
- 17 -

Approximator Networks and the
Principle of Optimal Information Distribution

Rüdiger W. Brause

Interner Bericht 1/91

- 1 -

Approximator Networks and the
Principle of Optimal Information Distribution

Dr. Rüdiger W. Brause,
University of Frankfurt, FB20 VSFT,

Postbox 11 19 32, D- 6000 Frankfurt 11, FRG.

Abstract
It is well known that artificial neural nets can be used as approximators of any continous functions to any
desired degree. Nevertheless, for a given application and a given network architecture the non-trivial task
rests to determine the necessary number of neurons and the necessary accuracy (number of bits) per
weight for a satisfactory operation.

In this paper the problem is treated by an information theoretic approach. The values for the
weights and thresholds in the approximator network are determined analytically. Furthermore, the
accuracy of the weights and the number of neurons are seen as general system parameters which
determine the the maximal output information (i.e. the approximation error) by the absolute amount and
the relative distribution of information contained in the network. A new principle of optimal information
distribution is proposed and the conditions for the optimal system parameters are derived.

For the simple, instructive example of a linear approximation of a non-linear, quadratic
function, the principle of optimal information distribution gives the the optimal system parameters, i.e.
the number of neurons and the different resolutions of the variables.

1 Introduction

One of the most common tasks of artificial neural nets is the approximation of a given function by
the superposition of several functions of single neurons. Similar to the well-known theorem of
Stone-Weierstra ß (see e.g. [GIR90] for regularization networks) Hornik, Stinchcomb and White
have shown [STIN89], [HOR89] that every function can be approximated by a two layer neural
network (see figure 1) when a sufficient large number m of units is provided. Sufficient large -
What does this mean? How do we select the appropriate number of neurons for a certain
application ?

Fig. 1 A two-layer universal approximation network

Let us consider only the case of one-dimensional output, as it was done in the paper [HOR89].
Analogous results hold for multiple outputs for vector-valued functions.

To give an answer to the questions above, we first have to remark that our standard
modelling of artificial neural nets do not reflect an important feature of reality: the descreteness of
all real valued events. Contrary to the modelling of synaptic weights and neuronal activity
(spike-frequency) by real numbers, there do not exist real numbers in reality.

Instead, there exist a kind of noise and unprecise operations which give rise to a certain
amount of error in all real world systems. Especially in simulations and implementations of neural
nets we replace all real numbers by more or less fine-grained physical variables, e.g. counters or
other descrete variables, with a finite error. This concept is consistent with the restriction of
"finite information" in our system: the information of a variable x is defined by

I(xi) := - ld (P{xi}) [Bits] Information (1.1)

If all states xi are equiprobable, the information is the logarithm of the number of possible states.
For a real number, the number of different values x

i
 is infinite. Thus, if we have no a priori

knowledge about the occurence of the states and we have therefore to assume an uniform,
non-vanishing probability distribution for them, a real number has an infinite amount of
information. This argument is also valid for the averaged information, the entropy, introduced by
Shannon [SHA49]

H := 〈I(x) 〉 = -Σ i Pi ldPi = - ∫ p(x) ld p(x) dx (1.2)

which also becomes infinity for an uniform distribution p(x) = 1/d over the whole range of the
real variable

lim H(d) = lim -
-d/2

 ∫
+d/2

 c ld c dx = lim - ld 1/d = ∞
d → ∞ d → ∞ d → ∞

- 2 -

- 3 -

Because all systems deal with finite amounts of information, there are no "real" real numbers used
in neural systems; all weights have a distinguishable number of states (at least due to quantum
physics) and therefore contain a certain amount of information in the sense of the above definition
(1.1).

2 Optimal information distribution

Let us now regard an approximation f̂ for the function f: ℜn ∋ x → f(x) ∈ ℜ. For example, this can
be done by the two-layer neural network of figure 1. Let the positive root of the maximal quadratic
error of this approximation be d

f
 with

d
f
2 = (f(x)-f̂(x))2 (2.1)

Then we can regard the error as a kind of discretization error +-df. Denoting the complete value
range with V

f
 := |f

max
- f

min
| we can conclude that there are only V

f
 /d distinguishable, fixed states of

the variable f which differ by an increment of d=2d
f
. All other states are undistinguishable from

deviations of the fixed states.
Thus, unless we do not know anything more about the input distribution of {x} and therefore

nothing more about the error distribution, the output has minimal

Iout = ld (V
f
 /d

f
) (2.2)

bits information. Another parameters, which determine the error of the approximation, are on the
one hand the resolution of the weights or its information content

I
w
 = ld (V

w
/d

w
) (2.3)

with the weight increment d
w
 and on the other hand the number m of neurons.

Certainly, when we increase the number of neurons and the number I
w
= Σ

i
 I

wi
 of bits per

neuron the approximation will become better and the error will decrease. Nevertheless, for a certain
system with a finite amount of information storage capacity (such as a digital computer) the
question arises:
What is the best distribution of the information, i.e. what is the best choice for m and I

w

1) either to get the minimum approximation error d
f
, using a fixed amount of information or

2) to use the minimal amount of information for a fixed error ?

Neither one neuron with high-resolution weights nor many neurons with one bit weights will give
the optimal answer; the solution is in between the range. Let us denote the parameters m, I

w
, ... as

general system parameters c
1
, ..., c

k
.

2.1 The principle of optimal information distribution

Let us first get the conditions for the optimal system parameters by some plausible considerations,
presented in [BR89]. The rigid mathematical approach will be covered by the next section 2.2.

Assume on the one hand that we transfer a fixed, small amount of information from one
parameter to another and we will find the maximal output information I

max
 increasing by decreasing

the approximation error. In this case the information distribution induced by the parameter values of
c

1
, ..., c

k
 was not optimal; the new one is better. Let us assume that on the other hand we find that

- 4 -

the output information has decreased, then the information distribution is not optimal, too; by
making the inverse transfer we can also increase I

max
.

These considerations lead us to the following extremum principle:

In an optimal information distribution a small (virtual) change in the distribution
(a change in c

1
, ..., c

k
) neither increases nor decreases the maximal output

information.

A small increment of additional information δI
sys

 in the system will produce a change δIout in the
minimal output information

k
δ Iout = δI

sys
 ∂ Iout = δI

sys
 Σ ∂ Iout(c1

, ...,c
k
) ∂c

i
(2.4)

 ∂I
sys

 i=1 ∂c
i

 ∂I
sys

Each term in the sum of equation (2.4) represents an information contribution of a system parameter
when we increase the overall system information I

sys
. According to the principle above, an optimal

distribution is given when all terms in the sum i.e. all information contributions of the system
parameters are equal.
With the definition (2.2) we get for each term of the sum of (2.4)

 ∂ Iout(c1
, ...,c

k
) = ∂ (ld (V

f
)-ld(d)) = - 1 ∂d = - 1 ∂d

f ∂c
i

 ∂c
i

 d ∂c
i
 d

f
 ∂c

i
(2.5)

and so the optimal distribution resides when

 ∂d
f
 ∂c

1
 = ... = ∂d

f
 ∂c

k
 (2.6)

 ∂c
1
 ∂I

sys
 ∂c

k
 ∂I

sys

is fulfilled. The k independant terms gives us (k-1) equations fo k variables c
1
, ..., c

k
, leaving us

with a degree of freedom of one. So, choosing the amount of available information storage I
sys

(c
1
,

...,c
k
):=I

0
, the parameters c

1
, ..., c

k
 are fixed and with I

max
 the smallest error d

f
 for the particular

application will result. On the other hand, for a certain maximal error a certain amount of network
information is necessary.

2.2 Optimal system parameters

Now we want to compare the principle above to a more conventional mathematical approach.
The minimal information I

out
 introduced above is a function with multiple parameters

I
out

(c
1
,...,c

k
). If we want to get the maximal information out of the system using only a certain

amount of system information we look for an optimal parameter tupel (c
1
*,...,c

k
*) so that

 I
out

(c
1
*,...,c

k
*) = max I

out
(c

1
,...,c

k
) (2.7)

c
1
,...,c

k

which is accompanied by the restriction that the whole information I
sys

 in the system should not be
changed during the maximization process

I
sys

(c
1
,...,c

k
) = I

0
 = const (2.8)

By these two conditions the relative maximum (2.7) of the function I
out

 with multiple parameters
is searched under the restriction of (2.8). The standard method to solve a problem like this is the
method of Lagrange multipliers. For this purpose let us define the differentiable functions

I(c
1
,...,c

k
) := I

sys
(c

1
,...,c

k
) - I

0
 = 0 (2.9) andL(c

1
,...,c

k
,λ) := I

out
(c

1
,...,c

k
) + λI(c

1
,...,c

k
)Lagrange function

Since the Lagrange function includes the restriction, the necessary conditions for a relative
maximum of the Lagrange function gives us the optimal values for the system parameters

 ∂ L(c
1
*) = 0

 ∂c
1. . . (2.10)

 ∂ L(c
k
*) = 0

 ∂c
k

 ∂ L(λ*) = 0
 ∂λ

The conditions above transform to the equations

 ∂ I
out

(c
1
*) + λ ∂ I(c

1
*) = 0

 ∂c
1

 ∂ c
1. . . (2.11a)

 ∂ I
out

(c
k
*) + λ ∂ I(c

k
*) = 0

 ∂c
k

 ∂ c
k

 I(c
1
*,...,c

k
*) = 0 (2.11b)

Let us assume that the function I(c
1
,...,c

k
) is invertible for each system parameter. Then we know

that
 ∂ I(c

i
) = ∂ I

sys
(c

i
) = ∂ c

i
 -1 (2.12)

 ∂ c
i
 ∂ c

i
 [∂I

sys
(c

i
)]

and the conditions (2.11) become

 ∂ I
out

(c
1
*) ∂c

1
 = - λ

 ∂ c
1

 ∂I
sys. . . (2.13a)

 ∂ I
out

(c
k
*) ∂c

k
 = - λ

 ∂ c
k

 ∂I
sys

 I
sys

(c
1
*,...,c

k
*) = I

0
(2.13b)

The equations (2.13a) say that for the necessary condition of an optimal information distribution
all the terms on the left hand side of (2.13a) should be equal: This is the principle of optimal
information distribution as it is stated above in section 2.1 and expressed in equation (2.6). The
last condition (2.13b) is just our well-known restriction (2.8).

- 5 -

3 Application examples

In this section first we want to demonstrate the procedure above by a very simple example: the
approximation of a quadratic form by a polygone. Throughout in this example, all design
decisions (choice of value ranges etc.) are taken for demonstration purposes only.

3.1 The approximation of a simple non-linear function

Let us consider the simple non-linear function f(x) = ax2 + b. The approximation of this function
can be accomplished by a network with one input x shown in figure 2.

Fig. 2 The network for approximating f(x) = ax2 + b and the unit output function

Another version of the quadratic function is the logistic function x(t+1)= f(x) := ax(1-x) = ax-ax2
which yields deterministic chaotic behavour in the interval [0,1] for some values of a [BAK90].
This system can be approximated by the network of figure 2, using an additional, direct input
y

m+1
:=x for the second layer to model the linear term ax of the logistic function. The learning of

the weights and thresholds by the Backpropagation-Algorithm was demonstrated by Lapedes and
Farber [LAP87].

Let us return to our example of the quadratic function f(x) = ax2 + b. Each neuron of the
network of figure 2 has the output function y

i
 = S(z

i
) with the activation function z

i

z
i
 = Σ

j
 w

ij
 x

j
 (3.1)

which becomes for the first layer

z
i
 = w

i
 x + t

i
 with the threshold t

i
(3.2)

and for the second layer

f̂(x) = Σ
i
 W

i
 S(z

i
) + T (3.3)

Let us assume that we use simple limited linear output functions as squashing functions

 1 1 < z
i

S(z
i
) = { z

i
0<z

i
<1 (3.4)

 0 z
i
 < 0

The definition (3.4) satisfy the conditions S(∞)=1, S(- ∞)=0 of [HOR89] and is shown in figure 2

- 6 -

on the right hand side.
Let us assume that all the weights have converged by a proper algorithm for an

approximation of the non-linear function by linear segments. Since the output of each neuron is
only linear when x is from its intervall [x

i
-∆x/2, x

i
+∆x/2] with x

i
=x

0
+i∆x-∆x/2 and otherwise it is

constant 0 or 1, a sufficient condition for the linear approximation is given if the whole input
intervall [x

0
,x

1
] is divided by the m neurons of the first layer into m intervalls ∆x for the

approximation. The segmented normalized variable z
i
 ∈[0,1] is 1/2 for x

i
. In the second layer it is

then weighted by W
i
. Together with an offset of the previous inetervalls it represents there the

approximation function f̂(x) in the intervall [x
i
-∆x/2, x

i
+∆x/2].

m

 k-1

f̂(x) = Σ W
i
 S(z

i
) + T = Σ W

i
 + W

k
 S(z

k
) + T (3.5)

i=1 i=1

The resulting approximation for m=5 neurons is shown in figure 3.

Fig. 3 The non-linear function and its approximation by 5 neurons

The corresponding values for w
i
, t

i
, W

i
 and T can be easily calculated.

From the conditions of (3.4) we can conclude
z |xi-∆x/2 = 0 z |xi+∆x/2 = 1

and by (3.2) we get
w

i
 = 1/∆x = m / (x

1
-x

0
) (3.6a)

and t
i
 = - w

i
 (x

i
-∆x/2) = x

0
/∆x +1-i = - mx

i
 / (x

1
-x

0
) + 1/2 (3.6b)

Let us choose the weights W
i
 of the second layer such that in each segment the spline is the

tangent of f(x) in x
i

 ∂f(x
i
) = ∂(ax2 + b)|xi

 = 2ax
i
 := ∆y/∆x

 ∂x ∂x

Since the output S(z) is normalized between 0 and 1, the weights W
i
 are the normalized tangent

∆y/1. Therefore,

W
i
 := ∆y/1 = 2ax

i
 ∆x (3.6c)

Then the basic threshold T becomes the offset of the approximation at x
0
, see figure 3. Using

- 7 -

equation (A1.1) of appendix A1 we get
T = f(x

0
) -dlin = ax

0
2 + b - a/2 (∆x/2)2 (3.6d)

Example:
For a net of m:=5 neurons we get for a=1, b=0 with ∆x = 0.4 five non-overlapping intervals

[-1,-.6],[-.6,-.2],[-.2,+.2],[+.2,+.6],[+.6,+1]
and x

i
= {-.8,-.4, 0, +.4, +.8}, W

i
={-.64, -.32, 0, +.32, +.64},

 w
i
 = 2.5, t

i
= {+2.5, +1.5, +0.5, -0.5, -1.5}, T= 0.98.

The maximal approximation error dlin=0.02 has the same order as in the simulation
results of Lapedes and Farber [LAP87].
In figure 4 the superposition of the approximating function by the individual neural
output S

i
(x) is shown. Each neuron has its linear output restricted to its input interval,

otherwise it remains constant.

Fig. 4 The individual neural approximations for a=1, b=0, m=5

Due to figure 3 (and figure A1.1) we might suppose that the error of the approximation do
not remain constant, but has minimal and maximal values. This is confirmed in figure 5 for
the example of m=5 neurons.

Fig. 5 The linear approximation error in the interval x ∈[-1,+1] for m=5 neurons

In real-world applications we are not interested in the mean error over the interval (which is
approximately zero in the example above), but in the maximal error that can occur. Thus, we aim

- 8 -

not to minimize the average error of the approximation, but to minimize the maximal error. As the
error of the linear approximation we consider therefore the maximal linear approximation error
d

lin
max which is evaluated in appendix A1 to

d
lin

max = a/2(∆x/2)2 (A.1.1)

This reflects the error due to the finite number of neurons. Let us now consider the other source of
the approximation error, the finite information in the weights and thresholds, i.e. the error due to
the finite resolutions of the system variables.

3.2 The resolution error

To calculate the information after (2.3) for w
i
, t

i
, W

i
 and T we have to define first the range

V
w
,V

t
,V

W
 and V

T
 of the variables. For the sake of simplicity, let us assume that the value ranges

and the information content of all variables are independant of the index i. Since the variables w
and T are constant they might be implemented in read-only-memory (ROM) with
min(w

i
)=0=min(T) and thus by equations (3.6a,b,c,d) we have

max(w
i
)-min(w

i
) = V

w
: = w

i
 = m/(x

1
-x

0
) = (∆x)-1 (3.7a)

max(t
i
)-min(t

i
) = V

t
 = (-mx

0
/(x

1
-x

0
) + 1/2) - (-mx

1
/(x

1
-x

0
) + 1/2) = m (3.7b)

max(W
i
)-min(W

i
) = V

W
 = 2a(x

1
-x

0
)∆x = 2a (x

1
-x

0
)2/m (3.7c)

max(T)-min(T) = V
T
 : = ax

0
2 +b - a/2 (∆x/2)2 (3.7d)

The maximal resolution error δ of a variable in one state is just the half of the resolution
increment of equation (2.3)

δ = d/2 = V/2 2-I (3.8a)

and therefore δw = (V
w
/2) 2-Iw = (m/(x

1
-x

0
)2) 2-Iw (3.8b)

δt = 1/2 m 2-It (3.8c)
δW = a(x

1
-x

0
)2/m 2-IW (3.8d)

δT = a/2 (x
0
2+b/a - 1/2 [(x

1
-x

0
)/(2m)]2) 2-IT =: a/2 g

T
(m) 2-IT (3.8e)

In the present approximation function example our information distribution system parameters c
1
,

...,c
k
 are the number of bits per variable I

w
,I

t
,I

W
 and I

T
 and the number m of neurons in the first

layer. In appendix A2 the error d
res

max due to the finite resolutions I
w
,I

t
,I

W
, I

T
 and m is evaluated

to
d

res
max= 2ax

1
 ∆x [δw x

1
+δt] + mδW + δT (A2.2)

3.3 The optimal information distribution
As it was already mentioned, we are not interested in minimizing the average error, but the
maximal error of the approximation. Besides, since we do not assume anything about the input
probability distribution p(x), we can not compute the average error.

The maximal approximation error is given by the worst case condition that the linear
approximation error d

lin
 and the resolution error d

res
 do not compensate each other but adding up

to

d
f
max = d

lin
max + d

res
max (3.9)

The whole information I
sys

 contained in the network is the sum of the information m(I
w
+I

t
) of the

m weights and thresholds in the first layer and the information mI
W

+I
T
 of the m weights and the

- 9 -

- 10 -

threshold in the second layer

I
sys

 = m(I
w
+I

t
+I

W
) + I

T
(3.10)

When we add some information to the system by augmenting the number m of neurons, the
resulting approximation will be better and, naturally, the approximation error will diminuish.
When we add some neurons, but reduce the information in the weights and threshold, such as to
conserve the overall system information, the result is not so clear. In figure 6 the approximation
error is shown for different values of m and constant system information I

sys
=708 bits; the number

of bits for all other variables are the same I
w
=I

t
=I

W
= I

T
 and can be directly computed by equation

(3.10).

Fig. 6 The approximation error at constant system information (a=1, b=0)

The minimal error of d
f
max=2.28x10-3 is at m*=16.2 neurons and I

T
=14.2 bits, about 3% worse

than with the optimal system parameters (see example ahead). To get the optimal parameters, we
just have to compute the conditions for the multi-dimensional minimum of dmax(m,I

w
,I

t
,I

W
,I

T
)

which we have already solved in section 2.1 and 2.2.
The condition (2.6) for an optimal information distribution becomes

 ∂ (d
lin

max + d
res

max) ∂ I
sys

 -1 = ... = ∂ (d
lin

max + d
res

max) ∂I
sys

 -1 (3.11)
 ∂m (∂m) ∂I

T
 (∂I

T
)

with the derivatives
 ∂I

sys
 = I

w
+I

t
+I

W
 ∂I

sys
 = m = ∂I

sys
 = ∂I

sys
 ∂I

sys
 = 1 (3.12)

 ∂m ∂I
w
 ∂I

t
 ∂I

W
 ∂I

T

This gives us 5 terms which are all equal. Let us evalutate the first term.

With (A1.2) we have ∂ d
lin

max = ∂ a/8 (x
1
-x

0
)2 m-2 = - a (x

1
-x

0
)2 (3.13)

 ∂m ∂m 4m3

and with (A2.3) we have ∂ d
res

max = a (x
1
-x

0
)2 2-IT (3.14)

 ∂m 8 m3

Therefore, the expressions (3.14) and (3.13) together with (3.12) yields the first term of the
equations in (3.11)

1) ∂ d
f
max ∂I

sys
 -1 = - a (x

1
-x

0
)2 [1 - 2-IT/2] (I

w
+I

t
+I

W
)-1

 ∂m (∂m) 4m3

- 11 -

All the other system parameters I
w
,I

t
,I

W
,I

T
 do not influence the linear approximation error

d
lin

max. Therefore, the derivation of the error (A1.2) is zero and we get the terms

2) ∂ d
f
max ∂I

sys
 -1 = 2ax

1
2∆x ∂δw m-1 = - 2x

1
2 a (x

1
-x

0
) ln(2)δw

 ∂Iw (∂Iw) ∂I
w

 m2

because (δw)-1 ∂δw = ∂ ln(δw) = ∂ (ln(V
w
) - I

w
 ln(2)) = -ln(2)

 ∂I
w
 ∂I

w
 ∂I

w

3) ∂ d
f
max ∂I

sys
 -1 = 2ax

1
∆x ∂δt m-1 = - 2x

1
a(x

1
-x

0
) ln(2)δt

 ∂It (∂It) ∂I
t
 m2

4) ∂ d
f
max ∂I

sys
 -1 = ∂mδW m-1 = - ln(2) δW

 ∂IW (∂IW) ∂I
W

5) ∂ d
f
max ∂I

sys
 -1 = ∂δT = - ln(2) δT

 ∂IT (∂IT) ∂I
T

All the five terms should be equal to yield an optimal information distribution. Let us evaluate the
equalities.

With term 2) = term 3), we know that

x
1
 δw = δt (3.16)

The resolution errors of the weights and the threshold of the first layer should be in the same
order since they produce the same final error by multiplication with W.

The equation (3.20) gives us with (3.8b) and (3.8c)
x

1
m/(x

1
-x

0
) 2-Iw = m 2-It

ld(2It) = ld[(x
1
-x

0
)/x

1
] + ld(2Iw)

I
t
 = I

w
 + C

1
with C

1
:= ld((x

1
-x

0
)/x

1
) (3.17)

The information of the threshold has a constant offset from the information of the weights.
For the case of x

0
=-1, x

1
=+1, we have with C

1
=1 just one bit offset.

term4) = term5)
The corresponding case for the threshold and weights of the second layer reveals

δW = δT (3.18)

The threshold should be as fine grained as the weights since it is always involved in the
output accuracy. The equation (3.18) gives with (3.8d) and (3.8e)

a(x
1
-x

0
)2/m 2-IW = a/2 g

T
(m) 2-IT

and therefore

ld (2IT) = ld(2IW) + ld(g
T
(m)/2) -ld((x

1
-x

0
)2/m)

I
T
 = I

W
 + ld(g

T
(m)/2) -ld((x

1
-x

0
)2/m) (3.19)

The threshold information of the second layer has also an offset between the weights and the

threshold which depends on the number of inputs from the first layer.

term3) = term4)

- 12 -

The comparison between the threshold of the first layer and the weights of the second layer gives2ax
1
(x

1
-x

0
) δt = δW(3.20)

m2

and therefore using (3.8c) and (3.8d)
 a x

1
(x

1
-x

0
) 2-It = a (x

1
-x

0
)2 2-IW

m m
ld(2It) = ld(2IW) + ld(x

1
/(x

1
-x

0
))

I
t
 = I

W
 + C

2
with C

2
:= ld(x

1
/(x

1
-x

0
)) (3.21)

The constant offset C
2
 is in the simple case of x

0
=-1, x

1
=+1 just -1 Bit.

term1) = term5)
The condition for the number of neurons is

 a (x
1
-x

0
)2 [1 - 2-IT/2] (I

w
+I

t
+I

W
)-1 = ln(2) δT (3.22)

 4m3

Using (3.17),(3.19) and (3.21) the condition (3.22) becomes
 a (x

1
-x

0
)2 [1 - 2-IT/2] (I

W
 + C

2
 - C

1
+ I

W
 + C

2
+ I

W
)-1 = ln(2) δT

 4m3

With C
2
 = - C

1
 and equation (3.8e) we get

 a (x
1
-x

0
)2 [1 - 2-IT/2] = 3 (I

W
 + C

2
) ln(2) a/2 g

T
(m) 2-IT

 4m3
 (x

1
-x

0
)2 (2IT - 1/2) = 6m3 (I

W
 + C

2
) ln(2)g

T
(m)

and finally
 6m3 (I

T
-ld(g

T
(m)/2) +ld((x

1
-x

0
)2/m) +C

2
) ln(2)g

T
(m) - (x

1
-x

0
)2(2IT -1/2) = 0 (3.23)

The equation (3.23) is hard to solve analytically. For numerically given I

T
 the corresponding m

can be found by a numerical iteration procedure. If we put equation (3.23) into the form

m = h(m)1/3 (3.24)

we can use it as an iteration formula at the (t+1)-th iteration for m:

m(t+1) = h(m(t))1/3 (3.25)

 Since the derivative of h(m)1/3 is lower 1, the convergence condition is satisfied and the iteration
converges. The following figure 7 shows the optimal system parameter m when one parameter

Fig. 7 The optimal system parameters for the approximation

- 13 -

(the threshold information I
T
) is given. The corresponding values for I

W
 and the overall system

information Isys are also given. The values for I
t
 and I

w
 differ from I

W
 only by a constant offset of

one and two bits; in the figure they are omitted for clarity.

Example
Let us consider an information of 16 bits in the threshold T. In the simple case of x

0
=-1,

x
1
=+1, a=1, b=0 we have with I

T
 := 16 bit the optimal configuration at

 m = 16.54 neurons, I
W

 = 14.95 bit, I
i
=I

W
+C2 = 13.95 bit, I

w
 = I

t
 -C

1
 =12.95 bit

The overall information in the network is then with (3.10)

 I
sys

 = m(I
w
+I

t
+I

W
) + I

T
= 708.45 [bits]

and the approximation error is d
f
max = 2.213x10-3. If we augment the information capacity of

the system to I
T
=32 Bit, the error will diminuish to d

f
max =1.847x10-6 when we use the optimal

system parameters.

In the following figure 8 the minimal approximation error for optimal system parameters is shown
in logarithmic notation for the whole interval of I

T
 = 4

..

32 bits. The nearly linear appearence is due

to the fact that all terms of the resolution error contains powers of two, which transforms to linear
terms in I

T
.

Fig. 8 The approximation error as a function of the information in the network

The corresponding approximation error for equal resolutions I
w
=I

t
=I

W
=I

T
 and optimal m are

generally slightly worse than the one for an optimal information distribution.

- 14 -

4 Conclusion

The principle of optimal information distribution is a criterium for the efficient use of the different
information storage ressources in a given network. Furthermore, it can be used as a tool to balance
the system parameters and to obtain the optimal network parameter configuration according to the
minimal usable storage for a maximal error which is given.

In this paper a simple, non-linear function approximation is evaluated, the conditions for
optimal system configuration are stated, their solutions are analytically computed and their nature is
explained.

The example of the approximation of a simple quadratic function is quite instructive to
evaluate, but has the desadvantage that it is not very common in real world applications. To show
that the proposed principle of information distribution works in more realistic environment, the
more complicated function of the inverse kinematic of a PUMA robot is considered in another
report [BR89]. There the results for optimal system parameters are partially obtained by numerical
iterative approximations.

References

[BAK90] Gregory Baker, Jerry Gollub: Chaotic dynamics: an introduction; Cambridge University Press, 1990

[BR89] R.Brause : Performance and Storage Requirements of Topology-Conserving Maps for Robot
Manipulator Control; Internal Report 5/89, Fachbereich Informatik, University of Frankfurt, FRG

[BR90] R.Brause : Optimal Information Distribution and Performance in Neighbourhood-conserving Maps
for Robot Control; IEEE Proc. Tools for Art. Int. TAI-90, Dulles 1990

[GIR90] F.Girosi, T. Poggio: Networks and the Best Approximation Property;
Biolog. Cybern. (1990) Vol. 63, pp. 169-176

[HOR89] K. Hornik, M. Stinchcomb, H.White: Multilayer Feedforward Networks are Universal Approximators
Neural Networks (1989), Vol 2, pp. 359-366

[LAP87] A. Lapedes, R. Farber: Nonlinear Signal Processing using Neural Networks:
Prediction and System Modelling; Los Alamos preprint LA-UR-87-2662 (1987)

[SHA49] C.E. Shannon, W.Weaver: The Mathematical Theory of Information;
University of Illinois Press, Urbana 1949

[STIN89] M. Stinchcomb, H.White: Universal approximation using feedforward networks with
non-sigmoid hidden layer activation functions
Proc. Int. Joint Conf. Neural Networks, Washington DC, June 1989,pp. I/607-611

- 15 -

Appendix A1: The linear approximation error

The non-linear function in the intervall [x-∆x/2, x+∆x/2] is

f(x) = ax2 + b

and the linear approximation by the neural network is

f̂(x) = αx + β with α:= 2ax

Fig. A1.1 The error of the linear approximation

The approximation error is (see figures 3 and A1.1 above)

dlin (x) = f(x) - ^f(x) = ax2 + b - 2axx - β = b - β- ax2 =: d

dlin (x+∆x/2) = f(x+∆x/2) - f̂(x+∆x/2) = a(x+∆x/2)2 + b - 2ax(x+∆x/2) - β
= ax2+a∆xx +a(∆x/2)2 +b - 2axx - ax∆x - β
= -ax2 +b - β +a(∆x/2)2 = d + a(∆x/2)2

dlin (x-∆x/2) = f(x-∆x/2) - f̂(x-∆x/2) = a(x-∆x/2)2 + b - 2ax(x-∆x/2) - β
= ax2-a∆xx +a(∆x/2)2 +b - 2axx + ax∆x - β
= -ax2 +b - β +a(∆x/2)2 = d + a(∆x/2)2

The errors at the boarders are equal. The maximal error max(|dlin (x)|,|dlin (x+∆x/2)|) is minimal
when all the errors are equal

|dlin (x)| = |dlin (x+∆x/2)|
or |d| =|d + a(∆x/2)2|
This is given when

d := - a/2(∆x/2)2

The maximal linear error is not dependant on the value of x, it is the same in the whole intervall

d
lin

max = a/2(∆x/2)2 (A.1.1)

Since we have ∆x= (x
1
-x

0
)/m

d
lin

max = a/2((x
1
-x

0
)/2m)2 = m-2a(x

1
-x

0
)2/8 (A.1.2)

and therefore
d

lin
max = C mb with C:= a(x

1
-x

0
)2/8) and b:= -2 (A.1.3)

- 16 -

Appendix A2: The resolution error

For the computation of the resolution error let us assume that in all weights the maximal increment
error has occurred. The approximating function becomes with (3.2) and (3.3)

f̂(x,δ) = Σ
i
 (W

i
 +δW

i
) S(z

i
+δz

i
) + T+δT (A2.1)

= Σ
i
 W

i
 S(z

i
+δz

i
) + T + Σ

i
 δW

i
 S(z

i
+δz

i
) +δT

Because the intervalls are exclusive, for the k-th intervall we have to regard only the influence of
one neuron of the first layer; for i<k we have S(z

i
) = S(z

i
+δz

i
) = 1 and for i>k we have S(z

i
+δz

i
)=0.

f̂(x,δ) = (Σ
i
k-1W

i
) + W

k
 S(z

k
+δz

k
)+ T + (Σ

i
k-1δW

i
) + δW

k
 S(z

k
+δz

k
) +δT

 = f̂(x)

+

W

k
 δz

k
 + (Σ

i
k-1δW

i
) + δW

k
 S(z

k
+δz

k
) +δT

The maximal error d
res

max is encountered at the boarder of the intervall [x
0
,x

1
] with max(x) = x

1

The contribution of the term δW
i
S(.) becomes maximal δW

i
 when S(.) = 1. Therefore, we have

m-1

f̂(x
1
,δ) = f̂(x

1
) + (ΣδW

i
) +

W

m
 δz

m
 + δW

m
 S(z

m
+δz

m
) +δT

m

i

 = f̂(x
1
) + (ΣδW

i
) + W

m
 δz

m
 +δT

 i

and so with δz
m

=δw
m

x
m

+δt
m

 we get
m

d
res

max= f̂(x
1
,δ) - f̂(x

1
)= (ΣδW

i
) + W

m
 (δw

m
 x

1
+δt

m
) + δT

 i

Because all the error increments are independent of their index, we get with (3.6c)

d
res

max= 2ax
1
 ∆x [δw x

1
+δt] + mδW + δT (A2.2)

Using the definitions (3.8b,c,d,e) we get

d
res

max(m) = 2ax
1
 (x

0
-x

1
)[m x

1
 + m] + m a (x

1
-x

0
)2 + 1 [ax

0
2+b - a (x

1
-x

0
)2] 2-IT

 m 2(x
1
-x

0
)2Iw 2It 2 m 2IW 2 2 4 m2

 = 2ax
1
 (x

0
-x

1
)[1 x

1
 + 1] + a (x

1
-x

0
)2 + 1 [ax

0
2+b - a (x

1
-x

0
)2] 2-IT

 2(x
1
-x

0
)2Iw 2It 2 2IW 2 2 4 m2

(A2.3)

