
Abstract

The real-time encryption of pictures is an
important subject for many applications, e.g.
television broadcast stations, network
security, etc. The paper shows how the
previously introduced SCAN encryption
method can be easily implemented using
binary neural network autoassociative
memory.

1 Introduction

For many applications, e.g. pay TV broadcast
stations, cheap real-time encryption of
pictures is an important subject. Here, the
transformation of parallel accessible picture
elements (pels) to a sequential TV signal can
be used to encode it by a special arrangement
of the pel sequence. This corresponds to a
special scan order of the picture. Since we
have for a picture of n ·m pels (n ·m)! scan
orders, an important feature of the encryption
is simplicity. For this kind of problem many
schemes have been proposed, for instance a
method based on the SCAN context free
language for pyramid data structures
[Bour87].

- 1 -

In previous papers, the language has
been mathematically defined [Alex89] and a
parallel implementation has been proposed
[Bour89]. Here we investigate the
implementation by specific proportions of a
neural network model.

2 The SCAN method

Let us shortly review the SCAN methods for
picture encryption. The main idea consists of
deviding the picture into subpictures. Each
subpicture is treated as a picture element
(pel). On the next level, each pel can be
subdevided into smaller pels, and those
again, repeating the devision until the pels
are reduced to pixels. Hereby, every
devision defines a level i of squared
subpictures with n

i
=a

i
 ·a

i
 pels of a certain

size. In figure 1 an example of three levels is
shown with a

1
=2, a

2
=4, a

3
=2.

On each level, we have a certain scan
order for the pels, marked by dotted arrows
in figure 1. If we denote each order by a
symbol L

i
, we achieve for the set of scan

orders a set of symbols, an alphabet {Li} for
the SCAN language. A complete pyramid of
N layers is denoted by the expression
L

1
a

1
#L

2
a

2
#..#L

N
a

N
 with a

i
 being a power of

Implementing the SCAN Language by Neural
Networks

R. Brause
J.W. Goethe-University, Frankfurt, FRG

brause@informatik.uni-frankfurt.de

- 2 -

2.
.
In our example of figure 1 this is denoted

as B2#A4#X2.
The sequential algorithm passes

recursively from the top level of the pyramid
to the bottom and back again, scanning the
pels at each level by the appropriate strategie
L

i
. Thus, the iterative application of a scan

order from one level to the next higher level
generates a certain sequential order of pels,
and finally, of pixels.

In our example of figure 1, level 1 has
n

1
=4 pels (index 0 .. 3), level 2 has 16 pels

(index 0 .. 15) and level 3 has 4 pixels (index
0 .. 3). Since each pel of level 2 has 4 pixels,
the whole picture of level 2 of 16 pels or
4 ·16=64 pixels and, thereby, each pel of level
1 has 64 pixels and the whole picture of level
1 has 4 ·64=256 pixels. The whole array of the
256 indices is generated by succesively
changing the indices of the pels at each level.
This is analog to the mapping of a
multi-dimensional array to a one-dimensional
array structure for storage purposes. Here, the
task is more complex because we have scan
pels of different sizes in different orders on a
2-dimensional image. To map the
corrsponding pixels or pels (blocks of pixels)
properly we scan the image in two different
ways: one in the raster scan order of all
levels on the new picture and one in a
differently defined encryption scan order
order on the old picture.

The sequential transformation itself can be
easily done by several nested FOR..DO loops
for the different levels to generate the new
picture. The main idea of the encryption lies
in the fact that several simple operations are
performed in a nested manner to obtain
complicated results. Instead of simply

incrementing the indices, each new row and
column pel index of the scanned old picture
is a function of the previous level defined by
its scan type. Note that even if all the scan
orders are of the raster type "R", the resulting
pixel scan order is not identical to
sequentially numbering all pixels of the
image in one pass. In figure 2 the principal
algorithm is shown in a pseudocode for our
example of an Ba1#Aa2#Xa3 SCAN code.

Since this ordering is deterministic, a
parallel scheme can be devised by succesively
expanding the scan ordering of pels into a
scan ordering of pixels [Bour89]. Here, the
scan ordering is performed by the parallel
transform of the whole set of specially
ordered pel indices of one level to the relative
pixel index at the next level. At the highest
level, the relative pixel indices are the ones of
the whole picture, and thus are absolute.

3 The neural network model

For a real-time application like the encoding
of TV signals, the index transformation
mechanism must be implemented by a simple,
high-speed module. Principally, this module
must be able to produce a sequence of
arbitrary stored numbers on the input of a
keyword, e.g. "X" or "R". The conventional
solution would provide a high-speed signal
processor working on a RAM. For a
1024 ·1024 (=220) sized picture we will have
to deal with 220! possible encodings. Since
the processor can not store this huge number
of sequences in RAM, it have to be produced
by an PROM-based algorithm which involves
additional overhead and necessary

- 3 -

performance speed of the processor to
produce a sequence with a constant bit rate.
For a picture of 220 pixels and a
non-interleaved refresh rate of 50 Hz this
comes up to 20ms for 106 pixels or 20
nanoseconds per pixel address. Since this in
the order of the picture RAM read cycle
time, the necessity for a cheap,
non-processor based hardware solution is
obvious. This paper proposes a new
approach for this kind of problems, using
binary artificial neural networks as base
address sequencing modules.

3.1 The autoassociative memory

The base mechanism of the sequencer is the
well-known one used in associative
correlation memory, see [Koh84]. Let us
review shortly this model.

Here, the task consists of storing M tupels
(x(1),y(1)) .. (x(M),y(M)) of input patterns
x(t)=(x

1
,..,xn) and desired output patterns

y(t)=(y
1
,..,ym), x

i
,y

i
 ∈ ℜ in such a way that

the output is recalled whenever the input key
pattern is fed into the system.

The correlation associative memory
consists mainly by a matrix W of real-valued
weights (w

ij
) between input lines x

j
 and

output activity lines z
i
. Very often, the

suppression of activity noise is obtained by a
nonlinear output function y

i
=S(z

i
).

The storage is obtained by the
learning rule for the weight matrix after the
t-th presentation of the tupels

 W(t) = W(t-1) + c(t)y(t)x(t)T (3.1)
correlation storage

such that after M presentations the weight

matrix becomes
 M

W = Σ c(t)y(t)x(t)T (3.2)

 t=1

where the transpose of a vector x is denoted
by xT. The term yxTis the outer vector
product, a matrix.

After storing the patterns, the recall
process can take place. If we encode all key
patterns orthogonally (i.e. x(k)Tx(p)=a if k=p,
else zero), on the input of a pattern x(k) the
activity z will become

z = Wx(k) = Σ
t
 c(t)y(t)x(t)Tx(k)

 = c(t) y(k) x(k)T x(k) (3.3)

If we choose appropriate constants
c(t)=[x(t)Tx(t)]-1in eq.(3.1), we will obtain
directly the output pattern y(k) associated to
the input x(k).

The binary thresholded model
This was the base function of the model.
Now, if we have n components in the input,
we can have at most M=n orthogonal base
vectors or input-output tupels. This is not
much. We can increase the number of tupels,
if we consider also tupels x which are not
orthogonal to all the already stored ones.
Certainly, by the linear activity eq.(3.3) all
non-orthogonal components will result in
cross-talk or noise between the output
activity lines. For binary input and output
x

i
,y

i
 ∈{0,1} we can suppress the additional

activity by a suitable threshold s
i

 1 z
i
 > s

iy
i
 = S(z

i
) = { (3.4) 0 z

i
 < s

i

which have to be activity-dependend for

- 4 -

arbitrary input x (see [Bra88]). In case of
|x|=const the noise suppression gets more
easy and we can choose a constant threshold
s
i
=|x|. By the introduction of a threshold the

recall process becomes a classification: a set
of different input patterns is mapped on the
same output.

In the case of binary weights Palm
[Palm80] even showed that in the limit of
sparsely coded tupels the associative
memory has a capacity of 69% of the
ordinary RAM equivalent which is quite
effective. Since each binary weight is
saturated by only one non-zero contribution,
the storage equation (3.2) becomes an OR
relation instead of the sum

w
ij
 = V yi(k)x

j
(k) = max yi(k)x

j
(k) (3.5)

 k k

The sparse coding and the condition
|x|=const can be easily obtained by
1-out-of-d encoders which generate exact
one "1" on one of d lines if a code number of
0..d-1 is presented [Palm84]. Hereby, a
pattern consisting of k densely coded digits,
each one representing a number in the range
0..d-1, is transformed to k ones on k ·d
activity lines. Since the number of binary
lines grow up considerably by this measure,
the step from dense coding to sparse coding
can be done only on the chip level. Thus, the
kernel memory with its binary weights will
be located on chip accompanied by the
encoders. This design is shown in figure 3
with additional feedback lines, explained in
the next section.

3.2 Sequence generation by
autoassociative memory

The associative memory presented so far can
also be used to obtain a a sequence of
patterns synchronized by a clock cycle. For
this, the input pattern x(0)=(key, y(0)) has
been associated to the output pattern y(1). At
the clock cycle, the input x(0) produces the
output y(1). Now, this is feed back, so the
next input pattern will be x(1)=(key, y(1)). If
we have already associated and stored this to
y(2), the output will become y(2) at the next
clock cycle and so on. We can close the
sequence and make a pattern cycle by
defining y(0)=(0..0), because the last pattern
y(M) will produce no output, resulting in
y(M+1)=(0..0)=y(0).

We see that it sufficies to store tuples of
the form (key+y(t),y(t+1)) for all t to generate
a sequence by a feedback associate memory.
This has been already proposed by Kohonen
[Koh84].

4 The encryption system

Now we can easily implement the encoding
system discribed in section 2 by the
mechanism introduced in section 3.

For a better understanding of the
underlying mechanism let us use a simple
example, e.g. a B2#R2 scheme. In figure 4
the four pels of the B2 scheme are scanned in
the order {0,1,3,2}, denoted in the right
upper corner of each pel, whereas within
each pel the four pixels are scanned in the
order {0,1,2,3}, denoted in the right hand
lower corner of each pixel. The resulting

- 5 -

pixel index and its corresponding binary
equivalent is shown in the table on the right
hand side of the figure. Note that the four
bits of the pixel addresses are devided into
two groups: two high bits for the rows and
two low bits for the columns. This can be
generalized: since the number of pixels is
nxn and n is a power of 2, the whole binary
pixel address is a multiple of 2 in each row
and we have a multiple of 2 of rows in the
whole picture. Since we have n lines, we
have log

2
(n) bits for the rows (the high bits)

and log
2
(n) bits for the columns (the low

bits) to form the log
2
(nxn)=2log

2
(n) address

bits for all image pixels. Each row (and each
column) is devided into a

1
 segments. With a

1

also a power of 2, the highest log
2
(a

1
) bits

will denote the address bits of the first scan
level, whereas the next lower log

2
(a

2
) bits

denote the bits of the second scan level, and
so on.

In figure 5 an overview is shown over the
whole system design for the example of
figure 1. The system consists of three stages,
one for each encoding level. Since we
choose the number n

i
=a

i
2 of elements at each

level to be a power of two, each pixel
address can consist of three distinguished
parts. Each part is generated in parallel by
the binary output pattern of each stage.
Please note that the correct sequential pixel
address has to be obtained by regrouping the
column and row parts of the output into the
two domains in order to form the pixel
address.
 As the clock cycle reference and
synchronization signal the pixel clock is
used. This is one scan step, corresponding to
the innermost loop of the sequential

algorithm shown in figure 2 . All outer loops
are generated by the subsequent binary
devider stages which generate one pulse after
a loop has finished, resetting the associative
memory by activating the appropriate scan
pattern scheme number and triggering the
next memory step of the next upper level.

Naturally, the necessary binary and
analog circuits for sending and receiving the
encoded signal and loading or activating the
scan pattern numbers are not of interest and
therefore not shown here.

5 Simulations

For a simulation of the parallel, binary
hardware operations we can use the parallel
hardware build in ordinary CPU’s. Since the
binary operations of eq. (3.5) can be
implemented by logical operations, we have
chosen a highly hardware independent, but
very efficient program implementation in the
C language. In figure 6, an implementation
kernel of the readout operation of the binary
associative memory is shown which breaks
all binary vectors of input, output and
storage matrix rows into the length of
machine words. All bits in each word are
processed in parallel by the CPU. Since the
basic operations are very simple, they can be
held in the instruction and data caches
without problems.

For the simulation, a real picture has
been encoded and decoded in the described
sequential manner. In figure 7, the original
400x400 picture is shown. In figure 8, for the
partially encrypted picture, coded by the

- 6 -

B2 scheme for the high level pels, is shown.
We see that the first scan scheme just order
the picture on the level of whole pixel
blocks. The next figure 9 shows how each
block is mixed up by the next level, in this
case A5 defined by the order {0, 1, 6, 5, 2, 7,
12, 11, 10, 3, 8, 13, 18, 17, 16, 15, 4, 9, 14,
19, 24, 23, 22, 21, 20}. Finally, figure 10
shows the full B2#A5#I5#R8 encrypted
picture. Note that in this case also a
non-standard picture with a sidelength not
equal to a power of 2 was shown to be
encrypted; this is not possible in all cases.

6 Discussion

This paper showed how the SCAN encoding
language can be efficiently implemented by
ordinary feed-back associative neural
networks.

Furthermore, simulations show that the
binary version of these sequence-generating
modules can also be implemented by
conventional computer hardware using
boolean operations. These short programs
can be held in the cache buffer, allowing
very fast operations in ordinary RISC
computers.

Nevertheless, for real time operations this
is still too slow and special VLSI
implementations should be considered. They
will represent the core of a more complex
system which sends and receives the
encryption/decryption keys along with the
pixel stream. Since the associations are
evoked in only one clock cycle, the keys can
rapidly change (for instance during the
synchronization time period of ordinary TV

frames) without causing any delay in the
encoding/decoding process. Thus, the
corresponding decryption cards are very
flexible and can not be copied by
conventional reverse engineering approaches
without the special neural network chips
which practically prohibits pay TV decoder
piracy .

References

[Alex89] C. Alexopoulos: A mathematical
modeling of the SCAN language; PhD thesis,
University of Patras (1989)

[Bour89] N. Bourbakis, C. C. Alexopoulos,
A. Klinger: A parallel implementation of the
SCAN language; Comp. Lang., Vol. 14, No.4,
pp.239-254, 1989

[Bour87] N. Bourbakis, C. Alexopoulos:
Picture data encryption using SCAN patterns;
Georg-Mason University, Fairfax, Report
GMU-ECE-TR-1987.

[Bra88] R. Brause: Fault Tolerance in
Non-linear Networks;
Informatik Fachberichte Vol. 188, pp.
412-433, Springer Verlag 1988

[Koh84] T. Kohonen: Self-Organisation and
Associative Memory;
Springer Verlag 1984

[Palm80] G. Palm: On Associative Memory;
Biol. Cybernetics, Vol.36, pp. 19-31 (1980)

[Palm84] G. Palm: Local synaptic
modification can lead to organized
connectivity patterns in associative memory;
in: E. Frehland (eds.) Synergetics: from
microscopic to macroscopic order, Springer
Verlag 1984

- 7 -

 InIndex:=0; OutIndex:=0;
 FOR level1:=0 TO a1*a1-1 DO
 ppp1:=n DIV a1; (* pixel per pel level1 *)
 InAbsIndex1:=B[level1]; (*define B SCAN order *)
 InPixRow1 :=(InAbsIndex1 DIV a1)*ppp1;
 InPixCol1 :=(InAbsIndex1 MOD a1)*ppp1;
 OutAbsIndex1:=level1;
 OutPixRow1:=(OutAbsIndex1 DIV a1)*ppp1;
 OutPixCol1:=(OutAbsIndex1 MOD a1)*ppp1;

 FOR level2:=0 TO a2*a2-1 DO
 ppp2:=n DIV (a2*a1); (* pixel per pel level2 *)
 InAbsIndex2:=A[level2]; (*define A SCAN order *)
 InPixRow2 :=(InAbsIndex2 DIV a2)*ppp2;
 InPixCol2 :=(InAbsIndex2 MOD a2)*ppp2;
 OutAbsIndex2:=level2;
 OutPixRow2:=(OutAbsIndex2 DIV a2)*ppp2;
 OutPixCol2:=(OutAbsIndex2 MOD a2)*ppp2;

 FOR level3:=0 TO a3*a3-1 DO
 ppp3:=n DIV (a3*a2*a1); (* pixel per pel level3 *)
 InAbsIndex3:=X[level3]; (*define X SCAN order *)
 InPixRow3 :=(InAbsIndex3 DIV a3)*ppp3;
 InPixCol3 :=(InAbsIndex3 MOD a3)*ppp3;
 OutAbsIndex3:=level3;
 OutPixRow3:=(OutAbsIndex3 DIV a3)*ppp3;
 OutPixCol3:=(OutAbsIndex3 MOD a3)*ppp3;

 InPixRow := InPixRow1+InPixRow2+InPixRow3;
 InPixCol := InPixCol1+InPixCol2+InPixCol3;
 InIndex := InPixRow*n + InPixCol;

 OutPixRow := OutPixRow1+OutPixRow2+OutPixRow3;
 OutPixCol := OutPixCol1+OutPixCol2+OutPixCol3;
 OutIndex := OutPixRow*n + OutPixCol;

 NewPicture[OutIndex] := OldPicture[InIndex];

 END; (* level3 *)
 END; (* level2 *)
 END; (*level1 *)

Fig.2 The loop structure for sequential SCAN encoding

"B" scan order

"A" scan order

"X" scan order

Fig.1 A scan pyramid with different pel sizes, denoted by B2#A4#X2

Level 1

Level 2

Level 3

1 pel=36 pixels

1 pel=4 pixels

1 pel=1pixel

0 1

2 3

0 1 2 3

4 5 6 7

8

0 1

2 3

Fig.3 The binary autoassociative memory layout

 • • •

 •
 •
 •

 •
 •
 •

encoding key
index sequence

x y

sparsely
coded

memory
binary

associative memory
clock cycle

9 10 11

12 13 14 15

- 8 -

 rows colums rows colums rows colums

 High-order address bits Middle-order address bits Low order address bits

 B R pix index row col bits
 0 0 0 0 0 0 0
 0 1 1 0 0 0 1
 0 2 4 0 1 0 0
 0 3 5 0 1 0 1
 1 0 2 0 0 1 0
 1 1 3 0 0 1 1
 1 2 6 0 1 1 0
 1 3 7 0 1 1 1
 2 0 10 1 0 1 0
 2 1 11 1 0 1 1
 2 2 14 1 1 1 0
 2 3 15 1 1 1 1
 3 0 8 1 0 0 0
 3 1 9 1 0 0 1
 3 2 12 1 1 0 0
 3 3 13 1 1 0 1

Fig.4 The B2#R2 SCAN sequential pixel lookup-table

Fig.5 The neural network encoding system

encode/decode
pixel clock

B A X

Autoass.

memory

Autoass.

memory

Autoass.

memory

div n1 div n2 div n3

level 1 level 2 level 3

- 9 -

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

0 1

3 2

DEFINE n 64 /* number of binary input lines */
DEFINE m 64 /* number of binary output lines */
int WordSize = sizeof(long int)*8;
int NumOfInputWords = n/WordSize -1;
int NumOfOutputWords = m/WordSize -1;
int theta = WordSize;
long int OutMaskInit = 1;

main () { /* initialization part */
OutMaskInit <<= WordSize; /* set highest bit of output mask */

}

readout (X,Y,M)
register long int *X,*Y,*M;
{

register long int CorPat, OutMask;
register short int cnt, sum, i, ii, j;

for (i=NumOfOutputWords; i>=0; --i) { /* all output words */
 Y = 0; / set output word bits to 0 */
 OutMask = OutMaskInit; /* start with highest bit */
 for (ii=WordSize-1; ii>=0; --ii){ /* all bits of an output word */

sum = 0;
for (j=NumOfInputWords;j>=0;--j){ /* all input words */
 CorPat = (*M)&(*X); /* memory Mij AND input Xj */
 for (cnt=WordSize-1;cnt>=0;--cnt){/* count # of 1’s */

if (CorPat<0) sum++; /* test if sign bit set */
CorPat <<= 1; /* shift for next data bit */

 }
 X++; /* next word of input */
 M++; /* next word of memory row */

 }
IF (sum >= theta) *Y |= OutMask; /* set bit in output */
OutMask >>= 1; /* select next output bit */

 } /* next output bit */
 Y++; /* next word of output */
}

} /* end readout */

Fig. 6 An efficient binary readout associative memory
emulation procedure in the "C" language

- 10 -

Fig. 7 The original 400x400 picture

Fig. 8 The picture, scrambled by B2

- 11 -

Fig. 9 The picture, scrambled by B2#A5

- 12 -

Fig. 10 The picture, scrambled by B2#A5#I5#R8

