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comparative structural analyses 
and nucleotide‑binding 
characterization of the four KH 
domains of FUBP1
Xiaomin ni1,2, Stefan Knapp1,2,3* & Apirat chaikuad1,2*

The FUBP1-FUSE complex is an essential component of a transcription molecular machinery that 
is necessary for tight regulation of expression of many key genes including c-Myc and p21. FUBP1 
utilizes its four articulated KH modules, which function cooperatively, for FUSE nucleotide binding. 
To understand molecular mechanisms fundamental to the intermolecular interaction, we present a 
set of crystal structures, as well ssDNA-binding characterization of FUBP1 KH domains. All KH1-4 
motifs were highly topologically conserved, and were able to interact with FUSE individually and 
independently. Nevertheless, differences in nucleotide binding properties among the four KH 
domains were evident, including higher nucleotide-binding potency for KH3 as well as diverse 
nucleotide sequence preferences. Variations in amino acid compositions at one side of the binding 
cleft responsible for nucleobase resulted in diverse shapes and electrostatic charge interaction, which 
might feasibly be a contributing factor for different nucleotide-binding propensities among KH1-
4. Nonetheless, conservation of structure and nucleotide-binding property in all four KH motifs is 
essential for the cooperativity of multi KH modules present in FUBP1 towards nanomolar affinity for 
FUSE interaction. Comprehensive structural comparison and ssDNA binding characteristics of all four 
KH domains presented here provide molecular insights at a fundamental level that might be beneficial 
for elucidating the mechanisms of the FUBP1-FUSE interaction.

Far upstream element (FUSE) binding protein 1 (FUBP1 or FBP1) is a multifunctional single-stranded DNA- 
(ssDNA) and RNA-binding protein, which acts as a master regulator of diverse cellular processes including 
transcription, mRNA stability and translation as well as RNA  splicing1–3. It is best known for its role as a positive 
regulator of c-Myc oncoprotein mediated by the interaction with the supercoiled, A/T-rich non-coding strand 
of FUSE located upstream of the c-Myc  promoter4–6 which leads to the recruitment and activation of transcrip-
tion factor TFIIH that enhances transcription of c-Myc  gene7. FUBP1 also recruits the FBP interacting repressor 
(FIR) to form an inhibitory complex with FUSE and TFIIH, which suppresses c-Myc transcription. The interplay 
between FUSE, FUBP1 and FIR in this molecular machinery is essential for controlling the level and timing of 
c-Myc  expression5,8. Apart from this, other roles of FUB1 in several post-transcriptional events have also been 
demonstrated. For instance, FUBP1 is often found in association with spliceosomal complexes, and depending 
on context can either promote or suppress RNA  splicing3,9–11. Mediated by modulating expression of specific 
target genes including c-Myc4,  p2112 and  Usp2913, FUBP1 has been identified as a potent pro-proliferative and 
anti-apoptotic factor that is essential for many biological processes in diverse cell types, such as hematopoietic 
stem cell maintenance and  survival14,15 as well as neuronal differentiation and tumour suppression in the nerv-
ous  system9.

Due to the pivotal roles in regulating multiple cellular processes, an alteration of FUBP1 has a strong link 
to the development of a number of diseases. FUBP1 has been described paradoxically either as an oncoprotein 
or a tumour suppressor. Loss of function due to mutations in fubp1 gene is often detected in patients with cen-
tral nervous system diseases and intestinal  cancer1,16,17. On a contrary, overexpression of FUBP1 is also often 
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found and appears as an emerging suspect in hematologic disorders and a growing number of cancers and solid 
tumours, including breast and colon cancers as well as nasopharyngeal and clear cell renal cell  carcinoma18–20. 
High level of FUBP1 typically leads to an upregulation of c-Myc oncogene and deregulation of the fine-tuned 
expression of targeted proteins, forming one of main molecular mechanisms of pathogenesis in most cases. 
Nevertheless, other molecular consequences independent of c-Myc have been proposed as a contributing factor 
for the development of some diseases. This includes for example facilitating the replication of hepatitis C  virus21 
as well as suppressing the expression of cell cycle inhibitors like p21 through mRNA  binding12, both of which 
are associated with the formation and development of hepatocellular carcinoma.

Central to its single-stranded nucleic acid (ssNA) interacting function of human FUBP1 is a tandem of four K 
homology (KH) motifs, namely KH1, KH2, KH3 and KH4, which is embedded in the middle region in between 
the self-regulatory and transactivation domains at the N- and C- termini,  respectively22,23. Typically, eukaryotic 
KH domains are small (~ 70 amino acids) and share a highly conserved topology, which is distinct from that 
of the prokaryotic  proteins22,24. A common property in recognition of up to four nucleotides is facilitated by a 
‘minimal KH motif ’ that constructs an ssNA hydrophobic binding cleft formed on one side by two short consecu-
tive helices (α1 and α2) and the GXXG-motif-containing connecting loop and on the other side by the domain’s 
β-sheet and the variable loop that links the β2 and β3. Nevertheless, different KH domains have been shown 
to exert different ssNA specificities and some can further form non-specific contacts with additional flanking 
 nucleotides22,25. For instance, the third KH domain of KSRP (known also as FUBP2) prefers a G-rich sequence, 
while hnRNP K KH3 and PCBP KH motifs prefer a C-rich  signature25–29. Binding affinities between individual 
KH domain and ssNA are however moderate, typically in a low to several hundred micro molar  KD  range26,27,30, 
and therefore cooperativity of multiple KH modules in a protein potentially forms an essential mechanism for 
achieving tight  interactions6,27,30.

For FUBP1, the early NMR solution structure of the paired KH3 + KH4 domain in complex with ssDNA has 
unveiled not only their evolutionarily highly conserved KH topology, but provided first molecular details for 
nucleotide  recognition31. Despite using commonly the GXXG motif for the interaction with the ssDNA backbone, 
slight changes of amino acid compositions within the β sheet and the variable loop could contribute to different 
preferences of KH3 and KH4 for 5′d-TTTT and 5′d-ATTC, respectively. Later, ssDNA-binding studies using the 
paired KH domains and the systematic evolution of ligand by exponential enrichment (SELEX) technique have 
identified a number of potential binding sites on c-Myc FUSE, all of which share commonly a TGT footprint 
 core6. However, KH1-4 might exhibit different preferences on nucleotide sequences; T(T/C)GT for KH2, KH3 
and KH4 and (T/G)TG(T/C) for KH1. Nonetheless, these early studies have suggested consistently that all four 
KH domains of FUBP1 likely function as articulated modules and exploit hierarchical mechanisms to specify 
their binding sites on  FUSE6,31.

The structural and mechanistic knowledge from the previous studies have contributed to our understand-
ing on the ssDNA-binding function of the FUBP1 KH motifs. However, it remains unclear whether each KH 
domain might possess intrinsic properties that might influence binding affinities and nucleotide specificities. 
Here, we presented a set of crystal structures and ssDNA-binding characterization of KH1, 2, 3 and 4, revealing 
a highly conserved KH fold that is essential for their individual abilities to interact with a short FUSE ssDNA 
fragments. Comparative structural analyses and ssDNA binding studies demonstrated high variation of amino 
acids compositions essentially within the GXXG motif, α1, the central β sheet and β2–β3 variable loop led to 
different characteristics of their nucleotide binding pockets. These alterations might feasibly be accounted for 
the different ssDNA-binding properties among KH1-4, demonstrated by a higher binding affinity for KH3 and 
diverse nucleotide sequence preferences. Nevertheless, these four KH motifs of FUBP1 with conserved structure 
and nucleotide-binding property likely function cooperatively enabling a nanomolar affinity for FUSE interac-
tion. The knowledge from our comprehensive studies would enable further understanding of the molecular 
mechanisms of the FUSE-interacting function of FUBP1.

Results
FUBP1 KH1-4 adopted commonly a highly conserved KH topology. In the search for optimal con-
structs for crystallisation, we first performed sequence alignment to identify an optimal domain boundary for 
each KH motif of FUBP1. All four KH domains shared sequence identities of 33–38% for the central β-sheet and 
helical core. However, this was in contrast to high sequence differences observed for the linker regions between 
the domains (Supplementary Figure S1). Based on this, we generated a series of truncated constructs by varying 
the length of the linker region that flanks the N- and C-termini of the central core (Supplementary Figure S1B), 
from which constructs with good expression levels led to suitable protein crystals and subsequently to success-
fully determined crystal structures of KH2, KH3 and KH4 at 1.9—2.0 Å resolution (Fig. 1A,B).

Together with the available KH1 crystal structure (PDB ID: 4lij) the three structures determined here provide 
a complete structural characterization of all four KH domains of FUBP1. Comparison of the four structures 
showed that they all adopted an evolutionarily conserved eukaryotic KH-domain architecture, consisting of a 
three-stranded β-sheet packed on one side by three helices (Fig. 1B,C). Such topology highly resembled that 
of KH domains from other proteins, such as hnRNP  K25 and  KSRP26, as demonstrated by low superimposition 
rmsd (root mean squares deviations) values of 1.1–2.4 Å (Fig. 1D). Comparison among four FUBP1 KH domains 
revealed that the highly conserved residues from α1-α2 region harbouring the canonical GXXG motif within 
the connecting loop clustered within one side of their DNA binding pockets (Fig. 1E). Nevertheless, some dif-
ferences were noted for the variable loop between the β2 and β3, which was located at the other side of the DNA 
binding groove (Fig. 1E). This loop differed not only in their lengths, but as a consequence in their conformations 
(Fig. 1C). In addition, we observed also a unique, additional small α′ helix at the N-terminus of KH3 (Fig. 1B). 
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However, this structural element might be induced by the crystal packing as it existed only in one of the two 
molecules in the asymmetric unit.

KH1-4 can interact individually with ssDNA. Due to their structural conservation as well as the highly 
conserved and feasibly intact DNA binding pockets, we next questioned whether each KH domain could poten-
tially bind to ssDNA independently. First, we investigated their interactions with the 47-mer c-Myc FUSE (5′-
ATG TAT ATT CCC TCG GGA TTT TTT ATT TTG TGT TAT TCC ACG GCATG-3′), which is known to bind to 
full-length  FUBP11,6,31. Native gel mobility shift assays indeed showed a significant shifts of all single KH1-4 
protein bands upon incubating with this ssDNA (Fig. 2A), indicating an ability of all four KH protein modules 
to interact with c-Myc FUSE individually.

We next aimed to investigate whether each KH domain might prefer specific interacting sites, and therefore 
tested the ability of the 4 individual KH domains to bind to a series of randomly-truncated 10-mer c-Myc FUSE 
fragments that harboured an AA-double nucleotide on their 3′ ends in order to increase the migration of the 
proteins in native gels. Interestingly, we observed different migration profiles among KH1-4 (Fig. 2B). Although 
not significantly pronounced, both KH1 and KH3 showed a clear shift with the ssDNA fragment 8 (TTT GTG 
TTAA), which contained a ‘TGT’ core predicted previously as an optimal binding site for FUBP1 KH  domains6. 
Nevertheless, potential shifts of KH1 and KH3 were also evident for other fragments such as number 7, but to a 
much lesser extent. In contrast, the migration patterns of KH2 and KH4 were rather ambiguous with some slight 
shifts observed for nearly all nucleotides, except fragment 4 and 10 that had a high GC-rich content. Interest-
ingly, the potential interactions of KH2 and 4 with ssDNA 5–8, which shared the presence of a triple-repeated 

Figure 1.  Crystal structures of FUBP1 KH1, 2, 3 and 4. (A) Domain architecture of FUBP1 (top) and structure-
based sequence alignment of the KH1-4 constructs used for crystallisation (bottom). The conserved amino acids 
are highlighted in blue with the GXXG motif in the black, square box. (B) Overall structures of KH1 (green), 
KH2 (yellow), KH3 (cyan) and KH4 (magenta). (C) Structural superimposition of FUBP1 KH1-4 revealed 
conserved overall topology, except for the conformation of the β2-β3 variable loop and the α′ extra helix in KH3 
(dashed circles). (D) Superimposition of FUBP1 KH1-4 and the ssDNA-bound hnRNP K KH3 (light blue with 
the bound ssDNA shown in orange ribbon, PDB code: 1zzi). (E) Mapping of amino acid conservation calculated 
by  ConSurf44. The surface representation is shown with a similar orientation to that in (C). Figures were created 
using PyMOL software (https ://pymol .org/).

https://pymol.org/
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deoxythymidine (TTT), was consistent with the previous suggestion on the preference of FUBP1 for T-enriched 
 sequence6.

To further verify and confirm the DNA binding preferences of each KH domain, we mutated the GXXG motif 
of the KH domains to GDDG, which is known to disrupt their interactions with ssDNA through modulating 
charges on the binding  surface32. As expected, in contrast to the wild type, all mutants did not show a shift in 
migration on native gels upon incubation with the selected ssDNA (Fig. 2C). These overall results suggested 
therefore that all four KH motifs of FUBP1 interacted with c-Myc FUSE ssDNA independently and individually, 
and KH1 and 3 might exert potential preference for ‘TTT GTG TT’ sequence while KH2 and KH4 might have 
broader binding specificity.

Individual KH domains exhibited only weak binding affinities to ssDNA.. We next performed 
isothermal titration calorimetry (ITC) to quantify the affinities of the interactions between KH1-4 and their 
preferred ssDNA. Based on our native gel mobility shift analysis and the previously suggested ideal binding sites 
containing either the TGT footprint or a T-rich sequence, we chose to perform ITC with two ssDNA fragments; 
i) TTG TGT TA (FUSE fragment 8) for all four KH domains and ii) TAT TTT GT (FUSE fragment 7) for KH2 and 
KH4. Overall, the ITC results demonstrated that all four single KH domains interacted to the ssDNA with mod-
erate affinities in a low micromolar range (Fig. 3A–C). By comparison, KH3 interestingly exhibited the strongest 
binding with the  KD of 17 µM, which was at least fivefold stronger than that observed for KH1, 2 and 4 (Fig. 3C). 
In addition, we observed interestingly also that KH2 preferred the T-rich fragment 7 over the TGTG-core frag-
ment 8, which was in contrast to KH4 that showed no preference for both ssDNA (Fig. 3B,C). These cumulative 
results suggested therefore that each KH domains of FUBP1 exerted different nucleotide binding properties. 
Nevertheless, although highly estimated due to the nature of weak binding, all KH1-4 shared a common thermo-
dynamic signature of favourable enthalpy and unfavourable entropy for their interactions with ssDNA.

Similarities and dissimilarities of the ssDNA binding pockets of KH1-4. Despite the uniform pro-
pensity of all four KHs for ssDNA interactions, potential differences in nucleotide preferences and a unique 
increase in the ssDNA binding affinity of KH3 prompted us to investigate the molecular details of their binding 
pockets and potential molecular basis responsible for such distinct characteristics. Since our attempts on the 
ssDNA-KH complex crystallisation was unsuccessful, we therefore modelled a single-stranded nucleotide into 
the apo-structures using the previous NMR model of the ssDNA-complexed with KH3 + KH431. Comparative 
analyses of the binding site features revealed both similarities and dissimilarities (Fig. 4). First, the binding pock-
ets of all FUBP1 KH domains possessed commonly an overall positively-charged property, likely compatible 

Figure 2.  Native gel mobility shift analyses for the interactions between single KH1-4 and c-Myc FUSE ssDNA. 
(A) All single KH1-4 demonstrates migration shifts upon incubating with 47mer FUSE. (B) The migration shift 
patterns of single KH1-4 with various FUSE fragments (right table) reveal potential binding preference of KH1 
and 3 with ssDNA fragment 8, and potentially binding of KH2 and 4 with nearly all ssDNA, except fragment 4 
and 10. (C) Migration shift analyses of the wild-type KH1-4 and their corresponding GDDG mutants with the 
selected ssDNA (fragment 8 for KH1 and 3, and fragment 7 for KH2 and 4).
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Figure 3.  Binding affinities of each KH domain with ssDNA determined by ITC. (A) The ITC titration for the 
interactions between single KH domain and the selected ssDNA. The isotherms of the raw titration heat of the 
references (protein into buffer, top) and the protein-ssDNA binding (bottom) are shown in the upper panels, 
while the lower panels are the normalized binding heat with the single-site fitting calculated after the subtraction 
with the protein dilution heat. (B) The ITC normalized binding heat of the interactions between KH2 or KH4 
with two ssDNA fragment. The reference refers the dilution heat of the proteins. (C) Summary of the average 
binding constants  (KD) and thermodynamic parameters calculated from two repeats.

Figure 4.  Comparison of the nucleotide binding pockets of FUBP1 KH1-4. Shown are electrostatic potentials 
of the nucleotide binding surface and ssDNA (ATT TTT T, stick representation) modelled based on the previous 
NMR structure of ssDNA-complexed KH3 + KH4 (pdb id: 1j4w). Figures were created using PyMOL software 
(https ://pymol .org/).

https://pymol.org/
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with recruiting negatively-charged DNA. However, electrostatic potentials of the binding surface were observed 
to be different. Another common feature was high conservation of amino acid compositions at the upper part 
of the pocket responsible for interacting with the ssDNA phosphate and deoxyribose backbone. This included 
the GXXG motif as well as its adjacent cluster of hydrophobic residues such as isoleucine and glycine (e.g. G288, 
I291 and I298 in KH3). This amino acid signature is conserved also in other KH domains, suggesting its impor-
tance in the recognition of ssDNA sequences (Supplementary Figure S2).

In contrast to the upper part of the binding pocket, considerable variations of the amino acid compositions 
within α1 and the β2-β3 connecting loop led to the remarkably distinct properties of the nucleotide binding 
pocket at the lower half, which is responsible for interacting with ssDNA nucleobases. For instance, a longer loop 
together with the presence of small hydrophobic (A194 and A197) or polar residues (T385 and T388) in α1 of 
KH2 and 4, respectively, resulted in relatively open binding surface with strong positively-charged electrostatic 
potentials. This was in contrast to the slightly more compact with less positively-charged pocket of KH1, con-
structed by its shorter loop and acidic aspartate residues (D139 and the α1 D109). Of particular note was KH3, 
of which the short and compact β2-β3 variable loop and the presence of α1 R284 resulted in the more-enclosed, 
positively-charged binding groove, which was likely enabled also by the unique glycine-to-asparagine substitu-
tion in the GRNG motif at the upper part of the pocket.

The unique GRNG motif did not contribute to an increase in ssDNA binding affinity in 
KH3. Unlike the GXGG motif in KH1, 2 and 4, the presence of asparagine in the GRNG motif of KH3 is 
rather unique. Since this motif was essential for ssDNA  binding31,32, we questioned whether this substitution 
might be a contributing factor to the distinctly stronger ssDNA-binding affinity observed for KH3. We therefore 
generated the KH3 mutant harbouring the GKGG motif resembling that of KH2 and KH4, and measured ssDNA 
binding using ITC. The results showed that the mutation did not exhibit an adverse effect, yet on a contrary 
slightly enhanced binding to ssDNA of ~ 1.7 fold was observed (Fig. 5). This suggested therefore that the unique 
glycine-to-asparagine substitution was unlikely responsible for an increase in the nucleotide-binding affinity in 
KH3.

Multiple KH motifs cumulatively contribute towards high affinity binding of FUBP1 to 
FUSE. We next investigate the importance of conservation of structure and nucleotide-binding property in 
all four KH motifs towards FUBP1-FUSE interaction. First, we assessed the binding affinities of three tandem 
paired KH proteins, including KH1-2, KH2-3 and KH3-4, to 47-mer FUSE. The ITC results demonstrated con-
sistently low micromolar binding affinities for all cases  (KD values of ~ 4–7 μM) (Fig. 6A), which were ~ 2–15-
fold increase compared to the affinities determined for single KH domain. This suggested that increasing the 
number of KH domain led to a dramatic increase in binding affinities. We thus characterized the interaction 
between full KH1-4 FUBP1 to FUSE, and indeed observed a remarkable tight binding with a  KD of ~ 85 nM 
(Fig. 6B,C) consistent with other  reports8,33. This results indicates that all KH motifs of FUBP1, each of which 
can bind nucleotide independently, likely contribute towards high affinity for FUSE binding.

Discussion
The pivotal role of FUBP1 as a master regulator that controls transcriptions of key proteins such as c-Myc and 
p21 is mediated by the FUSE-interacting function of its four KH domains. Previous studies on the ssDNA bind-
ing activities of the KH motifs have predicted the sequence signatures of ideal binding sites as well as feasible 
cooperativity and hierarchical binding  mechanisms6,31. Here, we presented a comprehensive structural analysis 
and ssDNA-binding characterization of each KH domain, which provided further molecular insights into the 
mechanistic details at the fundamental level of FUBP1-FUSE interaction.

KH domain are evolutionary highly conserved and typically share significant sequence similarity in the motif 
regions. Prokaryotic and eukaryotic KHs have distinct topologies, which nevertheless are highly conserved within 
their subclasses, essential for a common nucleotide binding  function22,24. Consistently, our sequence analyses and 
crystal structures demonstrated that all four KH domains of FUBP1 shared the evolutionarily conserved eukary-
otic KH characteristics. The observed abilities of all single KH1-4 to interact with ssDNA individually was in 

Figure 5.  Comparison of the ssDNA binding in wild type KH3 and the GKGG mutant. Superimposition of 
the ITC integrated heat of the interaction between the ssDNA fragment and wild type KH3 (black) and the 
GKGG mutant (purple) is shown on the left panel, and summary of the average binding constants  (KD) and 
thermodynamic parameters for the mutant calculated from two repeats is shown in the right table.
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agreement with previous reports demonstrating the capability of a single KH motif for nucleotide  binding25,29,34. 
In addition, we demonstrated that multiple KH motifs enabled a dramatic increase in FUSE binding affinities, 
exemplified by the  KD of 85 nM for the full KH1-4 tandem. Overall, these results suggested therefore that all 
four KH motifs of FUBP1 contain a highly conserved and complete protein module that can bind to nucleotide 
independently. Such conservation of structure and property is likely important for cooperativity of all four KH 
domains towards high affinity interaction between FUBP1 and FUSE.

Consistent with the previous  observation6, ssDNA-binding characterization using FUSE fragments predicted 
that all four FUBP1 KH domains feasibly prefer the sequence signatures of either TGT or T-rich footprints. 
Despite exhibiting similarly moderate affinities in low micromolar range, discrepancies in the ssDNA-binding 
properties of KH1-4 were evident. This included, for example, more than fivefold increase in an affinity for the 
ssDNA interaction in KH3, as well a greater degree of ssDNA specificity of KH1 and KH3 than KH2 and KH4, 
the latter of which showed the lowest degree of nucleotide preferences. These different characteristics correlates 
with previous suggestions of potential diverse roles of each KH motif towards the central nucleotide binding 
function of  FUBP131,35.

Our analyses of potential molecular basis for the dissimilar nucleotide binding properties revealed that a 
subtle change in amino acid composition within the GXXG signature, exemplified by the unique glycine-to-
asparagine substitution in KH3, might not be sufficient as a responsible factor. Based on our structural com-
parison, it is therefore conceivable that dissimilarities in shapes and electrostatic charges of the binding pocket 
due to highly diverse amino acid compositions within α1, the β-sheet core and the variable loop connecting 
β2 and β3 might likely be accountable for different nucleotide-binding characteristics. Changes in amino acids 
in this region responsible for interacting with nucleobase moieties have been proposed previously to strongly 
influence the cavities of the nucleotide binding cleft and in essence intermolecular bonding, which form a 
determining factor for affinities and preferences of nucleotide  partners31,36,37. Such intrinsic properties of KH1-4 
might feasibly be fundamental for determining specificity, potentially necessary for the proposed cooperativity 
and hierarchical  mechanisms6,31. Nevertheless, the presence of four KH motifs in FUBP1 is likely important for 
FUSE interaction with high affinity.

Methods
Protein expression and purification. The truncated FUBP1 single KH domains, KH1, KH2, KH3 
and KH4, the tandem paired proteins, KH1-2, KH2-3 and KH3-4, and the full KH1-4 FUBP1 were subcloned 
into pNIC28-Bsa4. All recombinant proteins harbouring an N-terminal  His6 tag were overexpressed in E. coli 
BL21(DE3)-R3-pRARE2. Cells cultured in TB media were initially grown at 37 °C to an  OD600 of 1.6–1.8, and 
subsequently cooled to 18 °C and at the  OD600 of ~ 2.6–2.8 induced with 0.5 mM IPTG overnight. Harvested 
cells were resuspended in a buffer containing 50 mM HEPES, pH 7.5, 500 mM NaCl, 20 mM imidazole, 5% 
glycerol and 1 mM tris(2-carboxyethyl)phosphine (TCEP), and lysed by sonication. The recombinant proteins 
were initially purified by  Ni2+-affinity chromatography. The  His6 tag was removed by TEV protease treatment, 
and the cleaved proteins were passed through  Ni2+ beads and further purified by size exclusion chromatogra-

Figure 6.  Binding of multi-KH domains and KH1-4 full-length protein to 47-mer FUSE. (A) ITC titrations for 
the interactions between three tandem paired KH domains, including KH1-2, KH2-3 and KH3-4, and 47-mer 
FUSE ssDNA (5′-ATG TAT ATT CCC TCG GGA TTT TTT ATT TTG TGT TAT TCC ACG GCATG-3′). (B) The ITC 
titration for the interaction between KH1-4 FUBP1 and the 47-mer FUSE DNA. (C) Summary of the binding 
constants  (KD) and thermodynamic parameters calculated from the average values of two repeats.
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phy using Superdex s75 column. The purified proteins were stored in 25 mM HEPES, pH 7.5, 150 mM NaCl, 
0.5 mM TCEP. All mutants were generated by PCR-based site-directed mutagenesis, and the mutant protein was 
expressed and purified using the same procedure.

Crystallisation, data collection, and structure determination. The recombinant KH2, KH3 and 
KH4 proteins were concentrated to ~ 10 mg/ml, and crystallized using sitting-drop vapour diffusion method at 
20 °C. The crystals of each KH domain were obtained using different reservoir solutions; i) 2 M ammonium sul-
fate, 5% (v/v) 2-propanol, and 2.5% (v/v) glycerol for KH2, ii) 10% (w/v) PEG 6,000, 10% (v/v) ethylene glycerol, 
0.015 M  ZnCl2 and 0.1 M MES, pH 6.0 for KH3, and iii) 3.1 M sodium formate for KH4. Viable crystals were 
cryoprotected in mother liquor supplemented with 20% ethylene glycol before flash cooled in liquid nitrogen. 
Diffraction data were collected at SLS X06SA and BESSY II. Data were processed with  XDS38 and scaled with 
 aimless39. All structures were initially solved by molecular replacement using  PHASER40 and the structure of 
KH1 (PDB ID: 4lij). Manual model rebuilding was performed using  COOT41 and the structures were refined 
using  REFMAC42. The final models were verified for geometry correctness with  Molprobity43. Data collection 
and refinement statistics are summarized in Supplementary Table S1.

Native PAGE mobility shift assays. The  His6-tag-cleaved KH1, KH2, KH3 and  His6-tagged KH4 recom-
binant proteins at 200 µM in 25 mM HEPES, pH 7.5, 50 mM NaCl and 0.5 mM TCEP were incubated with a five-
fold molar excess of HPSF-purified ssDNA (Eurofins) at 4 °C for 1 h. The mixtures were then mixed with loading 
dye (0.02% bromophenol blue, 5% glycerol, 0.5× TBE) and loaded onto 10% native polyacrylamide gels. Native 
PAGE was performed in 0.5× TBE buffer for KH1, KH2 and KH3 or in 0.5× TAE buffer for KH4 at 80 V for 2 h.

Isothermal titration calorimetry. Isothermal titration calorimetry (ITC) experiments were performed 
using NanoITC instrument (TA Instrument) at 20 °C in the buffer containing 25 mM HEPES, pH7.5, 50 mM 
NaCl and 0.5 mM TCEP. The proteins at 0.5–0.8 mM was titrated into the reaction cell containing ssDNA at 
0.03–0.05 mM. For tandem paired and full KH domains, the proteins at 0.1–0.25 mM was titrated into the reac-
tion cell containing ssDNA at 0.01–0.02 mM in the buffer of 25 mM HEPES, pH7.5, 150 mM NaCl and 0.5 mM 
TCEP. The heat of the protein-ssDNA titrations was corrected for the heat of protein dilution, which was calcu-
lated from the protein-into-buffer titration experiment. The corrected data were fitted to an independent single 
binding site model based on the manufacture protocol, from which thermodynamics parameters (ΔH, TΔS and 
ΔG), equilibrium association and dissociation constants  (Ka and  KD) and stoichiometry (n) were calculated.

Data availability
The coordinates and structure factors of all complexes have been deposited to the protein data bank under acces-
sion codes 6Y2D, 6Y2C and 6Y24.
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