial task that can be accomplished on the basis of a single variable such
as track multiplicity. It requires modelling of other known and unknown correlations in
the experimental data to the impact parameter. Furthermore, next generation experiments
such as CBM require online event analysis methods, which is only possible with minimal
pre-processing of the raw experimental data. This makes PointNet based DL models an
efficient candidate for event-by-event impact parameter determination in CBM.
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Figure 5.10: Histogram of the charged particle track multiplicity as a function of impact
parameter. The distribution is generated using the 106 minimum bias Au-Au collision
events at 10AGeV generated using UrQMD cascade model+ CbmRoot [236] detector sim-
ulation. Conventional methods for event selection based on charged track multiplicity can
only perform a broad grouping of events, as there exists a wide range of impact parameters
for any given track multiplicity.

Machine learning approaches have previously been proposed as a method for determining
impact parameters in heavy-ion collisions. Feed-forward networks used with event gen-
erator output have been shown to outperform conventional methods in [237–239]. Other
studies [240–242] have used neural networks or conventional machine learning methods to
determine the impact parameter in real experimental data. However, these studies used
shallow neural networks or traditional machine learning models trained directly on the
output of event generators such as the Quantum Molecular Dynamics (QMD), Isospin
Quantum Molecular Dynamics (IQMD), Classical Molecular Dynamics (CMD) or UrQMD
model [40, 44, 243–246]. Experimental constraints were only taken into account by simple
filters based on detector acceptance or event selection criteria. Such simplifications do
not take into account the uncertainties in the data introduced by detector efficiency or
resolution and do not reflect the real output of a detector setup. The observables used
in the previous studies are only available after several stages of processing, such as track
reconstruction, particle identification and efficiency corrections. Although models based
on these inputs are easier to interpret, their main shortcoming is that any bias or con-
straints in the processing algorithms would also add to the uncertainty of the predictions.
Furthermore, in order to judge the computational efficiency of such models, they need to
be used in a more realistic setup that closely mimics the actual data processing in the
corresponding experiment.
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Finally, an important motivation for using PointNet with direct detector output informa-
tion is the flexibility of the networks output. If the analysis of the impact parameter can be
done within such a model, the desired observable could easily be replaced by other possible
observables of interest and event properties such as collective flow or the appearance of
exotic particles.

Preparing training and testing data

The microscopic relativistic N-body hadron transport model UrQMD 3.4 (cascade) is cho-
sen as the event generator for the present study. These generated UrQMD events then serve
as input to the subsequent CbmRoot [236] detector simulation framework, which performs
event-by-event transport of all particles of each event through the detector subsystems. The
standard macros in CbmRoot are used to perform particle transport, detector response and
event reconstruction. The default detector geometry for the electron-hadron configuration
(sis100_electron) is simulated using the Geant3 software [247]. Since UrQMD does not in-
clude weak or electromagnetic decays of the produced hadrons, these are performed within
the Geant3 package. The present analysis includes only those particles that produce hits
in the two main silicon detectors (STS and MVD). 3

With the current simulation setup, four different datasets, labelled Train and Test1 -Test3,
of Au+Au collisions at 10 AGeV are generated for this study. The DL models were trained
using the dataset Train, which contains 105 events with impact parameters ranging from 0
to 16 fm, sampled from a uniform b distribution. The datasets Test1, Test2 and Test3 were
used to quantify the performance of the trained models. The first testing set Test1 contains
18 subsets, each comprising 500 events with a different but fixed impact parameter ranging
from 0 to 16 fm. The datasets Test2 and Test3 contain 106 and 105 events respectively
with impact parameters sampled from a bdb distribution (i.e. the probability of an impact
parameter b is proportional to b, from 0 to 16 fm). Thus, Test2 and Test3 contain impact
parameter distributions that are different from the training set, which is important for
meaningful validation of the models. In addition, Test3 uses a modified physics scenario,
which will be explained later.

The features of all the datasets are presented in the table 5.2.

Models

In this study, we have developed four PointNet based models that learn from different
types of detector output, such as hits and tracks of particles, as features to determine the
impact parameter of each collision. A point in the point cloud is therefore defined by the
attributes of a hit or a track. In this study, the models were trained using 75% of the events
in the dataset Train with the MSE as the loss function. The remaining 25% of events were

3Although the CbmRoot can perform the full detector simulation according to the experimental speci-
fications, it does not include a realistic simulation of different backgrounds, which may lead to additional
noise. However, for the sake of simplicity, this is not considered in this study.
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Dataset # events impact parameter
[fm]

impact parameter
distribution

Train 105 0-16 uniform
Test1 18× 500 0.5 - 16 constant
Test2 106 0-16 bdb
Test3 105 0-16 bdb

Table 5.2: Datasets used in the study. The last column defines the impact parameter dis-
tribution of the events. The training dataset has a uniform impact parameter distribution,
while a constant or bdb distribution is used in the testing datasets.

used for validation. Other metrics such as MAE and coefficient of determination (R2) were
used to select the best model for further analysis. If ytrue, ypred and ⟨ytrue⟩ are the true
impact parameter, the DL predictions and the mean of the true values respectively, the
coefficient of determination is calculated as

R2 = 1−
∑

(ytrue − ypred)
2∑

(ytrue − ⟨ytrue⟩)2 + ϵ
(5.7)

where the second term is the fraction of the variance unexplained by the predictions and
ϵ is a small positive number to prevent division by zero. The sums run over all validation
events.

The training of the models requires the tuning of several hyperparameters to achieve the
best performance. We started with network structures similar to the original PointNet
implementation and then tuned different hyperparameters using a trial and error method
until optimal performance, as defined by MSE, MAE and R2, was observed.

All models in this study used ReLU activation units and the Adam optimiser (learning
rate = 0.00001). The convolution layers were always followed by batch normalisation
layers. The convolution operations (1-D) used kernels of size 1 to ensure that the local
features of individual points were separately segregated. Dropout layers with a dropout
probability of 0.5 were used after each dense layer in the models to control overfitting.
The models use a common structure for input and feature transformation networks (Itrans
and Ftrans) as shown in figure 5.11. When used for input transformation, the network
has input dimensions N×F, where N is the maximum number of hits or tracks (depending
on the model) in the data and F is the number of input attributes per point. For the
feature transformation network, the input dimensions are N×K, where K is the number
of feature maps produced by the previous convolution layer. The input passes through a
series of convolution and batch normalisation layers to perform order-independent feature
extraction before aggregating global features using an average pooling layer. The global
features are then regressed using a deep neural network to output F2 (or K2) numbers,
which act as transformation matrices. The overall structure of the models is also similar to
the alignment networks. The features extracted after the input and feature transformations
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Figure 5.11: General structure of the joint alignment networks. This network is used as
the input and feature transformation networks in all models. All convolution layers are
followed by batch normalisation layers. The convolution kernels (blue rectangles) have a
size of 1. When used as an input transformation network, the input has dimensions N×F,
where N is the maximum number of hits or tracks expected in an event and F is the number
of input attributes of each hit or track (for example: F= 3 if the model uses the x, y, z
coordinates of all hits as an input feature). The alignment network then learns an F×F
matrix. Similarly, if the network is used as a feature transformation network, the input
has dimensions N×K, where K is the number of feature maps produced by the convolution
layer preceding the feature transformation network.

also use an average pooling layer to collect global features and then finally find the impact
parameter from these features using a DNN.

The models developed in this study, their network architecture and hyperparameters are
briefly described below.

Model-1 (M-hits): This model (M-hits) uses the x, y, z position of the hits of particles in
the MVD detector as input attributes. Since our inputs are merely hits in the detector
planes, this model can perform the impact parameter determination prior to track finding
and fitting. Since the PointNet architecture requires a fixed input size, the event with the
maximum number of hits (Nmax = 1995) in the training dataset is used as a reference to
set the input dimensions (N×F) to 1995×3. Any event with a smaller number of hits will
have the remaining rows filled with zero. When the maximum number of hits in the test
datasets exceeded 1995, hits were randomly dropped to fit the input dimensions. Note that
in principle the input size could be extended to include the exponential tail of the Ncharge

distribution, but this would also increase the computation time.

The model architecture of M-hits is illustrated in figure 5.12. The input transformation
network (figure. 5.11) learns to generate a 3×3 matrix (F×F) that transforms the three-
dimensional points in the input space. This network uses three convolution layers which
produce 64, 128 and 1024 feature maps respectively. The transformed input passes through
forward network 1, which consists of 2 convolution layers, each producing 64 feature maps.
This data is then transformed by a 64×64 matrix (K×K) learned by the feature trans-
formation network (figure. 5.11) with three convolution layers (64, 128 and 1024 feature
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Figure 5.12: General structure of M-hits, S-hits and MS-tracks models. The main difference
between the models is the input shape, which depends on the maximum number of hits
or tracks expected in an event (N) and the number of attributes considered for each hit
or track (F). This changes the dimensions of the input transformation matrix accordingly.
The dimensions of the feature transformation matrix (K×K) are equal to the number of
feature maps extracted by the last convolution layer of the forward network 1.

maps). The data then passes through a series of 3 convolution layers (forward network 2)
with 128, 256 and 512 feature maps respectively. Finally, the global features are collected
using an average pooling function with a pool size of 1995. This separates 512 global fea-
tures of the event which are passed to the point cloud regression network consisting of a
three layer neural network with 256, 128 and 1 neuron respectively.

Model-2 (S-hits): This model uses the x,y,z coordinates of hits in the STS detector planes.
Similar to the M-hits model, S-hits does not require tracking to be performed before the
impact parameter can be reconstructed. The structure is similar to the M-hits model,
the only difference being the input shape. The maximum number of hits present in an
event in the training data was 9820. Therefore, the input dimensions (N×F) were set to
9820×3, with provisions similar to M-hits to overcome smaller or larger numbers of hits in
the testing data.

Model-3 (MS-tracks): The MS-tracks model uses the features of the tracks reconstructed
from the hits in both MVD and STS to predict the impact parameter. Therefore, this
model can only be used to estimate the impact parameter after track reconstruction. In
this model, the x, y, z coordinates, dx/dz, dy/dz and charge-to-momentum ratio (q/p) of
the tracks of the particles in the first and last plane of the tracks are the attributes of
a point in the 12-dimensional point cloud. Therefore, the input dimensions are 560×12
(N×F), where 560 is the maximum number of tracks present in an event from the training
data. Events with fewer tracks are filled with rows of zeros to maintain the same input
dimensionality.

The basic structure of the data flow in this model is also similar to that of the M-hits
model. An input transformation network with a similar structure to the one in the M-hits
model learns the 12×12 alignment matrix. The forward network 1 consists of 2 convolution
layers, each producing 128 feature maps. The features extracted from the forward network
1 are transformed by a 128×128 matrix (K×K). The matrix is learned by the alignment
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Figure 5.13: Structure of the model HT-combi. The model is a combination of M-hits and
MS-tracks. Both models extract the global features independently and are then concate-
nated before being fed into a regression network.

network with 3 convolutional layers (128, 256 and 1024 feature maps). The extracted
features then pass through a forward network 2 similar to the M-hits model. Then an
average pooling layer (pool size = 560) segregates the global features and feeds them to a
regression network similar to M-hits.

Model- 4 (HT-combi): This model learns from the combination of both hit and track
information used by M-hits and MS-tracks respectively. It uses the hits from MVD together
with tracks reconstructed from hits in MVD and STS to determine the impact parameter
of an event. It takes the MVD hits with dimensions 1995×3 and the MVD + STS tracks
with dimensions 560×12.

In this model, two separate networks similar to M-hits and MS-tracks run in parallel
to perform input transformation, feature transformation and global feature extraction.
Finally, the global features are concatenated and fed into the regression network with 512,
256, 128 and 1 neurons respectively. The model structure is shown in figure 5.13.

Performance of the PointNet models

The DL models were trained via backpropagation until the validation MSE (loss) started
to saturate or diverge from the training loss. The MAE and coefficient of determination
of the validation dataset were also considered before choosing the final weights for the
model. The trained models were then tested on the datasets Test1, Test2 and Test3 to
evaluate their performance. Details of the final models are tabulated in the table 5.3. All
models achieved a R2 value of about 0.98 upon training. It can be seen that increasing the
complexity (# param.) increases the training time required for the model to converge to
an optimal solution. Nevertheless, all models eventually achieve similar values for MSE,
MAE and R2, with the MS-tracks and HT-combi models achieving a slightly better R2
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Model Epochs # parame-
ters

MSE MAE R2 Events/s

M-hits 128 3 · 106 0.43 0.51 0.979 660
S hits 354 3 · 106 0.47 0.54 0.976 159
MS tracks 372 6 · 106 0.40 0.50 0.981 1092
HT-combi 484 10 · 106 0.39 0.49 0.981 435

Table 5.3: Main features of the trained DL models. An epoch is defined as a single training
pass through the entire training dataset. The number of parameters (# param.) refers to
the weights, biases and kernels of the model, together with non-trainable parameters that
define the structure of the network. This number roughly corresponds to the complexity
of the model. The MSE, MAE and R2 are for the validation data. The last column gives
an estimate for the speed of execution of the model on a GPU card.

value.

To study the speed of the DL models, 10000 events from the dataset Test2 were tested
on a Nvidia Geforce RTX 2080 Ti with 12 GB of GPU memory. The MS-tracks model
was found to be the fastest with a prediction speed of about 1092 events/second, while
the S-hits model was the slowest with a speed of about 159 events/second. However,
the MS-tracks can only be deployed after track reconstruction, which means that some
sort of pre-processing is required, which takes up computational time. It should also be
noted that the models have not been optimised for speed. It is possible to improve the
speed of the models by reducing the complexity of the models, by modifying the input
dimensions to make the best use of the available resources, or by using more advanced
GPUs. Nevertheless, the current speed is promising for online analysis of data when run
in parallel on multiple GPUs. In addition, the advantage of a more complex model, as in
our study, is that it can be used for other analysis tasks that can then be performed at a
similar speed.

As a basic reference for the performance of our DL models, we will use a much simpler
polynomial fit that can also perform event-by-event predictions from the track multiplicity
of the event. This model (Polyfit) uses a third-order polynomial fit to the track multiplicity
as a function of the impact parameter to determine the impact parameter

b = a0 + a1 × x+ a2 × x2 + a3 × x3 (5.8)

where b and x are the impact parameter and the number of charged tracks, respectively.
The fit yields the following parameters

a0 = 14.28; a1 = −7.01× 10−2; a2 = 2.13× 10−4; a3 = −2.70× 10−7.

To quantify the precision of DL models, we first look at the spread of DL predictions for a
fixed input impact parameter. The relative precision in the predictions of DL models can
be calculated as σerr/btrue, where σerr is the standard deviation of the distribution of the
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Figure 5.14: Relative precision of DL models as a function of impact parameter. The
results of the Polyfit model (grey) are also plotted to benchmark the performance of the
DL models. The events used are from the Test1 dataset (Au-Au collisions at 10 AGeV
from UrQMD cascade + CbmRoot) and the predictions are for a fixed impact parameter.

prediction error (true − predicted) and btrue is the true impact parameter. The relative
precision of the predictions is plotted as a function of the impact parameter for different
DL models and the Polyfit model in figure 5.14. It can be seen that the simple model
fails for the most central collisions (b< 2 fm), with the relative precision increasing up to
200 %, while the DL models have a better precision in comparison. At 0.5 fm, the worst
relative precision observed in the DL models was about 79 %, and this dropped below 50 %
for events with impact parameters of 1 fm or more. For events of 3 - 16 fm, the spread of
predictions from DL models and the polynomial fit model are similar.

However, the standard deviation of the error in predictions only quantifies the precision
of the model. Predictions can only be considered both accurate and precise if the error
distributions have a mean close to zero and an acceptable precision. Figure 5.15 shows
the mean error of the predictions as a function of the impact parameter for Test1. The
polynomial fit model has a poor accuracy compared to the DL models, despite its compa-
rable precision for mid-central and peripheral events. The DL models have a mean error
between -0.33 and 0.22 fm for events with an impact parameter of 2-14 fm, while the mean
for the Polyfit model varies between -0.7 and 0.4 fm. For events in the range 5-14 fm,
the HT-combi and Polyfit models offer relative precision of 4-9 % and 2-8 % respectively.
Despite their similar precision (for 5-14 fm), HT-combi yields more accurate predictions,
with a mean error of -0.33 to 0.13 fm, while the polynomial fit has mean errors ranging
from -0.7 to 0.4 fm.
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Figure 5.15: Mean error of the predictions as a function of the impact parameter. The
events used are from the dataset Test1 (Au-Au collisions at 10 AGeV from UrQMD cascade
+ CbmRoot) and the predictions are for a fixed impact parameter. The error bars are
smaller than the symbol size.
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Figure 5.16: Distribution of predicted impact parameters using MS-tracks. For a given
fixed impact parameter, 500 Au-Au collision events at 10 AGeV generated from UrQMD
cascade + CbmRoot were used.

In figure 5.16, the predictions of the MS − tracks model for different values of impact
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Figure 5.17: Mean error in predictions as a function of centrality. The dataset Test2 (Au-
Au minimum bias collisions at 10 AGeV from UrQMD cascade + CbmRoot) is used, in
which peripheral events are more likely to occur. The track multiplicity is used for centrality
binning. The points at 90 % centrality are results from events with no reconstructed tracks.
Therefore, the Polyfit and MS-Tracks models have no data point at 90 % centrality. In
addition, it can be seen that the Polyfit is highly fluctuating and unreliable for event-by-
event determination of impact parameters.

parameters are visualised. It can be seen that the predictions for all impact parameters
are all centred around the true value. All these results indicate that the DL models use more
information than just the number of charged tracks to determine the impact parameter.

In an actual collision experiment, the probability of having events with an impact parameter
(b) is proportional to the impact parameter, which gives a different distribution of impact
parameters than those used in the Train dataset: i.e. peripheral events are more likely. To
study the performance of the DL models in such a scenario, the dataset Test2 was used
to predict the impact parameter for different centrality classes with a bin width of 5%.
The mean prediction error is plotted as a function of centrality in figure 5.17. The DL
models have a mean error close to zero for most of the centrality classes, while there are
large fluctuations in the simple polynomial model. Another interesting factor is that the
number of events that have at least 1 hit in the MVD detector but no tracks reconstructed
(using MVD and STS hits) was about 10% of Test2. These are “empty” events for the
track multiplicity based method. However, the DL models can use hits to make predictions
about the impact parameter of these events, although the error is large compared to their
predictions for central and mid-central events.

The accuracy of the reconstructed impact parameter of an event may depend on how accu-
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Figure 5.18: Difference of the mean track multiplicity for the datasets Test3 and Test2
(∆M) as a function of centrality. Both datasets contain minimum bias Au-Au events at 10
AGeV from UrQMD cascade + CbmRoot. However, the ∆ baryon absorption cross section
was reduced by a factor of 2 from their default value to generate Test3. The change in
pion cross section in Test3 is expected to be more pronounced in central collisions, leading
to a larger number of charged tracks.

rately the simulation model can describe the outcome of individual events. This introduces
a bias in the predictions from the choice of event generation model. The dependence of
the DL predictions on the physics model is investigated by predicting the events from a
separate dataset that introduces different physics (Test3 ) on the DL model trained on
the dataset Train. To generate Test3, the final charged particle multiplicity in the tested
events was modified by increasing the pion production cross section in UrQMD. To do this,
the ∆ baryon absorption cross section in the UrQMD model was reduced by a factor of
2, resulting in increased pion production, especially for central collisions. The increased
number of pions is reflected in the difference in the mean charged track multiplicity (∆M)
for events in Test3 and Test2, for a given centrality, as shown in figure 5.18. There is a
difference of about 14 tracks for most central events, and it is reduced to less than 3 for
peripheral collisions. This change in the physics translates into a shift in the mean of the
error distributions (µshift

err ), given by

µshift
err =

√
(µerrT3 − µerrT2)2 (5.9)

where µerrT3 and µerrT2 are the mean prediction errors for datasets Test3 and Test2 re-
spectively. This shift in mean is plotted as a function of centrality in figure 5.19. It is
observed that the DL models show a shift in the mean of up to 0.32 fm, while the poly-
nomial fit shows a shift of up to 0.53 fm. As expected, the shift is more pronounced for
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Figure 5.19: Difference in the mean of the error distributions for the datasets Test3 and
Test2 as a function of centrality. Both datasets contain minimum bias Au-Au events at 10
AGeV from UrQMD cascade + CbmRoot. However, unlike the training dataset and Test2,
the ∆ baryon absorption cross section was reduced by a factor of 2 from their default value
to generate Test3. The resulting increase in pion production in central events leads to a
systematic underprediction of the impact parameter in Test3. However, the DL models
appear to be less model dependent than the polynomial fit.

central collisions. This means that the DL network learns more information about the
event features independent of the event multiplicity than the Polyfit and is thus less model
dependent than a simple fit. The MS-tracks and HT-combi models show a slightly better
robustness to the physics modification compared to the M-hits and S-hits models. The
track multiplicity of the event is definitely an important feature with a strong correlation
with the impact parameter. However, because DL models learn other information in the
data in addition to track multiplicity, they tend to be more robust than the polynomial fit
model, which essentially depends only on track multiplicity.

The joint alignment networks used in the study are a straightforward application of these
networks in [182]. The intuition behind the use of these networks is to allow the DL
models to learn certain transformations in the data that can better reveal the correlations
in the data for the subsequent convolution layers. The same idea of input transformations
can be extended to the feature space. The learned features could be transformed before
being fed to the next convolution layer. If there are some correlations that are highlighted
by the transformation, the model could benefit from the transformation. We tested the
change in performance of the M-hits model without the alignment networks. The results
are tabulated in 5.4. It can be seen that the performance is only marginally improved
when both alignment networks are used. When only the feature transformation network
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Model MSE MAE R2 Epoch
original M-hits 0.4290 0.5123 0.9789 128
without Itrans & Ftrans 0.4378 0.5196 0.9784 455
without Ftrans 0.4304 0.5137 0.9788 172

Table 5.4: Performance change of the M-hits model without the alignment networks. Itrans
and Ftrans are the input and feature transformation networks respectively. The MSE, MAE
and R2 are for the validation data. The last column shows the number of training epochs
the model needed to converge to its best performance.

was removed, the validation loss was slightly better than when both alignment networks
were removed. Although the performance improvement is marginal, it should be noted that
the models without the alignment networks tend to overfit more compared to the original
M-hits model. This was observed in the difference between their training and validation
loss. The use of an alignment network also gives more stability in the training, avoiding
sudden fluctuations in the validation loss. In addition, the model converges faster when
using alignment networks.

In this study, we have shown that pointnet based DL models can be used to accurately
determine the impact parameter in the CBM experiment. The use of input data with
minimal pre-processing and the high processing speed of DL models make them an ideal
candidate for online event selection. It is also interesting to note that all four types of
models (M-hits, S-hits, MS-tracks and HT-combi) lead to essentially comparable precision
in the determination of the underlying impact parameter. In fact, track-based modelling
shows only slightly better performance in evaluating validation data. The DL models are
found to be a reliable tool for impact parameter determination for impact parameters in
the range of 2-14 fm. Events with an impact parameter less than 2 fm represent only a
very small fraction of the total events in an experiment. Nevertheless, the predictions are
still better than the prediction from the polynomial fit, which fails for most central events.
The deep learning models show superior performance compared to a simple model based
only on track multiplicity. However, all methods for estimating the impact parameter will
have a bias in the predictions obtained from the physics models used to generate the data.
This is also true for Glauber based estimation. In addition, the training data used in this
DL study with the UrQMD model and the CBM detector simulation may not perfectly
represent the real data. This model bias can be estimated for DL models by comparing the
predictions of a model on different event generator data. This bias could also be minimised
by using events from multiple event generators in the training samples. However, by using
a DL model trained on UrQMD data (or any other model) for event selection when the data
need to be compared with UrQMD predictions (or the corresponding model), we can avoid
the additional biases and uncertainties introduced into the analyses by using inconsistent
simplified models such as Glauber MC for event selection.

The PointNet-based models presented in this study use information such as particle tracks
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and hits, which is available immediately during data collection in any heavy-ion collision
experiment.The developed model architectures can also be adapted to other heavy-ion
collision experiments, e.g. ALICE at the LHC or HADES at the SIS18. Here the model
can be used and studied with real data. In fact, these methods are not limited to nucleus-
nucleus collisions and the PointNet models can be extended to reconstruct the centrality
in p-nucleus collisions as well.

5.2.2 Impact parameter determination in the P̄ANDA experiment

The production of hyperon-antihyperon pairs in antiproton-nucleus collisions close to their
threshold has been proposed to study the hyperon and antihyperon potentials in nuclei
[248–250]. Using the high-intensity antiproton beams at FAIR, the P̄ANDA detector will
be able to study the Λ−Λ production in p̄-N collisions. This provides a unique opportunity
to study the in-medium effects of baryons (antibaryons) in nuclei. However, the production
probability for Λ−Λ pair production depends strongly on the collision impact parameter.

Therefore, a method to determine the collision impact parameter is needed to analyse the
data collected by the P̄ANDA detector. In Alexander Greiners master thesis [218] at HIM
and GU- Mainz, the PointNet-based models for impact parameter estimation at CBM were
adapted to determine the impact parameter in p−Ne collisions.

The study investigated the system size dependence of the performance of the Point-
Net based models for impact parameters estimation. The models were trained on a 5-
dimensional point cloud of the charge, components of the momentum and the mass of
the final state particles. It was found that when the models were trained on the UrQMD
output for Au-Au collisions at Elab=10 AGeV, the MSE in the predictions was about 0.18
fm2, while the MSE increased to 0.67 fm2 for Ne-Ne collisions at the same energy. For
p −Ne collisions at plab= 15 GeV the performance increased further to an MSE of about
0.87 fm2. It was also found that when the detection efficiencies for different particle species
were taken into account in the simulations, the models trained on p−Ne collisions at plab=
15 GeV had a prediction MSE of about 0.97 fm2.

It is evident that the accuracy of the predictions decreases with decreasing system size.
This is to be expected since the final state particles produced in p − Ne collisions are
smaller than the final state particles produced in Au-Au collisions by a factor of ≈10. The
PointNet model has to rely on the information contained in the small number of particles
produced to infer the impact parameter. Nevertheless, an MSE of about 1 fm2 can still be
useful for the P̄ANDA experiment, as there is currently no other method that can predict
the event-by-event impact parameter with this accuracy.

The PointNet based DL models are thus an excellent choice of algorithm for the analysis
of experimental data. The models developed for impact parameter determination can be
easily adapted for other tasks as well.
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5.2.3 Npart determination in HADES and CBM experiments

In this subsection we explore the potential of PointNet based models to determine the
number of participant nucleons in the HADES and the CBM experiments. A model that
can provide event-by-event Npart consistent with the theoretical models used in the ex-
perimental analysis can replace the Glauber MC based Npart estimation. In this way, the
same theoretical model can be used consistently throughout the analysis of experimental
data. This mitigates the biases introduced by "mixing" models with different physical
assumptions in the analysis chain.

In this study, we train two PointNet based models, one each for the CBM (with 10 AGeV
data) and HADES (with 1.23 AGeV data) experiments, using the data generated by the
UrQMD cascade model. For each of the beam energies Elab= 1.23 and 10 AGeV, 105 Au-
Au collisions (with uniform collision parameter distribution) were generated, 75% of which
were used to train the models and the remaining 25% to test the models. As a proof of
concept study, we consider a simple setup to mimic detector acceptance, where an angular
acceptance cut is applied to the UrQMD output. The HADES acceptance cut of 18- 85°
polar angle is applied to the 1.23 GeV data, while the CBM acceptance cut of 2- 25° polar
angle is applied to the 10 GeV data. Both models are trained on the four-momentum point
cloud of all charged particles within the acceptance cut. In this way we can investigate
the performance of PointNet based models in determining the Npart of collisions at FAIR
experiments.

The two models trained in this work share an identical network architecture. A simple
PointNet model without the joint alignment networks was used in this study. The input
point cloud passes through three layers of 1-D convolution, producing 128, 256 and 512
feature maps respectively. The extracted 512 feature maps are converted into 512 global
features of the point cloud by average pooling. Finally, the global features were regressed
to output Npart using a fully connected network with two hidden layers (256, 128). The
ReLU activation function was used throughout the network. Batch normalisation layers
were used after each convolution layer, and dropout layers (dropout probability=0.5) were
used after each layer in the dense neural network.

The model trained on 1.23 AGeV data with HADES acceptance achieved a validation
MAE of about 11.6 and R2 of 0.98 after 158 epochs. The test results for this model are
visualised in figure 5.20. It can be seen that the predictions are centred around the true
value. However, for any given Npart, the distribution of predictions has large tails. This
means that while the predictions are accurate most of the time, occasionally there can be
large errors in the predictions. Note that very few particles are produced at this energy,
and the measured particles may not contain enough correlations to accurately extract the
underlying Npart. On the other hand, the model trained on 10 AGeV data with CBM
acceptance cut shows a superior performance. The model achieved a validation MAE of
about 8.2 and a R2 value of about 0.99 after 39 epochs of training. The predictions of
this model for different values of Npart are shown in figure 5.21. Compared to the previous
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Figure 5.20: Performance of the PointNet based Npart determination model in the HADES
experiment. The results are from 25000 Au-Au testing events at 1.23 AGeV with uniform
impact parameter distribution. The colour indicates the number of collision events. The
dashed green line shows the true Npart = predicted Npart curve.
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Figure 5.21: Performance of the PointNet based Npart determination model in the HADES
experiment. The model was trained and tested on 10 AGeV Au-Au collisions. The results
shown are from 25000 testing events. The colour indicates the number of collision events.
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model, the distributions here are much narrower and centred around the true value for
most Npart values.

In short, the PointNet based models can perform accurate Npart estimation in SIS-100
energies. Although the performance of the model in SIS-18 energies is not as good as the
performance in SIS-100 energies, the DL models can serve as an alternative to GlauberMC
based Npart estimation. Note that the model can also be further tuned and trained on a
larger dataset to improve performance.

The PointNet based impact parameter and Npart estimation models are an excellent solu-
tion to quickly process, characterise and analyse the experimental data in a CBM exper-
iment. It should be noted that the actual performance of the Npart determination model
may vary due to experimental effects. This can only be investigated by replacing the simple
angular acceptance filter in the data preparation pipeline with a dedicated detector simula-
tion. Nevertheless, the analyses demonstrate the flexibility of PointNet-based models and
serves as an example of how a generalised analysis of experimental data can be performed
using DL methods.

5.3 Bayesian inference of dense matter EoS

We will now see how AI methods can be used to extract the underlying physics of collisions
from experimental data. The results presented in this section are based on [165]. Extracting
the EoS of QCD matter from experimental data is an extremely challenging but fundamen-
tal goal for heavy-ion collision programmes around the world. Bayesian constraints on the
EoS at high temperatures (> 160MeV) and vanishing net baryon densities, based on RHIC
and LHC data, suggest an EoS consistent with lattice QCD calculations [217]. However, at
high baryon densities, where only effective model calculations are possible, precise experi-
mental measurements are limited. Although various signals have been proposed to probe
the high-density EoS over the last decades [1, 8, 122–124], a conclusive picture has not yet
emerged due to the lack of systematic studies that consistently and quantitatively relate
all possible signals to an underlying dynamical description of the system. We apply AI
methods to fill this gap and extract the EoS of dense QCD matter from experimental data.
Here we use available experimental measurements to constrain the density dependence of
the EoS of nuclear matter.

This work presents a Bayesian method to quantitatively constrain the high net baryon
density EoS from the existing data of intermediate energy heavy-ion collisions. A recent
study attempted such an analysis using a rough, piecewise constant speed of sound param-
eterisation of the high density EoS [251]. This study uses a more flexible parameterisation
of the density dependence of the EoS in a model that can consistently incorporate this
density dependent EoS and then make direct predictions for various observables.
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The model

To be able to quantify the high-density EoS, we first need a model that allows us to incor-
porate the density-dependent EoS in a consistent way and then to make direct predictions
for different observables.The standard hybrid models for heavy-ion collisions usually in-
clude a hydrodynamic phase where different EoSs are easily accommodated [48, 252, 253].
However, the initial state as well as the particlization procedures used in these models in-
troduce ambiguities [254], especially at moderate and low energies where the compression
phase dominates the flow observables. Thus, the determination of the EoS at high baryonic
density is a challenging task when using these hybrid approaches. Therefore, a different
approach is taken in this work, where the dynamic evolution of heavy-ion collisions is fully
described by the microscopic UrQMD model, extended by a density dependent EoS. The
model has already been described in section 3.5. This approach describes the whole system
evolution consistently within one model.

Remember that in this model the density dependent EoS enters the models through a
density dependent potential and this potential U or potential energy V is directly related
to the EoS by eq. 3.15. Therefore the terms equation of state and potential energy are
used interchangeably in this section.

Parameterisation of the EoS

In order to constrain the EoS from data, a robust and flexible parameterisation of the
density dependence of the potential energy is required, which is capable of constructing
physical EoSs. For densities below twice the nuclear saturation density (n0), the EoS is
reasonably constrained by QCD chiral effective field theory (EFT) calculations [255, 256],
nuclear incompressibility [257], flow measurements at moderate beam energies [1,3,258,259]
and Bayesian analysis of both neutron star observations and low energy heavy-ion collisions
[260]. This work focuses on the high density EoS, in particular the range 2n0- 6n0, which
is not yet well understood. Therefore, the potential energy V (nB) is fixed for densities up
to 2n0 using the Chiral Mean Field (CMF) model fit to nuclear matter properties and flow
data in the low beam energy region [161]. For densities above 2n0, the potential energy
per baryon V is parameterised by a seventh degree polynomial:

V (nB) =
7∑

i=1

θi

(
nB

n0

− 2

)i

+ h (5.10)

where h=-22.07 MeV to ensure that the potential energy is a continuous function at 2n0.

The data

The parameters θi and thus the EoS are constrained by Bayesian inference using the elliptic
flow v2 [61, 68, 105, 261–264] and the mean transverse kinetic energy ⟨mT ⟩ −m0 [265–267]
of mid rapidity protons in Au-Au collisions at beam energy

√
sNN ≈ 2 − 10 GeV. The
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Observable
√
sNN [GeV] Centrality

v2 2.24, 2.32, 2.4, 2.42, 2.51, 3.0, 3.32, 3.84, 4.23, 4.72 mid-central
⟨mT ⟩ −m0 3.83, 4.29, 6.27, 7.7, 8.86 central

Table 5.5: Observables used in the study. The experimental data consist of v2 at 10
different energies [61, 68,105,261–264] and ⟨mT ⟩ −m0 at 5 different energies [265–267].

experimental measurements of v2 and ⟨mT ⟩−m0 are from mid-central collisions and central
collisions respectively. The observables used for Bayesian inference are summarised in the
table 5.5. Important, sensitive observables such as the directed flow [122, 268] are finally
used to cross-check the EoS extracted in this way.

To calculate these observables from the UrQMD model, similar cuts in rapidity and cen-
trality are applied.

The v2 is calculated from the UrQMD data as

v2 =

〈
P 2
x − P 2

y

P 2
x + P 2

y

〉
(5.11)

where the momenta are defined with respect to the reaction plane of the model. At
low beam energies, event plane or cumulant methods are usually not used to extract the
elliptical and directed flow due to the significant interactions between the spectator and the
participant region, resulting in negative elliptic flow and strong directed flow. For a more
detailed discussion of the flow correlations at SIS18 energies, refer to [269]. Experiments in
this energy range usually have dedicated detectors to determine the actual reaction plane
of the collisions. In this analysis we also calculate the flow with respect to the reaction
plane. In this way, non-flow effects, e.g. from multi-baryon correlations not related to the
collective flow, are not included in the analysis.

Both v2 and ⟨mT ⟩ − m0 are calculated for protons at mid-rapidity (| y/yb |< 0.1, where
yb is the beam rapidity in the center of mass frame). For a given EoS, to calculate v2 and
⟨mT ⟩ −m0 with errors similar to the experimental error, 12000 mid-central (5 < b < 8.3
fm) and 1000 central collision events (0 < b < 3.4 fm ) respectively, are used.

The choice of proton observables (as a proxy for baryons) is motivated by the fact that
interesting features in the EoS at high baryon densities and moderate temperatures are
dominated by the interactions between baryons and protons, which are the most abundant
hadron species for the beam energies considered in this work. At the beam energies con-
sidered, the dynamics is dominated by the baryons and the pions ’feel’ the effect of the
density dependent potential only indirectly, e.g. through the baryonic resonance decays.
The elliptic flow was chosen because of the large number of high-precision measurements
with relatively small systematic uncertainties. On the other hand, the transverse kinetic
energy measurements are only available for a few beam energies. However, the transverse
kinetic energy can be calculated with a precision similar to the experimental data using
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fewer events (about 1000 events). This makes the transverse kinetic energy measurements
a good choice of observable in addition to v2 for constraining the EoS.

Fast emulators of UrQMD for likelihood estimation

The objective of Bayesian inference is to construct the joint posterior distribution for
the 7 polynomial coefficients θ = {θ1, θ2, ..., θ7} based on the experimental data D =
{vexp2 , ⟨mT ⟩exp −m0} using the Bayes theorem, given by

P (θ|D) ∝ P (D|θ)P (θ). (5.12)

Here, P (θ) is the prior distribution that encodes our prior knowledge about the parameters,
while P (D|θ) is the likelihood for a given set of parameters, which determines how well the
parameters describe the observed data. Finally, P (θ|D) is the desired posterior, which en-
codes the updated knowledge about the parameters θ after encountering the experimental
evidence D.

The likelihood is given by

lnP (D|θ) = −1

2

∑
i

[
(xθi − di)

2

σ2
i

+ (ln(2πσ2
i ))

]
(5.13)

where i is the number of observations used for inference, which in this case is 15 (10
values of v2 and 5 values of ⟨mT ⟩exp −m0. Here di and xθi are the measured data and the
model prediction for parameter set θ respectively for ith observable. The uncertainty term
includes both experimental and model prediction uncertainties.

σ2
i = σ2

i,exp + σ2
i,GP . (5.14)

To evaluate the likelihood for a parameter set, the v2 and ⟨mT ⟩ −m0 observables must be
calculated by UrQMD. The MCMC method then constructs the posterior distribution by
exploring the high-dimensional parameter space based on numerous such likelihood evalua-
tions. This requires numerous computationally intensive UrQMD simulations, which would
require unfeasible computational resources. Therefore, Gaussian Process (GP) models, a
non-parametric statistical model, are trained as fast surrogate emulators for the UrQMD
model to interpolate simulation results in the parameter space [215,217,270,271].

The Gaussian process models used in this study take the 7 polynomial coefficients as input
and predict the v2 or ⟨mT ⟩ −m0 observables. Figure 5.22 shows a set of example curves
randomly generated using the polynomial parameterisation of the EoS. Such EoSs are used
as input to UrQMD to calculate the v2 and ⟨mT ⟩ −m0 observables. To avoid unrealistic
EoSs in the training data, several constraints are applied to the potential functions for
densities 2 − 8 n0. A lower limit of about -40 MeV is set for the value of the potential to
prevent the formation of a second bound state, while the upper limit is set to be at most 50
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Figure 5.22: Visualisation of some of the EoSs used in training the Gaussian process
models. The purple line up to 2 n0 is the CMF EoS and the lines starting from 2n0 are
the different polynomial EoS. The CMF and polynomial EoS are forced to match at 2n0.
The plot shows the flexibility of the polynomial parameterisation in constructing different
EoSs.

MeV higher than the value of a hard Skyrme EoS at any given density to avoid superluminal
EoSs. Furthermore, the potentials generated to train the GP models are constrained to
have a derivative dV/dnB approximately within [-350, 450] MeV/n0 for densities 2−8 n0 to
prevent the potential from fluctuating too much. Note that these constraints are only used
to generate the training data for the GP models and are not applied during the MCMC
sampling.

The simulated v2 and ⟨mT ⟩ − m0 values for several random EoSs used to train the GP
models are shown in figure 5.23. It is clear from the figure that our training data is diverse
enough to cover a wide range of values for v2 and ⟨mT ⟩ − m0 around the experimental
observations.

The GP emulators are trained on a set of 200 different parameter sets, each with a different
high density EoS, and the performance of these models is then validated on another 50
input parameter sets. 15 different GP models are trained, each one predicting one of the
observables (v2 for 10 collision energies + ⟨mT ⟩ −m0 for 5 collision energies). The trained
GP models can be evaluated by comparing the GP predictions with the "true" results of
the UrQMD simulations. The performance of the GP models in predicting the v2 and
⟨mT ⟩ −m0 observables for 50 different EoSs in the validation dataset are shown in figures
5.24 and 5.25 respectively. As evident from these plots, the GP models can accurately
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Figure 5.23: Visualisation of v2 and ⟨mT ⟩ −m0 of protons at mid rapidity for 50 random
EoSs from the training data generated using UrQMD model with density dependent po-
tential. The v2 is from mid-central collisions while and ⟨mT ⟩ − m0 data is from central
collisions and mT =

√
m2

0 + p2t . The top plot is the v2 and the bottom plot is the ⟨mT ⟩−m0

as a function of
√
sNN. The experimental data are shown in blue squares, while the grey

lines are from the training EoSs.

predict the simulated observables given the polynomial coefficients. Therefore, the GP
models can be used as fast emulators of UrQMD during MCMC sampling.
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Figure 5.24: Performance of Gaussian process models in predicting v2 at different collision
energies. The predictions for 50 different EoSs in the validation dataset are shown in green,
while the error bar is the standard deviation of the prediction given by the GP model. The
black dashed line shows vertical scale = horizontal scale. The true v2 values are from
UrQMD simulations with density dependent potentials.
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Figure 5.25: Performance of the Gaussian process models in predicting the ⟨mT ⟩ − m0

for 5 different collision energies. The predictions are shown in green. The black dashed
line shows vertical scale = horizontal scale. The true ⟨mT ⟩ −m0 values are from UrQMD
simulations with density dependent potentials.

The prior

The final component necessary for Bayesian inference is the prior probability distribution
for the polynomial coefficients. Technically, the priors of the parameters θi are chosen
as gaussian distributions whose means and variances are estimated from the randomly
sampled EoSs, under physical constraints, used in the training of the gaussian process
emulators. These constraints were introduced to ensure numerically stable results when
training the GP models. In order to produce such a robust training dataset, various
physics constraints were applied, as discussed above. These constraints eliminate some of
the highly fluctuating and superluminal EoSs from the training data.
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θ1 θ2 θ3 θ4 θ5 θ6 θ7

µ 77.5 -78.7 65.4 -25.96 5.52 -0.6 0.03
σ 150 450 450 225 55 7 0.3

Table 5.6: Means (µ) and standard deviations (σ) of the Gaussian priors for the seven
polynomial coefficients (θi).

To ensure that the prior in the analysis is broad enough to reflect an a priori high degree of
uncertainty (i.e. without introducing bias), the mean and width of the distributions in the
GP training constraint were also used in the prior. However, the polynomial coefficients
θi resulting from these constraints, which are used to construct the prior distributions for
Bayesian inference, are then sampled independently and are therefore not correlated as
they would be in GP model training. As a result, the priors for Bayesian inference are
much broader than the distributions used for GP model training. The means and standard
deviations of the Gaussian priors for the polynomial coefficients are shown in the table 5.6.

Regarding the prior for Bayesian inference, it is important to note that a prior based only
on the GP training constraints could also be a good starting point for parameter estimation,
but it is not necessary. The physics constraints can disfavour the acausal range for the
parameters. However, we use this range only as a soft constraint in the prior, as we use
the mean and width of each coefficient independently, so the prior is not constrained by
the correlations between the coefficients from the GP training set. This results in inferred
potentials that may be outside the training range for the GP models. In fact, the range of
physically constrained potentials used to train the GP models is only a small fraction of
the prior distribution of potentials at any given density, as shown in figure 5.26. Here the
prior distributions of the potential V at four different densities (grey lines) are compared
with the range of the potentials used in training the GP models.

It is true that the predictions of GP models may not be reliable for potentials very far
from their training range. However, in this case the prediction uncertainty given by the
GP models (σi,GP ) will also be very high. This would then result in a very low likelihood,
as the uncertainty term takes into account the uncertainty in the experiment as well as in
the GP predictions (see eq. 5.14). Thus, the GP training data can be considered as the
lower bound of the "effective prior" seen by the MCMC for Bayesian inference, and it is
possible for the MCMC to sample potentials outside this range if the evidence demands.

The prior is used together with the trained GP emulator, experimental observations and
the likelihood function for MCMC sampling using the DeMetropolisZ [185,272] algorithm
from PyMC v4.0 [273]. All posterior distributions presented in this study are generated by
4 different MCMC chains. Each chain generates 25000 samples after 10000 tuning steps.
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Figure 5.26: Distribution of the potential V (nB) at four different values of the baryon den-
sity. Compared are the prior used in Bayesian inference (grey lines) and the distributions
of the constrained potentials used in training the GP models (blue lines).

5.3.1 Closure tests

In order to verify the performance of the Bayesian inference method and its sensitivity to
experimental data, two closure tests are performed.

The first test involves constructing the posterior using v2 and ⟨mT ⟩ −m0, simulated with
the experimental uncertainties from UrQMD for a specific but randomly chosen EoS. The
inference results are then compared with the known ‘ground-truth’. The first column of
figure 5.27 shows the posterior constructed for two random input potentials. The black
curves in the plot are the ‘ground-truth’ input potentials, while the coloured contours
represent the reconstructed probability density for a given value of the potential V (nb).
In addition to the posterior distribution of the potential, two specific estimates of the
‘ground-truth’ potential are highlighted in the figure. These are the Maximum A Posteriori
(MAP) estimate, which represents the mode of the posterior distribution as evaluated by
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Figure 5.27: Visualisation of the posterior constructed in the closure tests. The colour
represents the probability for the potential at a given density. The "ground truth EoS"
used to generate the observations is plotted as a black solid line. The red dot-dashed and
orange dashed curves are the MEAN and MAP EoS for the posterior. Each row in the
figure corresponds to the posterior for a random ground-truth EoS. The plots in the first
column show the posterior constructed using all 15 observables. The posterior constructed
using 13 observables is shown in the second column. The ⟨mT ⟩ − m0 values for

√
sNN=

3.83 and 4.29 GeV were removed in the test results shown in the second column.

MCMC, and the ‘MEAN’ estimate, which is calculated by averaging the values of the
sampled potentials at different densities. Although it is not necessary that the optimisation
converges to the true mode of the posterior, the "MAP EoS" is a quantitative estimate of
a most likely EoS that satisfies the constraints imposed by the experimental observations.
A comparison of the MAP and MEAN curves with the ’ground truth’ shows that the
reconstruction results from Bayesian inference are centred around the ’ground truth’ EoS
and that the sampling is indeed converging to the true posterior. From the distribution
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Figure 5.28: Comparison of the prior and posterior distributions for a random input po-
tential. The ground truth potential is shown as the black curve. The confidence intervals
for the posterior are shown in various shades of pink, while the grey band corresponds to
the 95 % confidence interval for the prior. The training range for the GP models is shown
in the dashed blue curve for reference.

of the posterior it can be seen that the EoS are well constrained in the closure tests
for densities up to 4 n0, and for densities 4- 6 n0 the posterior distributions have large
variance. However, the mean potentials closely follow the true potential. The tests show
that the Bayesian inference technique can constrain the high-density EoS well using v2 and
⟨mT ⟩ − m0 values for beam energies

√
sNN= 2- 10 GeV, provided that all experimental

observables are simulated consistently.

It is also important to understand how much information is gained from the data that
has already been put into the Bayesian inference in the form of a prior. This requires
a comparison of the prior and posterior distributions. However, as shown in figure 5.26,
the actual prior distribution used is extremely broad. Nevertheless, we have visualised the
prior and posterior distributions (95% and 68 % confidence intervals), together with the
GP training range (blue dashed lines), for one of the potentials in the above closure test,
in a single plot in figure 5.28. As can be seen, the actual prior is much broader than the
posterior for the closure test with the simulated data. Indeed, there is a significant gain in
information possible with the observables used in the study.

The second closure test is performed to determine the sensitivity of the inference to the
choice of observations. Hence, the procedure is similar to the previous test, except that
the ⟨mT ⟩ −m0 values for

√
sNN= 3.83 and 4.29 GeV are not used in this test to estimate
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the posterior. The results of this test are shown in the second column of figure 5.27. When
these two data points are excluded, the agreement of the ‘ground-truth’ EoS with the MAP
and MEAN estimates decreases significantly for densities greater than 4n0. This indicates
that these data points are indeed critical for constraining the EoS at higher densities.
When the two data points are removed from the observations, the MEAN and MAP EoSs
extracted in this case may not always accurately represent the ground truth. In the first
example (figure 5.27, top right plot) the MEAN and MAP EoSs are close to the ground
truth for densities up to 5 n0. However, in the second example ( figure 5.27, bottom
right plot), the MAP and MEAN EoS deviate from the ground truth for densities above
3.5 n0. Nevertheless, the overall trend of the MEAN and MAP EoSs and the posterior
distribution don’t change drastically even if the ⟨mT ⟩−m0 values for

√
sNN= 3.83 and 4.29

GeV are not used in the inference procedure. This is an indication that if the observations
are consistent with each other, removing a few observations from the evidence wouldn’t
affect the extracted posterior distribution, although it could lead to a larger variance in
the posterior distribution.

5.3.2 Results based on experimental data

The results of sampling the posteriors by using experimental data, for the two cases, with
and without the ⟨mT ⟩ − m0 values at

√
sNN= 3.83 and 4.29 GeV, are shown in figure

5.29. The confidence intervals for the posterior distribution are compared with the prior
distribution for the two cases in figure 5.30. The upper panel in both figures corresponds
to using 15 experimental data points while the lower panel shows the results without the
two ⟨mT ⟩ −m0 values. The data as used in this work constrain the EoS well for densities
from 2n0 to 4n0. However, beyond 4n0 the sampled potentials have a large uncertainty and
the variance is significantly larger for the posterior extracted from 13 data points. Beyond
densities of about 3n0, the posterior extracted using 13 data points differs significantly
from the posterior extracted using all 15 points. A softening of the EoS, consistent with
a phase transition, can be observed in the extracted posterior and the MEAN and MAP
curves for densities 3-5 n0 when only 13 data points are used for inference, while a stiff
EoS, without any softening is observed when all 15 data points are used for inference. This
is quite different from our closure tests, where the extracted MAP and MEAN curves did
not depend strongly on the choice of data points used. This suggests a possible tension
within the data in the context of the model used.

To understand this significant deviation that occurs when only two data points are removed,
the MAP and MEAN EoS resulting from the two scenarios are implemented in the UrQMD
model to calculate the v2 and the ⟨mT ⟩ − m0 values, which are then compared to the
experimental data used to constrain them. Figure 5.31 shows that the MAP and MEAN
curves agree better with the experimental observations for the v2 values at higher energies
when only 13 data points are used. At the same time, using all data points results in larger
⟨mT ⟩ −m0 values for both the MAP and MEAN curves. The model encounters a tension
between the ⟨mT ⟩ −m0 and the v2 data. This tension may be either due to a real tension
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Figure 5.29: Posterior distribution for the EoS inferred from experimental observations of
v2 and ⟨mT ⟩ −m0 of protons at mid-rapidity. The top figure is the posterior using all 15
data points, while the bottom figure is obtained from 13 data points only, without using
the ⟨mT ⟩ −m0 values for

√
sNN= 3.83 and 4.29 GeV. The MEAN and MAP EoSs in both

cases are shown as red dot-dashed and orange dashed curves respectively. The vertical
grey line shows the highest average central compression achieved in collisions at

√
sNN=9

GeV. The CMF EoS is shown in violet for densities below 2n0. For densities above 3 n0,
the extracted EoSs and posteriors are strongly dependent on the choice of observables.
The MEAN and MAP EoSs and the posterior extracted using only 13 data points show a
softening for densities 3-5 n0, while the MEAN and MAP EoSs and the posterior extracted
using 15 data points reveal a stiff EOS.
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Figure 5.30: Comparing the prior with the posterior constructed from experimental obser-
vations. The ground truth potential is shown as the black curve. Confidence intervals for
the posterior are shown in various shades of pink, while the grey band corresponds to the
95 % confidence interval for the prior. The training range for the GP models is shown as
the dashed blue curve for reference. The CMF EoS is shown in violet for densities below
2n0. The top panel shows the result when 15 data points are used, while the bottom panel
shows the results when only 13 observations are used in the inference. In both cases, the
broad prior is tightly constrained by the data for densities up to 4 n0. However, the pos-
terior shows dramatic differences depending on the choice of observables. When only 13
observables are used for inference, the extracted posterior suggests a softening of the EoS
for densities between 3 and 5 n0. However, when all 15 observables are used for inference,
the posterior indicates a stiff EoS. In this density range, there is a significant difference in
the upper and lower bounds of the confidence intervals in the two cases.
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Figure 5.31: v2 and ⟨mT ⟩ − m0 values of mid rapidity protons from UrQMD using the
MEAN and MAP EoSs as extracted from the measured data. The observables for the
MEAN and MAP EoSs extracted using all 15 data points are shown as solid and dashed
black lines respectively, while those generated using only the 13 data points (without the
first two ⟨mT ⟩ − m0 points) are shown as solid and dashed red lines respectively. The
experimental data are shown as blue squares. If the two ⟨mT ⟩ − m0 data points at low
energies are removed, the model fits the ⟨mT ⟩ − m0 values at high energies, leading to
an overall decrease in the ⟨mT ⟩ −m0 values and a better fit to the large v2 observations
at higher energies. This is consistent with the softening observed in the corresponding
extracted EoSs. However, when the all data points are included in the inference, the
model fits to the ⟨mT ⟩−m0 observations at low energies, which has relatively smaller error
bars, leading to an overall increase in the ⟨mT ⟩ −m0 values, which is only consistent with
a stiff EoS that gives relatively small v2 for the highest beam energies shown.
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Figure 5.32: Slope of the directed flow, dv1/dy, of protons at mid rapidity. The observables
for the MEAN and MAP EoSs extracted using all 15 data points are shown as solid and
dashed black lines respectively, while those generated using only the 13 data points are
shown as solid and dashed red lines respectively.The experimental data [105,224,263,264,
274–277] are shown as blue squares.The change in sign of the slope of the directed flow has
been shown to be a signal of a first order phase transition [121, 221, 222]. This behaviour
is clearly observed in the EoSs extracted using 13 data points for

√
sNN > 6 GeV. On the

other hand, the EoSs extracted using all 15 data points show much larger values for the
slope of the directed flow for

√
sNN > 6 GeV and are in better agreement with the data.

within the experimental data or due to a shortcoming of the theoretical model used to
simulate both the ⟨mT ⟩ −m0 and the v2 data at high beam energies for a given equation
of state. It should also be noted that at higher beam energies the contributions of the
mesonic degrees of freedom to the equation of state become more dominant, which may
require an explicitly temperature dependent equation of state.

The extracted EoS can be tested using different observables such as differential flow mea-
surements or different flow coefficients. The slope of the directed flow dv1/dy at mid rapid-
ity are calculated using the reconstructed MEAN and MAP EoSs. The results, together
with the available experimental data, are shown in figure 5.32. The dv1/dy prediction is
in good agreement with the experimental data, especially at the higher energies, for the
MEAN EoS extracted from all 15 data points. The reconstructed EoSs are consistent with
the dv1/dy data, although it was not used to constrain the EoSs. A notable difference
between the extracted EoSs can be seen at high energies. For the EoSs extracted using 13
data points, the slope of the directed flow decreases and becomes negative for

√
sNN ⪆ 6
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Figure 5.33: Speed of sound squared c2s, at T = 0, as a function of energy density. The c2s
for the MEAN EoS extracted from all data points are shown in red, and those extracted
from only 13 data points are shown in black. For energy densities up to 270 MeV/fm3,
the speed of sound from CMF is plotted as the violet curve. The uncertainty bands
correspond to a 68% credibility interval from the derived potential curves. The constraints
from astrophysical observations [278] are shown as a blue band. It is interesting to note
that despite the different isospin fractions in nuclear matter and neutron star matter, both
the EoS for nuclear matter extracted from all 15 data points and the EoS for neutron
star matter extracted from astrophysical constraints exhibit a broad peak structure for the
speed of sound squared.

GeV. This has been shown to be a signal of a first order phase transition [121,221,222] and
is consistent with the softening of these EoSs for densities 3-5 n0. However, in this case
the predicted slope deviates from the data for

√
sNN ⪆ 6 GeV in this case. On the other

hand, the EoSs extracted using all 15 data points do not show this clear change in sign at
high energies and are in better agreement with the data.

To relate the extracted high-density EoS to constraints from astrophysical observations,
the squared speed of sound (c2s) at T = 0 for the MEAN EoSs is shown as a function of
energy density in figure 5.33, together with a contour representing the constraints from
recent Binary Neutron Star Merger (BNSM) observations [278]. 4. The speed of sound,
as a derivative of the pressure, is very sensitive to even small variations in the potential
energy. The c2s values estimated from all data points show overall agreement with the c2s

4Note that although the two systems have different isospin fractions, the effect of isospin composition
is likely to be small at large densities
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Figure 5.34: The probability density functions of the extracted posterior as a function of
density, for a scenario where the ⟨mT ⟩ −m0 of the two highest beam energies is removed
from the analysis. The extracted MEAN and MAP EoSs are shown as red dot-dashed
and orange dashed curves respectively. It is clear that removing the two data points
doesn’t make much difference to the constructed posterior. The posterior is similar to that
extracted with these two points included in the evidence (figure 5.29, top plot).

constraints from astrophysical observations, predicting a rather stiff equation of state at
least up to 4n0. In particular, both the astrophysical constraints (see also [279]) and the
EoS inference in the present work give a broad peak structure for c2s. This is compatible
with recent FRG [280] and conformality [281] analyses. However, if only the 13 data points
are used, the extracted speed of sound shows a drastic drop, consistent with a strong first
order phase transition at high densities [8, 122]. This is consistent with the softening
phenomenon observed for ⟨mT ⟩ − m0 data shown in figure. 5.31. To give an estimate of
the uncertainty in the speed of sound, we have calculated the speeds of sound for 100000
potentials that lie within the 68% credibility interval of the coefficients, but excluding those
that lead to acausal equations of state for densities below 4.5 n0.

Sensitivity to high beam energies

To check whether it is really the two low energy ⟨mT ⟩ − m0 data points that are most
relevant to the inference, the Bayesian inference was carried out after removing the ⟨mT ⟩−
m0 data points at the two highest beam energies. It was found that the resulting constraints
were less sensitive to the removal of data points from higher beam energies (or higher
densities). This can be seen in figure 5.34, which shows the probability density functions
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of the extracted posterior as a function of density, for a scenario where the mean ⟨mT ⟩−m0

of the two highest beam energies (7.7 GeV and 8.865 GeV) is removed from the analysis.
The resulting potential is very similar to that with the two points, supporting our statement
of less sensitivity to the data at the highest beam energies. It is therefore clear that the
constraints on the EoS are very sensitive to the two data points at low beam energies
and much less sensitive to the high energy points, within the beam energy range currently
under consideration.

Differential spectra

The extracted EoS can be further tested with various observables from heavy-ion collisions.
Several recent works have investigated other different observables sensitive to the equation
of state [219, 282–284] (e.g. pion HBT, dilepton production, net proton fluctuations). In
the current work we focus on the integrated values of the mean transverse momentum
and the elliptic flow, since these can be calculated with a limited number of simulated
events. The main limiting factor for our analysis is the computational effort required to
simulate the different observables for the different equations of state needed to train the
gaussian process emulator. Of course, once the EoS is constrained, many observables can
be predicted and compared for many beam energies and system sizes.

In addition to the directed flow shown earlier, a comparison with recently published HADES
data on the differential elliptic flow in Au-Au collisions at Elab = 1.23A GeV [224] is
presented here. This comparison of the two different MEAN EoS to HADES data is shown
in figure 5.35. As can be seen, the extracted EoSs reproduce the pT dependence well up
to a proton momentum of 1 GeV. Beyond this range, the model slightly overestimates
the elliptic flow compared to the HADES data. The reason for this is probably a small
momentum dependence of the potential interaction, which is not taken into account in the
present approach. However, it is important to note that the integrated elliptic flow is only
sensitive to the flow around the maximum of the proton pT distribution, which roughly
corresponds to pT between 300 and 400 MeV.

This study has demonstrated how much information about the EoS of dense nuclear matter
can be obtained from the available experimental data. To constrain the EoS further,
more data are needed. We will now explore how DL methods can be used in future
experiments (in particular the CBM experiment) to extract this information directly from
the experimental data. It should also be noted that although the model used in the
Bayesian inference allowed us to study the influence of the EoS on the initial state, it
was a non-relativistic model without explicit temperature dependence for the EoS, which
would be relevant at higher beam energies. Therefore, in the next study, we use the hybrid
UrQMD model, which addresses these issues, and show how the EoS can be inferred from
a different simulation model. Furthermore, this will also allow us to illustrate how the
DL-based methods can be easily adapted and trained on a different model (in contrast to
the impact parameter estimation model, which was trained using transport simulations).
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Figure 5.35: Differential elliptic flow of protons for mid-central collisions of AuAu at Elab =
1.23AGeV. The HADES data are compared with simulations using the two different MEAN
equations of state.

5.4 PointNet based EoS classification in the
CBM experiment

The CBM experiment will study the least explored high density intermediate temperature
region of the phase diagram, where conjectured interesting structures such as the appear-
ance of a phase transition or a critical endpoint are likely to be located (if they exist!). In
the CBM experiment, the incoming data stream from the detector is processed by various
algorithms to perform event reconstruction [285], particle identification and event selec-
tion [112] before various physics analyses can be performed. Events reconstructed and
selected by these algorithms are used to calculate observables such as anisotropic flow and
particle multiplicity fluctuations sensitive to a phase transition [121]. Multi-parameter
fits of the model simulations to the experimental data for these observables are currently
used in experiments to search for phase transitions and to calculate the bulk properties
of the QCD medium. Bayesian analysis methods have been proposed as a method to fit
the parameters to these observables [215,217,286] and we have already seen how Bayesian
inference could be performed to extract the EoS of dense nuclear matter.

An alternative approach to identify the appearance of a phase transition in QCD matter is
based on deep learning techniques. Such DL techniques are considered as so-called end-to-
end approaches, where the DL model itself determines the interesting features of the data
and performs a classification task on these features. In [180], convolution neural networks
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were trained on pion spectra (pt, ϕ) from hydrodynamic simulations to classify the EoS of
a possible QCD transition. The study performed on the hydrodynamic output showed an
average prediction accuracy of more than 95%. A follow-up study was presented in [214],
where a hadronic cascade model was used after the hydrodynamic evolution in the simu-
lations to achieve a realistic freeze-out and to include the effect of having a finite number
of measurable particles in single events. The hadronic cascade " after-burner " introduces
uncertainties in the final state spectra due to resonance decays and hadron rescatterings.
This results in discrete particle spectra with dominant event-by-event fluctuations, in con-
trast to the smooth spectra produced by pure hydrodynamic simulations. DL methods are
reliable and accurate for the identification of QCD transitions in heavy-ion collisions. How-
ever, as reported in [214], the performance depends largely on the fluctuations in the final
state spectra. Therefore, if such a DL-based EoS-meter is to be used on the direct output
of a heavy-ion experiment, a comprehensive analysis of the response of the DL model to
additional uncertainties introduced by e.g. the detector resolution, the acceptance region
and the efficiency of the reconstruction algorithms is necessary. The model should not only
be robust to these constraints, but also meet the performance in terms of accuracy and
speed as demanded by the experiment.

In this study, the effects of experimental uncertainties and detector effects on the predic-
tions of DL models for classifying QCD transitions at the CBM experiment are investigated.
DL methods for classifying EoSs involving different types of transitions in the CBM ex-
periment a. The DL models are trained on data similar to an experimental output using a
comprehensive data preparation pipeline that includes detector simulation and reconstruc-
tion algorithms. Having established the superior performance of PointNet based models
in using detector output to characterise the impact parameter and the number of partic-
ipants in collision events, we now investigate the ability of similar models to identify the
EoS of QCD transitions from raw experimental output. We also study the performance
of PointNet based models at different situations of detector resolution and acceptance,
and evaluate the dependence of prediction accuracy on collision centrality and simulation
model parameters.

Preparing the data

To generate the training data for the DL analysis, this study uses the hybrid mode [48]
of UrQMD 3.4 to simulate heavy-ion collision events with and without phase transition.
We use two distinctly different equations of state for training and validation. One based
on a Maxwell construction between a bag model quark gluon EoS and a gas of pions and
nucleons [135,155] to simulate the first-order phase transition scenario. The second EoS is
called the Chiral Mean Field hadron-quark EoS [163], which describes a smooth crossover
transition as predicted by lattice QCD. To investigate the model results for an unknown
EoS, we also use a hadron resonance gas equation of state based on a free gas of hadrons
according to the known hadronic resonances from the particle data group [287]. The three
equations of state along trajectories of constant entropy per baryon, as expected for heavy-
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Figure 5.36: The equations of state, along an isentropic trajectory, for the first order
phase transition, crossover and hadron resonance gas as included in the UrQMD hybrid
simulations. The pressure of the medium for a central cell is plotted as a function of
its energy density in a central Au-Au collision at 10 AGeV in the lab frame. The phase
transition and crossover EoS are used to train the models, while the hadron gas EoS is
only used to test the performance of the models on an EoS which it was not trained on.

ion collisions at Elab = 10 AGeV, are visualised in figure 5.36. While the crossover EoS is
the stiffest and the phase transition the softest equation of state, the HRG lies between
these two extreme cases.

The main objective of the study is to develop a DL model that uses information similar to
the experimental output of the CBM experiment, without any significant analysis chain.
Furthermore, our study will analyse the effects of experimental constraints on the perfor-
mance of this model. Therefore, an accurate modelling of the experimental condition is
necessary. The CbmRoot [236] package is used to transport the final state particles from
UrQMD through the CBM detector simulation. CbmRoot uses GEANT3 [247] to simulate
the electromagnetic and weak interactions as well as the decays of the particles passing
through the detector. The hits in the detector are then digitised to mimic the detector
resolution and finally these digitised hit positions are used to reconstruct the tracks us-
ing a Kalman filter based algorithm [285]. The standard CbmRoot macros are used for
transport simulation, digitisation and track reconstruction. As a result, we obtain realistic
event-wise output from the detector simulation, which can now be used as input for the
DL analysis.

It is also important to note that CbmRoot can perform the full detector simulation ac-
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cording to the experimental specifications. However, the default setup does not include a
realistic simulation of different backgrounds, which may lead to additional noise and poten-
tially weaken the discrimination performance. In the actual experimental data acquisition,
the quasi real-time processing of free-streaming detector data requires an additional step of
event building, i.e. the identification of clusters of detector hits that are sufficiently close
in time and space. After the event building step, separate events are technically defined
and can be processed, also in the approach of this analysis. It is interesting to note that
the process of event building could also be improved by using PointNet based models for
event characterisation.

The present study was performed on a set of Au+Au collisions at a beam energy of 10 AGeV
in the laboratory frame. As mentioned above, the dataset for this study was generated
using the UrQMD hybrid model and the CbmRoot package. It consists of 30000 training
events and 10000 validation events each for the crossover and first-order phase transition
equations of state with a uniform impact parameter (b) distribution from 0 to 7 fm. To
study the effects of experimental uncertainties and constraints on the performance of the
DL models, the PointNet model was trained on different outputs:

1. First, the final state output (Dataset 1 ), i.e. the particle information directly from
the UrQMD model without any acceptance cuts. This dataset contains essentially the
full event information and has not been transported through the detector simulation.

2. Second, the final state output within the CBM detector acceptance (Dataset 2 ).
This dataset contains final state particles from the UrQMD model within the CBM
acceptance range of 2-25° polar angles. This corresponds to a hypothetical, ideal
detector output that detects all particles within its acceptance with infinite resolution.

3. Finally, the CbmRoot simulated data (Dataset 3 ), i.e. the final state output of
UrQMD, is passed through CbmRoot. This dataset consists of the reconstructed
tracks from the digitised particle hits in the simulated CBM detector.

Network architecture

The network architecture used in this study is similar to that used to train the PointNet
based models for Npart determination. The PointNet based models accept the point cloud
in the form of a 2D array where each row is a point (i.e. a track in the event) in the point
cloud and each column is an attribute of the point/track. This array is then processed
using symmetric, order-invariant operations to extract global features, which are then
passed through a fully connected deep neural network to identify the EoS that produced
the given point cloud.

The input point cloud is passed through three 1-D convolution layers to extract 128, 256
and 512 feature maps respectively. Batch normalisation layers are present between each
convolution layer. An average pooling layer then extracts one global feature of the point
cloud from each of the 512 feature maps generated by the final convolution layer. The 512

110



5.4. POINTNET BASED EOS CLASSIFICATION IN THE CBM EXPERIMENT

global features are the input to a 3-layer fully connected deep neural network with 256,
128 and 2 neurons respectively. Batch normalisation and dropout layers (with dropout
probability 0.5) are present between each DNN layer. All layers except the final layer use
the ReLU activation function. A softmax activation is used on the final layer to classify
the EoS. The models use the Adam optimiser with a learning rate of 10−5 and categorical
cross entropy as the loss function. The models were trained until the network began to
overfit the data and the best model in terms of validation accuracy and loss was selected
for further analysis.

The network structure and other training parameters were fine-tuned through trial and
error to achieve the best performance on the final output (Dataset 1 ). The same network
architecture and hyperparameters (but with different input dimensions depending on the
dataset) were then used to train the experimental effects model (Dataset 2,3 ). In this way,
it was possible to study the response of the same DL network to different experimental
constraints.

5.4.1 Performance of the models

As mentioned above, three different input data scenarios were investigated in this study.
In the first case (Dataset 1 ), the input for training was the event-by-event list of four-
momenta of all particles from UrQMD. The input data has the dimensions N×4, where N is
the maximum number of particles present in an event. Events with fewer particles are filled
with zeros to maintain the same input dimensions. In this scenario, the trained PointNet
model achieved a validation accuracy of 77.2% for the correct event-wise classification
between crossover and phase transition EoS. This accuracy can be improved by combining
multiple events to form the input. This was done by randomly selecting K events, i.e. all
rows (without replacement) in that event, from the event-by-event lists (along with rows
filled with zeros) and concatenating them to create a longer list with dimensions (K*N)×4.
Note that the combined events are randomly selected from b=0-7 fm. A validation accuracy
of 99.7% was achieved by the model when the input was the combined data of 15 events,
as can be seen in figure 5.37. The model learns a set of unique observables to classify the
underlying EoS and the boundaries of these observables for both classes are accurately
learned with a combined dataset.

In the second case, the training input was the four-momentum of particles from UrQMD
that were within the CBM detector acceptance. Particles outside the CBM acceptance
range of a polar angle of 2-25° were removed from the events. were removed from the
events. The validation accuracy in this case was reduced to about 72.2% for the event-
by-event input, and the model was able to achieve an accuracy of 99.5% by combining 20
events for the input.

The decrease in accuracy is understandable. Providing the PointNet with only a shortened
or partial list of particles increases the difficulty of learning the observables capable of clas-
sifying the EoS. The DL model therefore needs a few more events to achieve a classification
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Figure 5.37: Validation accuracy of PointNet models as a function of the number of events
combined to create the input. The number of training and validation samples was fixed
to 60000 and 20000 respectively for all models, although multiple events were combined
to create a sample. While randomly combining events, it was ensured that an event in
training sample was never present in a validation sample. The DL models achieved over
99% accuracy with the combination of 15 events in the ideal case, whereas 20 events had
to be combined in the presence of an acceptance cut. However, the DL model required a
combination of 40 events to achieve about 96% accuracy in a more realistic experimental
condition. Note that in all three cases shown in the figure, the hybrid version of UrQMD
was used.

accuracy similar to the first case. The models cannot distinguish particles belonging to one
event from another. Therefore, it is likely that the unique DL constructed observables are
some aggregate quantities, probably within some region of phase space. An acceptance cut
could remove some of the information that would otherwise be available (in the first case),
and calculating these observables accurately would obviously require more statistics.

In the third dataset, more realistic experimental constraints on acceptance and resolution
were introduced. The UrQMD output was passed through the CBM detector simulation
and the model was trained on the tracks reconstructed from the particle hits in the MVD
and STS detectors of the detector simulation. In this case, the average classification ac-
curacy for single event inputs was only 62.4%. However, after combining 40 events for an
input, the accuracy increased again to 96.6%. For this model to achieve a similar perfor-
mance to the second dataset, the number of events combined to create the input had to
be doubled. This model, based on dataset 3 and using 40 events of reconstructed tracks
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as input, will be referred to as Model-1.

The accuracy of the PointNet models in the three cases as a function of the number of
events combined is plotted in figure 5.37. It is clear from the plot that the performance of
the DL model is only marginally degraded in the presence of a simple acceptance cut, but
there is a large drop in accuracy when a more realistic experimental scenario is considered.
This shows that the final state particles have strong features that are characteristic of the
macroscopic properties that governed the evolution of the QCD medium. In an experiment,
however, these strong features become weaker and more difficult to identify. Uncertainties
in the measurements due to detector resolution and randomness in the detected particle
spectra due to interactions of particles in the detector reduce the relevant signals in the
data. Inefficiencies in reconstruction algorithms and selection cuts also introduce errors
into the final data. However, the DL model is able to circumvent these problems by
combining more events for decision making. Similar behaviour has also been reported
in [214]. Increasing the statistics reduces the stochasticity in the data, thereby improving
the predictive power of DL. For example, the global feature used by the PointNet models
to classify EoS is the average (given by the average pooling layer) of each feature extracted
by the convolution kernels. These averages could be determined more accurately if more
sample points were used. In this way, the performance of the PointNet models could be
improved by using more events.

It is well known that conventional observables are very sensitive to model parameters such
as centrality selection, initial state, freeze-out condition, etc. Therefore, we now investigate
in detail the generalisation ability of the PointNet models on these parameters.

Centrality dependence

Model-1, which had an accuracy of 96.6%, was trained on events with impact parameters
of 0-7 fm. Although the accuracy is already good enough, the model showed slightly better
performance on central events, suggesting a centrality dependence. To see if the accuracy
of the model could be increased by selecting a different centrality, a model (Model-2 ) was
explicitly trained on events with an impact parameter of 0-3 fm. This model also used
the tracks reconstructed by the detector and combined the data from 40 events to form
one input. The Model-2 achieved a prediction accuracy of 99.8% on events with an impact
parameter of 0-3 fm: Choosing a smaller centrality bin therefore improved the performance
of the model. However, most of the events collected in the experiment will be unusable
if we choose only central collisions. To address this issue, a model (Model-3 ) was trained
that combined only events with impact parameters 0-3 fm and 3-7 fm separately. The
input to this model was a combination of 40 events (reconstructed tracks) from either
the 0-3 fm or 3-7 fm impact parameter bin. In addition to this selection of events, the
network had 1 additional input to feed the impact parameter bin of the given sample
(i.e.; 0 if b=0-3 fm and 1 if b=3-7 fm). This input is concatenated with other extracted
global features and fed into the DNN. The Model-3 achieved a validation accuracy of about
99.65% for events with impact parameter 0-3 fm and 81.27% for impact parameter 3-7 fm.
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The PointNet models can achieve the best performance for central events, assuming they
can be accurately identified [288]. However, significant accuracies can also be achieved for
peripheral events if they are separated from central events for training.

5.4.2 Dependence on model parameters

We have already shown how PointNet models can be used to correctly classify the nature of
the QCD transition with high accuracy over a wide range of centralities or a small range of
centralities, depending on the experimental requirements. However, the physical and model
parameters were kept constant, i.e. they were assumed to be known exactly. In reality, this
is not the case, and to ensure the reliability of the DL model in an experiment, the models
must be robust to reasonable changes in the physical parameters of the hydrodynamic
event generator. Two such parameters are the starting time of the hydrodynamic evolution
(tstart), which essentially determines the time at which local equilibrium can be assumed
to have been reached, and the particlization energy density (ϵ), which determines the
point at which the system begins to fall out of local equilibrium. Since at this energy
density particles are emitted from the hydro into the nonequilibrium hadronic rescattering
phase, matter below this criterion is effectively not affected by the EoS. To assess the
dependence of the DL models on these parameters, the trained PointNet models were
tested on events where tstart was varied by ± 10% and ϵ by ± 40% from the training value.
The performance of the DL models is shown and compared in figure 5.38. In general,
the models seem to achieve an accuracy similar to the validation accuracy as tstart or ϵ is
decreased. However, the accuracies decrease significantly when tstart or ϵ is increased. This
effect can be understood by studying the fraction of matter that is below the particlization
criterion, and therefore does not carry any information about the EoS, for the different
initial and freeze-out conditions. This fraction also varies as a function of the impact
parameter, as shown in figure 5.39. The decrease in performance as the duration of the
hydrodynamic evolution and the centrality decreases is therefore nicely illustrated by the
figure 5.39. It can be seen that as the impact parameter is increased, a smaller fraction
of the emitted hadrons experience the dynamics of the phase transition. This explains
the higher validation accuracy for Model-2 compared to Model-1 and the lower validation
accuracy for Model-3 for events with impact parameters 3-7 fm.

A delayed start time of the hydrodynamic evolution or an increased freeze-out energy
density reduces the contribution of the hydrodynamic evolution of the system to the emitted
particles and therefore the EoS will have less influence on the final particle spectra. While
increasing the duration of the hydrodynamic evolution results in a longer influence of
the EoS on the evolution of the medium and thus in a higher accuracy, the decrease in
performance may be related to a limitation imposed by the physics, which may not be
avoidable.

Similarly, a 40% increase in the freeze-out energy density for b=0 fm results in about
50 % of the final particles being emitted before the hydrodynamic evolution even begins.
The DL models have to rely on the artefacts left by the EoS in the remaining 50% of the
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Figure 5.38: Variation in the testing accuracy of the PointNet models with change in tstart
and ϵ. The blue bars show the validation accuracies of the models, while the other colours
represent the testing accuracy on datasets different from the training data. Each testing
dataset consisted of 2000 events for each EoS. The Model-3a and Model-3b are the test
results of the Model-3 on impact parameters 0-3 fm and 3-7 fm respectively.

emitted particles to make a decision. Therefore, the accuracy decreases significantly as
the freeze-out energy density increases. However, the decrease in the fraction of emitted
particles that undergo hydrodynamic evolution is greater for a 40% increase in the freeze-
out energy density than for a 10% increase in tstart. Therefore, the drop in accuracy is
comparatively smaller when tstart is increased by 10%. In short, hadrons from central
events with an early start of the hydrodynamic evolution or a reduced freeze-out energy
density carry more information about the EoS because they are emitted on average after
a longer hydrodynamic evolution.

Results on an unseen EoS

We have shown that the PointNet models can accurately classify the data into one of the
two training EoS. However, the actual EoS of the fluid dynamic evolution can be different
from those used during training. To understand how the DL model would perform in such
a scenario, we tested Model-1 on an EoS on which it was not trained. On the hadron
resonance gas EoS, Model-1 classified 68% of the samples as crossover and the rest as first
order phase transition. As can be seen from figure 5.36, the hadron gas EoS is similar to a
crossover EoS. At low energy densities the hadron gas EoS follows the crossover equation of
state and at high densities the pressure lies between the phase transition and the crossover
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Figure 5.39: Fraction of the medium below the freeze-out energy density at the beginning
of hydrodynamics as a function of impact parameter. This is simply the fraction of the
medium that does not undergo hydrodynamic evolution. The blue curve represents the
initial conditions used to train the model. Curves above the blue curve correspond to
initial conditions that reduce the duration of hydrodynamic evolution and vice versa.

equation of state. The hadron gas EoS also doesn’t have a plateau-like region of constant
pressure, which is characteristic of the phase transition EoS. This explains why the model
prefers to predict the hadron gas EoS as a crossover equation of state. The PointNet-based
binary classifier of EoS can therefore provide reliable predictions not only for the trained
EoS, but also for other similar crossover and phase transition equations of state.

Comparison with a single event classifier

We have shown that the performance of the model can be improved by combining multiple
events to train the PointNet models. A recent study [289] pointed out that a single event
classifier, when applied to N events, can outperform a classifier trained on combinations of
N events if these events are statistically independent. This raises the question of whether
an event-by-event EoS classifier, combined over N events, would outperform the combined
event models developed in this study. To test this, 20000 validation events from Dataset-
3 were tested using a model trained to classify the EoS of individual events. The final
prediction is then defined as the predicted EoS of the majority of events for groups of
40 random events. This procedure achieved an accuracy of 92.01%. At the same time,
the Model-1, which was trained on combinations of 40 events to make predictions, had
an accuracy of 96.6%. So the single event classifier doesn’t achieve the accuracy of the
combined event classifier. By training the model on combinations of around 25 events, an
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accuracy of around 92% can be achieved, whereas the single event classifier needed 40 events
to achieve the same accuracy. The superior performance of the PointNet models trained on
combinations of multiple events is due to the centrality dependent influence of the EoS on
the system. As shown in figure 5.39, a significantly larger fraction of the system is influenced
by the provided EoS for a central event, while most of the system is not influenced by the
EoS for peripheral events. Therefore, central events contain more information about the
EoS that governed their evolution than a peripheral event. When the PointNet is trained on
combinations of random events with all centralities, the model can learn to make decisions
using the signals from the central events present in the data. A single event classifier,
on the other hand, would struggle to correctly classify the peripheral events, which often
contain very weak signatures of EoS. This centrality dependent performance bias would
further deteriorate the performance of single event classifiers when considering a realistic
impact parameter distribution (P (b) ∝ b) where the central events are rare compared to the
peripheral events. Another practical advantage of using combinations of events is that such
models can potentially operate on a continuous data stream without event construction or
event separation. This can be extremely useful for the CBM experiment, which will require
extremely fast analysis methods for the data collected at rates of up to 10 MHz.

Comparison with conventional observations

The PointNet-based models extract global features from the input point cloud using average
pooling layers that compute the mean of the per-point feature maps. However, this does
not mean that conventional mean observables such as mean transverse momentum (<
pT >), collective flow (v2) etc. can be used to classify the EoS as accurately as PointNet
models. The above DL models do not require event selection based on centrality, while the
traditional observables have a strong centrality dependence. Without centrality selection
and high statistics, the traditional observables will not have well-separated boundaries to
aid accurate classification. The < pT > and v2 distributions for 15 events averaged from
UrQMD are plotted in figure 5.40. It is clear from the plots that the distributions of these
observables, after averaging over only 15 events, overlap significantly and cannot be used to
classify the two classes of data as accurately as the PointNet model. We have also checked
that simply averaging the different components of the input features in the PointNet does
not lead to easily distinguishable distributions either.

In other words, the PointNet model is able to learn unique observables that produce near
perfect classification accuracy from only the combined input of 15 random events. The
PointNet model is even able to learn such observables from an "experiment-like data"
where the reconstructed tracks are the input (Model-1 ). Below we describe a method for
interpreting the decision-making process of our PointNet model, which helps to understand
why the model outperforms conventional observables.
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Figure 5.40: Distributions of mean transverse momentum (left) and elliptical flow (right)
for crossover and first order phase transitions. The values are averaged over all particles
from 15 UrQMD events with b=0-7 fm (Dataset-1 ). The distributions have significant
overlap such that it is not possible to classify the EoS using these observables, while the
DL model with 15 events combined input achieves an accuracy of 99.7%.

5.4.3 Interpreting the PointNet model

It is generally interesting to show how the PointNet model is able to accurately discrim-
inate the QCD transitions even under conditions where the conventional observables fail.
However, interpreting the inner workings of a neural network using conventional concepts
is not straightforward, especially when the inputs are order-invariant, as in our case. Nev-
ertheless, [182] discusses a method to visualise the critical points of a point cloud. The
PointNet architecture consists of several 1-D convolution layers followed by a symmetric
function that converts each feature map produced by the last convolution layer into a single
number. These numbers, which are considered global features of the point cloud, form the
input to a fully connected neural network which classifies the input point cloud. In [182],
a max pooling layer is used as the symmetric function to extract the global features. In
other words, the feature with the largest numerical value in each feature map given by the
last convolution layer becomes the input to the fully connected neural network. Each of
these features can be traced back to the original point in the point cloud. Such points are
then defined as the critical points of the point cloud, as they directly induce the input to
the DNN that classifies the data.

We have extended this method to analyse the decision process of our EoS classifier. Our
model generates 512 global features for each point cloud. These global features are then
used by a fully connected network to perform the classification. Unlike the method de-
scribed above, the symmetric function used in our study to generate these features is
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Figure 5.41: Left: Distribution of feature numbers of the most important feature for 10000
pairs of events. An important feature is the global feature that has the largest difference
in its values for the two classes. Out of the 512 global features, feature numbers 104 and
410 have the highest frequency, they are the most important feature for about 24% and
14% of the pairs of samples respectively. Right: The output of the convolution layer for
global feature 104 (F-104). The plot is generated from about 350 samples for each class
whose important feature index is 104.

average pooling. This has serious implications for interpretability, as the average of the
feature map, given by the average pooling layer, cannot be uniquely traced back to a single
point in the point cloud. However, we can still try to identify the features that seem to
be most important for the classification task, and then analyse which properties of the
input point cloud affect these features. To do this, we calculate the values of all 512 global
features for 20000 samples of the crossover and phase transition events (10000 each). The
global feature with the largest difference (in numerical value) is then selected for each pair
of crossover and phase transition events. This feature can be considered as an important
feature for the given pair of samples. By repeating this for all 10000 pairs, it is possible
to find out which global features are the most important global features for most pairs of
samples. The distribution of the important features (as defined by their feature number
from 0 to 511), within the total 10000 pairs of samples, is shown on the left side of figure
5.41.

It can be seen that for about 2400 pairs of input samples, feature number 104 is an im-
portant global feature. The feature map from which feature number 104 is calculated is
shown in the right plot of figure 5.41. We can see that the values in the feature map dis-
tribution are mostly concentrated in two bins, one around -0.8 and another around 1.25.
To reiterate, each particle in the input point cloud contributes to some value in the output
convolutional layer. In this case, most particles contribute to either a value around zero
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Figure 5.42: Distribution of track multiplicity difference. The difference in the number
of tracks is calculated for 10000 pairs of samples (first order phase transition - crossover)
and plotted in blue. The green colour represents the multiplicity difference of all sample
pairs whose main feature is 104 (F-104). Most of the pairs of events whose main feature
is feature number 104 contain a significantly higher number of tracks for first order phase
transition samples compared to crossover samples.

or a value around 1.25. The average is then mainly determined by the relative number
of particles in the two prominent bins. So we tracked the particles in the two bins and
looked at their properties separately. We found that all the particles contributing to the
right hand peak in the histogram (around 1.25) were the fake/empty particles (with zeros
for the features) that we added to the input data to keep the input dimensions identical
for all samples. Most of the real particles formed the peak on the left (around -0.8) and
very few particles had a value between the two peaks. Therefore, the global feature -104 is
simply a feature that estimates the total track multiplicity in the sample. In other words,
track multiplicity is an important feature used to classify the EoS. However, just because
track multiplicity is an important global feature learned by the model does not mean that
multiplicity alone is sufficient for classification.

Figure 5.42 shows the distribution of the track multiplicity difference (phase transition -
crossover) for both classes for all pairs of test samples, as well as for pairs where feature
number 104 (i.e. track multiplicity) is the important feature. It is evident that for the pair
of samples where feature number 104 (F-104) is the important feature, there is a significant
difference in their multiplicities for the two classes. For most of the pairs where this feature
is important, phase transition samples contain significantly more particles than a crossover
sample with F-104.
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Advantages of the DL approach

The PointNet models learn the global features that can classify the EoS despite the uncer-
tainties in the data arising from a discrete particle spectra with final state effects, detector
effects and inefficiencies of the reconstruction algorithms. It is noteworthy that the Point-
Net models can achieve a classification accuracy of up to 96.6% from the reconstructed
particle tracks of just 40 collision events. The PointNet models can operate on a wide
range of impact parameters, but they achieve best performance when only central colli-
sions are selected for analysis. However, it is also possible to include non-central collisions
in the analysis if central collision events are not mixed with non-central collisions. The
predictions of the DL models were also robust to some changes in the physical parameters
such as the initial condition. The performance of the models was consistent when tstart
or ϵ was decreased from the training value, while a decrease in performance is observed
when these parameters are increased. This is interpreted as a physical consequence of a
decreased influence of the hydrodynamic evolution and the EoS on the emitted particles.
Nevertheless, the DL models show good performance compared to conventional averaged
event features such as < pT > or v2, which have similar values for both classes. The values
of these features are also very different for different model parameters.

In order for the CBM experiment to fully exploit the high event rates, accurate online
event selection and analysis techniques are required. The PointNet-based EoS meter can
serve this purpose and can be coupled with other DL-based algorithms (e.g. centrality
meter [288]) for comprehensive online event analysis. In fact, we now have a novel method
that any future heavy-ion experiment can easily adapt for accurate online determination
of the EoS.

121



CHAPTER 5. AI BASED ANALYSIS OF HEAVY-ION COLLISION DATA

122



Chapter 6

Summary

The properties of strongly interacting matter at high temperatures and/or densities are
studied in the laboratory via heavy-ion collisions. The ultimate goal of the experimental
programmes is to construct a phase diagram for QCD matter that reveals the phase bound-
aries, the nature of the transitions at the boundary, and the critical regions. Currently, the
focus is mainly on intermediate energy heavy-ion collisions probing QCD matter at high
baryon densities in order to search for several interesting structures in the QCD phase
diagram, such as a conjectured first- or second-order phase transition and a corresponding
critical endpoint. First principle lattice QCD studies at vanishing and small baryon chem-
ical potentials predict a smooth crossover transition from a hot gas of hadronic resonances
to a chirally restored phase of strongly interacting quarks and gluons. However, at high
net baryon densities, i.e. large chemical potentials, direct lattice QCD simulations are cur-
rently unavailable due to the fermionic sign problem. Therefore, QCD motivated effective
models as well as direct experimental evidence are used to search for a phase transition or
critical endpoint.

The experimental measurements for various conventional observables are compared with
expensive model calculations to infer the physics governing the evolution of the matter
created in the collisions. However, this comparison is not straightforward. The experimen-
tal data must undergo several pre-processing steps, such as track reconstruction, particle
identification, event building and centrality selection, before different observables can be
calculated. For a consistent comparison of these experimental observables with theoret-
ical model predictions, the model calculations should take into account the phase space
acceptance and detector efficiencies of the experiment through simplified acceptance and
efficiency cuts or sophisticated detector simulations. The pre-processing algorithms intro-
duce additional uncertainties and biases into the data that can skew the results of the
analysis. Furthermore, such methods use iterative algorithms, which can be extremely
slow and impractical for future high event rate experiments requiring online processing of
experimental data. In addition, to complicate the analysis process, a combined inference
based on multiple observables is often necessary to extract the properties of QCD matter
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such as the equation of state..

The aim of this work was to develop novel AI-based methods to bridge this gap between
theory and experiment. The main focus was on building AI tools that can work directly
with detector outputs such as particle hits/tracks measured in intermediate energy heavy-
ion collisions. In addition to AI that works directly on detector-level experimental data,
methods to consistently compare model predictions for conventional observables with ex-
perimental data were also investigated.The CBM experiment at FAIR was used as an
example to illustrate the capabilities of the developed DL models, as it is a unique next
generation intermediate energy experiment that will measure intermediate energy collisions
at unprecedented intensities.

After a brief introduction to QCD, heavy-ion collisions and AI for heavy-ion collisions in
chapter 1, various heavy-ion programmes around the world, with particular emphasis on
the physics programme at the FAIR accelerator facility and the CBM experiment, were
presented in chapter 2. The experimental challenges associated with the analysis of the
measured data were also briefly discussed in chapter 2. In chapter 3 different models for
the simulation of heavy-ion collisions at intermediate beam energies were discussed. The
advantages and limitations of different models for heavy-ion collisions were examined. The
emphasis here was on understanding how different models incorporate the EoS, which
governs the evolution of the system. In the hydrodynamic description of collisions and in
the UrQMD hybrid model, which uses a hydrodynamic intermediate stage for evolution,
the EoS enters the model as a free input necessary to solve the hydrodynamic equations
of motion. However, the introduction of an equation of state is not straightforward in
a transport model such as UrQMD. Non-trivial hadronic interactions can be introduced
in UrQMD through the potential energy term, which enters the non-relativistic QMD
equations of motion. Thus, an arbitrary EoS can be implemented in the QMD part of
UrQMD if the potential energy per baryon is known for the model. This method was used
to implement a realistic CMF EoS in UrQMD and to study its influence on the evolution
of the bulk properties of the matter produced in the collision. The results were also
compared with hydrodynamic simulations using the same EoS to establish the reliability
of the method. The bulk density evolution showed good agreement with hydrodynamic
simulations when the same EoS is used in both cases. At the same time, the densities
obtained are strongly dependent on the EoS used. This suggests that observables sensitive
to the initial compression phase and the maximum compression achieved can be used to
study the EoS at high baryon densities. However, the non-equilibrium effects cause the
temperature of the system in UrQMD to be higher than that obtained in hydrodynamic
simulations. Nevertheless, this method employs a consistent treatment of the equation of
state throughout the evolution of the system and can be used to study the effects of an
EoS in the initial compression phase of the collision at low energies.

The basic principles of AI and different AI methods were introduced in chapter 4. The work-
ing of a fully connected neural network and convolution neural networks were explained
in detail. The CNN based deep learning models are not optimised for learning from ex-
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perimental data. The PointNet based models were introduced as a novel DL method that
can be trained directly on hit/track information of particles measured in a detector. The
general structure of the PointNet architecture and its functioning were described in detail.
The PointNet model is specialised to learn from order-invariant point cloud data, which is
a natural representation for detector data. The PointNet model uses 1-D convolution to
extract order-invariant per-point feature maps, which are then transformed into a global
event feature through symmetric operations. The extracted global event features are fed
into a fully connected neural network to regress or classify the target variable. In addition
to the PointNet based DL methods, the Bayesian inference technique and its principles
have also been explained in this chapter.

Chapter 5 began with a comparative study of the Glauber MC model used by experiments
for centrality estimation and the UrQMD transport model. It was found that the centrality
determination and the estimated fluctuations of Npart suffer from strong model dependen-
cies for Au-Au collisions at 1.23 AGeV. The Glauber MC model used in the experiments
to relate the measured track multiplicity to the impact parameter or Npart predicts a com-
pletely different Npart distribution compared to the microscopic transport theory based
UrQMD cascade model. This strong model dependence of Npart can bias the results of the
experimental analysis if the Npart used is not consistent throughout the analysis and the
final model-data comparison. To demonstrate this effect, the charged pion production and
the proton and light nuclei rapidity spectra at Elab = 1.23A GeV were investigated and
the results were compared with HADES and STAR measurements. It was found that the
pion multiplicity per participant can be highly sensitive to the model used to estimate the
underlying Npart distribution for a given centrality class. It is suggested that studying ob-
servables such as pion multiplicity as a function of centrality instead of Npart can partially
avoid the explicit model dependence of Npart that arises when comparing experimental
data with model predictions. Nevertheless, this does not guarantee that the experimental
data and the model being compared have a similar distribution of Npart.

The model dependence of Npart has measurable consequences for the observed rapidity dis-
tributions of free protons and light nuclei. Here again, preliminary data from the HADES
experiment show a significant reduction in the proton dN/dy compared to UrQMD, con-
sistent with a significantly smaller Npart, an effect not observed in data from the STAR
experiment. Obviously, understanding these inconsistencies is also important for the inter-
pretation of observables such as pion multiplicity and proton number fluctuations.

Having established the issues with the conventional method for centrality estimation, dif-
ferent AI methods are introduced in chapter 5 for estimation of event centrality and in-
teraction volume. In particular PointNet based models were trained to reconstruct the
impact parameter of collisions from the hits and/or reconstructed track of particles in 10
AGeV Au-Au collisions at the CBM experiment. In order to develop models that can be
used in experiments, a dataset that closely mimics the experimental data was prepared.
To achieve this, the output from UrQMD was passed through a complex pipeline consist-
ing of a GEANT3 based CBM detector simulation that performs particle transport, hit
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digitisation and event reconstruction. It was found that the PointNet models can perform
accurate reconstruction of the impact parameters in the range 2-14 fm. A model using
hits from the MVD detector and tracks reconstructed from hits in the MVD and STS to
predict the impact parameter had a validation MSE of about 0.39 fm2. Unlike conventional
Glauber MC-based centrality selection, which only provides an expected impact parame-
ter distribution for events belonging to a given centrality class, the PointNet models can
perform accurate impact parameter reconstruction on an event-by-event basis. The idea
of impact parameter reconstruction has also been extended to the P̄ANDA experiment at
FAIR. For antiproton-neon collisions at plab= 15 GeV, a model trained on the point cloud
of the momentum four vector and the final state particle charge had a validation MSE of
about 1 fm2. A system size dependence of the performance was also observed, where the
prediction accuracy decreased with decreasing system size. The PointNet based models
were then adapted to determine the Npart in collisions. It was found that the models can
also perform accurate, event-by-event Npart determination for 10 A GeV Au-Au collisions in
the CBM experiment with a validation MAE of about 8.2. For 1.23 AGeV Au-Au collisions
at the HADES experiment, the PointNet models showed an MAE of about 11.6. Neverthe-
less, the PointNet based models provide event-by-event Npart consistent with a theoretical
model. This avoids the inconsistent use of Glauber MC predicted Npart for event selection
when comparing experimental data with a theoretical model such as UrQMD. The Point-
Net based models can perform fast and accurate event-by-event impact parameter and
Npart determination in the CBM experiment. Thus, one can essentially replace Glauber
MC based centrality selection and event characterisation with the superior DL models.
Such models can also be used in experiments for online analysis and event characterisation
of free streaming detector output.

One of the main goals of the heavy-ion programmes worldwide is to study the equation
of state of hot and dense QCD matter. In the last part of the thesis, AI methods were
employed to study the equation of state at high baryon densities. First, a Bayesian inference
was performed to constrain the density dependence of the equation of state from the
available experimental measurements of the elliptical flow and the mean transverse kinetic
energy of mid rapidity protons in intermediate energy collisions. The UrQMD model,
extended to include arbitrary potentials (or equivalently the EoSs), was used in this study.
Gaussian process models were trained as fast emulators for the UrQMD model to perform
fast MCMC sampling. A polynomial parameterisation for the density dependent potential
was used and Bayesian inference was performed to construct the joint posterior for the
polynomial coefficients. The experimental data constrain the posterior constructed in this
way for the EoS for densities up to 4n0. However, beyond 3n0 the shape of the posterior
depends on the choice of observables used. As a result, the speed of sound extracted for
these posteriors show obvious differences. The EoS extracted using all available data points
is in good agreement with the constraints from BNSMs with a stiff EoS for densities up to
4n0 and no phase transition. The inference encounters a tension in the measurements of
⟨mT ⟩ −m0 and v2 at a collision energy of ≈4 GeV. This could indicate large uncertainties
in the measurements, or alternatively the inability of the underlying model to describe the
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observables with a given input EoS. It should be noted that the data come from different
experiments and were carried out over different time periods. The differences in acceptance,
resolution, statistics and even methods of analysis of the experimental data make it difficult
for us to pinpoint the exact sources of these effects.

Bayesian inference can constrain the high-density QCD EoS using experimental data on
v2 and ⟨mT ⟩ − m0 of protons. Such an analysis based on HIC data can verify the prop-
erties of dense QCD matter extracted from neutron star observations and complements
astrophysical studies to extract the finite temperature EoS from BNSM merger signals and
constrain its dependence on the symmetry energy. However, tighter constraints and fully
conclusive statements on the EoS beyond density 3n0 require accurate, high-statistics data
in the whole beam energy range of 2-10 GeV, which will hopefully be provided by the beam
energy scan programme of STAR-FXT at RHIC, the upcoming CBM experiment at FAIR,
and future experiments at HIAF and NICA.

Finally, it was shown that the PointNet based models can also be used to identify the
equation of state in the CBM experiment. PointNet based models trained to classify a
phase transition EoS from a crossover EoS from the reconstructed track information in
the CBM experiment were able to achieve almost perfect prediction accuracy. Despite
the uncertainties arising from limited detector acceptance and biases in the reconstruction
algorithms, the PointNet based model was able to learn the features that can accurately
identify the underlying physics of the collision. The model was also found to be robust
to some changes in the model parameters. In short, this demonstrates the flexibility of
PointNet based models in the study of heavy-ion collisions. The PointNet based model can
not only identify the geometric event features, such as the impact parameter or the Npart,
but can also extract abstract physical features, such as the EoS, directly from the detector
outputs.

6.1 Outlook

In this work, several artificial intelligence techniques to study heavy-ion collisions at high
baryon density were developed. The Bayesian analysis to constrain the high density EoS
suggests that the flow observables indeed carry valuable information that can tightly con-
strain the EoS of high density nuclear matter. However, it is noted that when approach-
ing higher beam energies, which would be important to extend the constraints to higher
temperatures/densities, the currently used transport model needs to incorporate further
finite-temperature and possible partonic matter effects together with relativistic correc-
tions, which has to be investigated in future studies. Further efforts should be made to
develop and improve the theoretical models to consistently incorporate different density
dependent EoSs for the study of systematic uncertainties. In addition, other observables
such as the higher order flow coefficients and v1 can be included in the Bayesian analysis,
if computational constraints allow, for a more comprehensive constraint on the EoS in the
future.
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PointNet based DL models that can extract very complex universal event features from
basic initial event information available from heavy-ion collision experiments were devel-
oped in this work. With the use of PointNet based models it is now possible to accurately
extract the event specific impact parameter and Npart in heavy-ion collision experiments.
PointNet based models are even able to classify events by very abstract event features such
as the EoS present during the hot and dense phase of the collision, i.e. whether a phase
transition was present or not. It is shown for the first time how DL models can be used
in heavy-ion collision experiments to identify phase transitions directly from experimental
output.

The use of experimental output, such as particle hits, can eliminate possible biases in the
data that may appear in later stages of data processing. The point cloud representation of
the data requires minimal pre-processing before being fed into the DL model. This allows
the model to be used in the experiment for rapid online analysis of experimental data. Due
to their ability to detect global features in the input, PointNet based models can also be
easily adapted to analyse any other global event feature of heavy-ion collisions. Although
the PointNet based models developed in this work have been focused for use in the CBM
experiment, the models can be easily extended for use in other experiments.

The use of these DL models in the experiment would also require further investigation
into the robustness of the model to the expected detector noise and efficiency. Further
studies on the scalability of the prediction speed on multiple GPUs and the possibility
of incorporating other selection criteria are also important for the use of PointNet based
models for online event characterisation and analysis. The PointNet based EoS meter can
be extended in the future by incorporating more equation of states, making it a multi-class
classification problem. Such models can be used in experiments as an online, physics based
event selection technique. It would also be interesting to study the performance of DL
models in a continuous data stream and in the presence of detector noise, event pileup,
etc. Studies on training the DL models on low-level detector data, such as the signals from
the readout channels, and applying them directly to the detectors using FPGAs is another
interesting direction that could be extremely beneficial for the CBM experiment. Such
methods can be used for ultra-fast event selection and analysis based on yet unachievable
complex event features.
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Equations of state

A.1 The hadron resonance gas model

The hadron resonance gas model is an approximation to confined hadronic QCD mat-
ter [290]. It is based on the assumption that a gas of interacting hadrons can be described
by can be described (if the width of the resonances is less than the temperature) by
including all hadron species and their resonances as explicit degrees of freedom in the
partition function. This partition function then mimics the fundamental thermodynamic
properties of QCD at low temperatures and small densities. The HRG has been shown to
successfully describe the properties of lattice QCD thermodynamics below the chiral tran-
sition [291–298]. However, due to the lack of many-body and long-range interactions, the
model is unable to describe basic features of QCD phenomenology such as a bound nuclear
ground state or deconfinement. Several extensions of the model have been developed over
the years (for a survey see [299–305]). However, all modifications have similar shortcomings
as the few-parameter description of the EoS in the Skyrme model. A comparison of hydro
simulations with an HRG equation of state and UrQMD in cascade mode has been used
as a reference to study the effects of instantaneous equilibration on the dynamics [48].

A.2 The chiral mean field model

The CMF is a mean-field model that describes several aspects of QCD phenomenology. It
has been successfully applied to the analysis of lattice QCD data [306], the description of
cold neutron stars [164], and has been used as the EoS in the hydrodynamic simulations of
both heavy-ion collisions and binary neutron star mergers [72,307]. The CMF includes the
transition between quarks and hadronic degrees of freedom, the liquid-vapour transition
in nuclear matter, and chiral symmetry restoration. Parity doubling introduces heavy
parity partners to the baryons of the lowest octet [308,309]. The baryons and their parity
partners interact via mesonic mean fields (attractive scalar σ, ζ and repulsive ω, ρ, ϕ
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meson exchanges). The effective masses of the parity partners depend on the chiral fields,
so the partners become mass-degenerate as the chiral symmetry is restored. A detailed
description of the CMF model and its parameters can be found in [306].

In the model, the effective masses of the ground state octet baryons and their parity
partners (assuming isospin symmetry) read [308]:

m∗
b± =

√[
(g

(1)
σb σ + g

(1)
ζb ζ)

2 + (m0 + nsms)2
]

± g
(2)
σb σ , (A.1)

where the various coupling constants g(∗)∗b are determined by vacuum masses and nuclear
matter properties. m0 refers to a bare mass term of the baryons which is not generated
by the breaking of chiral symmetry, and nsms is the SU(3)f -breaking mass term which
generates an explicit mass corresponding to the strangeness ns of the baryon. The single-
particle energy of the baryons thus becomes a function of their momentum k and effective
masses: E∗ =

√
k2 +m∗2

b .

Similar to the effective mass m∗
b , which is modified by the scalar interactions, the vector

interactions lead to a modification of the effective chemical potentials for the baryons and
their parity partners:

µ∗
b = µb − gωbω − gϕbϕ− gρbρ . (A.2)

Note that the couplings of nucleons and hyperons to the mean fields were fixed to reproduce
nuclear binding energies E0/B ≈ −15.2 MeV as well as the asymmetry energy S0 ≈
31.9 MeV, and incompressibility K0 ≈ 267 MeV.

The CMF EoS along different trajectories of fixed entropy per baryon is shown in Fig.
A.1. This plot is useful because one can see several relevant features in the CMF-EoS.
First, along the curve at zero entropy per baryon (T = 0) a small kink in the pressure is
observed, indicating a very weak phase transition around four times the saturation density.
This kink disappears at higher entropies per baryon. Secondly, for values of S/A up to
10, the pressure depends very little on the finite temperature and is dominated by the
density dependence. Finally, we also show the T = 0 EoS in the HRG model as a grey line
compared to the corresponding black line of the CMF. The CMF clearly shows a much
larger pressure due to the mean field interactions, which will lead to observable effects in
the dynamical simulations.
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Figure A.1: The CMF equation of state, plotted as pressure as a function of baryon density,
for different values of constant entropy per baryon (S/A). The black solid line corresponds
to the CMF-EoS at zero temperature, where around 4n0 a small kink in the pressure due
to the chhiral phase transition can be observed. The same relation for the HRG EoS at
vanishing temperature is also shown as a grey line. The pressure in the HRG is significantly
lower than in the CMF model.
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