
Abstract

The real-time encryption of pictures is an 
important subject for many applications, e.g. 
television broadcast stations, network 
security, etc. The paper shows how the 
previously introduced SCAN encryption 
method can be easily implemented using 
binary neural network autoassociative 
memory.

1 Introduction

For many applications, e.g. pay TV broadcast 
stations, cheap real-time encryption of 
pictures is an important subject. Here, the 
transformation of parallel accessible picture 
elements (pels) to a sequential TV signal can 
be used to encode it by a special arrangement 
of the pel sequence. This corresponds to a 
special scan order of the picture. Since we 
have for a picture of n ·m pels (n ·m)! scan 
orders, an important feature of the encryption 
is simplicity.  For this kind of problem many 
schemes have been proposed, for instance a 
method based on the SCAN context free 
language for pyramid data structures 
[Bour87]. 
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In previous papers, the language has 
been mathematically defined [Alex89] and a 
parallel implementation has been proposed 
[Bour89]. Here we investigate the 
implementation by specific proportions of a 
neural network model.

2 The SCAN method

Let us shortly review the SCAN methods for 
picture encryption. The main idea consists of 
deviding the picture into subpictures. Each 
subpicture is treated as a picture element 
(pel). On the next level, each pel can be 
subdevided into smaller pels, and those 
again, repeating the devision until the pels 
are reduced to pixels. Hereby, every 
devision defines a level i of squared 
subpictures with n

i
=a

i
 ·a

i
 pels of a certain 

size. In figure 1 an example of three levels is 
shown with a

1
=2, a

2
=4, a

3
=2.

On each level, we have a certain scan 
order for the pels, marked by dotted arrows 
in figure 1. If we denote each order by a 
symbol L

i
, we achieve for the set of scan 

orders a set of symbols, an alphabet {Li} for 
the SCAN language. A complete pyramid of 
N layers is denoted by the expression 
L

1
a

1
#L

2
a

2
#..#L

N
a

N
 with a

i
 being a power of 
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2.
.
In our example of figure 1 this is denoted 

as B2#A4#X2.
The sequential algorithm passes 

recursively from the top level of the pyramid 
to the bottom and back again, scanning the 
pels at each level by the appropriate strategie 
L

i
. Thus, the iterative application of a scan 

order from one level to the next higher level 
generates a certain sequential order of pels, 
and finally, of pixels.

In our example of figure 1, level 1 has 
n

1
=4 pels (index 0 .. 3), level 2 has 16 pels 

(index 0 .. 15) and level 3 has 4 pixels (index 
0 .. 3). Since each pel of level 2 has 4 pixels, 
the whole picture of level 2 of 16 pels or 
4 ·16=64 pixels and, thereby, each pel of level 
1 has 64 pixels and the whole picture of level 
1 has 4 ·64=256 pixels. The whole array of the 
256 indices is generated by succesively 
changing the indices of the pels at each level. 
This is analog to the mapping of a 
multi-dimensional array to a one-dimensional 
array structure for storage purposes. Here, the 
task is more complex because we have scan 
pels of different sizes in different orders on a 
2-dimensional image. To map the 
corrsponding pixels or pels (blocks of pixels) 
properly we scan the image in two different 
ways: one in the raster scan order of all 
levels on the new picture and one in a 
differently defined encryption scan order 
order on the old picture. 

The sequential transformation itself can be 
easily done by several nested FOR..DO loops 
for the different levels to generate the new 
picture. The main idea of the encryption lies 
in the fact that several simple operations are 
performed in a nested manner to obtain 
complicated results. Instead of simply 

incrementing the indices, each new row and 
column pel index of the scanned old picture 
is a function of the previous level defined by 
its scan type. Note that even if all the scan 
orders are of the raster type "R", the resulting 
pixel scan order is not identical to 
sequentially numbering all pixels of the 
image in one pass. In figure 2 the principal 
algorithm is shown in a pseudocode for our 
example of an Ba1#Aa2#Xa3 SCAN code.

Since this ordering is deterministic, a 
parallel scheme can be devised by succesively 
expanding the scan ordering of pels into a 
scan ordering of pixels [Bour89]. Here, the 
scan ordering is performed by the parallel 
transform of the whole set of specially 
ordered pel indices of one level to the relative 
pixel index at the next level. At the highest 
level, the relative pixel indices are the ones of 
the whole picture, and thus are absolute.

3 The neural network model

For a real-time application like the encoding 
of TV signals, the index transformation 
mechanism must be implemented by a simple, 
high-speed module. Principally, this module 
must be able to produce a sequence of 
arbitrary stored numbers on the input of a 
keyword, e.g. "X" or "R". The conventional 
solution would provide a high-speed signal 
processor working on a RAM. For a 
1024 ·1024 (=220) sized picture we will have 
to deal with 220! possible encodings. Since 
the processor can not store this huge number 
of sequences in RAM, it have to be produced 
by an PROM-based algorithm which involves 
additional overhead and necessary 
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performance speed of the processor to 
produce a sequence with a constant bit rate. 
For a picture of 220 pixels and a 
non-interleaved refresh rate of 50 Hz this 
comes up to 20ms for 106 pixels or 20 
nanoseconds per pixel address. Since this in 
the order of the picture RAM read cycle 
time, the necessity for a cheap, 
non-processor based hardware solution is 
obvious. This paper proposes a new 
approach for this kind of problems, using 
binary artificial neural networks as base 
address sequencing modules.

3.1 The autoassociative memory

The base mechanism of the sequencer is the 
well-known one used in associative 
correlation memory, see [Koh84]. Let us 
review shortly this model. 

Here, the task consists of storing M tupels 
(x(1),y(1)) .. (x(M),y(M)) of input patterns 
x(t)=(x

1
,..,xn) and desired output patterns 

y(t)=(y
1
,..,ym), x

i
,y

i
 ∈ ℜ in such a way that 

the output is recalled whenever the input key 
pattern is fed into the system.

The correlation associative memory 
consists mainly by a matrix W of real-valued 
weights (w

ij
) between input lines x

j
 and 

output activity lines z
i
. Very often, the 

suppression of activity noise is obtained by a 
nonlinear output function y

i
=S(z

i
).

The storage is obtained by the 
learning rule for the weight matrix after the 
t-th presentation of the tupels

    W(t) = W(t-1) + c(t)y(t)x(t)T  (3.1) 
correlation storage 

such that after M presentations the weight 

matrix becomes
         M

W = Σ c(t)y(t)x(t)T (3.2)

        t=1

where the transpose of a vector x is denoted 
by xT. The term yxTis the outer vector 
product, a matrix. 

After storing the patterns, the recall 
process can take place. If we encode all key 
patterns orthogonally (i.e. x(k)Tx(p)=a if k=p, 
else zero), on the input of a pattern x(k) the 
activity z will become

z = Wx(k) = Σ
t
 c(t)y(t)x(t)Tx(k)  

   =  c(t) y(k) x(k)T x(k) (3.3)

If we choose appropriate constants 
c(t)=[x(t)Tx(t)]-1in eq.(3.1), we will obtain 
directly the output pattern y(k) associated to 
the input x(k).

The binary thresholded model
This was the base function of the model. 
Now, if we have n components in the input, 
we can have at most M=n orthogonal base 
vectors or input-output tupels. This is not 
much. We can increase the number of tupels, 
if we consider also tupels x which are not 
orthogonal to all the already stored ones. 
Certainly, by the linear activity eq.(3.3) all 
non-orthogonal components will result in 
cross-talk or noise between the output 
activity lines. For binary input and output 
x

i
,y

i
 ∈{0,1} we can suppress the additional 

activity by a suitable threshold s
i
 

      1     z
i
 > s

iy
i
 = S(z

i
) = {    (3.4)      0     z

i
 < s

i

which have to be activity-dependend for 
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arbitrary input x (see [Bra88]). In case of 
|x|=const the noise suppression gets more 
easy and we can choose a constant threshold 
s
i
=|x|. By the introduction of a threshold the 

recall process becomes a classification: a set 
of different input patterns is mapped on the 
same output.

In the case of binary weights Palm 
[Palm80] even showed that in the limit of 
sparsely coded tupels the associative 
memory has a capacity of 69% of the 
ordinary RAM equivalent which is quite 
effective. Since each binary weight is 
saturated by only one non-zero contribution, 
the storage equation (3.2) becomes an OR 
relation instead of the sum

w
ij
 = V yi(k)x

j
(k) = max yi(k)x

j
(k) (3.5)

                k        k

The sparse coding and the condition 
|x|=const can be easily obtained by 
1-out-of-d encoders which generate exact 
one "1" on one of d lines if a code number of 
0..d-1 is presented [Palm84]. Hereby, a 
pattern consisting of k densely coded digits, 
each one representing a number in the range 
0..d-1, is transformed to k ones on k ·d 
activity lines. Since the number of binary 
lines grow up considerably by this measure, 
the step from dense coding to sparse coding 
can be done only on the chip level. Thus, the 
kernel memory with its binary weights will 
be located on chip accompanied by the 
encoders. This design is shown in figure 3 
with additional feedback lines, explained in 
the next section.  

3.2 Sequence generation by
autoassociative memory

The associative memory presented so far can 
also be used to obtain a a sequence of 
patterns synchronized by a clock cycle. For 
this, the input pattern x(0)=(key, y(0)) has 
been associated to the output pattern y(1). At 
the clock cycle, the input x(0) produces the 
output y(1). Now, this is feed back, so the 
next input pattern will be x(1)=(key, y(1)). If 
we have already associated and stored this to 
y(2), the output will become  y(2) at the next 
clock cycle and so on. We can close the 
sequence and make a pattern cycle by 
defining y(0)=(0..0), because the last pattern 
y(M) will produce no output, resulting in 
y(M+1)=(0..0)=y(0).

We see that it sufficies to store tuples of 
the form (key+y(t),y(t+1)) for all t  to generate 
a sequence by a feedback associate memory. 
This has been already proposed by Kohonen 
[Koh84]. 

4 The encryption system

Now we can easily implement the encoding 
system discribed in section 2 by the 
mechanism introduced in section 3. 

For a better understanding of the 
underlying mechanism let us use a simple 
example, e.g. a B2#R2 scheme. In figure 4 
the four pels of the B2 scheme are scanned in 
the order {0,1,3,2}, denoted in the right 
upper corner of each pel, whereas within 
each pel the four pixels are scanned in the 
order {0,1,2,3}, denoted in the right hand 
lower corner of each pixel. The resulting 
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pixel index and its corresponding binary 
equivalent is shown in the table on the right 
hand side of the figure. Note that the four 
bits of the pixel addresses are devided into 
two groups: two high bits for the rows and 
two low bits for the columns. This can be 
generalized: since the number of pixels is 
nxn and n is a power of 2, the whole binary 
pixel address is a multiple of 2 in each row 
and we have a multiple of 2 of rows in the 
whole picture. Since we have n lines, we 
have log

2
(n) bits for the rows (the high bits) 

and log
2
(n) bits for the columns (the low 

bits) to form the log
2
(nxn)=2log

2
(n) address 

bits for all image pixels. Each row (and each 
column) is devided into a

1
 segments. With a

1
 

also a power of 2, the highest log
2
(a

1
) bits 

will denote the address bits of the first scan 
level, whereas the next lower log

2
(a

2
) bits 

denote the bits of the second scan level, and 
so on.

In figure 5 an overview is shown over the 
whole system design for the example of 
figure 1. The system consists of three stages, 
one for each encoding level. Since we 
choose the number n

i
=a

i
2 of elements at each 

level to be a power of two, each pixel 
address can consist of three distinguished 
parts. Each part is generated in parallel by 
the binary output pattern of each stage.  
Please note that the correct sequential pixel 
address has to be obtained by regrouping the 
column and row parts of the output into the 
two domains in order to form the pixel 
address.
 As the clock cycle reference and 
synchronization signal the pixel clock is 
used. This is one scan step, corresponding to 
the innermost loop of the sequential 

algorithm shown in figure 2 . All outer loops 
are generated by the subsequent binary 
devider stages which generate one pulse after 
a loop has finished, resetting the associative 
memory by activating the appropriate scan 
pattern scheme number and triggering the 
next memory step of the next upper level. 

Naturally, the necessary binary and 
analog circuits for sending and receiving the 
encoded signal and loading or activating the 
scan pattern numbers are not of interest and 
therefore not shown here.

5 Simulations

For a simulation of the parallel, binary 
hardware operations we can use the parallel 
hardware build in ordinary CPU’s. Since the 
binary operations of eq. (3.5) can be 
implemented by logical operations, we have 
chosen a highly hardware independent, but 
very efficient program implementation in the 
C language. In figure 6, an implementation 
kernel of the readout operation of the binary 
associative memory is shown which breaks 
all binary vectors of input, output and 
storage matrix rows into the length of 
machine words. All bits in each word are 
processed in parallel by the CPU. Since the 
basic operations are very simple, they can be 
held in the instruction  and data caches 
without problems.

For the simulation, a real picture has 
been encoded and decoded in the described 
sequential manner. In figure 7, the original 
400x400 picture is shown. In figure 8, for the 
partially encrypted picture, coded by the 
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B2 scheme for the high level pels, is shown. 
We see that the first scan scheme just order 
the picture on the level of whole pixel 
blocks. The next figure 9 shows how each 
block is mixed up by the next level, in this 
case A5 defined by the order {0, 1, 6, 5, 2, 7, 
12, 11, 10, 3, 8, 13, 18, 17, 16, 15, 4, 9, 14, 
19, 24, 23, 22, 21, 20}. Finally, figure 10 
shows the full B2#A5#I5#R8 encrypted 
picture. Note that in this case also a 
non-standard picture with a sidelength not 
equal to a power of 2 was shown to be 
encrypted; this is not possible in all cases. 

6 Discussion

This paper showed how the SCAN encoding 
language can be efficiently implemented by 
ordinary feed-back associative neural 
networks. 

Furthermore, simulations show that the 
binary version of these sequence-generating 
modules can also be implemented by 
conventional computer hardware using 
boolean operations. These short programs 
can be held in the cache buffer, allowing 
very fast operations in ordinary RISC 
computers. 

Nevertheless, for real time operations this 
is still too slow and special VLSI 
implementations should be considered. They 
will represent the core of a more complex 
system which sends and receives the 
encryption/decryption keys along with the 
pixel stream. Since the associations are 
evoked in only one clock cycle, the keys can 
rapidly change (for instance during the 
synchronization time period of ordinary TV 

frames) without causing any delay in the 
encoding/decoding process. Thus, the 
corresponding decryption cards are very 
flexible and can not be copied by 
conventional reverse engineering approaches 
without the special neural network chips 
which practically prohibits pay TV decoder 
piracy .
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  InIndex:=0; OutIndex:=0; 
  FOR level1:=0 TO a1*a1-1 DO 
     ppp1:=n DIV a1;                (* pixel per pel level1 *)
     InAbsIndex1:=B[level1]; (*define B SCAN order *)
     InPixRow1 :=(InAbsIndex1 DIV a1)*ppp1; 
     InPixCol1 :=(InAbsIndex1 MOD a1)*ppp1;
     OutAbsIndex1:=level1;
     OutPixRow1:=(OutAbsIndex1 DIV a1)*ppp1; 
     OutPixCol1:=(OutAbsIndex1 MOD a1)*ppp1;

     FOR level2:=0 TO a2*a2-1 DO
         ppp2:=n DIV (a2*a1);     (* pixel per pel level2 *)
         InAbsIndex2:=A[level2]; (*define A SCAN order *)
         InPixRow2 :=(InAbsIndex2 DIV a2)*ppp2;
         InPixCol2 :=(InAbsIndex2 MOD a2)*ppp2;
         OutAbsIndex2:=level2;
         OutPixRow2:=(OutAbsIndex2 DIV a2)*ppp2;
         OutPixCol2:=(OutAbsIndex2 MOD a2)*ppp2;

         FOR level3:=0 TO a3*a3-1 DO
           ppp3:=n DIV (a3*a2*a1);  (* pixel per pel level3 *)
           InAbsIndex3:=X[level3];   (*define X SCAN order *)
           InPixRow3 :=(InAbsIndex3 DIV a3)*ppp3;
           InPixCol3 :=(InAbsIndex3 MOD a3)*ppp3;
           OutAbsIndex3:=level3;
           OutPixRow3:=(OutAbsIndex3 DIV a3)*ppp3;
           OutPixCol3:=(OutAbsIndex3 MOD a3)*ppp3;
  
             InPixRow := InPixRow1+InPixRow2+InPixRow3;
             InPixCol := InPixCol1+InPixCol2+InPixCol3;
             InIndex  := InPixRow*n + InPixCol;

             OutPixRow := OutPixRow1+OutPixRow2+OutPixRow3;
             OutPixCol := OutPixCol1+OutPixCol2+OutPixCol3;
             OutIndex  := OutPixRow*n + OutPixCol;

             NewPicture[OutIndex] := OldPicture[InIndex]; 

         END; (* level3 *)
     END; (* level2 *)
  END; (*level1 *)

Fig.2 The loop structure for sequential SCAN encoding
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Fig.1 A scan pyramid with different pel sizes, denoted by B2#A4#X2
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Fig.3 The binary autoassociative memory layout 
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       rows           colums                     rows                      colums                      rows                      colums

   High-order address bits     Middle-order address bits Low order address bits

    B    R     pix index  row    col  bits
    0     0            0         0  0    0  0
    0     1            1         0  0    0  1
    0     2            4         0  1    0  0
    0     3            5         0  1    0  1
    1     0            2         0  0    1  0
    1     1            3         0  0    1  1
    1     2            6         0  1    1  0
    1     3            7         0  1    1  1
    2     0           10        1  0    1  0
    2     1           11        1  0    1  1
    2     2           14        1  1    1  0
    2     3           15        1  1    1  1
    3     0            8         1  0    0  0
    3     1            9         1  0    0  1
    3     2           12        1  1    0  0
    3     3           13        1  1    0  1

Fig.4 The B2#R2 SCAN sequential pixel lookup-table

Fig.5 The neural network encoding system
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DEFINE n 64 /* number of binary input lines */
DEFINE m 64 /* number of binary output lines */
int WordSize = sizeof(long int)*8; 
int NumOfInputWords  = n/WordSize -1;
int NumOfOutputWords = m/WordSize -1;
int theta = WordSize;
long int OutMaskInit = 1; 

main () { /* initialization part */
OutMaskInit <<= WordSize; /* set highest bit of output mask */

}

readout (X,Y,M)
register long int *X,*Y,*M; 
{

register long int CorPat, OutMask; 
register short int cnt, sum, i, ii, j;

for (i=NumOfOutputWords; i>=0; --i) { /* all output words */
    *Y = 0; /* set output word bits to 0 */
    OutMask = OutMaskInit; /* start with highest bit */
    for (ii=WordSize-1; ii>=0; --ii){ /* all bits of an output word */

sum = 0;
for (j=NumOfInputWords;j>=0;--j){ /* all input words */
    CorPat = (*M)&(*X); /* memory Mij AND input Xj */
    for (cnt=WordSize-1;cnt>=0;--cnt){/* count # of 1’s */

if (CorPat<0) sum++; /* test if sign bit set */
CorPat <<= 1; /* shift for next data bit  */

    }
    X++; /* next word of input */
    M++; /* next word of memory row */     

     }
IF (sum >= theta) *Y |= OutMask; /* set bit in output */
OutMask >>= 1; /* select next output bit */

    } /* next output bit */
    Y++; /* next word of output */
}

} /* end readout */

Fig. 6    An efficient binary readout associative memory 
emulation procedure in the "C" language
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Fig. 7    The original 400x400 picture 

Fig. 8    The picture, scrambled by B2 
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Fig. 9   The picture, scrambled by B2#A5
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Fig. 10    The picture, scrambled by B2#A5#I5#R8


