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“Diceva che gli spiriti esistevano, ma non nei palazzi, nei vicoli e vicino alle porte antiche del

Vasto. Esistevano nelle orecchie delle persone, negli occhi quando gli occhi guardavano dentro e

non fuori, nella voce appena si comincia a parlare, nella testa quando si pensa, perché le parole

ma anche le immagini sono zeppe di fantasmi”

E. F.
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Zusammenfassung

Unser Geist hat die Aufgabe, die physische und soziale Welt, in der wir uns befinden, zu

repräsentieren, damit wir effizient mit ihr interagieren können. Dies führt zu einer ständigen und

dynamischen Interaktion zwischen Geist und Welt, die ein Gleichgewicht herstellt, wenn die

Repräsentationen gleichzeitig genau sind in Bezug auf das, was die Welt unserem Organismus

mitteilt, aber auch vereinbar mit der Funktionsweise unseres Geistes.

Ein paradigmatisches Beispiel für diese Interaktion ist die Wahrnehmung, die die mentale

Funktion darstellt, die kontingente Aspekte der Welt aus dem, was unsere Sinne erfassen,

abbildet. Die vorherrschende philosophische Sichtweise in der Kognitionswissenschaft ist, dass

unsere Wahrnehmungszustände Repräsentationen der Welt sind und keinen direkten Zugang zu

dieser Welt darstellen. Diese repräsentativen Wahrnehmungszustände haben daher einen Inhalt,

nämlich die Aspekte der Welt, die sie repräsentieren und die die Wahrnehmung durch die

Stimulierung unserer Sinnesorgane auslösen.

Wahrnehmungsrepräsentationen werden mit Hilfe von Informationen aus dem

sensorischen System aufgebaut, d. h. Bottom-up-Informationen, sie werden aber auch durch

zuvor erworbene Informationen integriert, d. h. Top-down-Informationen, so dass die

Wahrnehmung mit dem Gedächtnis, aber auch mit der Sprache und anderen mentalen

Funktionen interagiert. Man geht davon aus, dass eine solche Organisation einen allgemeinen

Mechanismus unseres Geistes/Gehirns widerspiegelt, der darin besteht, Informationen zu

erwerben und zu nutzen, um effiziente Vorhersagen für die Zukunft zu treffen, wobei ältere

Informationen kontinuierlich durch aktuelle Informationen aktualisiert werden.

Diese vorausschauende Verarbeitung funktioniert, weil die Welt nicht zufällig ist, sondern

eine regelmäßige Struktur aufweist, aus der sich zuverlässige Erwartungen ableiten lassen. Ein

Weg, den unser Verstand nutzt, um diese Vorhersagen zu treffen, ist die Anpassung an die

Struktur der Welt auf implizite, automatische und unbewusste Weise, ein Prozess, der als

implizites statistisches Lernen (ISL) bezeichnet wird. ISL ist ein Lernprozess, der kein Bewusstsein

erfordert und zufällig und spontan abläuft, wenn wir statistischen Regelmäßigkeiten in der Welt

ausgesetzt sind. Dies geschieht beim Erlernen einer Sprache in der frühen Kindheit und

ermöglicht es uns, implizit auf die phonologische Struktur von Sprache zu reagieren oder

Sprachmuster mit Objekten und Ereignissen zu assoziieren, um die Wortbedeutung zu lernen.
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Ein spezieller Fall von ISL ist das Erlernen der räumlichen Konfiguration in der visuellen

Welt, das wir auf abstrakte Anordnungen von Gegenständen anwenden, aber vor allem auch auf

natürlichere Umgebungen wie die visuellen Szenen, in die wir im Alltag eintauchen. Das Wissen,

das wir uns über die Struktur von visuellen Szenen aneignen, wird als "Szenengrammatik"

bezeichnet, weil es uns über das Vorhandensein und die Position von Objekten auf ähnliche

Weise informiert wie die sprachliche Grammatik über das Vorhandensein und die Position von

Wörtern. Wir erwerben also implizit eine Semantik von Szenen, indem wir lernen, welche Objekte

zu einer bestimmten Szene gehören, und wir erwerben eine Syntax von Szenen, indem wir

lernen, wo Objekte innerhalb einer bestimmten Szene auf konsistente Weise positioniert sind.

Neuere Entwicklungen haben vorgeschlagen, dass das Wissen über die Szenengrammatik

in einem hierarchischen System organisiert sein könnte: Die Objekte sind in der Szene

angeordnet, die den allgemeineren Kontext bietet, aber innerhalb einer Szene können wir

verschiedene räumliche und funktionale Gruppen von Objekten identifizieren, die als "Phrasen"

bezeichnet werden und eine zweite Kontextebene bieten; innerhalb jeder Phrase haben die

Objekte dann einen unterschiedlichen Status, wobei in der Regel ein Objekt ("Ankerobjekt") eine

starke Vorhersage darüber bietet, wo und welches die anderen Objekte innerhalb der Phrase sind

("lokale Objekte"). Diese weiteren Aspekte der Organisation von Objekten in Szenen sind jedoch

noch wenig bekannt.

Ein weiteres Problem betrifft die Art und Weise, wie wir die Struktur von Szenen messen,

um die Organisation der visuellen Welt mit der Organisation in unserem Kopf zu vergleichen. Um

zu entscheiden, ob ein Objekt in einer bestimmten Szene vorkommt oder nicht, und ob es an

einer bestimmten Position innerhalb einer Szene vorkommt oder nicht, stützen sich die Forscher

in der Regel auf ihre Intuition und ihren gesunden Menschenverstand, wobei sie diese

Entscheidungen zum Teil durch unabhängige Beurteiler validieren lassen. Es hat sich jedoch

gezeigt, dass diese Entscheidungen oft begrenzt sind und komplexere Informationen über die

Anordnung von Objekten in Szenen verloren gehen können.

Eine mögliche Lösung für dieses Problem könnte darin bestehen, große Mengen von

Bildern aus der realen Welt zu verwenden, die Anmerkungen und Segmentierungen von

Objekten enthalten, um Statistiken darüber zu messen, wie Objekte in der Umgebung

angeordnet sind. Diese Idee nutzt die heutzutage größere Verfügbarkeit dieser Art von

Datensätzen aufgrund der fortschreitenden Entwicklung von Computer-Vision-Algorithmen und

weist auch Parallelen zur etablierten Verwendung großer Textkorpora in der Sprachforschung

auf.
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Ziel der vorliegenden Arbeit war es, Objektstatistiken aus diesen Bilddatensätzen zu

extrahieren und zu testen, ob diese zuverlässig Verhaltensreaktionen während der

Objektverarbeitung vorhersagen, sowie diese Statistiken zu nutzen, um komplexere Aspekte der

Szenengrammatik zu untersuchen, wie z.B. ihre hierarchische Organisation, um zu sehen, ob sich

diese Organisation in unserer mentalen Organisation von Objekten widerspiegelt.

In der ersten Studie, die wir vorstellen, haben wir neuartige Maße für die Objekthäufigkeit

(object frequency, OF) berechnet, die angeben, wie oft ein Objekt in großen Datensätzen von

realen Bildern vorkommt. Wir haben diese Maße zur Vorhersage von Verhaltensreaktionen bei

der Objekterkennung verwendet und die OFs mit Worthäufigkeitsmaßen (word frequency, WF)

verglichen, die sich zur Vorhersage von Verhaltensreaktionen bei der Worterkennung bewährt

haben. Im ersten Experiment dieser Reihe (Exp. 1), in dem die Teilnehmer Objektbilder oder das

dazugehörige geschriebene Wort als natürliche oder künstliche Konzepte kategorisieren

mussten, fanden wir nur einen signifikanten Effekt einer aus Filmuntertiteln berechneten WF mit

einer besseren Leistung für häufigere Konzepte. Überraschenderweise war der Effekt sowohl bei

der Worterkennung als auch bei der Objekterkennung vorhanden.

In einem zweiten Experiment (Exp. 2) und dessen Replikation (Exp. 3) führten die

Teilnehmer eine Priming-Aufgabe durch, bei der sie beurteilen mussten, ob Prime und Target die

gleiche Bedeutung hatten. Die entscheidende Manipulation bestand darin, dass Priming und

Target entweder aus der gleichen Modalität stammten (uni-modales Priming: Wort-Prime/Wort-

Target, Objekt-Prime/Objekt-Target), was hauptsächlich perzeptuelle Verarbeitung beinhaltet,

oder aus verschiedenen Modalitäten (cross-modales Priming: Wort-Prime/Objekt-Target,

Objekt-Prime/Wort-Target), was hauptsächlich semantische Verarbeitung beinhaltet. Wir fanden

erneut einen auf Untertiteln basierenden WF-Effekt, ohne Unterschied zwischen den

Modalitäten, in den Durchgängen mit cross-modalem Priming, bei denen die Identität des Targets

durch den Zugriff auf die Bedeutung des Primes vorhergesagt werden musste. In der gleichen

cross-modalen Priming-Bedingung, und wieder ohne Unterschiede zwischen den Modalitäten,

fanden wir einen signifikanten bildbasierten OF-Effekt. Die Richtung dieses OF-Effekts war jedoch

dem WF-Effekt entgegengesetzt , mit einer besseren Leistung für seltenere Konzepte.

Wir interpretierten den WF-Effekt so, dass er die Stärke der Erfahrung mit einem Konzept

widerspiegelt, das während der Sprache erworben und in das semantische Gedächtnis

aufgenommen wurde. Der OF-Effekt scheint stattdessen einen Interferenzprozess im Gedächtnis

widerzuspiegeln, der durch mehr Erfahrung mit Exemplaren einer Objektkategorie entsteht.

Dieser Interferenzprozess wird jedoch bei Objektkategorien, die eine große Vielfalt an
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Erscheinungsformen aufweisen, wieder ausgeglichen. Entscheidend ist, dass sowohl der WF- als

auch der OF-Effekt eng mit dem semantischen Prozess verbunden sind und sich zumindest

teilweise als unabhängig voneinander erweisen.

In der zweiten Studie, die wir vorstellen, untersuchten wir den Einfluss der oben

erwähnten Szenenhierarchie auf die mentale Repräsentation von Objekten. Wir haben zum

ersten Mal die verschiedenen Ebenen der Hierarchie zusammen betrachtet und zwei Modelle

vorgeschlagen, die eine solche Organisation operationalisieren: erstens eine a priori Hierarchie,

die eine Reihe von Objekten verschiedenen Szenen, Phrasen und Objekttypen (Anker oder lokal)

zuordnet, unter Verwendung von Intuition und gesundem Menschenverstand; zweitens eine

datengesteuerte Hierarchie, die wir unter Verwendung von Objektannotationen aus demselben

Bilddatensatz, der in Studie 1 verwendet wurde, aufgebaut haben und aus der wir Maße für das

gemeinsame Auftreten und die Clusterung derselben Objekte, die für die a priori Hierarchie

verwendet wurde, extrahiert haben.

Diese hierarchischen Modelle wurden mit Verhaltensurteilen über die Ähnlichkeit der

Objekte verglichen, die von zwei Gruppen von Teilnehmern erhoben wurden, von denen eine die

Ähnlichkeit der Objektbilder und die andere die Ähnlichkeit der Objektwörter beurteilte. Die

Ergebnisse zeigten einen signifikanten Effekt aller drei Ebenen der a priori-Hierarchie, wobei

Objektpaare, die der selben Szene, der selben Phrase oder demselben Objekttyp zugeordnet

waren, als ähnlicher beurteilt wurden als Objektpaare, die verschiedenen Szenen, verschiedenen

Phrasen oder verschiedenen Objekttypen zugeordnet waren; außerdem fanden wir in der

datengesteuerten Hierarchie auch einen signifikanten Effekt des gemeinsamen Auftretens von

Objekten in der gleichen Szene oder der gleichen Phrase.

Dies deutet darauf hin, dass die vorgeschlagene Hierarchie von Objekten in Szenen

tatsächlich erlernt und genutzt wird, um die Repräsentation von Objekten im Gedächtnis zu

gestalten. Entscheidend ist, dass diese Effekte modalitätsübergreifend (Wörter und Objekte)

stabil waren, was darauf hindeutet, dass diese Organisation der mentalen Repräsentation von

Objekten abstrakt ist und in das semantische Gedächtnis aufgenommen wird.

Die dritte und letzte Studie, die wir vorstellen, ist eine Fortsetzung und Erweiterung

dessen, was wir in Studie 2 untersucht haben. Es blieb unklar, ob die hierarchische mentale

Organisation von Objekten, die die Hierarchie in der Umgebung widerspiegelt, stabil oder

aufgabenabhängig ist, und was ihr Hauptzweck ist.

Wir haben den selben Datensatz von Objekten sowie die selben Maße der hierarchischen

Organisation verwendet, um Verhaltensurteile über Ähnlichkeit zu modellieren, aber wir haben
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in diesem Fall Verhaltensantworten von drei Gruppen von Teilnehmern gesammelt: Eine Gruppe

musste die Ähnlichkeit von Objektbildern auf der Grundlage der Aktion beurteilen, die man mit

den Objekten ausführen kann („Handlungsaufgabe“); eine andere Gruppe musste die Ähnlichkeit

von Objektbildern auf der Grundlage des visuellen Erscheinungsbildes beurteilen („visuelle

Aufgabe“); schließlich verwendeten wir die Daten der Gruppe von Teilnehmern, die die

Ähnlichkeit von Objektbildern in Studie 2 beurteilten, in der sie keine expliziten Instruktionen

erhielten („keine Aufgabe“).

Die Ergebnisse replizierten größtenteils die in Studie 2 gefundenen Haupteffekte und

zeigten, dass die hierarchische Organisation der mentalen Repräsentationen von Objekten bei

unterschiedlichen Aufgabenanforderungen insgesamt stabil ist. Gleichzeitig wurden die Effekte

zwischen den Aufgaben verglichen, wobei sich herausstellte, dass die hierarchischen Maße bei

der „Handlungsaufgabe“ und der Bedingung „keine Aufgabe“ größtenteils ähnlich sind, während

ihre Auswirkungen bei der „visuellen Aufgabe“ geringer sind. Gleichzeitig werden einige der

feineren hierarchischen Maße durch die „Handlungsaufgabe“ im Vergleich zur Bedingung „keine

Aufgabe“ verstärkt; wenn man schließlich Maße der visuellen Ähnlichkeit betrachtet, wurden

diese durch die „visuelle Aufgabe“ im Vergleich zur Bedingung „keine Aufgabe“ und

„Handlungsaufgabe“ verstärkt.

Insgesamt deuten diese Ergebnisse darauf hin, dass die hierarchische Organisation von

Objekten erlernt und genutzt wird, um die mentale Repräsentation für eine effiziente Interaktion

mit Objekten zur Durchführung von Handlungen in der Umwelt zu organisieren.

Die Ergebnisse der drei Studien werden im Folgenden in einer allgemeineren Weise

diskutiert. Wir reflektieren die positiven Ergebnisse, die mit Hilfe von Messungen aus

kommentierten Bilddatensätzen erzielt wurden, um die vielen Herausforderungen

hervorzuheben, die diese Art von Daten mit sich bringt: Annäherungen, Verzerrungen und

individuelle Unterschiede.

Danach haben wir im Lichte der Ergebnisse von Studie 3 künftige Forschungsrichtungen

im Bereich des szenengrammatischen Wissens erörtert und den Schwerpunkt darauf gelegt, wie

szenengrammatisches Wissen komplexes Verhalten unterstützt, das in Handlungssequenzen

aufgegliedert werden kann, die mehrere Prozesse der Objekterkennung, der Suche und des

Erreichens von Objekten umfassen; darüber hinaus haben wir Unterschiede in Bezug auf

Maßstab und Navigation zwischen verschiedenen Arten von Szenenkategorien (Innen- und

Außenbereich) sowie die Rolle des Raums bei Fehlen einer klaren semantischen Beziehung

zwischen Objekten und Szenen diskutiert.
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Summary

Our mind has the function of representing the physical and social world we are in, so that we can

efficiently interact with it. This results in a constant and dynamic interaction between mind and

world that produces a balance when representations are at the same time accurate with respect

to what the world is communicating to our organism, but also compatible with how our mind

works.

A paradigmatic case of this interaction is offered by perception, which is the mental

function that represents contingent aspects of the world built from what is captured by our

senses. Indeed, the dominant philosophical view in cognitive science is that our perceptual states

are representations of the world and not direct access to that world. These representational

perceptual states therefor include the aspects of the world they represent and that initiate the

perception by stimulating our sensory organs.

Perceptual representations are built using information from the sensory system, i.e.,

bottom-up information, but are also integrated with information previously acquired, i.e., top-

down information, so that perception interacts with memory through language and other mental

functions. Such organization is believed to reflect a general mechanism of our mind/brain, which is

to acquire and use information to make efficient predictions about the future, continuously

updating older information with present information.

This predictive processing works because the world is not random, but shows a regular

structure from which reliable expectations can be built. One way that our minds make these

predictions is by adapting to the structure of the world in an implicit, automatic and unconscious

way, a process that has been called Implicit Statistical Learning (ISL). ISL is a learning process that

does not require awareness and happens in an incidental and spontaneous way, with mere

exposure to statistical regularities of the world. It is what happens when we learn a language

during early childhood, and that allows us to be implicitly sensitive to the phonological structure of

speech, or to associate speech patterns with objects and events to learn word meaning.
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A specific case of ISL is the learning of spatial configuration in the visual world, which we

apply to abstract arrays of items, but most importantly, also to more ecological settings such as

the visual scenes we are immersed in during our everyday life. The knowledge we acquire about

the structure of visual scenes has been called “Scene Grammar”, because it informs about

presence and position of objects in a similar way to what linguistic grammar tells us about the

presence and position of words. So, we implicitly acquire the semantics of scenes, learning which

objects are consistent with a certain scene, as well as the syntax of scenes, learning where objects

are positioned in a consistent way within a certain scene.

More recent developments have proposed that scene grammar knowledge might be

organized based on a hierarchical system: objects are arranged in the scene, which offers the

more general context, but within a scene we can identify different spatial and functional clusters

of objects, called “phrases”, that offer a second level of context; within every phrase, then,

objects have different status, with usually one object (“anchor object”) offering strong prediction

of where and which are the other objects within the phrase (“local objects”). However, these

further aspects of the organization of objects In scenes remain poorly understood.

Another problem relates to the way we measure the structure of scenes to compare the

organization of the visual world with the organization in the mind. Typically, to decide if an object

appears or not in a certain scene, and whether or not it appears in a certain position within a

scene, researchers based their decision on intuition and common-sense, maybe validating those

decisions with independent raters. But it has been shown that often these decisions can be

limited and more complex information about objects’ arrangement in scenes can be lost.

A potential solution to this problem might be using large set of real-world images, that

have annotations and segmentations of objects, to measures statistics about how objects are

arranged in the environment. This idea exploits the nowadays larger availability of this kind of

datasets due to increasing developments of computer vision algorithms, and also parallels with

the established usage of large text corpora in language research.

The goals of the current investigation were to extract object statistics from this image

datasets and test if they reliably predict behavioural responses during object processing, as well

as to use these statistics to investigate more complex aspects of scene grammar, such as its
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hierarchical organization, to see if this organization is reflected in the organization of objects in

our mind

In the first study we present, we have computed novel measures of object frequency (OF)

representing how many times an object occurs in large datasets of real-world images. We have

used these measures to predict behavioural responses during object recognition, and compare

OFs with word frequency (WF) measures that have been found to predict behavioural responses

during word recognition. In a first experiment (Exp 1), where participants had to categorize object

images or their correspondening written word as denoting an either natural or man-made

concepts, we only found a significant effect of a subtitle-based WF with a facilitation for more

frequent concepts. Surprisingly, the effect was present in both word recognition and object

recognition.

In a second experiment (Exp 2), and its replication (Exp 3), participants performed a

priming task where they had to judge if prime and target had the same meaning. The crucial

manipulation was that prime and target were either from the same modality (uni-modal priming:

word-priming-word, object-priming-object), which involves mainly perceptual processing, or

from different modalities (cross-modal priming: word-priming-object, object-priming-word),

which involves mainly semantic processing. We found again a subtitle-based WF effect, with no

difference between modalities, in the cross-modal matching trials, where target identity needed

to be predicted by accessing the meaning of the prime. In the same cross-modal matching

condition, and again without differences between modalities, we found a significant image-based

OF effect. However, this OF effect had an opposite direction than the WF effect, with behavioural

facilitation for more rare concepts.

We interpreted the WF effect as reflecting the strength of experience with a concept

acquired during language and incorporated into semantic memory. The OF effect, instead, seems

to reflect a memory interference process produced by more experience with exemplars of an

object category. This interference process is however counterbalanced for object categories that

have a strong variety in the exemplars. Crucially, both WF and OF effect were strongly linked to

semantic process and showed to be, at least partially, independent from each other.
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In the second study we present, we investigated the impact of the above-mentioned

scene hierarchy on mental representation of objects. We have for the first time considered

together the different levels of the hierarchy, and we have proposed two models operationalizing

such organization: first, an a priori hierarchy, built by assigning a set of objects to different scenes,

phrases and object types (anchor or local), using intuition and common-sense; second, a data-

driven hierarchy, that we built using object annotations in the same image dataset used in Study

1 and from which we extracted measures of co-occurrence and clustering of the same set of

objects used for the a priori hierarchy.

These hierarchical models were compared to behavioural similarity judgements of the

objects, collected from two groups of participants, one judging similarity of object pictures, one

judging similarity of object words. Results showed significant effect of all the three levels of the a

priori hierarchy, with pairs of objects assigned to the same scene, to the same phrase or to the

same object type being judged as more similar than pairs of objects assigned to different scenes,

different phrases or different object types; besides, we also found significant effects of co-

occurrence of objects in scenes and co-occurrence of objects in phrases, measured from the data-

driven hierarchy.

This suggests that the proposed hierarchy of objects in scenes is indeed learnt and used

to shape how objects are represented in the mind. Crucially, these effects were stable across

modalities (words and objects), suggesting that this organization of mental representation of

objects is abstract and incorporated into semantic memory.

The third and final study we present is a follow-up and extension of what we have

investigated in Study 2. It remained unclear whether the hierarchical organization of objects in

the mind that reflects the hierarchy in the environment is stable or task-dependent, and which is

its main goal.

We used the same set of objects as well as the same measures of hierarchical organization

to model behavioural similarity judgements, but we have in this case collected behavioural

responses from three groups of participants: one group judged similarity of object pictures based

on the action you can perform with the objects (“action task”); another group judged the

similarity of object pictures based on visual appearance (“visual task”); finally, we used the data
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from the third group of participants who judged similarity of object pictures in Study 2 and who

did not receive any explicit indication (“no task”).

Results mostly replicated the main effects found in Study 2, showing that the hierarchical

organization of mental representations of objects is overall stable across different task demands.

At the same time, the effects were compared across tasks revealing that hierarchical measures

are mostly similar between “action task” and “no task”, while their effects are reduced during

the “visual task”. At the same time, some of the more fine-grained hierarchical measures are

further enhanced by the “action task” compared to the “no task”; finally, when considering

measures of visual similarity, these were enhanced by the “visual task” compared to the “no task”

and “action task”.

Altogether, these results suggest that hierarchical organization of objects is learned and

used to organize mental representation for efficient interaction with objects to perform action

in the environment.

The results from the three studies are further discussed in a more general way. We reflect

on the positive results obtained from measures extracted from annotated image datasets to

highlight the many challenges posed by this type of data: approximations, biases and individual

differences.

After that, in light of the results of Study 3, we consider future directions of investigation

on scene grammar knowledge, shifting the focus to how scene grammar supports complex

behaviour that can be broken down into action sequences that involves multiple processes of

object recognition, search and reaching; additionally, we discuss differences of scale and

navigation between different types of scene categories (indoor and outdoor), and the role of

space in the absence of a clear semantic relationship between objects and scenes.
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Theoretical background
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Mind and World

According to the intentionality-based definition (Brentano, 1874; Kim, 2018), the mind is a

collection of processes that represent entities, properties and events of the world, with the

purpose of allowing the organism where these processes take place to efficiently interact with

the world, and survive. The entities, properties and events that are represented can be either

actual (as the computer we are writing these words) or potential (as the interest we hope some

of you might experience in reading this thesis). The world whose aspects are represented is

physical (like coldness and colour green, materials and tools, hurricanes and photosynthesis,

plants and animals, your own body and other people’s bodies, etc.) but also non-physical (like

socio-cultural norms and roles, your sense of Self, other people’s aspirations, emotional and

aesthetic values, etc.).

In this view, the importance of the relationship between mind and world emerges clearly:

the mind, to function properly, needs to represent aspects of the world that enable the organism

to act on and interact with that world in a fruitful way. Consider the extreme case of psychotic

symptoms such as hallucinations and delusions, in which the mind is representing percepts and

thoughts as actual state of the world, although they have no direct link to entities and events

actually present in the world (Telles-Correia et al., 2015; Garety & Freeman, 2013). At the same

time, the mind needs to organize and simplify the huge amount of information coming from the

world into structures that are compatible with mental functioning itself. Therefore, for example,

a group of atoms hit by a light is perceived not as a collection of individual sensations, but as a

whole unique object (Koffka, 1935), and its appearance remains stable even when the

movements of eyes and head change its reflection on the retina (O’Regan, 1992; Melcher, 2011).

This constant dynamics of adaptation between mind and world, which accompanies phylogenic

and ontogenetic development (Suddendorf & Whiten, 2001), is best exemplified by the case of

perception.

Perception is the set of mental processes that represent the world in its contingent

aspects starting from the information captured and processed by the sensory systems (Matthen,

2015). The relationship between the mental states of perception and the external world has long
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been a topic of philosophical and psychological debates. As for the definitions of mind and

perception we offered above, the dominant view in contemporary psychology and cognitive

science is representationalism (Nanay, 2015), which conceives that mental states of perception

are representations of the contingent world, in a similar way as other types of mental state are

representations of aspects of the world (e.g., believes, desires, memories). According to this view,

mental states are representations because they refer to something, which is defined as the

content of the mental representations. For example, the belief that snow is cold is about a

property of snow, its coldness. Similarly, the perception of a car in front of you is about that entity

being in that specific position and being a car. A perception can therefore be veridical, if it is

based on a correct representation of contingent aspects of the world, or it can be an illusion /

hallucination if it is based on a misrepresentation. In this view, the relationship between the

organism having a mind and the external world is not direct, but it is mediated by mental

representations (a position that authors refer as indirect or critical realism).

Other theoretical approaches have instead opposed the notion of mental perceptual

representation (and therefore have been named anti-representationalisms). One of the most

relevant of these approaches is enactivism, for which the relationship between perceiver and the

world is a dynamic and active process that does not require any intermediate and static entity as

is the case for mental representations. For example, during vision, not all aspects of the visual

environment are processed, and some of them are processed in more detail than others. Besides,

through movements of the eyes, head and body, the same aspects of the visual environment that

before were processed in detail could now be unattended or processed in less detail. Despite this

dynamic process, our perception of the visual world remains stable and holistic, all the details of

the environment seem available to us in a direct way (O’Regan, 1992). Enactivism has the merit to

have highlighted in the theoretical debate the need to acknowledge the dynamic nature of

mental processes, as well as the interplay of perception and action, reconnecting with the

ecological approach to vision proposed by J. J. Gibson (Gibson, 1986). At the same time,

acknowledging the dynamic and constructive nature of perceptual processes does not exclude

per se the presence of perceptual representations or the plausibility of representationalist views,

since those properties could be incorporated into the notion of representation.
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Another anti-representational approach is the so-called relationalism (Nanay, 2014).

According to this view, perception is a direct relationship between an organism and an object,

rather than the content of a representation. Perceptual states are based on the actual perceived

object. In this sense, both enactivism and relationalism relate to a direct realism. One of the main

arguments that supports the relationalist proposal is that it considers the particularity of

perception where representationalism would fail in doing so (Soteriou, 2000). The “particularity”

of perception refers to the fact that when we perceive one object, we perceive a specific

individual (a “token” of a kind). If a perceptually identical object replaced the previous object in

the same position without our knowing, the perception of this new individual would be a

different state, according to relationalism, but would be conceived as the same perceptual state

by representationlist views, because the content / representation would be the same. For

representationalism, different perceptual states derive from different contents / representations

(i.e., their perceptual properties), while, for relationalism, different perceptual states derive from

different objects. This divergence seems to be reconcilable, though, since some forms of

representationalism entail perceptual representational content as being “object-involving”, in

the sense that it relates to a specific token (Siegel, 2006), therefore incorporating aspects of the

relationalist view into the representational framework. One further argument relates to

perceptual experience in the more phenomenological sense: as it seems to us, in first person,

perception is direct and not mediated. One way to further reconcile the two positions is to

consider the representational nature of perceptual states as better suited for explaining the

mechanism of perceptual processes (and accounting also for unconscious perception), while the

relationalist nature of perception might be more prominent when considering the

phenomenology of perception and the conscious experience.

Beyond an attempt to reconcile and integrate representationalist and anti-

representationalist views, it is important to acknowledge that the absence of perceptual

representations would fail in explaining some empirical evidence (Nanay, 2015): for example,

multisensory perception (Spence & Driver, 2004) indeed requires integration and matching of

two distinct representation; similarly, the dissociation between ventral vision (for recognition)

and dorsal vision (for visuo-motor control, Goodale & Milner, 1992) is explained by the presence
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of two distinct representation, one veridical and one non-veridical, which produce two

contradictory pattern of behaviour.

A second issue in perception, that we believe reconnects the philosophical tradition and

theoretical discussion with current approaches in cognitive science, is concerned with the

structure of perceptual representations and the way they come to be formed (Gordon & Slater,

1998). To simplify the discussion, on one side of the debate there is a position that reconnects

with the tradition of Empiricism (e.g., Locke), where the information that structures perceptual

representations is purely the information captured and processed by the sensory systems

(“bottom-up” information), focusing on the role of experience in shaping perceptual processes

and representations. We could say that according to this view, the world shapes the mind. On

the opposite side, there is the tradition of Nativism / Rationalism (e.g., Descartes), where the

structure of perceptual representations is given by innate and/or a priori mental processes (“top-

down” information), and the focus is on the mind shaping the world. We could ascribe to the first

group the contribution of theorists and experimentalists such as Helmholtz, Wundt and Piaget,

while in the second group we can acknowledge the work of Gestalt psychologists (Koffka, 1935)

and J. J. Gibson (Gibson, 1986). This categorization is actually much more complex, as most of the

above-mentioned authors would have not denied some basic a priori/ innate abilities (for the

empiricist) or the relevance of sensory information (for the nativist/ rationalist). Besides, for

example, the unconscious inference proposed by the “empiricist” Helmholtz emphasizes the role

of knowledge (we would say the “top-down effects”) in supporting the organization of sensory

information; while the ecological approach of the “nativist” Gibson proposes that the visual signal

already incorporated all complex information to give rise to a three-dimensional action-oriented

perception.

A reconciliation of these two extreme approaches on the question of what is the structure

of perceptual representations is nowadays a mainstream and prominent framework in cognitive

science: predictive processing (Rao & Ballard, 1999; Bar, 2009; Clark, 2013). According to this

view, the cognitive system, and its implementation in the brain, functions as a Bayesian

probabilistic system that uses previously acquired knowledge to make prediction about

upcoming sensory input. This system is organized in a hierarchy: bottom-up sensory input first
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meets lower-level top-down predictions; then, only the residual bottom-up signal that was not

met by the top-down expectation (the “prediction error”) moves to the next level of the hierarchy

where it will be confronted with another top-down signal, and so on. While doing so, the bottom-

up prediction error updates the top-down expectation, in order to make them more precise in

predicting new inputs. Perceptual representations are the result of this balanced combination of

sensory input and previous knowledge. Interestingly, the predictive processing framework that

seems to “solve” the debates between empiricism and nativism-rationalism of perceptual

representations has been identified to have roots in the philosophical proposal of Immanuel Kant

(Swanson, 2016), whose aim was to offer a resolution to the empiricist vs. rationalist debate of

his time. Aspects of the predictive processing proposal resonate with his notion of an active and

generative role of mind in cognition and perception, for his ideas of a priori structure that informs

the sensory experience and his notion of schemata.

We would like to emphasize two important ideas that come with the predictive

processing framework. The first one is the penetrability of perception (Lupyan & Clark, 2015; but

see a critical review from Firestone & Scholl, 2016): perception is not isolated (or “encapsulated”)

from other cognitive functions, but is in interaction with thought, memory and language. And it

is exactly because of this that perceptual processing is possible: previously acquired information

represents the source from which to build goal-directed predictions. The second idea regards

memory representations called “frames” or “schemata” (Bar, 2004; 2009), that are fairly abstract

representation built from previous experience and used as top-down prediction to “test” or

“shape” the upcoming sensory input in order to perform efficient perceptual recognition.

The relationship between mind and world, the intentional and representational nature of

perception, the predictive processing with its combination of top-down and bottom-up signals,

the penetrability of perception and the role of memory schemata, are all important concepts that

will guide us through all this investigation.
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Implicit and statistical learning: bringing the world into the mind

One reason the mind makes prediction about the world is that the world has some structure,

some regularities, from which and for which expectations can be built. One fundamental way

that the mind uses to build these expectations is by registering the regularities of the world

during experiences in an implicit way, a phenomenon called implicit learning (IL) or statistical

learning (SL). The two terms appeared in the experimental literature in different times,

consolidating the use of different behavioural paradigm and emphasizing different aspects of the

phenomenon, but for the current scope, we are going to use them interchangeably or simply as

implicit statistical learning (ISL; about this definition issue, see Perruchet & Pachton, 2006;

Batterink et al., 2019).

The term “Implicit learning” was first used by Reber (1967), who employed an artificial

grammar to generate artificial verbal stimuli that followed a structure, unknown to participants,

in comparison with randomly generated strings. Participants were asked to memorize the

grammatical or the random strings in several training phases and then to reproduce them in a

written way in test phases; crucially, no explicit information about an underlying structure were

given. As a results of implicit learning, the group exposed to grammatical strings showed a

decrease in error rate across different sets of materials, while the group exposed to random

strings did not show this reduction (Reber, 1967). The term “Statistical learning” was proposed

much later in a study by Saffran and colleagues (1996a), showing that 8-months-old infants were

able to segment continuous speech input generated from an artificial grammar into words based

on statistical regularities in neighbouring sounds, and that they were able to do so after short

experience (Saffran et al., 1996a). The idea is that, in a structured acoustic input such as speech

(or artificial speech), the probability of a sound following another one within a word is higher

than the probability between two neighbouring sounds from different words (“transitional

probability”, Saffran et al., 1996b). Humans seem to be sensitive to such structures and exploit

these regularities starting at the early stages of development, segmenting continuous input into

meaningful units or chunks (in this case words from speech sound).
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In general, we can think about ISL as a set of learning mechanisms that function in a way

that has been defined as incidental, unsupervised, uninstructed, automatic, unintentional,

unaware, unconscious, and extracting from mere exposure, without analytical strategies, the

regularities and statistical relationship between aspects of the world (Perruchet & Pachton, 2006;

Schapiro & Turk-Brownie, 2015; Sherman et al., 2020). This ability of adaptation to environmental

structure seems pervasive across many species and across different stages of the human lifespan,

although researchers have often studied ISL’s most rapid effect on behaviour, namely producing

changes in performance after brief exposure to structured materials (Schapiro & Turk-Brownie,

2015). Beyond the clear advantage offered by such mechanisms during early stages of

development, it has been proposed that ISL produces behavioural effects that might reflect

important functional roles even during adult life: it seems to support guidance of attention in the

environment and subsequent formation of efficient predictions in order to facilitate perceptual

processing (this is why we discuss the role of ISL in predictive processing and the relationship

between mind and world); but also, it has been proposed to help in the creation of unified

representations by associating different features co-occurring in space and/or time, with the

consequence of compressing information and reducing cognitive load; finally, it might influence

how we structure memories in schemas and maps using the information extracted from the

environment to create an internal “model” of the world, and support reward-oriented decision-

making (Sherman et al., 2015).

Despite the implicit and unconscious nature of ISL, which would ascribe it to the domain

of non-declarative memory systems (e.g., perceptual learning, motor skills acquisition), it has

been proposed that, as for other types of learning, ISL might results from a complex relationship

between non-declarative and declarative memory systems, even when one of the two is

predominant (Batterink et al., 2019; Sherman et al., 2020). Encoding of episodic memories, for

example, is strongly based on specific spatio-temporal coordinates that make that memory

indeed unique. At the same time, the spatio-temporal structure of the environment where the

episode takes place is, at least in some ways, familiar to us, in the sense that we are able, through

ISL, to make prediction and consequently to process information in a more efficient way. Similar

consideration can be made for encoding of space for navigation. Episodic event coding and
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navigational coding, as well as ISL, have all been linked to activation of different but close neural

circuitry in the Middle Temporal Lobe (MTL), and more specifically involving the structures of the

hippocampus, parahippocampal cortex, perirhinal and entorhinal cortices (Batterink et al., 2019;

Sherman et al., 2020; Arminoff et al., 2013).

Although ISL has been initially studied in relation to acoustic and/or linguistic materials

and language acquisition, it has been revealed to be a domain-general mechanism that has been

investigated using different types of stimuli, such as linguistic and non-linguistic sounds, tactile

stimuli, visual shapes and complex visual configuration, and even multi-modal combination. The

behavioural measures influenced by this phenomenon are also different, such as higher

recognition accuracy, faster response times and eye-movements (Schapiro & Turk-Brownie,

2015). The domain-generality of ISL also becomes evident in the fact that it can transfer and

generalize acquired knowledge between space and time, between different modalities and

between levels of categorical specificity (Sherman et al., 2020).

Implicit Statistical Learning in visual cognition: from contextual cueing to visual

scenes

When thinking about ISL as presented so far (and how it was investigated initially), the learning

mechanism seems pretty effective in extracting meaningful representation from a continuous

stream of sensory input unfolding over time, i.e., in detecting sequential regularities. However,

our environment is highly structured in terms of spatial arrangement as well, especially when

considering vision and processing of visual stimuli (Schapiro & Turk-Brown, 2015).

Since the seminal study of Biederman and colleagues (1982), it has been shown how the

arrangement of objects in the environment follows a set of rules reflecting physical constrains or

typical usage; when these rules are violated, participants’ performance significantly deteriorated,

suggesting that these rules are learnt through experience and used to guide perceptual

processing (Biederman et al., 1982). One way this phenomenon was investigated in terms of ISL

was by studying the so-called contextual cueing process, where structured visual arrays were

shown to influence search performance (Chun & Jiang, 1998).
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Chun & Jiang (1998) aimed to study the deployment of attention during search in complex

visual displays that serve as a proxy of complex visual input coming from the environment during

real-world search. They believed that what was missing from existing explanations of attentional

selection was the global context given by configuration of multiple items, i.e., objects, that are

often stable and predictable (Chun & Jiang, 1998; Biederman et al., 1982). Through ILS, these

structured global context configurations are learnt and used to guide attention during search

within the array. Besides, they proposed that these implicit memories are instance-based, i.e.,

they are implicit episodic memories (see discussion on interaction between declarative and non-

declarative memory systems in Batterink et al., 2019; Sherman et al., 2020; Arminoff et al., 2013).

For their experiments, they employed visual arrays made of several two-lines items that

can have different shapes (either more T-like or more L-like), different colours and different

texture. They generated, randomly, configurations of these items and then kept them constant

throughout the whole experiment (i.e., structured configurations), while other configurations

were generated randomly in each block (i.e., unstructured configurations). Participants were

asked to look for a T-shaped stimulus among L-shaped stimuli for several trials in several blocks.

After 5 blocks out of 30 (i.e., 5 repetitions of the same configuration), search times were already

faster in structured configuration than in unstructured configurations, indicating implicit episodic

memory guidance of attention. Additionally, they showed that the memories for learnt

configurations are abstract and generalize when changing identity of individual distractors, that

they are formed even when arrays are much more visually homogeneous and tested that

participants were not aware of or explicitly encoded the arrays as a search strategy (Chun & Jiang,

1998).

The theorization and investigation of contextual cueing has revealed the importance of

the complexity of environment information, especially in its global configuration, but at the same

time remained in line with traditional research in visual search that used highly artificial visual

displays. After Chun & Jiang’s study (1998), during the 2000s, it became more clear that visual

search needed to be investigated using more ecological stimuli such as real-world images of visual

scenes (Wolfe et al., 2011).
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The classic body of research has shown that attention in visual search is guided by a target

selection mechanism based on a set of attributes that simplify the number of items that need to

be scrutinized (and recognized), given the limited capacity of object recognition that requires

binding of different stimulus features (Wolfe, 1994; Treisman, 1996). This account worked quite

well with artificial displays of items or isolated objects, but was found to be insufficient in

accounting for search in visual scene images that seemed efficient despite the cluttered and

complex nature of such visual stimuli. This is, again, due to the non-random but rather structured

nature of the environment, that is learnt through experience and formation of a set of memories

that offer scene-based guidance (Wolfe et al., 2011). One type of guidance is offered by episodic

memory from previous exposure to a specific scene (as seen in contextual cueing, Chun & Jiang,

1998): for example, if you had to look for your pen on your desk, after returning from another

room, you would benefit from the episodic memory that encodes the position of the pen when

you left your office. But even more importantly, search in visual scenes is strongly guided by

semantic memory (Brockmole & Võ, 2010), which is the set of general knowledge about the

world: if you were invited to your friends’ new house and asked to help cooking, you would look

for knives only in the kitchen, not in the bathroom, and you would look for them in drawers not

in the fridge. This is because we have learnt that an object is most likely to appear in a specific

context, in a specific position and in specific relation to other objects (Bar, 2004; Oliva & Torralba,

2007). This semantic guidance is possible thanks to our ability to extract the “gist” of a scene, i.e.,

the basic information about its category and spatial layout, just with a glance, without the need of

limited capacity attentional processing. Gist representation seems to be built quickly during

early visual processing using specific spatial frequency information (low spatial frequencies),

which offers a coarse global representation of the visual context (Oliva & Torralba, 2001) and

that preactivates information in semantic memory associated with that visual context (i.e., typical

objects, typical positions, etc.; Bar, 2004).

As a result, it has been proposed that visual search in real-world scenes is based on two

types of processing pathways: one with limited capacity that works in a selective way to bind

stimulus features for recognition based on attribute-based guidance, and another one that has
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no constraint in capacity and exploits fast global gist representation to produce scene-based

episodic and semantic guidance.

Scene Grammar: learning the structure of our visual world

The perceptual and cognitive analysis of scenes are processes that go beyond the recognition of

an environment as belonging to a certain category (e.g., a kitchen). Scenes, in this sense, are

visual input with a unique level of complexity and ecological validity, since we are always

immersed in a visual scene. Scenes are stimuli that encompass most of our visual field, that have

a spatial layout and contain several objects. Within a scene, we recognize and search for these

objects in that spatial layout, we use the objects to perform certain actions and navigate through

them and that space (Malcom et al., 2016).

The complexity of scenes is also reflected in the complexity of visual (and non-visual)

features that can be extracted during rapid visual processing (Groen et al., 2017): scenes have

low-level properties such as patterns of colour, texture and orientation; mid-level properties such

as the spatial layout and global “shape”; and high-level properties such as the objects they

contains or the action you can perform in there (their “functions”). This complexity posits an

additional problem because these features are often intercorrelated and, although many

individual features are sufficient to categorize a scene (e.g., consider “gist” perception), it is not

clear which ones contribute primarily and fundamentally. Empirical evidence proposes that high-

level features, in particular scene “functions”, are a strong guiding principle in scene

categorization (Greene et al., 2016; Greene & Hansen, 2020), but task demand can prioritize the

relevance of other task-related features (Greene & Hansen, 2020).

Beyond understanding how a scene is recognized, many researchers have focused on

describing the details from which the extraction of scene gist produces an implicit scene-based

semantic memory facilitation in tasks that involve object processing, such as recognition, search

and interaction. One of these approaches has been called “Scene Grammar” (for a recent review,

Võ, 2021).
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The idea of Scene Grammar is based on an analogy first proposed by Biederman and

colleagues (1982): the rules that govern the arrangement of objects in visual scenes are similar

to the rules that govern the arrangement of words in a sentence; therefore, we can identify

regularities that form a “scene semantics” (Biederman et al., 1982), which involves rules based

on typical usage of an object, such as probability (“is this object typically appearing in this

scene?”), position (“is this object typically appearing in this position within this scene?”) and size

(“is this object typically appearing with this size compared to other objects within the scene?”);

similarly, we can identify regularities that form a “scene syntax”, which are rules base on physical

constrain of gravity on objects, such as support (“is an object resting on a surface?”) and

interposition (“is an object interposed with another one?”). Whenever an object is violating one

of this learnt rules, the processing of that object is degraded.

Scene Grammar proposal has reformulated Biederman and colleagues’ classification

focusing on semantic violations as the ones that involve inconsistent object-scene pairing (e.g., a

toilet paper roll appearing on a kitchen counter) and syntactic violations as the ones that involve

inconsistent positioning of an object within a scene (e.g., a toilet paper roll appearing inside a

toilet), with extreme syntactic violations involving placement of objects in an inconsistent way in

relation to physical laws such as gravity (e.g., a toilet paper roll floating in the middle of a

bathroom). Therefore, scene semantics connects an object with scene meaning, while scene

syntax connects an object with scene structure (Võ & Henderson, 2009; Võ & Wolfe, 2013a). To

further support this analogy and the reformulation of scene semantic and scene syntax offered

by Scene Grammar, Võ and Wolfe (2013a) found that semantic and syntactic violations of object

arrangement in scenes are reflected in similar electrophysiological signals to the ones elicited by

semantic and syntactic violations in language, i.e., the N400 (for semantics; Kutas & Hillyard,

1980) and P600 (for syntaxt; Osterhout, & Holcomb, 1992) ERP components (Võ & Wolfe, 2013a;

Ganis & Kutas, 2003).

The study of Scene Grammar violations have shown that these rules are learnt during

visual experience and exploited to guide perception and attention, supporting object processing

during complex behaviour such as recognition (Cornelissen & Võ, 2017), search (Võ & Wolfe,

2013b) and interaction (Draschkow & Võ, 2017).

35



Further investigations using this approach have focused on the components of a scene

that are extracted to activate a contextual representation (Bar, 2004; Aminoff et al., 2013) that

support object recognition in context. These “scene ingredients” (Lauer & Võ, 2022) have been

identified as colored texture information (Lauer et al., 2018), orientation (Lauer et al., 2020),

spatial layout (Brady et al., 2017), materials (Lauer et al., 2021) and neighbouring objects (Lauer

et al., 2022). Other investigations have shown that Scene Grammar is developed quite early

during childhood, with indications of behavioural and neural advantages for consistent object-

scene pairing over inconsistent ones already in 2-years-old children and further strengthening of

such scene knowledge in 4-years-old children (Öhlschläger & Võ, 2020; Maffongelli et al., 2020).

More recent developments of Scene Grammar have proposed that these object-scene

regularities are organized according to a hierarchy (Võ et al., 2019). A scene (e.g., a kitchen), as

it has been investigated in its global properties (for a review, see Lauer & Võ, 2022), represents

only the most general contextual level; within a scene, we could think about spatial clusters of

objects as a further and more specific context, which has been termed “phrase” continuing the

language analogy (e.g., a cluster around a stove top); finally, within each phrase, it has been

proposed that objects hold different status (Draschkow & Võ, 2017): one object (named “anchor

object”, e.g., a stove), which is fairly typical of the scene, bigger and more static, offers strong

predictions about identity and position of other objects within the phrase (named “local objects”,

e.g., a pot). The idea is that such hierarchical structure organizes the set of expectations built

through experience which forms Scene Grammar knowledge, so that complex behaviour within

the environment proceeds following these contextual levels: if you were asked to check the

boiling water in your friends’ new place, you will first look for a pot within the ”scene” kitchen,

narrow your search to the “stove top phrase”, and use the stove top “anchor” to identify and find

the “local object” pot on the stove. Clearly, in a more familiar environment this general

knowledge interacts with the specific knowledge of where things are kept or are left in that

specific setting (“episodic guidance”, Võ & Wolfe, 2013b), but nonetheless, Scene Grammar

knowledge is helpful to guide our behaviour whether it is in highly familiar or unfamiliar places.

While the role of Scene Grammar knowledge on object processing within the “scene level”

has informed this approach from the beginning (and see also the seminal study of Daventport &
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Potter, 2004), less attention has been given so far to the “phrase level” and to the “anchor vs

local” distinction. Regarding the former, no explicit idea of a ”phrase level” has been investigated,

but there have been studies investigating the role of objects or group of objects in facilitating the

perceptual processing of other objects. For example, both objects co-occurrence (a toilet and a

toilet paper roll appearing together) and spatial dependency (a toilet paper roll appearing next to

a toilet) result in facilitating visual search (Mack & Eckstein, 2011, Hwang et al., 2011) and

object recognition (Auckland et al., 2007; Gronau & Shachar, 2014). Additionally, multiple objects

are processed in a more efficient way if arranged according to typical semantic and spatial rules

(Kaiser et al., 2014; Quek & Peelen, 2020) supporting a grouping mechanism that reduces the

complexity of visual input. Regarding the anchor-local relationship, two eye-tracking studies (one

in a typical lab setting and one in Virtual Reality, VR) have shown that when looking for a target

local object within a scene (e.g., laundry basket), replacing the associated anchor object (e.g.,

washing machine) with another one (e.g., a cabinet) impaired search time and produced wider

and less specific esploration of the scene (Boettcher et al., 2018; Helbing et al., 2022). In

particular, they have shown that two key elements of the anchor-local relationship are the

closeness in space and the predictable relative position along the vertical axis (Boettcher et al.,

2018).

It remains to be investigated how the three different levels impact object processing at

the same time. Future investigations need to explicitly address this hierarchical organization as a

whole, to reveal if Scene Grammar knowledge is indeed structured this way.

Using large datasets to capture the structure of the visual world

The process of ISL, in general and for the specific case of Scene Grammar, manifests as a

sensitivity to the structure of the world, as we have seen. Then, one central point in the empirical

study of these phenomena is to find a way to measure the structure of the world and to see if

neural signals and behaviour match this measured structure. One fairly common way that has

been used in the study of ISL in visual scenes is based on an intuition-driven (or a priori) approach:

researchers used their own experience, intuition and common-sense to decide which

37



configurations match typical aspects of the world (“consistent conditions”), and which ones

violate these aspects of the world (“inconsistent conditions”). For example, as we have seen from

the study of Scene Grammar, placing a sofa in the bathroom would make a semantically

inconsistent object-scene pairing and placing a sofa floating in the living room would make a

syntactically inconsistent object-scene pairing, while placing a sofa in the living room in the

correct position would make a consistent object-scene pairing (Võ & Wolfe, 2013a). This

operationalization of object arrangement in scenes has worked quite well in highlighting general

principles of Scene Grammar, but limitations need to be acknowledged.

First, considering scene semantics, the distribution of objects in real-world settings is

frequently overestimated in people’s judgments (Greene, 2016). As such, researchers claim

strong contextual relationships between certain objects and a scenes (e.g., sandcastle and beach)

despite the low frequency of occurrence of that object in the scene in the real world (e.g.,

sandcastle are not that common in a beach compared to other objects; Greene, 2013; Daventport

& Potter, 2004). Secondly, contextual associations between object and scene might vary

continuously or with intermediate degrees between “inconsistent” and “consistent”, so that

using intuition-driven dichotomous distinction might mean losing a lot of the complexity of how

objects are distributed in scenes. Similarly, not all positions might be syntactically “inconsistent”

in the same way. Third, the relationship between objects and scenes is much more complex than

can be captured by reducing it to the frequency of their occurrence or typical positioning. Other

interesting aspects might include how specific an object is (does it appear in many different

scenes or just one category?), how diagnostic an object is of a given scene (is the presence of an

object a good index of which environment are we?), what the relationship is with other objects

within a scene (how often they co-occur? How distant are they? What’s their typical spatial

configuration?; Greene, 2013). These considerations seem to suggest that in order to extract

good measures of statistical regularities of the world we need to find source materials that offer

a truthful representation of the world, otherwise we would lose too much information and we

would build a “model” of the world that is too imprecise and unable to match our mental

representations.
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One alternative approach to intuition-driven operationalization might come from the

behavioural and neural study of language, where usage of large set of real-world linguistic

information have been used to model how the mind tunes to the structure of the world. One

fundamental example of this is represented by the study of the so-called word frequency effect,

that is the behavioural facilitation in processing words that appear more frequently in our

language (i.e., “the”) compared to words that are more rare (i.e., “platypus”; for reviews, see

Brysbaert et al., 2011; 2018). This effect has first been reported in the 1930s (Preston, 1935) and

for many years psychologists have relied on few datasets that were compiled using occurrence

of words in non-fiction written text materials (e.g., newspapers, scientific essays, magazines;

Kucera & Francis, 1965). However, the increasing availability of digital text materials have

brought the creation of larger datasets (millions of words) called corpora that contain not only

frequency information, but also other orthographic, phonological and syntactic information and

that have been validated using behavioural experiments on large sets of participants (i.e., the

megastudies, as e.g., Balota et al., 2007).

This availability of large digital text corpora, together with technological advancement in

computer science and the rise of machine learning have transformed the usage of linguistic

corpora, making them the valuable source for training algorithms in performing complex tasks,

with many developments in the domain of Natural Language Processing (NLP, i.e., application of

machine learning principles to model human language). One important case regards the

applications of distributional semantics theories, which propose a model of word meaning where

words that appear in similar linguistic contexts (i.e., they have a similar distribution in text) have

similar meaning (for a review, Lenci, 2018). NLP have created algorithms that use distributional

measures from text corpora to build representations of word meaning and perform operations

on it (e.g., analogies, conceptual constructions). One typical way of representing word meaning

by these algorithms is through Word embeddings which are multi-dimensional vectors where

proximity indicates similarity in their meaning.

This revolution of computer science has involved the domain of vision as well, starting

from the development of artificial neural networks (ANNs) that were able to categorize images

of objects with a human-like accuracy (Khrizevsky et al., 2017). Similar achievements have been
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made in the domain of scene recognition (Zhou et al. 2014), and have brought the need for more

large datasets of real-world images that are necessary for training these algorithms (e.g., SUN

database, Xiao et al., 2010; Place database, Zhou et al., 2014). Beyond scene recognition, the idea

emerged to train machine to interact with the environment in a more complex way, which would

require not just categorizing a scene, but also being able to segment it into objects and assigning

these objects an identity. For this purpose, datasets were created that contained real-world

images with segmented and annotated objects (e.g., COCO, Lin et al., 2014; ADE20K, Zhou et al.,

2019). These kinds of datasets are annotated by human workers (e.g., via platform like LabelMe,

Russel et al., 2008) and are based on verbal labels assigned to the portion of pixels associated

with an object.

This type of data has a lot of potential to be exploited beyond the field of artificial

intelligence, offering a unique opportunity to build a more reliable estimation of object statistics

in real-world scenes to model behaviour and neural processing (Greene, 2013). From an

annotated image, it is possible to measure the following: (a) something similar to word frequency

but for object (“object frequency”); (b) object frequency in specific scene categories (a

continuous measure of “object-scene consistency”); (c) object pairs co-occurrence, typical

distance and typical arrangement on the vertical and horizontal axis; and (d) how objects

clustered together within an image and many other aspects of scene structure. There has also

been a recent attempt to use annotated image datasets to build a model based on principles of

NLP and distributional semantics (Bonner & Epstein, 2021). This model is supposed to represent

an object meaning based on the complex relationship it has with other objects in scenes, and first

results seem to show a good match between this model and neural activity patterns in

Parahippocampal Cortex (PHC), which has shown sensitivity to process of implicit statistical

learning and contextual regularities in vision (Bonner & Epstein, 2021; Aminoff et al., 2013;

Batterink et al., 2019; Sherman et al., 2020).

More experimental effort is needed to describe the potential and limitations of this

annotated image datasets, as well as to validate object statistics extracted from them, but they

seem to launch an important challenge on the way we have measured the world and investigated

visual perception so far.
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The current investigation

In the current investigation our aim was to use this kind of segmented and annotated real-world

image datasets to compute objects statistics that allow us to further describe the Scene Grammar

knowledge that is built through implicit visual experience with the world and used to make

reliable predictions that make perceptual processing more efficient.

For this purpose, we focused on two datasets, that differed in quantity and variety of

images, as well as on the quality of annotations (Greene dataset, Greene, 2013; ADE20K dataset,

Zhou et al., 2019). Considerations on how the different features of these two datasets impact the

choice and reliability of measures are presented.

Using measures extracted from the datasets, we have modeled behavioural responses of

healthy adult human participants collected in three online experiments. The first experiment

(“Study 1”, Gregorová et al., 2021) investigated the effect of newly computed variables that we

named “object frequencies”, which measure the occurrence of an object in the world, on the

process of recognition of both object pictures and written word denoting the very same objects.

Besides, we investigated commonalities and differences between these new measures of object

frequency and well-established measures of word frequency computed from large text corpora.

The impact of frequency of occurrence offers insight into how the amount of experience with the

world shapes our mental representations.

In a second study (“Study 2”, Turini & Võ, 2022a), we investigated for the first time in an

explicit way the proposal of a hierarchical organization of Scene Grammar knowledge, measuring

the impact of three different levels on mental organization of objects: organization at scene level,

organization at phrase level, and organization at object type level (i.e., anchor vs local objects).

To do so, we have confronted a hierarchy built using intuition and common-sense, together with

a hierarchy that was built in a data-driven way from an annotated image datasets, taking into

account statistics such as objects co-occurrence, distance and size. Additionally, the hierarchical

organization was tested across different stimulus modalities, as object pictures and written
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words denoting the objects. The impact of a hierarchical organization offers insight into the

complexity of information built from the experience with a structured world.

Finally, in a third study (“Study 3”, Turini & Võ, 2022b) the hierarchical organization

proposed in Study 2 was further investigated in terms of stability and flexibility across different

behavioural goals. The impact of the hierarchy on mental organization was measured when

objects are judged without explicit task demands, as well as when objects are judged based on

their action goals and based on their visual appearance. This offers insight into which purpose

this mental organization might primarily serve.
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Summary of empirical studies
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Study 1: “Access to meaning from visual input: Object and word frequency effects

in categorization behavior.”

Introduction

During visual recognition, very different visual inputs, like a picture of an apple and the written

word “apple”, are transformed into the same semantic representation. For words, this process is

influenced by the frequency of occurrence of the word in natural language, a learning

phenomenon called “word frequency effect”: words that appear more often are processed

preferentially, leading to faster response times during recognition, while more rare words are

recognized with slower response times (Brysbaert et al., 2011; 2018). Word frequency (WF)

measures are now typically computed from collection of digitally available text materials, called

corpora. Using annotated image datasets, in this study we have computed measures of object

frequency (OF) using similar logic and methodology.

The aims of this study were to 1) investigate the role of OF measures in influencing

response times during object recognition, as it happens with WF measures during word

recognition; 2) to compare the impact of OF measures and WF measures within their domain (WF

for words, OF for objects) and across their domain (OF for words, WF for objects); 3) to

understand the extent for which frequency effects involve semantic processing rather than

perceptual processing.

Methods

We considered two measures of WF (one from movie/tv-shows subtitles, SUBTLEX WF, Brysbaert

et al., 2011; one from books and magazine, dlexDB WF, Heister et al., 2011), as well as two

measures of OF (Greene OF, Greene, 2013; ADE20K OF, Zhou et al., 2019).

These measures were tested in 3 experiments: Experiment 1, where participants (N=42)

performed a semantic categorization (natural vs man-made) for 100 object concepts presented

as either written (German) words or object pictures; Experiment 2, where the same participants

of Experiment 1 had to judge if prime and target match or not, presenting participants with both

uni-modal priming trials (word-priming-word and object-priming-object, which primarly involve
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perceptual processing) and cross-modal priming trials (word-priming-object and object-priming-

word, which primarly involve semantic processing); finally, Experiment 3, where we tried to

replicate results of Experiment 2 but with two new and independent groups of participants

performing either only uni-modal priming trials (N=53) or only cross-modal priming trials (N=53;

see Figure 1 for schema of the procedures).

Figure 1 – Study 1: Experimental procedures – A) sequences for word (left) and object (right) trials of semantic

categorization task (Experiment 1); B) sequences for matching prime-target trials of word-to-object and object-to-

word (left) cross-modal priming task, and for word-to-word and object-to-object uni-modal priming task (Experiment 2

and 3).

In addition to the frequency measures, we computed several covariates to control for

visual and orthographic confounds, but also to assess subjective familiarity and typicality of the

employed stimuli. Response times were analyzed using linear mixed-effect models (LMMs; Bates

et al., 2014), first selecting the frequency measures that best fit the data, then inspecting the

results and additional significant interactions.

Results and Discussion

In Experiment 1 (natural vs man-made semantic categorization), we found that only SUBTLEX WF

frequency had a significant fit in both word recognition and object recognition trials, while dlexDB

WF only fit with word recognition trials, and no OF measures was found to improve the fit in

either modalities. Inspecting the results from the model including SUBTLEX WF, we found a main

effect of SUBTLEX WF replicating typical WF effect, with faster response times for more frequent
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concepts. Additionally, we found a significant interaction between SUBTLEX WF and Concept

modality (Words vs Objects), showing a stronger SUBTLEX WF effect in words than in objects (see

Figure 2). Running a post-hoc, we found that despite this difference, SUBTLEX WF effect was

significant and had a similar direction in both word recognition and object recognition trials,

when considered separately.

Figure 2 – Study 1: Results Experiment 1 – Participants’ response times (y-axis) estimated from the model, as a

function of SUBTLEX WF frequency (x-axis), for words (blue) and objects (red). Points represent response times for

individual concepts averaged across participants, lines represent linear fitting of the points; shaded areas around the

lines represent 95 % confidence interval.

In Experiment 2 (prime-target matching task), we found that the frequency measures best

fitting the data were SUBTLEX WF and Greene OF, in an independent way. Surprisingly, when

inspecting the results of the model including both measures, we found a significant main effect

of SUBTLEX WF, and a significant main effect of Greene OF going in the opposite direction.

Similarly, we found significant interactions of SUBTLEX WF x Matching condition (Match vs

Mismatch) x Priming condition (Uni-modal vs Cross-modal), and of Greene OF x Matching
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condition (Match vs Mismatch) x Priming condition (Uni-modal vs Cross-modal), again going in

opposite directions. Post-hoc analyses have revealed that both frequency effects were primarly

significant in Cross-modal matching trials, where prime and target stimuli match and are from

different modalities, therefore requiring more semantic processing.

In cross-modal matching trials, SUBTLEX WF had the same facilitatory effect for more

frequent concepts, as in Experiment 1, while Greene OF had an opposite facilitatory effect for

more rare concepts (see Figure 3). These frequency effects did not differ between modalities,

whether the target was an object or a word.

Figure 3 – Study 1: Results Experiment 2 – Participants’ response times (y-axis) estimated from the post-hoc models, as

a function of SUBTLEX WF (x-axis up, darker green) and Greene OF (x-axis down, lighter green) in the different

conditions of priming (Cross-modal = solid lines; Uni-modal = dashed-dotted lines), and in the different conditions of

prime-target matching (Matching = left; Mismatching = right). Points represent response times for individual
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concepts averaged across participants, lines represent linear fitting of the points; shaded areas around the lines

represent 95 % confidence interval.

The facilitatory effect of SUBTLEX WF for more frequent words and objects in both

Experiment 1 and 2 replicates the many findings of WF effect in word recognition literature

(Brysbaert et al., 2011; 2018), but additionally suggest that the learning mechanism underlying

this effect, at least the one captured by subtitle-based WF as SUBTLEX, reflects not simply the

strength of experience with a word built during language (WF effect for words only), but the

strength of experience with the meaning of that word (WF effect for words and objects).

The unexpected effect of Greene OF for both words and objects, with a facilitation for

more rare concepts, was interpreted here as reflecting a memory interference process (Konkle

et al., 2010). When we perceive a lot of exemplars of an object category, the higher occurrence

weakens the memory process, while in the case of fewer encounters, the memory process does

not show such interference. This interference given by high frequency objects can be

counterbalanced if the many exemplars of the category are more diverse (Konkle et al., 2010).

To test this interpretation, we have collected ratings of Conceptual Distinctiveness (CD)

from an independent group of participants (N=16). Object categories with high CD are categories

whose exemplars are more diverse, not just at perceptual level, but in terms of different kinds

(e.g., the category “tree” has high CD because it includes palms, pine tree, oaks, cypress, etc.; see

Figure 4).
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Figure 4 – Study 1: Example of interaction between object frequency and conceptual distinctiveness – On the left,

examples of object concepts that have low and high object frequency (OF) in combination with high and low

conceptual distinctiveness (CD); the black-and-white pictures and the written words (translated) are the stimuli used in

the study, the coloured pictures (taken from Hebart et al., 2019) offer an example of the diversity of kinds within

each category; on the right, the expected pattern of interaction between the two dimensions (OF and CD) on reaction

times during priming task according to our interpretation based on Konkle et al. (2010).

Indeed, when re-running the model on data of Experiment 2 including an Object

frequency (OF) x Conceptual Distinctiveness (CD) interaction, this interaction was found to be

significant and stronger in Cross-modal matching trials, where OF effect was previously found.

The interaction revealed that when CD is low (low variability of kinds of exemplars), the OF effect

remains strong, with the interference found in Experiment 2; however, when CD is high (high

variability), the OF effect is counterbalanced and no interference is found (see Figure 5).
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Figure 5 – Study 1: Results interaction of object frequency and conceptual distinctiveness – Participants’ response

times (y-axis), estimated from the model including a OFxCD interaction, as a function of Greene OF (x-axis) and

Conceptual Distinctiveness (CD, different shades of colour), in the different experimental conditions of the priming

task (top-left, top-right, bottom-left, bottom-right). Lines represent linear fitting of individual concepts averaged

across participants.

The same model of Experiment 2, considering SUBTLEX WF and Greene OF, was run on

data from Experiment 3. We replicated the results of Experiment 2 showing that both Greene OF

and SUBLTEX WF have stronger effects in Cross-modal matching trials than in Uni-modal

matching trials, and again going in opposite directions (see Figure 6). When considering Cross-

modal matching trials alone though, only SUBTLEX WF showed a significant facilitatory effect for

more frequent concepts, while Greene OF effect did not reach significance, despite being

qualitatively in the opposite direction than SUBTLEX WF effect, as in Experiment 2.
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Figure 6 – Study 1: Results Experiment 3 – Participants’ response times (y-axis) estimated from the post-hoc model,

as a function of SUBTLEX WF (x-axis up, darker green) and Greene OF (x-axis down, lighter green) in the different

conditions of priming (Cross-modal = solid lines; Uni-modal = dashed-dotted lines), and in the different conditions of

prime-target matching (Matching = left; Mismatching = right). Points represent response times for individual

To conclude, in this study we have shown how strength of linguistic experience shapes

semantic processing (WF for words AND objects, WF in cross-modal priming); at the same time,

and for the first time, we have shown that when an object picture or word needs to be predicted

using a semantic representation (cross-modal priming), the frequency of occurrence of that

object in our visual world also influence recognition (OF effect), but in a less straightword way,

that depends on the structure of object categories (interaction of OF with CD).
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Study 2: “Hierarchical organization of objects in scenes is reflected in mental

representations of objects”

Introduction

The arrangement of objects in visual scenes is not random, but follows a structure that has been

called “Scene Grammar”, that is learnt and used by our cognitive system to efficiently perceive

and interact with the environment (Võ, 2021). It has been proposed that this structure might be

organized according to a hierarchy (Võ et al., 2019): the first level is the level of the “scene” where

objects are arranged; within a scene, there are multiple spatial and functional clusters of objects,

that represent the “phrase” level; within every phrase, objects hold different status, with one of

them (“anchor object”) offering strong prediction of the identity and the position of other objects

(“local objects”; see Figure 7A).

The aim of this study was to test if mental representation of objects are organized

according to this hierarchy, that we measured in two ways: 1) using common-sense and intuition

(“a priori hierarchy”); 2) using statistics computed from annotated image datasets (“data-driven

hierarchy”). Additionally, we tested whether this hierarchical organization depends on stimulus

modality (object pictures vs written words) or not.

Methods

We considered 45 everyday object concepts, that we organized in the a priori hierarchy assigning

each one of them to one of 5 indoor scenes. Within every scene, each object was assigned to one

of 3 phrases, where one object was assigned the status of anchor object and two objects were

assigned the status of local objects. Instead, for the data-driven hierarchy we considered a

dataset of images with annotated and segmented objects (Greene, 2013). In each image (“scene

level”), we identified clusters of objects (“phrase level”), in which the largest object was assigned

the status of anchor and to the other objects the status of local objects (see Figure 7B).

We then collected behavioural similarity judgements for the 45 objects from two groups

of participants: in Experiment 1 (N=43) participants judged object pictures, in Experiment 2

(N=43) participants judged written words of the same objects. Similarity judgments were
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collected using an odd-one-out triplet task (Hebart et al., 2020): participants saw triplets of

stimuli (words or pictures) and were asked to select the object they considered the least similar

to the other two. No explicit definition of similarity was given. From each response, three

pairwise similarity judgements are computed: given the triplet A, B and C, if C is selected as the

least similar (“odd-one-out”), similarity between A and B will be maximal, while similarity

between A and C, and between B and C will be considered minimal (see Figure 7C).

Figure 7 – Study 2: Presentation of the study – A) the proposed hierarchical organization of objects in scenes

(adapted from Võ et al., 2019); B) the same hierarchical organization measured using an “a priori” approach (left) and

a “data-driven” approach (right; image taken from Greene, 2013 and visualized using LabelMe, Russel et al., 2008);

C) example trials for the odd-one-out triplet tasks with pictures (Exp 1, top) and written words (Exp 2, bottom) used in

the study, as well as the way we computed behavioural similarity.
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To investigate if measures of hierarchy model behavioural similarity judgements, we

combined Representational Similarity Analysis (RSA; Kriegeskorte et al., 2008) with Generalized

Linear Mixed-effect Models (GLMMs; McCulloch & Neuhaus, 2005). RSA allows to compare data

that have different dimensionalities (e.g., behavioural responses, computational models,

stimulus features) by comparing their representational spaces instead. Representational space

are structured creating Representational (Dis)similarity Matrices (RDMs), which are symmetric

matrices where raw and column entries are the object stimuli we used, and each cell represents

similarity for a pair of objects. These RDMs were created for each of the hierarchical measures

we have computed (see Figure 8), as well as for the behavioural similarity judgements collected

with the triplet tasks (see Figure 9). Additionally, we have computed RDMs for visual and linguistic

covariates that we used to control for potential confounds.
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Figure 8 – Study 2: Representation (Dis)similarity Matrices (RDMs) for the hierarchical measures – A), B) and C) are

the RDMs for the “a priori” hierarchical measures, where yellow (maximal similarity) indicates pairs that belong to the

same scene (A), phrase (B) or are from the same object type (C), while blue (minimal similarity) indicates pairs that

belong to different scenes (A, B) or are from different object types (C), and gray (medium similarity) indicates pairs

that belong to different phrases within the same scene; D), E) and F) are the RDMs for the “data-driven”

hierarchical measures, where yellow (maximal similarity) indicates pairs with large level of co-occurrence in scene

(D), in phrase (E) or in an anchor-local relationship (F). Only half of each RDM is shown since the matrices are

symmetrical and repeated along the top-bottom diagonal.

Figure 9 – Study 2: Behavioural Representational (Dis)similarity Matrices (RDMs) – RDMs for the behavioural

similarity ratings from Experiment 1 (object pictures, A) and Experiment 2 (written words, B), where yellow

represents pairs with maximal similarity and blue pairs with minimal similarity. Pairwise similarity is averaged across all

the triplets that contain the pair, and therefore estimated in the context of each of the other objects.
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The a priori hierarchy resulted in 3 categorical predictors: scene condition (pairs from the

same scene vs pairs from different scenes), phrase condition (pairs from same phrase vs pairs

from different phrases of the same scene), and object type condition (pairs of the same object

type vs pairs of different object types), where object type means anchor or local objects. The

data-driven hierarchy resulted in 3 continuous predictors instead: co-occurrence in scene

(number of occurrences in the same image for a given pair), co-occurrence in phrase (proportion

of co-occurrence where pairs are also in the same cluster), and anchored co-occurrence

(proportion of co-occurrence where the pairs are in an anchor-local relationship).

Results and Discussion

We found significant main effects for all the three a priori hierarchy predictors, so that object

pairs that were assigned to the same scene, to the same phrase or to the same object type, were

estimated to be more similar than object pairs from different scenes, different phrases or

different object types. We found also significant main effects for the co-occurrence in scene and

co-occurrence in phrase predictors, with pairs that co-occurred more often being judged more

similar. No significant main effect of anchored co-occurrence was found. When comparing these

effects between modalities (objects vs words), we only found stronger effects of scene condition

and co-occurrence in scene for objects than for words (see Figure 10).
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Figure 10 – Study 2: Results – Behavioural similarity judgments (y-axis), estimated from the model, as a function of

the “a priori” hierarchical measures (A, B and C) and of the “data-driven” hierarchical measures (D, E and F). Violins

and points represent pairs of objects averaged across the different object context (i.e., the third object of the triplet).

Different stimulus modalities are represented in different position on the x-axis (in A, B and C) or different facet (in D,

E and F). For A, B and C, the black points represent the mean, while for D, E and F the lines represent linear fitting of

points; 95 % confidence interval is indicated by error bars (A, B and C) or shaded area (D, E and F).

We managed to show, for the first time, that mental representation of objects are

organized according to a scene hierarchy that encompasses three different levels. Crucially, we

used both typical a priori assignment and a data-driven approach that estimated hierarchical

measures from a set of real-world scene images. Besides, this hierarchical organization seems

quite stable across modalities and independent from other visual and linguistic covariates,

indicating that this structure is learnt and incorporated in a more abstract representation of

objects.
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Study 3: “Scene hierarchy structures mental object representations while
flexibly adapting to varying task demands”

Introduction

In the previous study we have shown how the scene hierarchy proposed by the “Scene grammar”

framework (Võ et al., 2019; Võ, 2021) has a match in the way mental representation of objects

are organized. This indicates that the complex structure of the visual environment is learnt and

used to guide efficient behaviour.

What remains unanswered is: which purpose does this mental organization primarly

serve? Is this organization stable across task or it is enhanced and reduced flexibly adapting to

different task demands? It has been shown that scenes are categorized by the set of actions one

can perform in them, and that this is the primary and stronger organizational factor (Greene et

al., 2016). Therefore, it seems reasonable that the hierarchy of objects in scene might also be

primarly relevant in offering efficient representation of objects as prediction for potential action-

directed interactions with them.

In this study, we aimed at investigating this problem by comparing the effect of scene

hierarchy on behavioural responses during different tasks, one focusing on the actions we can

perform with objects, one focusing on the visual appearance of the objects and one

unconstrained control task.

Methods

Materials and methods are mostly identical to the one used in the previous study (“Study 2”). We

used the same object pictures and the same a priori and data-driven measures of hierarchy; we

also used the same visual covariates, computed as unit activations in different layers of a Deep

Neural Network (AlexNet, Krizhevsky et al., 2017). This is a computer vision algorithm trained to

perform human-like object categorization. From the DNN, we computed low-level visual features

(“early layer”), mid-level visual features (“mid layer”) and high-level visual features (“late layer”)

for the 45 object images used in the study.
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As before, behavioural similarity judgments were collected using the “odd-one-out”

triplet task (Hebart et al., 2020). This time, we had two independent groups of participants

performing the triplet task on object pictures but with different definition of similarity: one group

(N=43) had to judged object similarity based on action goals (“Action task”), while another group

(N=43) had to judged similarity based on visual appearance of the objects (“Visual task”);

additionally we included the data from Experiment 1 of the previous study, where another group

of participants (N=43) judged object similarity without explicit definition (“No task”, see Figure

11).

Again, we combined RSA (Kriegeskorte et al., 2008) and GLMMs (McCulloch & Neuhaus,

2005) to model behaviour based on the hierarchical predictors and the visual covariates.

Figure 11 - Study 3: Behavioural Representational (Dis)similarity Matrices (RDMs) – RDMs for the behavioural

similarity ratings from the “action task” (A), “visual taks” (B) and “no task” (C; Turini & Võ, 2022a), where yellow

represents pairs with maximal similarity and blue pairs with minimal similarity. Pairwise similarity is averaged across all

the triplets that contain the pair, and therefore estimated in the context of each of the other objects.

Results and Discussion

We mostly replicated results from the previous study (“Study 2”): we found significant main

effect of scene condition and object type condition, while phrase condition did not reach

significance. All three a priori predictors went in the same direction and as before, with pairs

assigned to the same scene / phrase / object type being judged as more similar than pairs from

different scenes / phrases / object types; similarly, we found significant main effect of co-
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occurrence in scene and co-occurrence in phrase, but not of anchored co-occurrence, with pairs

that co-occured more often being judged as more similar.

Crucial for the study were the interaction effects, comparing the effect of predictors

across tasks: scene condition has similar effect between the “action task” and the “no task”, but

in the “visual task” this effect is significantly reduced; co-occurrence in scene is significantly

stronger in the “no task” than in the other two tasks, while co-occurrence in phrase is significantly

stronger in the “action task” than the “no task”, and the anchored co-occurrence was similarly

strong in the “action task” and “no task”, but significantly reduced in the “visual task”. Finally, for

the visual covariates, we found that similarity in the early layer (low-level visual features) and

similarity in the mid layer (mid-level visual features) had both stronger effect in the visual task

than the others (see Figure 12).
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Figure 12 - Study 3: Results – Behavioural similarity judgments (y-axis), estimated from the model, as a function of

the “a priori” hierarchical measures (A, B and C), of the “data-driven” hierarchical measures (D, E and F) and of the

visual covariates (G, H and I). Violins and points represent pairs of objects averaged across the different object

context (i.e., the third object of the triplet). Different tasks are represented in different position on the x-axis (in A, B

and C) or different facet (in D, E, F, G, H and I). For A, B and C, the black points represent the mean, while for D, E, F, G, H

and I the lines represent linear fitting of points; 95 % confidence interval is indicated by error bars (A, B and C) or

shaded area (D, E, F, G, H and I).

The results indicates that hierarchical structure is overall stable (main effects) in shaping

mental representations of objects, but at the same time different task demands can enhance

task-related aspects of these representations, while reducing task-unrelated aspects of the

representations. In the action task, finer-grained information of the hierarchy (phrasal

organization) is enhanced, putatively because the more action-oriented task requires to prioritize

information that might make interaction more efficient. On the contrary, during visual task,

hierarchical predictors become less important, and what is enhanced is the information about

low-level and mid-level visual features, like brightness, contours, shape, that all help in defining

similarity based on visual appearance.

Importantly, the results also suggest that in absence of explicit similarity criteria (“no

task”), the effect of hierarchical predictors and of the visual predictors are more similar to what

is found in the “action task” than what is found in the “visual task”. This would point to the idea

that the primary role of learning and using this hierarchical organization might be to have a

structured understanding of objects in the environment in order to efficiently find them, reach

them and use them to perform actions.
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General discussion
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Advantages and problems in using image datasets to extract object statistics

We have shown how measures of object statistics extracted from segmented and annotated

image datasets can explain behavioural response times and similarity judgements during

processing of objects, interpreting this fact as an indication that our cognitive system is sensitive

to the structure of the world and able to use this information to make efficient predictions.

However, it is important to consider whether the datasets from which these measures were

computed are a good representation of the structure of the world.

Every dataset (of images, text or other materials) presents us with three main challenges:

first, a dataset represents an approximation of the world, even the largest ones available

nowadays; second, being an approximation, a dataset contains biases from the process of

selecting the materials and from the nature of the sources from which the materials are taken;

third, the assumption that the structure of the world captured by a dataset is reflected in the

mind is only valid if we assume that experience with that world structure happens in the same

way from one person to the other. We will discuss these challenges, focusing in particular on the

datasets that have been used in our empirical investigations (Greene, 2013; Zhou et al., 2019).

Once again, we can consider what we have learned from the usage of text corpora in

language research to understand the role of dataset size on its reliability. Brysbart et al. (2011)

proposed that a text corpus needs at least 20-30 million words to offer reliable estimates of word

frequency, but even larger corpora do not seem to explain more variance (Brysbaert & New,

2009). This consideration of size came from empirical comparisons of different sizes with large

dataset of reaction times for lexical-decision tasks. Therefore, for our image datasets the

considerations of size should be, where possible, based on empirical comparisons.

This was possible for the results of Study 1 presented here (Gregorová et al., 2021): we

compared the effect of object frequency (OF) measures on reaction times for semantic

categorization of object pictures and words, as well as for cross-modal and uni-modal priming.

The two datasets have very different sizes: the Greene dataset (Greene, 2013), on one hand, is

based on 3499 individual scene images, grouped into 16 scene categories (8 indoor, 4 outdoor

natural, 4 outdoor man-made). In these images, there are in total about 48,000 individual object
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annotations, grouped into 617 object categories; ADE20K dataset (Zhou et al., 2019), on the other

hand, has a much larger size, with more than 20,000 individual scene images from about 900

scene categories, and more than 400,000 individual object annotations grouped into more than

2,500 object categories. The two datasets’ sizes are still quite far away from what has been found

empirically for language corpora, but the current panorama of annotated image datasets hardly

offers much more (e.g., COCO dataset for example have many more instances of objects, but also

very few object categories, Lin et al., 2014), with datasets of ADE20K size and variability

representing state-of-the-art in computer vision semantic segmentation (Yu et al., 2018).

The direct comparison of the Greene dataset and ADE20K dataset in Study 1 showed that

in terms of model fitting, Greene OF showed better predictive power on response times data,

although ADE20K OF also showed significant improvement in model fitting, and a similar pattern

of results than Greene OF (Gregorová et al., 2021). Additionally, and importantly, the two OF

measures had a strong correlation (r=0.81; Gregorová et al., 2021). A further but more indirect

and qualitative comparison between the two datasets could be done by contrasting the results

of Study 2-3 (Turini & Võ, 2022a; 2022b), which use information on object pairs co-occurrence

and clustering from Greene dataset, with the results obtain by a complex model of distributional

semantics of objects computed from ADE20K (i.e., the object2vec of Bonner & Epstein, 2021).

Both these models, despite the differences, have shown to match either behavioural or neural

representations of objects. To conclude on this, we could state that the different sizes of the

Greene dataset and ADE20K dataset do not seem to have produced differences in the empirical

efficacy that measures computed from them have on accounting for behavioural (or neural data).

Clearly the aim for further developments of this kind of datasets is to expand their size, but

quantity does not seem to be the main issue, in our opinion, but rather the quality of the images

and annotations. This leads us to the second issue in dealing with datasets, namely the biases

they contain (Torralba & Efros, 2011).

When considering biases in scene image datasets, one source of potential problems

comes from the fact that images might not cover the wide spectrum of scene categories in real-

world, and subsequently include a limited and skewed distribution of objects appearing in them.

Consider the case of a dataset of images of only bathrooms, or a dataset of images of only indoor

65



scenes. Even if these two datasets were based on 20 million unique images, they would be

unreliable in estimating the occurrence of certain objects because of the limited variety of the

images in them (e.g., for the “bathroom only” dataset we would not be able to understand how

frequently stove tops appear in the world; for the ”indoor only” dataset we would not be able to

understand how frequently trees appear in the world). Both the datasets used in our studies

addressed this problem by having images from scene categories that were both indoors and

outdoors, and within the outdoors they collected images from both natural and man-made

scenes. However, ADE20K dataset offers a hugely bigger variety of scene categories (about 900;

Zhou et al, 2019) compared to Greene dataset (16 categories; Greene, 2013), although in the

latter we have categories that intuitively we could consider the most common ones (and

therefore most commonly used in cognitive science research): kitchen, bedroom, living room,

bathroom, dining room, office and conference room (for the indoor scenes); mountain, forest,

country-side field, coast beach (for the outdoor natural scenes); street, city center, sky-line,

highway (for the outdoor man-made scenes).

Another source of biases to consider is the configuration of scenes as it is depicted in the

images. Often times, downloading scene images from copyright free websites biases the datasets

because most of the images might come in an artificially cleaned, stylized and idealized view

because photographers wanted to capture the whole scene, they wanted it to be tidy and

harmonious, which results in a less naturalistic description of what a bedroom or a street look

like (e.g., consider the case of images used by design / architecture studios to present potential

furnishing solutions). On the one hand, with ADE20K that includes images taken from the SUN

dataset (Xiao et al., 2010) and the Place dataset (Zhou et al., 2014), which are both taken from

the internet, this potential bias might have been addressed by looking in search engines using

the scene name + different adjectives (“messy, spare, sunny, desolate, etc”; Zhou et al., 2014) in

order to avoid collection of scenes with too uniform point of view and configuration. On the other

hand, with Greene dataset, this issue was addressed by cross-validating the image dataset with

an auxiliary dataset compiled using images that were uploaded by people on LabelMe (Russel et

al., 2008) and therefore lacking the “artificiality” of typically collected images (Greene, 2013).
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The final biasing aspect that we are going to discuss is also the most relevant for this type

of datasets: labelling. The individuation of objects in these image datasets is strongly dependent

on the label they received from the annotators and their labelling decisions. Assigning a label to

an object can be easy sometimes, but other times it requires that a criterion is used. For

examples, a tree can be labelled as “tree” but also as “oak”; a car can be labelled “car”, but also

more generally “vehicle” or more specifically “Ferrari”. This is particularly relevant if object

categories are very heterogeneous, as it emerged from the interaction of this dimension with

object frequencies as computed in Study 1 (Gregorová et al., 2021). A related problem is the

usage of synonyms or repetition error (e.g., using singular and plural labels, or capitalizing the

first letter of the label on some occasion and not in others). Both ADE20K and Greene datasets

have addressed this problem by training annotators in their labelling procedure: assigning entry-

level label when possible (e.g., “dog”, neither “pet” nor “golden retriever”), using singular nouns,

using all lowercase characters, etc. Besides, they both used additional annotators on a subset of

the images to test reliability of label assignment across different individuals (Greene, 2013; Zhou

et al., 2019). One thing that differentiates the two datasets in terms of quality of annotation is

the fact that Greene dataset, despite being smaller (or maybe because of this), has more

complete and clean annotations, where synonyms are checked and repetition are avoided.

Applying this same care to the annotations of ADE20K would help to overcome the limitations

posed by the smaller number of scenes in the Greene dataset.

Finally, the third main challenge in using image datasets (but also other types of datasets)

is the assumption that a dataset, even if large and unbiased, is capturing aspects of the world

that are experienced in similar ways by everyone. Even for the knowledge acquired primarily with

perception, it seems likely the physical and cultural context in which the perceptual experience

takes place play a role, as well as the individual expertise with the content of the experience.

Consider for example, the outdoor environments experienced by a person in North America in

opposition to a person in Europe or in Africa or in East Asia. Landscapes are different, streets and

roads are different, urban structures are different, even objects within the environments are

different, like for example cars. This is also true if we consider design of indoor scenes: kitchens,

bathrooms, living rooms, bedrooms have differences reflecting the influence of cultural habits,
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with presence and arrangement of objects that differ sometimes in subtle ways, sometimes in

more evident ways. Although in a globalized and digital world we can have a visual experience of

outdoor and indoor environments and objects that are far away from our own culture, it would

be important to acknowledge cultural differences in objects’ presence and arrangement, and to

find a way to incorporate these differences when building image datasets.

Similarly, we know how important the effect of expertise is to visual recognition (for a

review, Harel, 2016): some objects and some environments are more familiar to us because we

spend a lot of time performing actions with and in them; objects that are more familiar to us can

be differentiated better, while other people who are not familiar may consider them to be the

same, influencing the reliability of a label in an image dataset. Going back to what is known from

using text corpora, recently it became more relevant when estimating measures like word

frequency to acknowledge not simply the frequency per se, but in how many contexts a word

appears, if those contexts and their linguistic registers are familiar to the participants from which

behaviour is measured, and more generally, the role of subjective familiarity of individuals with

certain words (Brysbaert et al., 2011; 2018; Kuperman & Dyke, 2013). We have tried to take care

of these aspects when using word frequency measures in Study 1 (Gregorová et al., 2021), but

our (and of other people’s) few attempts to use object measures from image datasets still have to

properly incorporate these suggestions.

To conclude on this topic, the first positive results of using annotated and segmented

image datasets are promising for the future of visual cognitive science, with some of the

challenges of large datasets being addressed, but with a lot of further work that needs to be done

to improve their quality and reliability.

The future of Scene Grammar

If on one side one of the goal of our studies was to consolidate the findings of Scene Grammar

research (i.e., measuring object-to-scene and object-to-object consistency in a more data-driven

and continuous way), on the other side it is important to discuss how our findings might suggest

future directions and development of questions related to Scene Grammar.

68



The results of Study 3 leaves us with the suggestion that aspects of the hierarchy, in which

objects seem to be organized within a scene (and in the mind), are enhanced and functional to

efficiently perform actions using those objects within the scene (Turini & Võ, 2022b). This idea is

not new in scene perception research, having roots, as we have seen, in the ecological approach of

Gibson (Gibson, 1986), for which visual input contains already information about efficient

motor pattern elicited by certain objects (“affordances”). This intuition were developed showing

evidence that neural processing (Greene & Hansen, 2020) and categorization behaviour (Greene

et al., 2016; Groen et al., 2018) of scenes are strongly influenced by the set of actions that can be

performed in a certain scene.

This evidence makes intuitively sense. If on one side the activation of Scene Grammar

knowledge starts with the recognition of the environment, that we have seen it can be achieved

using many different global and local scene properties (Wiesmann & Võ, 2022; Lauer & Võ, 2022);

and then, this Scene Grammar knowledge is used to efficiently recognize (Lauer & Võ, 2022),

search (Helbing et al., 2022) and interact (Draschkow & Võ, 2017) with objects within scenes; on

the other side it seems that the end goal of all these processes is to allow the usage of the objects

that are recognized, found and reached (Malcom et al., 2016). This action-centered processing

of Scene Grammar knowledge seems particularly important for indoor and man-made

environments, that are designed by humans exactly to serve some purposes (e.g., in the

bathroom one showers, in the kitchen one cooks, in the bakery one shops). Given these

considerations, on our opinion, future investigations of scene grammar should incorporate the

role of action goals in more typically investigated object recognition and search task. For

example, what is the influence of object-to-object spatial relationship (e.g., distance, consistent

vs inconsistent relative positive) when one needs to search for multiple objects that serve a

specific task (e.g., a pan and a spatula when cooking eggs)? What is the influence of consistently

and inconsistenly placed anchor objects (e.g., stove top and refrigerator) in this sequential and

goal-directed search? How actions are differentiated between the ones involving multiple

phrases of a scene and the ones linked to a specific cluster of objects (see studies on the so called

“reachspaces”, Josephs & Konkle, 2019; 2020)?
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Adding such complexity to typically used paradigms might come with the risk of losing

experimental control. We believe that this problem could be addressed continuing in two

directions that have been already approached when investigating Scene Grammar. The first one

relates to this current investigation, and recommends the employment of large set of images

from which to extract more and more objects-to-scene information. The second one is the

employment of Virtual Reality (VR) to test behaviour in a more ecological settings.

Investigating object recognition and search with the idea of reaching and using the

objects, especially with VR, also opens to incorporate in the study of Scene Grammar another

fundamental task we perform in scene, which is navigation (Bonner & Epstein, 2017; Malcolm et

al., 2016). When searching in the real world (and in VR) we do not just use our eyes, but we move

our head and also our body. Going back to the example of cooking an egg, even within a small-

scale environment such as a kitchen, we need to move from one anchor to the other (e.g.,

cabinet, stove top, refrigerator) in order to find and grab the objects we need.

Considering navigation also offers the occasion to reflect on the differences between

outdoor and indoor environments, and how these differences impact Scene Grammar

knowledge. Although we can identify object-to-scene relationship in outdoor scenes as we do for

indoor scenes (e.g., a car in the street is in a consistent relationship), it becomes harder to think

about object-to-object hierarchical organization and the distinction between anchor and local

objects when dealing with outdoor environments. This has again to do likely with the fact that

indoor environments are design to perform specific actions, while outdoor environments, also

because of their larger scale, they seem to be predominantly designed for navigation, or for

actions related to navigation (e.g., driving, cycling). One direction we suggest would be to

investigate how to include outdoor scenes into a hierarchical structure, where the crucial

dimension is spatial scale: we navigate space through large scale outdoor environments (e.g., a

street) until we reach smaller scale environments, often times indoor ones (e.g., a bakery); within

these scenes, in order to perform an action (e.g., buying something), we search for our target

using anchor objects, which point to a specific reachspace/phrase (e.g., the space around the

counter or the space around a shelf); finally, once the reachspace/phrase is found, we use our

scene grammar knowledge about relative spatial arrangement between anchor and local objects
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to find and reach our target (e.g., a loaf of bread). Although this is only a relatively simple example

of behaviour, it poses already a challenge of complexity that is rarely addressed in cognitive

science research.

A further issue, that goes beyond this action-centered proposal of scene grammar

knowledge but that is in some sense related, is the investigation of scenes and objects that do

not have a clear specificity in terms of arrangement and functions. To clarify, consider the case of

a living room compared to a kitchen. The design of a kitchen is functional to a specific sets of

actions, mainly related to cooking and consuming food. This is quite standard and independent

from room size, quality of furniture and even on some extent from culture to culture. Living

rooms, instead, are designed to be more general in their purposes, although with some typical

ones (e.g., sitting on a couch / armchair to relax, or welcoming guests). Many people do not have

a living room, though; many people in their living rooms do not have a TV, while many others do;

many people read and / or listen to music in their living rooms, but many others do not; some

people have a piano in their living rooms, most of the people do not. Keeping into account the

differences in scales addressed before, this difference in specificity of actions becomes more

evident if we compare indoor (e.g., bathroom) and outdoor scenes (e.g., a forest). Similar

considerations can be done for certain objects: a book is mostly found in a living room, in a

bedroom or in a home office, but It would not come as inconsistent to find it in a kitchen, or even in

a bathroom; the same applies to chairs that, with some differences in design and materials, they

can be found with no surprise in a lot of different context, indoor and outdoor. It seems that for

some objects and some scenes is difficult to find a clear semantic relationship (here to be

intended as “using object X in scene Y to perform action Z”). Thus, in this case our suggestion,

following some empirical findings in literature, would be to depart from scene semantics and

focus on an aspect that is pre-semantic or to some extent independent from semantics, which is

space (Castelhano & Kryzś, 2020).

The idea that spatial arrangement is an independent dimension from semantic

relationship of objects has been investigated for some years now. For example, it has been

shown, using the typical paradigm of consistent vs inconsistent arrangements, that an object that

is semantically inconsistent but is placed in a consistent spatial configuration is processed better
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than a semantically consistent object placed in an inconsistent position (Castelhano & Heaven,

2011). Besides, an object’s function can be informative of its spatial arrangement within a scene,

even in absence of clear semantic information from the scene (Castelhano & Whiterspoon, 2016).

A scene spatial information that seems to be used in advance to scene semantics is the

distribution of surfaces (Pereira & Castelhano, 2014; 2019). According to this “surface guidance”

model, during search, attention is deployed to surfaces within a scene, and the surfaces that most

likely would “host” the target object are further selected, simplifying the search task (Castelhano

& Kryzś, 2020).

All this evidence are not new to the Scene Grammar framework, but highlights how spatial

dimension could support object-to-scene and object-to-object knowledge with reduced or

absent semantic information. Future investigations should try to integrate these different

suggestions in a unique and coherent research plan.

Scene Grammar and applications to Artificial Intelligence

The incredible developments in computer vision of the last decade, started with the introduction

of deep Convolutional Neural Network for image classification (dCNNs, or CNNs or DNNs,

Krizhevsky et al., 2017) and continued with the “Deep Learning revolution” (Sejnowski, 2018),

has brought a lot of enthusiasm in the field of Artificial Intelligence (AI) and in the idea of

developing algorithm that are able to extract complex information from images in order to

achieve complex visual task.

Many of the datasets we have discussed above (ADE20K, Zhou et al., 2019; COCO, Lin et

al., 2014; Places, Zhou et al., 2014) were developed exactly within this field and specifically to

train algorithm to perform efficient semantic segmentation of scenes (Yu et al., 2018). Semantic

segmentation of scenes is a complex task that requires segmenting the image / space into

meaningful entities, such as objects and more extended “stuff” (e.g., sky, ground, sand, sea, etc.).

This task is crucial, as we have seen from scene understanding research in human (Malcolm et

al., 2016), to interact with space and objects in a more efficient way, for example in searching for

target or in navigating through obstacles. Implementing these trained algorithms in machine
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could have, and in some cases already has, important application in automated driving vehicles

or for rescue robots, just to name two examples.

And if these datasets developed for AI became a resource for research in cognitive science

in humans, as the current investigation has tried to present, it became also clear how the

understanding of human perception and cognition can guide further developments in AI. Already

Oliva and Torralba (2007) pointed to the need for computer vision algorithms to integrate

contextual information of scenes, as found in human vision, to improve object recognition (Oliva

& Torralba, 2007). For examples, it has been showed that combining two CNNs, one processing

object information and one processing background scene information, the scene processing CNN

is able to extract the “gist” of the scene and improve the classification performance of the object

processing CNN (Wu et al., 2018; Zhang et al., 2020). With a similar goal, it has been shown how

embeddings built from object co-occurrence distributional measures (as in Bonner & Epstein,

2021) can improve scene recognition and object recognition CNNs (Treder et al., 2020).

Relating these applications to the insights on scene structure discussed in the current

investigation, some researchers in AI have started using notion from Graph Theory to train DNNs

in learning the hierarchical structure of objects in scenes and the complex web of object-to-object

relationships. Graph theory is the branch of mathematics that study “graphs”, which are

mathematical structures that model a set of entities and their complex network of pairwise

relationships. Entities are represented as “vertices” (the points), while pairwise relationships are

represented as “edges” (the lines) in this network (Zhang & Chartrand, 2006). This graph-like

representations can be applied to scene images, where vertices are objects (a table, a chair) and

the edges represent pairwise relationship between objects. “Scene graphs” can further be

expanded defining objects’ attributes (“chair is made of wood”, “table is red”) and the nature of

the relationship (“chair” -> “on the left of” -> “table”; Johnson et al., 2015). This kind of

representation of real-world images have been used to train DNNs to perform image retrieval

matching the scene graph description with success, outperforming models that used purely text-

based description (Johnson et al., 2015). The limitation of this work was in the fact that it required

human-aided scene graphs as an input (i.e., graph descriptions made by human workers) to train

the networks in performing image retrieval. A system that is able to understand object-to-object
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relationship would need to be able to create scene graphs given any kind of scene image. This is

what a following work has focused on (Xu et al., 2017): a network takes an image as input and

output a scene graph, with objects, objects’ attributes and objects’ relationship represented as

bounding boxes with connections among them. Similarly, other attempts have tried to improve

scene graphs generation by integrating both local information (connections centered in one

object) and global information (all the connections between all the objects; Woo et al., 2018).

This type of networks have been also shown to capture in their scene graph descriptions

relational regularities at different scales within the images, suggesting that they are able to

extract a hierarchical organization (Zellers et al., 2018).

The intuition and development of these so-called “relational modules” in DNNs is opening

many interesting challenges in AI, that go beyond visual domain (Santoro et al., 2017). Being able

to detect and understand relationships between items is crucial not just for interacting with the

visual environment but also for complex reasoning, action planning and communication. These

initial applications open to a promising future of research in implementing structured and

complex task in AI algorithms.

Our mind and our world

In this dissertation we have started discussing the relationship between the mind and the world,

their complex dynamics and the necessary balance between “what’s outside” and “what’s inside”

that is reached in typical cognitive functioning.

We have focused on perception as a paradigmatic set of mental functions where this

exchange between internal and external contributes to produce a sense of being here and now,

with our own body immersed in a complex and changing but also stable environment, despite

the mediation of important mental structures: representations. These representations are

fundamental to understand the world and, crucially, to predict its functioning.

From this, we have zoomed on some of these predictive processes, called Implicit

Statistical Learning, where the mind learns the structure of the world by tuning and adapting to its

structure in ways that seem almost effortless for us. Then, we have further narrowed our
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interest considering implicit statistical learning for complex spatial configurations, in particular

the visual environment in which we move and do stuff, i.e., visual scenes.

We have discussed how scenes have a complex structure in some sense similar to the

structure of language, where things (objects or words) are arrangement in specific positions and

in a meaningful way (i.e., what has been called “Scene Grammar”). What became relevant, and

we tried to address empirically with our work, is the possibility of using large set of data, in this

case annotated real-world images, to extract measures of objects in scenes, measures of our

visual world, and to compare these measures with the “measures” that our mind computes from

the world, as a results of the adaptation processes of implicit statistical learning.

Our experiments offered positive results, showing that frequency of occurrence of an

object influences semantic representations in memory, interacting with the categorical structure

of an object concept (“Study 1”); besides, we were able to show that these semantic memory

representations of objects are organized according to a complex hierarchical structure present

In our environment, that depends on variables such as co-occurrence, distance, size and

positional stability of objects (“Study 2”); additionally, this hierarchical organization seems to be

enhanced when objects are processed considering their action goals than when objects are

processed in terms of visual appearance, suggesting that learning of these visual contextual

regularities might serve the purpose of efficiently interacting with and acting on the objects in

the environment.

In light of the results, we have discussed the advantages and limitations of using above

mentioned image datasets and proposed some future directions of investigating Scene Grammar

in relation to its putative role of supporting efficient action. This leads us to a final consideration.

The need to fill the gap of individual differences in the experience of the world that is missing

from the image datasets in use, as well as the individual differences in terms of actions that are

performed in real-world scenes. This is shading light to a broader issue in cognitive science and

psychology. Although experimental psychology focuses on understanding the mind in its more

general and shared aspects, that belongs to all human beings (and sometimes to other animals as

well), when we investigate some complex behaviours that involve the influence of many socio-

cultural factors (as in our case, consider e.g., the influence of culture on interior design), it seems
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crucial to find a way to integrate the more “universal” dimension of experience to the more

personal one.

On how this can be achieved, we are afraid we cannot offer specific and definitive

answers, but we can suggest to focus on combining the extremely valuable resources coming

from big data, as we have tried to do here, together with a more tailored set of measures that

are aiming at capturing the individual differences we have previously discussed. In this way, the

impact of the objective measures can be weighted and adjusted taking into account more

subjective measures. The aim is to find a way to comprehend mental processes like implicit

statistical learning in a way that offers an understanding of the mind and the world in general,

but also an understanding of our minds and our experience of the world.
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Abstract

Object and word recognition are both cognitive processes that transform visual input into

meaning. When reading words, the frequency of their occurrence ("word frequency", WF)

strongly modulates access to their meaning, as seen in recognition performance. Does the

frequency of objects in our world also affect access to their meaning? With object labels

available in real-world image datasets, one can now estimate the frequency of occurrence of

objects in scenes ("object frequency", OF). We explored frequency effects in word and object

recognition behavior by employing a natural vs. man-made categorization task (Experiment 1)

and a matching-mismatching priming task (Experiment 2-3). In Experiment 1, we found a WF

effect for both words and objects but no OF effect. In Experiment 2, we replicated the WF

effect for both stimulus types during Cross-modal Priming but not during Uni-modal Priming.

Moreover, in Cross-modal Priming, we also found an OF effect for both objects and words, but

with faster responses when objects occur less frequently in image datasets. We replicated this

counterintuitive OF effect in Experiment 3 and suggest that better recognition of rare objects

might interact with the structure of object categories: While access to the meaning of objects

and words is faster when their meaning often occurs in our language, the homogeneity of object

categories seems to also impact object recognition, particularly when semantically processing

contextual information. These findings have major implications for studies wanting to include

frequency measures into their investigations of access to meaning from visual inputs.

Keywords: word recognition, object recognition, frequency, distinctiveness, priming.
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Introduction

Visual recognition is the cognitive process that maps sensory input from the retina onto

meaningful representations stored in semantic memory (Clarke et al., 2013; Grill-Spector &

Weiner, 2014); this process supports many tasks like action planning, navigation, reading,

social interaction, etc. The types of visual input for these tasks, e.g., objects, scenes, written

words, or faces, already pose a high level of complexity, so that research in cognitive science

has often investigated different types of visual input separately, focusing on the specificities of

each domain (Capitani et al., 2003; Downing et al., 2006). Notably, investigations of the ventral

visual stream, i.e., the core neural substrate of high-level vision, compared the brain activation

in response to these different types of stimuli (for a review, Grill-Spector & Weiner, 2014).

Their main finding was that different stimulus types activated distinct but neighboring regions

(e.g., fusiform face area; Kanwisher, et al., 1997; the visual word form area, Dehaene & Cohen,

2011). At the same time, other researchers focused on comparing different visual inputs, e.g.,

objects and words, to understand the process of accessing the same semantic representation,

i.e., the identical meaning (Shelton & Caramazza 1999; Shinkareva et al., 2011; Devereux et

al., 2013; Fairhall & Caramazza, 2013). We followed this approach and investigated how

different types of visual input can access identical meanings. We were particularly interested

in the frequency of occurrence in the world, operationalized by both word and object frequency

measures.

In the fields of visual word recognition (Balota et al., 2004) and reading (Kliegl et al.,

2006; Rayner, 2009), the so-called “word frequency effect” is a well-established finding. The

word frequency (WF) effect shows that words that occur more often in our language (e.g., the

article "the") are processed faster than words that are rare (e.g., “platypus”). Common naming

and lexical-semantic categorization tasks, e.g., lexical decision tasks (Balota et al., 2004; for a

3



review, Brysbaert et al., 2011; Brysbaert et al., 2018), consistently show WF effects, i.e., longer

response times and more errors for low frequency words. Even though there have been various

attempts to identify more reliable estimates of WF and its nature, it is generally agreed upon

that the WF effect emerges as an effect of learning and exposure to a language (for a review,

Brysbaert et al., 2018). Thus, despite different assumptions and implementations, most models

of visual word recognition and reading took WF into account as a crucial parameter

representing the difficulty in accessing lexical representation in the so-called “mental lexicon”

(Forster & Chambers, 1973; Morton, 1979; McClelland & Rumelhart, 1981; Coltheart et al.,

2001; Engbert et al., 2005).

Object recognition models (Riesenhuber & Poggio, 2000), on the other hand, are

primarily concerned with assigning images to different categories, irrespective of their

frequency of occurrence (Morrison et al., 1992; Criss & Malmberg, 2008; Taikh et al. 2015).

In the rare cases when studies compared recognition performance of written words and matched

object images, typically frequency effects were investigated based on word measures. For

example, Taikh and colleagues (2015) found faster object than word recognition performance

in a semantic categorization task, but WF only affected word recognition performance (Taikh

et al., 2015). When behavioral investigations used naming aloud tasks, object recognition

performance also showed frequency effects based on word-based estimates (Bates et al., 2001;

Almeida et al. 2007; Taikh et al. 2015). However, the WF effects found in object naming studies

are likely related to the process of accessing the verbal output representation (i.e., the spoken

word; Almeida et al., 2007). Thus, tasks that involve linguistic representations, e.g., as part of

the output modality, might be more sensitive for word frequency effects on object recognition

performance.

A potential limitation of previous investigations comparing the two domains (words and

objects) is that these studies included only frequency estimations that rely on linguistic input:
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i.e., large text corpora (e.g., books and newspapers, like dlexDB, > 20 million words; Heister

et al., 2011) or spoken language corpora (e.g., from tv-movie subtitles, like SUBTLEXDE,

about 25,4 million words; Brysbaert et al., 2011). Typically, WF estimates represent the number

of occurrences per million words. Across languages, WF estimates have a better explanatory

power for reaction time data from word recognition tasks when extracted from TV and movie

subtitles than from book and newspaper texts (e.g., for German, see Brysbaert et al., 2011; for

English, see Brysbaert & New, 2009). This finding likely reflects that participants in

psycholinguistics experiments (often young students) are more exposed to popular TV shows

and movies than the content of classic text corpora, which often include highly specialized

texts. Thus, subtitle-based WF measures are, to date, the best representation of the number of

occurrences of words in everyday life (Brysbaert et al., 2011; 2018). However, it is still unclear

how these more precise measures estimated from subtitles might also explain recognition

performance in the object domain. Furthermore, it is essential to explore if newly developed

frequency measures, based on the occurrence of objects in images of real-world scenes, could

also be valid estimates of access to meaning or not, and could also shed more light on the

phenomenon underlying the WF effect. Thus far, the lack of such object frequency (OF)

measures has likely been due to a lack of easy access to fully labeled image databases.

Recent advances in computer vision have made annotated image datasets with

segmentations and labels of all objects within a scene readily available. Usually, these labels

come from human annotators (Russel et al., 2008). For example, the ADE20K dataset contains

over 20,000 real-world images from 900 different scene categories, with hundreds of thousands

of object annotations categorized into more than 2,500 object categories (Zhou et al., 2019).

Despite having been developed for computer vision research, these datasets allow us to extract

quantitative measures about contextual regularities of objects in the environment (e.g., objects

that appear more often in a specific scene category). These newly available object-in-scene
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statistics have inspired new investigations regarding which aspects of a scene our cognitive

system exploits to efficiently process objects and scenes (Greene, 2013; Võ et al., 2019).

Notably, we can now efficiently compute an object-based frequency measure based on these

image datasets. This OF measure uses the same logic as word-based frequency: counting the

number of occurrences of a labeled object in a given image dataset.

It is important to note that current research on WF measures suggests that corpora

should include at least 20 million words (Brysbaert et al., 2011) in order to yield a reliable

frequency estimate. We cannot expect such a high number of objects for the currently available

annotated image datasets, and we should consider that - as is the case even with wellestablished

text corpora - every measure computed from a dataset represents only an approximation of real-

world properties. In the specific case of real-world image datasets, biases could arise not just

from the limited number, but also from limited variety of scene categories, limited points of

view of photographs, artificiality of image composition, lack of clutter, etc. Nevertheless, there

have been some successful attempts to use measures from existing image datasets to model

neural response to object recognition (e.g., from ADE20K; Bonner & Epstein, 2021; Bracci et

al., 2021). Thus, in this study, we explore the potential of these newly computed object-based

frequency measures on capturing aspects of visual recognition behavior and compare them to

well-established word-based frequency measures. To do so, and to limit biases from specific

datasets, we employed not only one, but two measures of OF computed from two datasets that

differ in size and quality of annotations (Greene, 2013; Zhou et al., 2019), as well as two

measures of WF from datasets that differ in the source of the linguistic input (Brysbaert et al.,

2011; Heister et al., 2011). The effect of these measures on accessing meaning during visual

recognition was assessed in three experiments.

The first experiment used a semantic categorization task in which participants had to

decide whether a concept, presented via an object image or via a written word, was natural or
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artificial (i.e., man-made). During the procedure, we recorded response times and error rates

from participants. The response time data allowed us to investigate whether word-based or

object-based frequency measures modulated the speed of semantic access. We expected to

replicate the WF effect for words. Besides, we wanted to test whether a WF effect on object

recognition would emerge without an explicit linguistic response. Importantly, for the first time

we explored possible effects of newly developed OF measures on both object and word

recognition behavior.

Observing an OF effect only in object recognition and a WF effect only for words would

indicate that recognizing and learning visual stimuli (words vs. objects) occurs separately

within each modality (e.g., by means of a verbal vs pictorial representation). Alternatively, if

one frequency measure would affect both modalities alike (e.g., WF affecting word and object

recognition), this finding would indicate that a frequency measure is not just a proxy for the

repeated experience with a modality-specific stimulus (e.g., a word) but for the repeated

experience with the semantic representation connected to that stimulus (i.e., its meaning).

Therefore, the strength of the semantic representation given by the repeated experience would

also be present when that semantic representation is accessed from a different modality (e.g., a

picture). This scenario is in line with the idea that semantic representations are shaped by

different kinds of experiences: perceptual, motor, affective, but also linguistic. In this view, for

example, language is not just a means of representing and communicating conceptual

knowledge but has a transformative power on this knowledge as well (Lupyan & Lewis, 2019).

These transformations derived from modality-specific experience then generalize to other

modalities.

In the second experiment, the same participants completed a priming task in which they

had to decide whether the meaning of the prime and target stimuli matched. By implementing

either Uni-modal or Cross-modal Priming, we were able to modulate the degree of semantic

7



processing in the task and examine how frequency effects change as a function of the varying

semantic demands. Uni-modal Priming (Scarborough et al., 1977) occurs solely on the

perceptual level, as matching prime and target pairs not only have the same meaning but are

also identical in their visual appearance (i.e., word primes word or object primes object). Thus,

we expected a lower involvement of semantic processing. In contrast, Cross-modal Priming

(Tversky, 1969) necessarily requires semantic processing because participants must relate two

visually distinct stimuli to one meaning (i.e., object priming word or vice versa) to solve the

task. If the effects were most substantial in Cross-modal Priming, this would provide further

evidence that the frequency effects reflect an aspect of semantic rather than merely perceptual

processing. The same participants of Experiment 1 and 2 also performed a rating study from

which we have extracted stimulus-specific measures that we have used as covariates in the

analysis.

To avoid potential carry-over effects from Experiment 1 to 2 when testing the same

participants, we conducted a third experiment which included two new sets of participants —

one performing only the Cross-modal and another performing only the Uni-modal Priming

trials. This additionally reduced the number of concept repetitions per person. We again

hypothesized that if frequency effects reflect processing of semantic representation rather than

only perceptual representation, stronger frequency effects should emerge in the group exposed

to Cross-modal Priming rather than Uni-modal Priming. Finally, further sets of ratings were

collected from a new group of participants different from the ones of Experiments 1,2, and 3,

again with the idea of extracting covariate measures to use during the analysis.

8



Materials and Methods

Participants

We required all participants taking part in our study to have normal or corrected-to-normal

vision, be German native speakers, and have no history of linguistic, psychiatric, or

neurological disorders. Additionally, we only included participants who did not report having

technical problems during the online procedures and who completed both sessions. Participants

were recruited by sharing the link to the studies on through platforms and mailing lists of

students at the Goethe University of Frankfurt.

To prevent an overestimation of underpowered correlations, which may be expected

when Ns is below 30 participants (e.g., see Yarkoni, 2009), we tested 60 participants (of whom

42 fit the above-mentioned criteria) in Experiments 1 and 2, as well as the rating study judging

typicality and familiarity of the used stimuli (age: M = 23.55, SD = 8.88, Range: 15-59 y.;

Gender: 34 F, 7 M, one person did not report; 5 bi/multilingual with German as one of the

native languages).

For the replication in Experiment 3, we recruited 53 additional participants for the Cross-modal

Priming task (age: M = 22.87, SD = 6.83, Range: 18-50 y.; Gender: 43 F, 10 M; 10

bi/multilingual with German as one of the native languages), and yet another 53 participants

took part in the Uni-modal Priming task (age: M = 22.66, SD = 4.81, Range: 18-39 y.; Gender:

35 F, 16 M, 2 NB; 13 bi/multilingual with German as one of the native languages). The sample

size for the replication (N = 53 + 53 = 106) was obtained by taking the sample size in

Experiment 2 (N=42), which had a within-participant design, and adapting it to a

betweenparticipants design in the replication, following this formula: ᵄ�ᵄ�ᵅ�ᵆ�ᵆ�ᵅ�ᵅ�ᵅ� = (ᵄ�ᵆ�ᵅ�ᵆ�ℎᵅ�ᵅ�

∗ 2)/ (1 − ᵰ�), where 2 represents the number of groups / conditions (in our case: Cross-modal

and Uni-modal Priming) and ᵰ� represents the correlation between the two groups / conditions
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(in our case, from Exp 2, ᵰ� = 0.208). The formula was then solved for ᵄ�ᵄ�ᵅ�ᵆ�ᵆ�ᵅ�ᵅ�ᵅ� = (42 ∗ 2)/

(1 − 0.208) = 106.061 (Maxwell et al., 2017).

Additionally, two distinct groups of participants were recruited to collect further ratings

regarding the stimuli used: (1) One group of 20 participants (age: M = 21.65, SD = 2.66, Range:

19-29 y.; Gender: 10 F, 10 M; 4 bilinguals/multilinguals with German as one of the native

languages) performed a rating study judging typicality and familiarity of the stimuli. This

further set of ratings for typicality and familiarity were collected anew as part of the replication.

(2) A second group of 16 participants performed a rating study judging the “Conceptual

distinctiveness” (as in Konkle et al., 2010) of the concept used in the studies (age: M = 23, SD

= 4.75, Range: 18-33 y.; Gender: 9 F, 7 M).

All participants gave their informed consent and received course credits or monetary

compensation for their participation. The Ethics Committee of the Goethe University Frankfurt

approved all experimental procedures (approval # 2014-106).

Stimuli

For this study, we selected 100 noun concepts that can be depicted by a single word and an

image of an object in isolation. We use the phrase “object concept” here and below, to refer to

the semantic representation common to a word denoting an object (e.g., “apple”) and the object

itself (e.g., a physical apple, an image of it). Half of the concepts could be categorized as natural

(e.g., apple) and the other half as man-made (e.g., bicycle). We restricted our search to objects

with word labels in the ADE20K dataset, a set of real-world images of scenes with segmented

and annotated objects (Zhou et al., 2019). After selection, we translated the English word labels

to German. For presentation, we displayed German nouns with an uppercase initial-letter (i.e.,

correct spelling in German) and in white Arial font on a grey background (hexadecimal color
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#424242; jsPsych, de Leeuw, 2015). We downloaded the object images from internet databases

(e.g., https://pnghunter.com/, http://pngimg.com/, https://www.cleanpng.com/). They were

pasted on a white background, grey-scaled, and resized to 392 x 392 pixels.

Object and word characteristics

For all concepts, we computed four selected frequency measures (two word-based and two

object-based). In addition, we computed several stimulus characteristics identified to influence

recognition behavior (i.e., to consider as covariates in the statistical analysis).

Object-based frequency measures (object frequency - OF). OF measures represent the

logtransformed (base 10) number of occurrences of an object in a dataset of segmented and

labeled scene images (e.g., cars on the street). Implementing the log-transformation for

frequency measures reduces the skewness of the frequency distribution as typically only few

objects have high frequency, while majority of objects have a low frequency (Zipf’s-law-like

distribution; Greene, 2013). We determined the OF based on two datasets. One used more than

20,000 scene images (from 900 categories), and objects (more than 400,000 instances grouped

in more than 2,500 categories) were segmented and labeled by a single expert worker and used

to train an image recognition algorithm to identify objects in scenes (ADE20K OF; Zhou et al.,

2019). Since we based our stimulus selection on objects present in the ADE20K dataset, we

tried to represent all the different levels of frequency we could find there (i.e., from few

appearances to tens of thousands of appearances). The second dataset used 3,499 scene images

(from 16 categories; indoors, outdoors, natural, artificial), labeled by four different workers

and carefully cleaned of misspellings, synonyms, and other errors, to measure statistical

regularities of objects in a scene (more than 48,000 instances grouped in more than 800 object

categories; Greene OF; Greene, 2013). Only 78 of our 100 object labels selected from ADE20K
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were present in the Greene dataset. When an object was missing in the Greene dataset, we

assigned an OF value of 1 count (i.e., 0 log10-counts). Density distribution of ADE20K OF

and Greene OF for the set of stimuli can be found in Supplementary Materials 1.

Word-based frequency measures (word frequency - WF). WF measures are based on the

number of occurrences of a word in a corpus of linguistic materials. Specifically, as for object

frequency, the numeric parameter was computed as the logarithm (base 10) of the number of

occurrences per million words in a dataset (to turn the Zipf’s-law-like distribution into a normal

distribution, Li, 1992). When a word was not included in a corpus, which was the case for one

concept, the WF was set to 1 count per million (i.e., 0 log10-counts per million). The WF was

determined based on two corpora, one using German subtitles from films and tv-shows,

SUBTLEX-DE WF (Brysbaert et al., 2011) and the other including a large set of German written

material, such as books and newspapers, dlexDB WF (Heister et al., 2011). The density

distributions of SUBTLEX WF and dlexDB WF for the set of stimuli can be found in

Supplementary Materials 1.

Covariates. In order to estimate and control for the contribution of other variables, we collected

subjective ratings from participants, as well as we computed object- and word-specific visual

predictors.

Ratings: As part of the replication, we obtained two sets of concept familiarity and image

typicality ratings: one from the participants who have taken part in the original study (i.e.,

Experiments 1 and 2) and one from a different group of participants who had not previously

taken part in any of the experiments. We measured concept familiarity as the subjective

familiarity with an object concept to serve as a subjective counterpart of the objective frequency

measures of words and objects computed from a text or image dataset (see Kuperman & van
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Dyke, 2013). Typicality, on the other hand, represents how an object exemplar is typical of its

category. In the original study, individual ratings for each concept and each participant were

used to model each participant's performance on each concept in the main tasks. In contrast, in

the replication experiment, ratings were averaged across participants and used to model

performance on each concept since participants of the rating study differed from those of the

original study.

To substantiate the interpretation of some of our results, it became important to further

investigate the relationship between OF and Conceptual Distinctiveness (Konkle et al., 2010).

For this purpose, we set up yet another rating study in which we collected ratings regarding our

stimuli’s Conceptual Distinctiveness from participants who had not taken part in any of the

previous experiments. The rating study followed the methodology described in Konkle et al.

(2010). They defined a concept as having a high Conceptula Distinctiveness if it is relatively

easy to make subdivisions among the category members it denotes and where these

subdivisions are not simply based on perceptual features (e.g., color or shape). Conceptual

Distinctiveness ratings were obtained for every concept by averaging ratings across

participants.

Visual and visuo-orthographic predictors: In addition to the subjective ratings, we computed

and included various object- and word-specific measures from which we extracted visual and

visuo-orthographic predictors using a Principal Component Analysis (PCA).

To assess the visual characteristics of object images, we computed several measures

based on pixel-level input: Entropy (Shannon, 1948), which measures the level of “disorder”

and visual variance of an image (entropy equals zero means no variance); Signal-to-noise ratio

(SNR) of pixel values (computed as mean of all pixel values divided by the standard deviation

of all pixel values), which we used as a proxy of how the content of the image differs from the

background (larger negative values indicate that the content is closer to the background, values
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close to zero indicates that the content is more different than the background); graphic-based

visual saliency (Harel et al. 2007), which measures saliency of the image based on bottom-up

features (every pixel has a value between 0 and 1, where zero indicates not salient and a value

of one indicates high saliency); GIST descriptor (Oliva & Torralba, 2001), which gives us the

orientation and spatial frequency in different parts of the image; finally, Deep Convolutional

Neural Network activation from convolutional layer 1, 4 and fully-connected layer 7 of the

AlexNet model (Krizhevsky et al., 2012); they represent low-level (layer 1), mid-level (layer 4)

and high-level (layer 7) visual features of our images, as processed by a deep learning algorithm

trained to perform human-like object categorization. From a PCA on these visual predictors,

we extracted 3 othogonal principal components (PCs) that we named Image visual PC1, Image

visual PC2 and Image visual PC3 (for more info on their impact and interpretations, see

Supplementary Materials 1)

To assess the visual and orthographic characteristics of words, we performed another

PCA. For this, we considered two visual properties, entropy and SNR, computed as described

above for object images but now applied to the images of written words. In addition, we

computed two orthographic measures, word length (i.e., the number of letters) and distance

from orthographic neighbors (i.e., Orthographic Levenshtein Distance, Yarkoni, et al., 2008).

One PC was selected from this process and was labeled Visuo-orthographic PC. Correlations

between all predictors and between PCs and original measures, as well as PCA loadings, can

be found in Supplementary Materials 1.

Apparatus

Participants performed the experiments online, hosted on a web server at the Goethe University

Frankfurt. We used jsPsych (de Leeuw, 2015) for stimulus presentation and response recording.

Participants were instructed to ensure that they started the experiments only when seated in a
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quiet environment without potential interruptions and when they had enough time to dedicate

to it. Besides, they were instructed to perform the experiment only on laptops or desktop

computers. To account for differences in screen size and resolution, we implemented an

adaptation mechanism based on the measurement of a credit card

(https://www.jspsych.org/plugins/jspsych-resize/).

Before the experiments started, participants had to adapt a rectangle presented in the

center of the screen to the size of a credit card. This information was used to ensure that the

size of stimuli on screen was the same for every participant (object images: 6.7 x 6.7 cm; words,

uppercase letter: circa 0.7 cm). In all parts of the experiment, the screen background was grey

(hexadecimal color #424242). The Conceptual Distinctiveness rating experiment was

programmed in Python using PsychoPy (version 2020.2, Builder GUI; Peirce et al., 2019) and

administered online through the hosting platform Pavlovia (https://pavlovia.org/). Stimulus

words were presented in black Arial text of 1.5 cm vertical size on white background.

Procedure

Experiment 1. Figure 1A shows an example of the natural (e.g., apple) vs. man-made (e.g.,

bicycle) categorization task of Experiment 1. The two stimulus modalities were presented in

two separated blocks (100 stimuli each). Block order was randomized across participants, and

within each block, the stimulus order was randomized for each participant. The stimulus

presentation sequence started with a fixation cross at the screen center (500 ms) followed by

the presentation of an object image/word. After the participants responded, the presentation

was terminated. We asked participants to press a key as quickly and as accurately as possible:

j when a “natural” stimulus was presented and f when a “man-made” stimulus was presented.

A blank screen was presented for 500 ms between two trials (Figure 1A). After each block, we

asked the participants to take a break.
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Figure 1. Experimental design

A) Experiment 1. Categorization of natural vs. man-made object images and words. B) Experiment 2.

Categorization of prime-target matches vs. mismatches. Cross-modal Priming: words are primed with objects, and

objects are primed with words. Uni-modal Priming: words are primed with words and objects with objects.

Experiment 2. In the second experiment, we implemented a priming task that included Uni-

modal and Cross-modal prime-target pairs, consisting of object images and words. Participants

evaluated if both the prime and the target had the same meaning or not. They started with two

Cross-modal Priming blocks (i.e., word-priming-object, object-priming-word; see Figure 1B).

After that, participants completed two Uni-modal Priming blocks (word-priming-word, object

priming-object). Within Cross-modal and Uni-modal blocks, we randomized block order

across participants. We presented all 100 object concepts twice as a target within each block

(200 trials) in a randomized order. Every target was once paired with a matching and once with

a mismatching prime stimulus. Mismatching pairs were randomly generated and kept constant

for all blocks of each participant. We instructed the participants to evaluate whether the target

and prime concepts matched or mismatched. Again, they should indicate this by pressing a key

(j for match and f for mismatch) as quickly and as accurately as possible. Like in Experiment

1, trials started with a fixation cross presented in the screen center for 500 ms. After that, the

prime was presented for 500 ms followed by a backward mask for 200 ms (“############”

for words or QRcode-like for objects; see Figure 1B). The presentation of the target was
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terminated by the response of the participant. Again, we asked participants to take a break in

between blocks and one break halfway through every block.

Typicality and familiarity ratings. Finally, we asked participants to perform an additional

session the following day to collect demographic data and stimulus ratings. This procedure was

again performed online. Participants rated all stimuli on a one to six Likert scale. We assessed

concept familiarity by presenting the concept as a written word in the screen center. In addition,

we presented the question “How familiar are you with the object that the word represents, in

your everyday life?” plus the Likert scale. Image typicality was assessed, presenting the object

picture in the center of the screen, and the object word on top. In addition, we presented the

question, “How typical is this image in relation to the category designated by the word?” with

the Likert scale.

In total, data collection lasted for about 75 minutes on day 1 (Experiment 1 and

Experiment 2) and about 30 minutes on day 2 (ratings).

Experiment 3. Experiment 3 was run to replicate the findings of Experiment 2. It therefore has

the same structure of Experiment 2, except that two separate groups of new participants either

performed only the two Cross-modal Priming blocks or only the two Uni-modal Priming

blocks. Data collection lasted about 30 mins each.

Replication typicality and familiarity ratings. This procedure resembled that of the original

typicality and familiarity rating task, with the exception of having two blocks for concept

familiarity, one with words (“How familiar are you with the object that the word represents,

in your everyday life?”) and one with pictures (“How familiar are you with the object that the

picture represents, in your everyday life?”), presented in counterbalanced order across

participants. For the analysis, we aggregated familiarity ratings for words and objects on
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concept level within each participant before averaging across participants. Image typicality

ratings were aggregated for each concept averaging across participants. Data collection lasted

about 30 minutes.

Conceptual Distinctiveness ratings. Finally, we performed a new rating study that was aimed

at measuring Conceptual Distinctiveness (CD) as it was defined in Konkle et al. (2010). We

first carefully instructed participants on the definition of CD as it was done in Konkle et al.

(2010), and by presenting a set of example objects rated either as being low on Conceptual

Distinctiveness or high in the original investigation. By definition, concepts with high

Conceptual Distinctiveness are those whose category members can be easily divided into

subgroups of different kinds, regardless of visual appearance. After this introduction, each trial

presented a word from our stimulus set in the center of the screen. In addition, the question

“How distinctive are the members of the category denoted by this word?” was presented along

with a six-point scale spanning from one (very similar) to six (very distinctive). Participants

responded by clicking with the mouse on a circle corresponding to the number representing

their rating. Once they clicked, they saw a black fixation cross in the screen center for about

500 ms before the next word was presented. In total, participants rated all 100 object concepts.

We presented the words in randomized order, and participants could take as long as they wanted

to make their judgment. Data collection lasted about 15 minutes.

Analysis

Data analysis was performed using R (version 3.6.3, R Core Team, 2020). First, we excluded

response times smaller than 200 ms and larger than 1500 ms from further analysis. We set a

lower cut-off for excluding response times at 200 ms as typically faster response times are

highly likely so-called “fast guesses” (Luce, 1986; Whelan, 2008). Since we had instructed
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participants to perform the task as quickly and accurately as possible, we assumed that a cutoff

at 1500 ms would prevent the inclusion of response times that did not fit this criterion. Our

exclusion criteria led to the removal of only 2.7 % of collected RTs in Experiment 1 and of 1

% of collected RTs in Experiment 2 (1.4 % of the total considering the two experiments

together); in Experiment 3, 2.0 % of RTs collected were removed. We implemented a

logtransformation to obtain a normal distribution to account for the ex-Gauss distribution of

reaction time measures. No further pre-processing was administered.

We used linear mixed-effects models (LMMs; Bates et al., 2014) for statistical analyses

of log-transformed response times. Independent variables considered in the models were the

four frequency measures described above (object frequencies based on the ADE20K and

Greene datasets, word frequencies based on SUBTLEX and dlexDB corpora), several

continuous covariates and categorical predictors for the experimental conditions (see

Supplementary Materials 1). The main advantage of LMMs is that one can consider each trial

from each participant simultaneously (i.e., estimating crossed random effects of items and

participants; Baayen et al., 2008). In all our LMMs, we included intercept-only random effects

for participants and object/word meanings. Note that by including random slope estimates the

models did not converge, so we followed the recommendations of Bates et al. (2015).

Our analysis was divided into three steps (more details in Supplementary Materials 1):

1) First, we implemented a model comparison based on the Akaike Information

Criterion (AIC, Akaike, 1981). This step allowed us to compare our four frequency measures

and select the frequency measures with the best fit in both modalities. To implement this, we

first fit one model per frequency measure (i.e., SUBTLEX, dlexDB, ADE20K, and Greene

frequency) separately for the word and the object recognition trials, and then compared the four

models of each modality to a “baseline” model that did not include the frequency measure, but

that was estimated on the same subset of data. We selected the frequency measures following
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these criteria: in the best case, we would have selected two measures, i.e., the best fitting OF

and the best fitting WF measure. In the worst-case, none of the frequency measures would have

explained variance in both object and word trials. While, in between, we would have selected

either only an OF or a WF measure.

2) After selecting the best frequency measures, we ran a LMM estimating the

effects of those selected frequencies on the entire dataset (word trials + object trials), and

including all categorical factors and continuous covariates, as well as random factors for

participants and concepts.

3) When we detected significant interactions between frequency measures and

categorical predictors, we also ran post-hoc LMMs to understand the different effects of

frequency between different conditions (e.g., SUBTLEX in Cross-modal trials vs. SUBTLEX

in Uni-modal trials) and within each condition (e.g., the simple effect of SUBTLEX in

Crossmodal trials and simple effect of SUBTLEX in Uni-modal trials). Note that the estimation

of frequency effects, given the structure of linear models, was independent (i.e., controlled for)

from the effect of the other predictors/covariates included in the models.

Data, analysis scripts and stimulus materials are all available at the following link:

https://osf.io/d3j9h/files/; for more details, see Supplementary Materials 1.

Results

Results Experiment 1

The initial model comparison showed that, in the man-made vs natural categorization task, for

word recognition trials, only the SUBTLEX and dlexDB measures produced a significantly

better fit when included in the models (SUBTLEX WF: χ2=29.153, p<0.001; dlexDB WF:
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χ2=15.447, p=0.001), while considering OF measures did not produce a better fit (ADE20K

OF: χ2=3.228, p=0.072; Greene OF: χ2=0.867, p=0.352). For object recognition trials, only

SUBTLEX WF resulted in a significant improvement of the model fit (χ2=6.163, p=0.013;

dlexDB WF: χ2=1.646, p=0.200; ADE20K OF: χ2=0.051, p=0.821; Greene OF: χ2=0.310,

p=0.578; for more details, see Supplementary Materials 2; no multicollinearity was detected:

variance inflation factors < 5). The result of this initial model comparison showed that the

SUBTLEX measure was the best fitting parameter in both word and object trials, with no

significant increase in explained variance for any of the two object-based predictors. Thus, we

implemented a detailed investigation of the SUBTLEX WF effect with both word and object

datasets merged.

The LMM describing all response times together included a SUBTLEX WF by Concept

modality (i.e., words vs. objects) interaction and nine further covariates (see Supplementary

Materials 3 for R-based formula; no multicollinearity detected: variance inflation factors < 5).

We found a significant SUBTLEX WF by Concept modality interaction (β=-0.019, SE=0.005,

t=-4.160, p<0.001), showing a more substantial facilitatory SUBTLEX WF effect (i.e., faster

RTs for high frequency items) for words compared to objects (see Figure 2; for details see

Supplementary Materials 3).

Two post-hoc models, for objects and words separately, showed significant SUBTLEX

WF effects for both words (β=-0.041, SE=0.007, t=-5.794, p<0.001) and objects (β=-0.022,

SE=0.009, t=-2.524, p=0.012), but the effect size for words was almost double (1.86 times

higher; for more details, see Supplementary Materials 4 and 5).

Figure 2. Main results of Experiment 1.

Semantic categorization response times as a function of logarithmic SUBTLEX frequency, separated for objects

and words; RTs were estimated based on the SUBTLEX WF x Concept modality interaction term from the selected

model. Points present participant-based mean reaction times separated for stimulus type (red: object stimuli; blue:
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word stimuli) in the different frequency levels. Lines represent linear fitting of points, and shaded areas represent

95 % confidence interval.

Discussion Experiment 1

The first experiment replicated the well-established SUBTLEX WF effect in word recognition

(Brysbaert et al., 2011; Gagl et al., 2020). In contrast to previous literature (Taikh et al. 2015),

we also found a SUBTLEX frequency effect for object recognition performance, although the

effect for object recognition was weaker than for word recognition. However, all together,

findings from this experiment suggest that - given that WF has an effect on both object and

word recognition - this effect might reflect processing of what word and object recognition

have in common, i.e., the same semantic representation being accessed from two different

visual inputs. The phenomenon producing the WF effect during language experience may not

just be based on the strengthening of modality-specific representations (WF effect for words),
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but also the strengthening of domain-general semantic representation (WF effect also for

objects). Interestingly, neither OF measure improved the fit. Thus, OF seems to be less relevant

in this simple categorization task.

In Experiment 2, we implemented a priming task to investigate the effect of the novel

object-based frequency measures in a paradigm where context is given by a prime allowing

prediction of an upcoming visual stimulus. Additionally, we wanted to test the role of WF

effects during semantic processing of visual stimuli. The critical manipulation therefore

contrasted Cross-modal and Uni-modal Priming (Tversky, 1969; Scarborough et al., 1977;

Eisenhauer et al., 2019; 2021). As described earlier, Cross-modal Priming does not involve

perceptual processing but rather conceptual/semantic information transfer from prime to target

processing. Thus, frequency effects in Cross-modal Priming would signify an involvement of

these effects with semantic rather than perceptual processing.

Results Experiment 2

First, we again implemented a model comparison procedure to determine which frequency

measure should be part of a detailed analysis. Here, we found that all four frequency measures

improved model fit in both stimulus modalities (words and objects; ADE20K OF, objects:

χ2=10.105, p=0.039, words: χ2=27.302, p<0.001; Greene OF, objects: χ2=27.547, p<0.001,

words: χ2=43.409, p<0.001; SUBTLEX WF, objects: χ2=52.695, p<0.001, words: χ2=43.409,

p<0.001; dlexDB WF, objects: χ2=33.014, p<0.001, words: χ2=19.105, p<0.001; for detailed

information, see Supplementary Materials 6). We found that both Greene and SUBTLEX

frequencies had stronger fit improvements than their alternatives in both stimulus modalities.

Thus, we selected the Greene and SUBTLEX frequency measures for further investigation.

We entered the two measures into a single model, including covariates, categorical

predictors and random effects, to describe the response times from the entire dataset of
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Experiment 2. Further model comparisons indicated that the interaction between SUBTLEX

WF and Greene OF did not improve the model fit beyond the simpler model without the

interaction (χ2=5.455, p=0.708). So, the selected model included each of the two frequency

measures in interaction with the experimental conditions (Priming condition: Cross-modal vs

Uni-modal; Matching condition: Mismatching vs. Matching; Target modality: Words vs

Objects) separately, but not in interaction with each other (for the model formula and other

details, see Supplementary Materials 7).

When participants had to judge whether prime and target had the same meaning, we

found a significant 3-way interaction between frequency, Matching condition, and Priming

condition, for both SUBTLEX WF (β=0.017, SE=0.005, t=3.687, p<0.001; Figure 3 top) and

Greene OF measures (β=-0.020, SE=0.005, t=-4.256, p<0.001; Figure 3 bottom, for more

detailed information see Supplementary Materials 7). Importantly, we found that these

interactions had opposite effects for Greene OF and for SUBTLEX WF. However, we found

no evidence for Target modality effects, i.e., WF and OF effects in Matching and Priming

conditions were similar for words and objects (SUBTLEX WF: β=0.006, SE=0.009, t=0.612,

p=0.541; Greene OF: β=0.002, SE=0.009, t=0.227, p=0.821).

Figure 3. Main results of Experiment 2.

Response times as a function of logarithmic SUBTLEX frequency (top plots) and Greene frequency (bottom plots)

in the different conditions of Experiment 2; RTs were estimated based on the selected model. Points present

participant-based mean response times separated for stimulus type (red: object stimuli; blue: word stimuli) in the

different frequency levels. Lines represent linear fitting of points (solid: Cross-modal; dashed: Uni-modal), and

shaded areas represent 95 % confidence interval. Top-left and bottom-left plots represent the effects in primetarget

matching condition, while top-right and bottom-right plots represent the effects in prime-target mismatching

condition.
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Post-hoc models showed that the frequency effects were stronger in Crossmodal

Matching trials than in Uni-modal Matching trials (SUBTLEX WF: β=-0.023, SE=0.003, t=-

7.094, p<0.001; Greene OF: β=0.018, SE=0.003, t=5.379, p<0.001), while, no differential

effects were found between Cross-modal Mismatching and Uni-modal Mismatching trials

(SUBTLEX WF: β=-0.006, SE=0.003, t=-1.870, p=0.062; Greene OF: β=0.002, SE=0.003, t=-

0.644, p=0.520). Besides, we only found strongly significant effects of SUBTLEX frequency

(β=-0.019, SE=0.006, t=-3.230, p=0.001) and Greene frequency (β=0.023, SE=0.005, t=4.710,

p<0.001) in Cross-modal Matching trials. The WF and OF effects went in opposite directions:

while we observed faster responses for more frequent concepts when investigating the

SUBTLEX WF, the Greene OF effect was characterized by faster response for more rare
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concepts (see Supplementary Materials 8 and 9). In a further control analysis, we showed a

substantial stability of the effects for the individual participants and individual concepts across

the two modalities (for details, see Supplementary Materials 10) which again suggests non-

different (i.e., statistically equivalent) processes across modalities.

Discussion Experiment 2

In Experiment 2, we replicated the facilitatory effect of the SUBTLEX WF found in Experiment

1 for both words and objects. It is important to note that we found the SUBTLEX WF effect

only when participants categorized objects or words after seeing a semantically matched prime

from the other stimulus modality (e.g., a bike image primed by the word “bike” and vice versa),

a condition that requires the integration of semantic information from the prime in preparation

for the target. The Cross-modal condition specifically includes a prediction process from one

modality to the other: it requires processing both object exemplars and their verbal labels within

one trial.

A novel aspect that became evident in Experiment 2 was that we also found an effect of

the Greene OF in the Cross-modal Matching trials. However, the effect went in the opposite

direction, i.e., better performance for low-frequency object concepts than for high-frequency

concepts. Both frequency effects were stable across modalities when investigated within each

participant and each concept, as shown by our exploratory analysis. Regarding the presence of

these two opposite frequency effects, it is worth noting that the model that included an

interaction between Greene and SUBTLEX frequency measures did not increase the model fit,

implying that the two effects might represent distinct, independent processes. Also, note that

the match/mismatch task of Experiment 2 did not result in a global processing advantage for

objects compared to words. This was only found in Experiment 1 and replicated previous

studies showing the same effect (e.g., Taikh et al., 2015). We believe that since our task in
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Experiment 2 was only concerned with the prime-target matching, it resulted in this task being

equally difficult for object and word target stimuli.

At this point, one might wonder why the OF improved the fit (and showed significant

effect) only in the priming task of Experiment 2 (to be precise, only in Cross-modal Matching

trials), and not in the semantic categorization of Experiment 1 (man-made vs. natural).

Unfortunately, it is difficult to offer an easy explanation for this unexpected result. It seems

that the Greene OF has an effect only when a semantic representation (i.e., concept) is part of

a process to predict upcoming input. This process is not part of Uni-modal Priming and

unprimed categorization (Experiment 1), where the task does not demand semantic processing

(Uni-modal Priming) and it does not use semantic representations to make predictions

(Experiment 1). We will now try to explain the WF and OF frequency effects and why both

effects occur specifically in the Cross-modal Matching condition, which is important given the

high involvement of semantic processing and the predictability of the upcoming stimulus.

The SUBTLEX WF effect is in line with results of Experiment 1 and with typically

reported WF effects, reflecting how often a concept has been processed during receptive

language processing. One could interpret this effect to reflect the strength of linguistic

experience with a concept (Brysbaert et al., 2011), based on repeated experiences with that

concept during regular language use. It is important to note that this frequency measure is only

mildly correlated with the subjective familiarity we additionally collected via ratings, which

did not show any relevant impact on reaction times either here or in Experiment 1. This would

suggest that there might be a dissociation between what people experience, and therefore rate

as being familiar, and how often objects truly occur in the world (Greene, 2016).

In contrast, the Greene OF effect emerged in the opposite direction, i.e., showing

facilitation for concepts encountered less often in our visual world. It seems counterintuitive

that fewer occurrences could strengthen mental representations, but we can speculate on two
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interpretations to explain this effect that has been found for both words and object targets in

our study. One possible explanation is that one can remember a concept better when presented

with fewer exemplars of that category because more frequent encounters with variable

exemplars create interference that weakens the memory trace (Konkle et al., 2010). Based on

these findings, we could infer that the facilitation found for low Greene OF concepts (e.g.,

pineapple) could be due to reduced interference from fewer encounters with exemplars of that

object concept during the visual perceptual experience. In contrast, more frequently

encountered object categories (e.g., tree) might produce a weaker representation due to

exposure to more exemplars creating the abovementioned interference.

Alternatively, the OF effect, which is only detected in congruent Cross-modal Priming,

could be explained based on the predictability of the stimulus features from conceptual

representations. Objects that are less frequent in the databases might be the expression of more

narrow categories (less exemplars and more homogeneous), and their features would be well

predictable in contrast to concepts from more broad and thus frequent categories (more

exemplars and more heterogeneous). This explanation also relates to theories more deeply

concerned with the neuronal preparation for highly predicted incoming stimuli, like predictive

coding theories (Rao & Ballard, 1999) or sharpening (Kok et al. 2012; 2017). Evidence from

similar experiments using words (Eisenhauer et al., 2019, 2021; Gagl et al., 2020), objects

(Summerfield et al., 2008; Richter et al., 2018), faces (Olkkonen et al., 2017) or Cross-modal

Priming paradigms (Kok et al., 2012; 2017) have provided findings that indicate feature-based

prediction effects. To reevaluate this finding, we performed additional analyses on the data

from Experiment 2 and collected a replication dataset in Experiment 3 to shed more light on

the explanation of this initially counterintuitive effect and how it could relate to the interference

process presented by Konkle and colleagues (2010), as well as to the categorical structure of

the investigated concepts (see next section).
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To sum up, these results suggest that when participants perform a task where contextual

information (i.e., the prime) is semantically processed, different types of information in

semantic memory (supposedly derived from linguistic and visual experience) are being

preactivated to facilitate the processing of an upcoming input (i.e., the target). The present

findings suggest that these processes seem to be at least partially domain-general and thus might

depend less on the modality of the stimuli.

Results Conceptual Distinctiveness ratings

In Experiment 2, we unexpectedly found opposite effect of Greene OF on visual recognition,

with less frequent concepts being recognized faster than more frequent ones. Having fewer

encounters with an object may constitute an advantage in recognizing these compared to

concepts for which we have experienced more exemplars, as higher frequency of occurrence

has been shown to produce interference in long-term memory (LTM; Konkle et al., 2010).

To further explore this idea, we have collected ratings of Conceptual Distinctiveness

adapting a procedure from Konkle et al., (2010; for more details, see the Materials and Methods

section), which has been used to demonstrate how memory interference for objects presented

in many exemplars (i.e., comparable to our high Greene frequency concepts) is reduced for

objects whose category can easily be separated into many different subcategories (i.e.,

categories with a high Conceptual Distinctiveness; Konkle et al., 2010). We would expect that

including CD in our model will reduce the Greene frequency effect for concepts with high CD,

while the effect of Greene frequency would remain the same for concepts with low CD. To

illustrate how this relates to the concepts we used in our experiment, see the examples provided

in Figure 4.

First, we found that CD and Greene OF had a moderate correlation (r=0.43), where

concepts with low Greene OF tended to also be less easily dividable in subcategories, while
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concepts with high Greene OF tended to more easily dividable. Then we compared the original

main LMM of Experiment 2, fitted on the data of Experiment 2, with an identical model

including CD in interaction with Greene and the experimental conditions (for details, see

Supplementary Materials 11). Despite this new model being more complex in terms of number

of parameters, it showed a significantly better fit than the original model (χ2=36.691, p=0.004;

no multicollinearity detected: variance inflation factors < 5). In the new model including CD,

results showed that the interaction between Greene OF and CD was stronger in Cross-modal

Matching than in Uni-modal Matching trials (β=0.010, SE=0.003, t=-3.139, p=0.002), while

no difference of the Greene OF by CD interaction was found between Cross-modal

Mismatching and Uni-modal Mismatching trials (β=0.002, SE=0.003, t=0.495, p=0.621).

Additionally, the Greene OF by CD interaction was found to be stronger in Cross-modal

Matching than in Cross-modal Mismatching trials (β=-0.012, SE=0.003, t=-3.774, p<0.001; for

more details, see Supplementary Materials 11). As shown in Figure 5, in Cross-modal

Matching trials, higher Conceptual Distinctiveness was associated with weaker Greene

frequency effects (the slope reduced towards zero). Cross-modal Matching trials, the condition

with strongest semantic processing and predictable semantic context, was also the only

condition that had previously shown strong Greene OF effects and, as hypothesized based on

findings by Konkle et al. (2010), the condition with the strongest modulation of Greene OF by

CD.

Figure 4. Example of interaction between Greene frequency and Conceptual Distinctiveness.

An example of the hypothesized interaction, using object concepts from our stimulus set. Concepts are shown as the

black and white pictures used in the experiments and the associated written words (in the English translation).

Exemplar pictures to show different levels of conceptual distinctiveness were taken from the THINGS dataset

(Hebart et al., 2019). These were not part of the actual experiment.
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Figure 5. Results interaction between Greene frequency and Conceptual Distinctiveness.

Response times as a function of logarithmic Greene OF in interaction with Conceptual Distinctiveness across

Matching conditions and Priming conditions (Cross-modal Matching vs Uni-modal Matching; Cross-modal

Mismatching vs Uni-modal Mismatching; Cross-modal Matching vs Cross-modal Mismatching). RTs were

estimated based on the selected model. Lines represent linear fitting of log Response times (y axis) by Greene

frequency (x axis) for different values of Conceptual Distinctiveness (line colours: lighter = low CD, darker =

high CD), in different experimental conditions (top-bottom-left-right panes).
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Discussion Conceptual Distinctiveness ratings

When the unexpected processing facilitation for more rare concepts found in the Greene dataset

(i.e., a frequency effect with opposite direction) first emerged in Experiment 2, we speculated

that the Greene OF measure may reflect memory interference linked to perceptual experience

with exemplars of an object concept (Konkle et al., 2010). Konkle et al. (2010) showed that

memorability of an object depends on how many exemplars of that category were previously

encountered, with more encounters creating a stronger interference that weakened the memory

trace. Crucially, this interference for higher number of exemplars of an object was reduced for

object categories with higher Conceptual Distinctiveness (i.e., whose members were more

easily distinguishable into subgroups of different kinds; Konkle et al., 2010). Therefore, when

object categories have low Conceptual Distinctiveness (i.e., it is difficult to divide their
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exemplars in subcategories), the number of occurrences of an object has a strong impact on the

mental representation (many occurrences = strong interference, few occurrences = weak

interference); however, when object categories have high Conceptual Distinctiveness (i.e., it is

easy to divide their exemplars in subcategories), the number of occurrences of an object does

not influence mental representation to the same degree (few occurrences and many occurrences

= similar weak interference). As stated in the Discussion of Experiment 2, this interpretation of

Greene OF reflecting an interference process is only one possible explanation. One may also

argue that less frequent objects reflect more narrow categories, which would offer more precise

predictions of upcoming sensory input in Cross-modal Matching trials. We believe that this

analysis of Greene OF in relation to Conceptual Distinctiveness of object categories might offer

new, valuable insights on both these interpretations (for more detailed discussions please see

Supplementary Materials 11).

Similar to Konkle et al. (2010) we found impaired performance for object categories

that are encountered in more exemplars (higher object frequency) compared to object categories

that are encountered in less exemplars (lower object frequency). And like Konkle et al. (2010),

when Conceptual Distinctiveness (CD) was considered, the facilitation for more rare objects

(low Greene frequency) was strongly reduced for those objects concepts that have more

distinctive subgroups (high CD).

The example in Figure 4 illustrates the influence of Conceptual Distinctiveness on the

effect of the frequency of objects occurrence. High Conceptual Distinctiveness identifies the

various visual experiences from a diverse set of exemplars (e.g., pine tree or palm tree; gorilla

or macaque) that are connected to both frequently encountered (e.g., tree) and rarely

encountered (e.g., monkey) objects. Instead, Low Conceptual Distinctiveness identifies the

similar visual experiences from a homogeneous set of exemplars that are connected to both

frequently encountered (e.g., grass) and rarely encountered (e.g., pineapple) objects. Following
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the interference explanation of Konkle et al. (2010), the concepts that are encountered in many

exemplars (high Greene OF) but have a diverse set of exemplars (high CD) are somehow

privileged as the interference from other exemplars or different visual encounters is limited and

counteracted for. For concepts with low CD, where it is less easy to distinguish between

exemplars, an interference effect can be expected if many exemplars are encountered (high

Greene OF).

These considerations also allow us to discuss the alternative explanation according to

which the Greene OF effect is due to less frequent objects having more narrow categories

allowing more precise predictions. This interpretation is especially interesting as we, again,

found the interaction most strongly in the Cross-Modal Priming condition. CD is a way to

measure if a category is narrow or wide in terms of the kinds of exemplars. We have shown

that low OF concepts can have low CD (in line with this alternative explanation) but also high

CD (opposing this alternative explanation). Indeed, the analysis of interactions between CD

and the Greene OF measure could be used to show how the narrowness/width of a category

impacts the frequency of occurrence: for narrower categories the frequency of occurrence has

a strong impact on behavior, while for wider categories the frequency is less relevant. That is,

when predicting an upcoming word or object from a low CD category it seems to be particularly

beneficial for performance when the OF is low. However, clearly, the two dimensions (Greene

OF and CD) do not overlap.

To conclude our discussion on Conceptual Distinctiveness, our analyses have shown

how the effect of frequency of objects occurrence in real-world scenes is related to and

dependent on the subcategorical structure of object concepts. In the next section, we present

Experiment 3, a large-scale replication of the priming experiment, with the goal to reduce

potential cross-experiment carry-over effects and object concept repetitions. In the original

study (Experiments 1 and 2), participants performed the tasks in every condition (repeated
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measures / within-participants design), which exposed them to many repetitions (18 times) of

each concept (as either object picture or written word, as either prime or target). Despite the

statistical advantages of within-participants designs, e.g., the reduction of variance from

individual differences, potential carry-over effects could have created artificial frequency

effects (especially since the Greene OF effect was unexpectedly going in the opposite direction

of the WF effect). In Experiment 3, we therefore reduced the number of repetitions from 18

times to 8 by including two separate groups of new participants each of which performed either

the Cross-modal or Uni-modal Priming tasks (between-participants design).

Results Experiment 3

Given that our aim was to replicate Experiment 2, we followed the same analysis,

starting with the main model (i.e., no AIC-based frequency selection implemented). The only

difference in the model structure was that in the current experiment (Experiment 3), we

included the newly collected ratings of concept familiarity and image typicality from an

independent participant sample, whereas in Experiments 1 and 2 we used ratings from the same

participants who performed the task (no multicollinearity detected: variance inflation factors <

5; see Supplementary Materials 12).

Again, participants had to judge whether the meaning of the prime and target matched.

We replicated the significant interactions between Greene OF, Matching condition, and

Priming condition (β=-0.010, SE=0.005, t=-2.165, p=0.030); however, the interaction of

SUBTLEX, Matching condition, and Priming condition was not significant (β=0.009,

SE=0.005, t=1.880, p=0.060), but qualitatively in the same direction as in Experiment 2.

Replicating Experiment 2, the interactions again revealed an effect in the opposite direction for

SUBTLEX WF and Greene OF, while the two interaction effects were reduced in their effect

size (i.e., about half of the effect size compared to Experiment 2).
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Figure 6. Main results of Experiment 3.

Response times as a function of logarithmic SUBTLEX frequency (top plots) and Greene frequency (bottom plots) in

the different conditions of Experiment 3; RTs were estimated based on the selected model. Points present

participant-based mean response times separated for stimulus type (red: object stimuli; blue: word stimuli) in the

different frequency levels. Lines represent linear fitting of points (solid: Cross-modal; dashed: Uni-modal), and

shaded areas represent 95 % confidence interval. Bottom-left and top-left plots represent the effects in prime-

target matching condition, while bottom-right and top-right plots represent the effects in prime-target mismatching

condition.

In a post-hoc analysis that disentangled the interaction effects, we replicated the finding that

the frequency effects were stronger in Cross-modal Matching trials than in Uni-modal

Matching trials (SUBTLEX WF: β=-0.014, SE=0.003, t=-4.324, p<0.001; Greene OF:

β=0.017, SE=0.003, t=5.165, p<0.001). Again, no difference was found for the frequency

effects in Mismatching trials between Cross-modal and Uni-modal Priming (SUBTLEX WF:

β=-0.006, SE=0.003, t=-1.664, p=0.097; Greene OF: β=0.006, SE=0.003, t=1.959, p=0.050;
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see Supplementary Materials 13). Compared to Experiment 2, the effect size of difference of

the SUBTLEX WF effect between Cross-modal Matching and Uni-modal Matching trials was

reduced by more than 1/3 (Beta in Exp. 2: -0.023; Beta in Exp. 3: -0.014), while the difference

of effects of the Greene OF between the two conditions was similar to Experiment 2 (Beta in

Exp. 2: 0.018; Beta in Exp. 3: 0.017; for more details, see Supplementary Materials 13).

Again, the strongest frequency effects were found in Cross-modal Matching trials. With

less trials per person, only the SUBTLEX frequency effect was significant (β=-0.013,

SE=0.006, t=-2.253, p=0.024), while the Greene OF effect was not (β=0.010, SE=0.005,

t=1.873, p=0.061). Qualitatively, the two effects again went in opposite directions. That is, we

again found facilitatory effects for more frequent concepts for the SUBTLEX WF (faster RTs

for high frequency items), while facilitatory effects emerged for more rare concepts for the

Greene OF (faster RTs for low frequency items).

Contrary to Experiment 2, we found a significant interaction involving SUBTLEX,

Matching condition, Priming condition, and Target modality (β=0.021, SE=0.009, t=2.269,

p=0.023; see the Prime-Target match pane for SUBTLEX WF in Figure 6 and for more details

Supplementary Materials 12), which indicates a different modulation of words and objects as

a function of SUBTLEX WF. Post-hoc investigations found that the difference of SUBTLEX

WF effects between Cross-modal and Uni-modal Matching trials was stronger for words than

for objects (β=-0.016, SE=0.007, t=-2.401, p=0.016).

Discussion Experiment 3

Experiment 3 investigated whether the WF and OF effects would still emerge when potential

carry-over effects from previous exposure to the same concepts were minimized. One of the

main motivations was that multiple presentations of the same concept may alter the perceived

frequency of individual concepts, causing spurious effects. To reduce the number of
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presentations, we exposed one group of participants only to the Uni-modal and another group

to only the Cross-modal Priming condition of Experiment 2.

In general, we largely replicated the main interaction effect found in Experiment 2: That

is, SUBTLEX WF and Greene OF had opposing effects and these effects differed as a function

of matching and priming condition. More specifically, we replicated the findings that suggested

that frequency effects are stronger when deeper semantic processing is required (i.e., frequency

effect in Cross-modal Matching trials vs. Uni-modal matching trials), and that these effects

seem to reflect a pre-activation from a semantically matched stimulus. Moreover, as in

Experiment 2, the WF effect qualitatively indicated faster responses to frequently occurring

concepts, while the OF effect was characterized by faster responses to rare concepts.

Of note, our post-hoc analyses revealed some differences. Specifically, we found

reduced effect sizes for WF and OF, which led to the Greene OF effect not reaching significance

(reduction of 1/3 for the WF and > 1/2 for the OF effect). One explanation would be that fewer

repetitions could reduce effect sizes. However, to account for this issue, we controlled for the

number of concept repetitions using a covariate in both Experiments 2 and 3, ensuring that the

confound of this variable on the frequency effects was minimal. Adding the parameter to the

model increased model fit but did not affect the effect size estimates or the t-statistics.

Potentially, the reduced number of occurrences of concepts in Experiment 3 compared to 2

might have resulted in less strong semantic associations of the words and object images,

explicitly influencing the effects in Cross-modal Priming. Alternatively, or additionally, the

between-participant design of Experiment 3 could be an explanation for this difference

considering that this experiment showed a higher variance from individual differences

compared to Experiment 2, which used a within-participant design. Importantly, we estimated

the random effects for participants in both analyses, which should reduce the influence of the

differences in design. Based on these considerations, we can summarize that the word
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frequency effect, as expected, reliably occurs across experiments, while the object frequency

effect seems to be more volatile.

It is also worth mentioning that two other effects emerged in the replication: A) a

SUBTLEX WF effect was found for Uni-modal Matching trials with similar size and direction

of the one in Cross-modal Matching trials. However, the post-hoc analysis between conditions

showed that the effect in Cross-modal Matching trials remained stronger than the one in

Unimodal Matching trials, supporting our hypothesis that frequency effects are strengthened

by deeper semantic processing reflecting aspects of conceptual representation; B) a four-way

interaction between SUBTLEX x Matching condition x Priming condition x Target modality

was found, which, when explored, revealed that the effect was mainly driven by a significant

SUBTLEX WF facilitation in Cross-modal Matching trials with words as target, while it was

less pronounced for Cross-modal Matching trials with objects as target. Despite this difference

to the original Experiment 2, the weaker influence of SUBTLEX WF on object processing

resembles the one found in the semantic categorization task of Experiment 1. This stronger

frequency-mediated priming effect for words might reflect the fact that words are visually more

homogenous than objects, resulting in a more precise prediction of the visual aspects of the

upcoming target (Gagl et al., 2020).

General Discussion

Investigating how semantic representations are accessed via different input modalities is a

critical step in better understanding how humans store and organize knowledge about the world.

The three experiments described in this manuscript provide evidence that high linguistic

exposure to a semantic concept (i.e., how often it occurs or is used in our language) increases
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recognition performance of both written words and object images (as measured by SUBTLEX

WF effect). Furthermore, we present findings suggesting that semantic access might be

facilitated not only when concepts are used frequently in language but also when they occur

rarely in our visual world (as measured by the Greene OF effect). This phenomenon is possibly

modulated by the specific categorical structure of each concept (i.e., the interaction of Greene

OF effect with Conceptual Distinctiveness). Finally, we provide insights suggesting that these

two effects reflect independent factors affecting visual word and object perception. All

frequency effects seem to be substantially strengthened by a greater depth of semantic

processing, as seen in the dependence of frequency effects on the type of task. In the following

section, we will discuss the various findings in more depth.

SUBTLEX word frequency effect and strength of linguistic experience

The observed effect of subtitle-based frequency measure (SUBTLEX WF) replicated previous

findings on word recognition (e.g., Brysbaert et al. 2011; Eisenhauer et al. 2021) and again

showed that subtitle-based frequency estimates predict performance better than frequency

estimates based on written text corpora (e.g., dlexDB, Heister et al., 2011; see Supplementary

Materials 14). The novel aspect here is that contrary to Taikh and colleagues (2015), a

wordbased frequency measure was also found to influence object recognition. Crucially,

previous studies included multiple predictors of semantic richness in their regression models,

which were not available for the stimulus material used here. These semantic richness measures

could be of interest as they previously showed moderate correlations with the SUBTLEX WF

measure (Taikh et al., 2015). However, a reanalysis of the WF effect in Experiment 1 that

included Conceptual Distinctiveness (a measure that likely correlates with semantic richness)

as a covariate did not change the pattern of effects described above. Thus, it is unlikely that the
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observed WF effect in object recognition would have emerged as a confound (see

Supplementary Materials 15). Nevertheless, future studies should include a larger set of

semantic richness measures in order to determine the unique contributions of semantic richness

on the one hand and WF on the other.

The finding that subtitle-based (i.e., SUBTLEX) but not text-based (i.e., dlexDB) WF

effects were present in both stimulus modalities (i.e., words and objects) confirmed that

subtitles are a more reliable source of estimation, and this measure is interpreted not just as

reflecting the strength of experience with a word (effect in word recognition), but the strength

of experience with a concept (effect in both object and word recognition). Indeed, as we control

for many perceptual and linguistic variables, we suggest that this effect was modulated by the

access to semantic representation required by the tasks. We could speculate that this strength is

built through linguistic experience and, after that, transfers to other non-linguistic modalities.

Such an interpretation would be in line with the idea that language would be not merely a means

of communicating semantic information but also shaping semantic representations (Lupyan &

Lewis, 2019).

Greene object frequency effect and its relationship with structure of object categories

In contrast to the SUBTLEX-based word frequency effect for objects and words, the Greene

OF measure showed an opposite frequency effect: recognition performance in response to less

frequent concepts was faster when compared to frequently encountered concepts. This inverted

OF effect was surprising as we had computed the two measures based on a similar logic, i.e.,

counting occurrences in a dataset and capturing properties of the word. Furthermore, the OF

effect did not emerge when we presented objects or words in isolation, but only in the matching

trials of the Cross-modal Priming task, i.e., in context of a predictable prime stimulus,

irrespective of modality. Note that in the same condition, we observed a substantial WF effect.
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In these trials, the primed concept is retrieved from semantic memory to prepare participants

for the upcoming stimulus, which is visually different but semantically matched.

This semantic memory involvement led us to reevaluate our findings based on the

results reported in Konkle et al. (2010), who investigated memory interference processes when

the number of exemplars belonging to a category was manipulated. They showed that we have

the worse memory for the specific instance of frequently encountered objects (e.g., cars)

because the increased number of exemplars creates interference. Conversely, we remember

objects that we rarely encounter (e.g., pineapple) better because they suffer less from the

interference of different exemplars (Konkle et al., 2010). Crucially, we found that the OF effect

was only found when the objects came from a category that is not easily dividable into

subgroups of different kinds, as measured by Conceptual Distinctiveness (CD). This seems to

be due to the fact that when concepts can be easily divided into subgroups, this more complex

division counterbalanced the interference effect produced by repeated encounters with

exemplars of that category.

We want to stress that although CD and Greene OF are moderately correlated (r= 0.43),

our finding of an interaction of the two measures showed that they explain different parts of

variance. Thus, one should interpret the Greene OF effect beyond the effect of

homogeneity/heterogeneity of object categories on the prediction of upcoming input. However,

this explanation has highlighted the relevant issue of how categorical structure (more or less

homogeneity) interacts with object occurrence and how this can impact the predictability of

upcoming input.

Frequency effects and semantic processing

The results from the priming tasks (Experiments 2 and 3) are crucial to supporting the notion

that frequency effects are also semantic. We found that they are more robust in Cross-modal
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(i.e., integration of information across modalities) than Uni-modal Priming tasks (i.e.,

integration of information within modalities). Besides, these effects seem to reflect the

processing of a corresponding prime-target combination rather than just recognizing the target,

as the frequency effects were much more substantial in Cross-modal Matching trials than in

Cross-modal Mismatching trials. Nevertheless, in Experiment 3, we only found a WF effect

when an object picture primed a matching word but not when a word primed a matching object.

It could be that the priming effect mediated by frequency is more substantial when words are

the target stimulus. A potential explanation could be that words are more visually homogeneous

stimuli than objects, making the upcoming word target easier to predict down to the individual

pixel level (Zhao et al., 2019; Gagl et al., 2020; Wang & Maurer, 2020).

In sum, the present findings point to the semantic nature of the measured frequency

effects. Moreover, these frequency effects might reflect processing common to both word and

object recognition. Since they show similar patterns for word and object trials and given that

what our word and object stimuli have in common is their meaning, one could speculate that

this typical processing relates to accessing abstract conceptual representations.

Possible mechanisms underlying frequency effects

Regarding the mechanisms underlying the observed frequency effects in Cross-modal

Matching trials, one could hypothesize that they resemble the neural processes described in

Kok and colleagues (2017), where an auditory prime pre-activated a representation of a

previously matched visual stimulus before its presentation (Kok et al., 2017). Furthermore, in

line with our results (i.e., pre-activation facilitation based on frequency), they found that the

pre-activation strength could predict behavioral responses. These findings suggest a mechanism

of sharpening visual representation compatible with expected upcoming input, modulated by

some aspects of previous experience. In our case, these aspects might be the strength built
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through linguistic experience and the encounters during visual experience that are incorporated

into the conceptual representations evoked by the prime.

Analogously, one could speculate that similar processes are occurring during Unimodal

Priming too. The crucial difference is that what modulates sharpening is not a semantic

representation but a more perceptual representation (e.g., orthographic for words, visual for

objects), therefore producing hardly any frequency effects. This finding is in line with the

behavioral and MEG evidence reported by Eisenhauer and colleagues (2021) who found

frequency effects for words presented in isolation (i.e., as in Experiment 1 described above),

but not in a Uni-modal Priming context (i.e., a word primed by the same word as in our

Experiments 2 and 3). Notably, they found a modulation of neural activity by orthographic

information following the prime and preceding the target word, similarly indicating a

sharpening process on the neuronal level (Eisenhauer et al., 2021).

However, given the study's design and methods, we cannot yet draw firm conclusions

about the nature of the mechanisms underlying our frequency effects. For example, we cannot

rule out that the involved predictive processing (Rao & Ballard, 1999) functions by inhibiting

the most common features of upcoming input instead of sharpening it (Gagl et al., 2020).

Further investigations are needed to specify the neuronal mechanisms on representations in

perceptual and or semantic processes in Cross-modal Priming. Here, electrophysiological

measures (M/EEG) would allow for a more fine-grained and better temporally resolved

investigation of how optimization of recognition behavior in Cross-modal Priming is

implemented on the neuronal level.

Choosing the right dataset for frequency estimations

In general, any decision to use one dataset over another in order to compute frequency measures

needs to be approached with great care. One problem lies in the assumption that a chosen
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dataset is a good representation of the state of the world, but every dataset, even the largest

available, remains an approximation. Besides, the composition of the datasets often reflects

biases in the way they were composed and the sources that were used to create them. Moreover,

the assumption that a dataset captures universally shared concept representations might not be

valid. Factors like expertise and physical or cultural context have a different impact on the

individual experience of the world (Kuperman & Van Dyke, 2013).

Of course, the quantity and variety of scene images of the datasets are lower than the

corpora usually used for computing WF measures (more than 20 million words of the

SUBTLEX database vs the 400,000 object annotations in the ADE20K and 48,000 object

annotations in the Greene database). Concerns about the representability of selected image

datasets are therefore always valid and must be considered carefully. To account for this

concern - and to start somewhere - we decided to include both image datasets (the ADE20K

dataset, Zhou et al., 2019, and the Greene dataset, Greene, 2013). Both datasets are widely used

by computer vision scientists and cognitive psychologists working on visual cognition (Bonner

& Epstein, 2021; Bracci et al., 2021). While the Greene dataset includes fewer annotations than

ADE20K, it has the advantage of thoroughly cleaning up spelling mistakes, synonyms, and

other issues affecting any frequency analyses based on labelled image databases. So, which

frequency measure should be used?

Even though our results confirm that as a word frequency measure, the SUBTLEXbased

frequency is the better predictor for categorization behavior, the situation seems less clear for

object frequencies, especially given that Greene and ADE20K produce similar result patterns.

In our primary analysis, Greene was preferred to ADE20K, given its more robust improvement

of model fit in both words and object trials (see details of the AIC-based selection method in

the Analysis section of Materials and Methods). However, also ADE20K showed a significant

improvement in model fit in both modalities in Experiment 2.
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The two datasets have both pros and cons, as pointed out previously: ADE20K is clearly

superior when it comes to dataset size and variety of images, while the Greene dataset would

be the preferred choice when looking for high quality annotations. Ideally, revising ADE20K

annotations with the same approach offered by Greene (2013) would likely create the best of

both worlds. However, more practical ways to decide which measure to employ would be to

consider aspects like the number and types of object stimuli and the scenes they are typically

found. For larger and more diverse sets (e.g., natural vs man-made, public vs private), it is more

likely to find good estimates in the ADE20K dataset. For smaller and more homogeneous sets

(e.g., objects found in a house), the quality of Greene’s annotations could beat the quantity of

ADE20K’s ones. In general, one goal for the future would be a database with a high number

of quality annotations that, similar to word databases, contains a sufficient number of examples

for a more appropriate estimation of object frequency (i.e., at least 20 million; Brysbaert et al.,

2011).

Pros and cons of using labeled image databases for cognitive studies

As previously discussed, estimating any type of frequency from databases can create

unwanted biases in the frequency measures being extracted. In addition to these database

dependent biases, calculating object frequency measures includes further hurdles. For instance,

linguistic image databases make the evaluation of the visual domain dependent of the linguistic

domain. In addition, labeling decisions must be made for each object. At times labeling

decisions can be easy (e.g., pineapple), but sometimes there are very explicit decisions to make

(e.g., are all types of cars simply labelled as “cars” or by their brand name/type, e.g., “Porsche”

vs. “Jeep”). The problem might be more severe for highly general concepts (i.e., trees, cars,

animals, and others).
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Crucially, these decisions can and will have an impact on the computed frequency of

occurrence, and could create differences between datasets (although ADE20K and Greene OF

show strong correlation r=0.81 and led to similar results, see Supplementary Materials 16). The

annotators of the images in the Greene database were instructed to use entry-level labels (e.g.,

“car”, not “vehicle” or “Mercedes”), and labels were inspected and corrected for synonyms and

similar confounds. We believe that the issue of biases from labelling has been addressed in our

study in three ways: (i) the OF effect was always estimated independently of the WF effect,

since both were included in the same model. This would allow to rule out differences arising

from common vs uncommon labels; (ii) we have shown that the Greene OF effect is present

only for concepts with low Conceptual Distinctiveness, which have a more homogeneous set

of exemplars and thus should be less prone to be biased by possible variabilities in labelling;

(iii) the OF effect was estimated independently of image typicality (included as covariate),

which measures how the employed image stimuli are a typical exemplars of the categories

denoted by the employed word stimuli (i.e., the labels). In this sense, it represents how strongly

image-word pairs are associated and therefore predictable. Still, the labelling procedure of

image datasets remains an important issue that needs to be considered in the future.

We want to stress that - to our knowledge - this is the first time that metrics such as

object frequencies were computed and used to predict response times in a way traditionally

done with WF measures. Even the other OF measure used in this study, ADE20K OF (Zhou et

al., 2019), was found to produce similar patterns of effects in terms of size, direction, and

probability when repeating the analysis of Experiment 2, substituting Greene OF with it (for

more details, see Supplementary Materials 16). Similar fit and result patterns indicate that

datasets of annotated and segmented objects capture aspects of the world and our experience

with it, which are relevant for our cognitive system in general. Therefore, we hope that this first

attempt at studying object-based frequency measures gives rise to broader investigations, as it
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was done by some studies in cognitive neuroscience that already started with investigations in

this direction (Bonner & Epstein, 2021; Bracci et al., 2021).

Conclusion

To conclude, this study aimed to expand and innovate previous investigations of semantic

access from words and objects by employing new measures of object frequencies and

comparing them to established word frequency measures. In a first attempt, we identified

language-based and image-based frequency measures and demonstrated how they differentially

influence recognition processes which might reflect two organizational principles for

conceptual knowledge. Moreover, we showed that very different visual information (words vs.

objects) could lead to relatively similar processing when accessing conceptual knowledge,

providing further evidence for the strong interrelation between language and vision. We hope

that this study will lead to further investigations of both word- and object-based frequency

measures to increase our understanding of accessing meaning from visual input.

Context

The word frequency (WF) effect in visual word recognition is a well-established empirical

finding, while there is little evidence about object frequency (OF)'s role in object recognition.

Word and object recognition have the common goal of accessing meaning based on visual

input. This similarity raises questions about whether similar parameters modulate object and

word recognition. Since more frequent words are recognized more efficiently, we investigate

whether the frequency of occurrence also similarly affects object recognition. This team of

researchers - with expertise in visual word and object recognition - joined forces to investigate

the process of accessing the meaning of objects and words using object and word frequency
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measures. We, therefore, applied new metrics of object frequency based on state-of-the-art

datasets of annotated images and evaluated them in comparison to widely used metrics of word

frequency. Beyond this, we aimed to determine common aspects of object and word processing

that would give further evidence for the strong interrelation between language and vision while

providing a starting point for future investigations.
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Supplementary Materials

Supplementary materials 1 – Factor correlations, distributions, analysis details

Supplementary figure 1 – Correlations between factors measured for the study

Product-Moment Correlation Coefficients for each pair of predictors used in the experiment.

PCA procedure for visual and visuo-orthographic predictors: measures with

multidimensional output were averaged to obtain a single value for every image. As a rule of

thumb, we selected the Principal Components (PCs) that, alone, explained more variance than

what a variable would explain if they all explained the same amount of variance.
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Image visual PCs: 7 variables -> threshold: 100 / 7 = 14.29 %. We extracted three orthogonal

PCs, explaining more than 84 % of the variance. We labeled the first PC Image visual PC1

(about 50 % of variance explained, strong positive correlation with convolutional layer 1 of

AlexNet, and strong negative correlation with SNR, GIST, Entropy, Saliency and AlexNet

layer 4). The second PC was named Image visual PC2 (about 18 % of variance explained,

strong positive correlation with AlexNet layer 7, strong negative correlation with AlexNet layer

4). The third PC was named Image visual PC3 (about 15 % of variance explained, medium

positive correlation with AlexNet layers and Saliency, medium negative correlation with

Entropy). We interpret the PC1 as an estimate of low-to-mid-level visual features of the images

(stronger weights from AlexNet early layer, SNR, saliency, but also from AlexNet mid layer

and GIST), while the PC2 seems to capture more complex mid-to-high-level visual features

(stronger weights from AlexNet mid layer and entropy, but also from AlexNet late layer). PC3,

however, has a less clear interpretation, capturing part of variance from both low-level and

high-level visual features estimates (higher weights for all the three AlexNet layers).
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Supplementary figure 2 – Correlations of visual predictors and extracted PCs

Product-Moment Correlation Coefficients for each pair of visual predictors of objects and the Principal

Components (PCs) extracted from the PCA on those predictors.

Supplementary table 1. Object image PCA loadings for every variable in every extracted principal component

(PCs). They represent the weights of every variable on the extracted PCs.

Variables

AlexNet conv1

AlexNet conv4

AlexNet fc7

Saliency

GIST

PC1 loadings

0.459

-0.305

-0.062

-0.366

-0.486

PC2 loadings

0.005

-0.505

0.735

0.154

0.080

PC3 loadings

0.413

0.436

0.352

0.477

0.194
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Entropy -0.366 0.337 -0.482

SNR -0.434 -0.249 -0.134

Visuo-orthographic PC: 4 variables -> threshold: 100 / 4 = 25 %; one principal component

(PC) was extracted and was labeled Visuo-orthographic PC (variance explained circa 92 %;

strong positive correlation with all the original variables). Being all the variables highly

correlated between them and with the PC, interpretation seems straightforward and difficult at

the same time. The rationale for including many vatiables that were expected to be highly

correlated was to acknowledge the different levels (visual and orthographical) from which we

wanted to extract a covariate able to control for perceptual aspects of a word.

Supplementary figure 3 – Correlations between visuo-orthographic predictors and the extracted PC

Product-Moment Correlation Coefficients for each pair of visuo-orthographic predictors of words and the

Principal Component (PC) extracted from the PCA on those predictors.
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Supplementary table 2. Word image PCA loadings for every variable in the extracted principal component (PC).

They represent the weights that every variable has on the extract PC.

Variables

OLD20

Word length

Entropy

SNR

PC1 loadings

0.487

0.512

0.515

0.485

Supplementary figure 4 – Distribution of the frequency measures

Density distribution of the frequency values for our set of stimuli.
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Supplementary figure 5 – Distribution of concept variability across participants for the rating measures

Density distribution of concepts’ standard deviation across participants for the collected ratings (scale 1-6)
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Analysis details: We fitted Linear Mixed-effects Models (LMMs) via maximum likelihood

estimation, and Satterthwaite’s method was used to obtain p-values (package lmerTest,

Kuznetsova et al., 2017). Using the scale() function in R, we transformed each continuous

predictor variable onto a common scale which improves model fitting procedures. These

continuous predictors are the four frequency measures (SUBTLEX, dlexDB, Greene,

ADE20K) and the covariates (Concept familiarity [different in Exp 1-2 and Exp 3], Image

typicality [different in Exp 1-2 and Exp 3], Image visual PC1, Image visual PC2, Image visual

PC3, Visual-orthographic PC, Target repetition [different in Exp 1-2 and Exp 3]).

For the coding of contrasts in categorical predictors (Exp 1: Concept modality: Words

– Objects; Concept category: Natural – Man-made; Trial accuracy: Correct – Incorrect; Exp 2

and Exp 3: Target modality: Words - Objects; Priming condition: Cross-modal – Uni-modal;

Matching condition: Mismatching – Matching; Trial accuracy: Correct - Incorrect), we used

sum contrast coding, which in our case gave us an estimate of the difference between the two

levels of each of our categorical variables, like main effects in a multi-way repeated measures

ANOVA (Schad et al., 2020; Brehm & Alday, 2020).

Including trial response accuracy as a categorical covariate in the LMMs allows us to

consider the variance explained by the output of the task (i.e., correct or incorrect trial), but at

the same time to estimate the impact of the other variables independently from the output of

the task itself. Besides, this way, we did not have to exclude further trials from the analysis,

and we could exploit the flexibility offered by LMMs.

To account for the multiple repetitions of the same object concepts within participants

and a potential carry-over effect that could confound frequency effects, we included in the

models a numeric covariate Target repetition that represents the number of times that the
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current target concept has been presented (as either a word or an object image, as either target

or prime).

To prevent misinterpretation of the effects and confounds due to high correlation of the

predictors, we assessed potential multicollinearity of the models by computing the variance

inflation factors (VIFs) for each term in each model, using the check_collinearity() function in

R (package performance; Lüdecke et al., 2021). When variance inflation factors are below 5,

there are low correlations between predictors and therefore no predictors need to be excluded

to avoid confounds in the interpretation of the results. When the variance inflation factors are

higher than 5, those predictors should be excluded from the model and the analysis should be

repeated.

1) We implement a model comparison based on the Akaike Information Criterion

(AIC, Akaike, 1981). This step allowed us to compare our four frequency measures and select

the frequency measures with the best fit. To implement this, we first fit one model per

frequency measure (i.e., SUBTLEX, dlexDB, ADE20K, and Greene frequency) separately for

the word and the object recognition trials (four frequency measures times two modalities: eight

models in total). All models implemented the same covariates and random-effects structure.

Then we compared the four models of each modality to a “baseline” model that did not include

the frequency measure, but that was estimated on the same subset of data and implemented the

same structure of covariates and random effects (2 baseline models in total, one for words and

one for objects data). With this procedure, we could estimate the singular fit of each frequency

measure in each stimulus modality. From that, we selected the frequency measures that

explained a considerable amount of variance in both modalities for further analysis. A better

fit was determined by a significant decrease in the AIC, which was tested by implementing the

anova() function in R. Given the different sources from which word and object frequencies are

estimated, they might provide a distinct contribution in representing the occurrence of
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objects/words in the world. Therefore, we operated the AIC-based selection following these

criteria: in the best case, we would have selected two measures, i.e., the best fitting OF and the

best fitting WF measure. In the worst-case, none of the frequency measures would have

explained variance in both object and word trials. While, in between, we would have selected

either only an OF or a WF measure.

2) After selecting the best frequency measures, we ran a LMM estimating the

effects of those selected frequencies on the entire dataset (word trials + object trials), and

including all categorical factors and continuous covariates, as well as random factors for

participants and concepts.

3) When we detected significant interactions between frequency measures and

categorical predictors, we also ran post-hoc LMMs in order to understand the different effects

of frequency between different conditions (e.g., SUBTLEX in Cross-modal trials vs.

SUBTLEX in Uni-modal trials) and within each condition (e.g., the simple effect of SUBTLEX

in Cross-modal trials and simple effect of SUBTLEX in Uni-modal trials). Note that the

estimation of frequency effects, given the structure of linear models, was independent (i.e.,

controlled for) from the effect of the several continuous covariates included in the models.

Supplementary materials 2 – Model selection in Experiment 1

Formula of the models computed in the selection process (1 model x 4 frequency measures x 2

modalities + baseline model without frequency measures x 2 modalities = 10 models):

Exp1_logRT ~ FREQUENCY MEASURE +

Concept category + Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

10



Supplementary table 3. Summary table of the models included in the selection process. “Frequency” indicates the

frequency measure included in the model, where ‘Baseline’ means no measures included. “AIC” is the criterion

used to evaluate the fit of the model. “Modality” indicates which subset of data was considered. “AIC difference”

is the difference in AIC between every model and the baseline model of the same modality. More negative

differences indicate a better fit of the model including the frequency measure; significant improvements of fit are

highlighted in bold.

Frequency

Baseline

SUBTLEX WF

ADE20K OF

Greene OF

dlexDB WF

Baseline

SUBTLEX WF

ADE20K OF

dlexDB WF

Greene OF

AIC

-1214.816

-1218.978

-1212.867

-1213.126

-1214.462

-1442.289

-1469.443

-1443.517

-1455.736

-1441.156

Modality

Objects

Objects

Objects

Objects

Objects

Words

Words

Words

Words

Words

AIC difference

0

-4.163

1.949

1.690

0.354

0

-27.153

-1.228

-13.447

1.133
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Supplementary materials 3 – Results of the selected model in Experiment 1

Exp1_logRT ~ SUBTLEX WF * Concept modality +

Concept category + Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition +

Trial accuracy + (1|Participants) + (1/Concepts)

Supplementary table 4. Results from the selected model for semantic categorization

Predictors

(Intercept)

Concept modality (Words – Objects)

SUBTLEX WF

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy (Correct – Incorrect)

Concept category (Natural – Man-made)

SUBTLEX x (Words – Objects)

β SE

6.479       0.021

0.094 0.005

-0.031 0.007

-0.006 0.007

-0.003 0.003

-0.004 0.003

-0.002 0.006

0.019 0.006

0.008 0.006

-0.011 0.002

-0.017 0.009

0.001 0.012

-0.019 0.005

t p

302.552       <0.001

20.529 <0.001

-4.417 <0.001

-0.818 0.413

-0.983 0.326

-1.302 0.193

-0.316 0.752

3.253 0.001

1.410 0.159

-4.933 <0.001

-1.936 0.053

0.116 0.908

-4.160 <0.001
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Supplementary table 5. Variance Inflation Factors for the estimated effects of the main model of Experiment 1

Term VIF

Concept modality (Words – Objects) 1.012

SUBTLEX WF 1.535

Visuo-orthographic PC 1.698

Concept familiarity 1.043

Image typicality 1.015

Image visual PC1 1.032

Image visual PC2 1.027

Image visual PC3 1.063

Trial accuracy (Correct – Incorrect) 1.017

Concept category (Natural – Man-made) 1.180

Concept modality x SUBTLEX 1.000

Target repetition 1.010

The measured SUBTLEX WF effect was independent of visual and visuo-orthographic information

of the stimuli, as well as of image typicality, subjective familiarity, concept repetition, concept

category and accuracy of categorization.
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Supplementary figure 6 – Raw RTs from Experiment 1

Raw response times for object (red) and word (blue) trials as a function of SUBTLEX frequency in Experiment 1.

Points show concepts with different level of frequency, averaged across participants; lines represent linear fitting

of points and shaded areas represent 95 % confidence interval
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Supplementary materials 4 - Post-hoc of interaction in Experiment 1

2 post-hoc models are estimated, with the same formula, but on 2 different subsest of the data (Object trials

and Word trials):

Exp1_logRT ~ SUBTLEX WF +

Concept category + Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition +

Trial accuracy + (1|Participants) + (1/Concepts)

Supplementary table 6. Results from the post-hoc models for semantic categorization

Objects Words

Predictors

(Intercept)

SUBTLEX WF

Concept category

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy

β SE

6.449 0.022

-0.022 0.009

0.009 0.015

-0.006 0.009

-0.000 0.005

-0.009 0.004

-0.004 0.007

0.026 0.007

0.005 0.007

0.009 0.021

-0.059 0.013

t

289.694

-2.524

0.610

-0.671

-0.050

-1.977

-0.598

3.581

0.692

0.430

-4.379

p β SE

<0.001 6.520 0.024

0.012 -0.041 0.007

0.542 -0.008 0.012

0.502 -0.006 0.007

0.960 -0.005 0.004

0.048 -0.001 0.004

0.550 0.000 0.006

<0.001 0.011 0.006

0.489 0.012 0.006

0.667 -0.030 0.024

<0.001 0.005 0.011

t p

266.828 <0.001

-5.794 <0.001

-0.626 0.531

-0.823 0.411

-1.151 0.250

-0.258 0.797

0.069 0.945

1.949 0.051

2.034 0.042

-1.293 0.196

0.483 0.629
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Supplementary figure 7 – RTs estimated from post-hoc models of Experiment 1

Estimated response times from individual post-hoc models for object (red) and word (blue) trials as a function of

SUBTLEX frequency in Experiment 1. Points show concepts with different level of frequency, averaged across

participants; lines represent linear fitting of points and shaded areas represent 95 % confidence interval
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Supplementary materials 5 - Results of new ratings on original data of Exp 1

Exp1_logRT ~ SUBTLEX WF * Concept modality +

Concept category + Concept familiarity (replication) +

Image typicality (replication) +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition +

Trial accuracy + (1|Participants) + (1/Concepts)

Supplementary table 12. Results from main model of Exp 1 including ratings from replication study

Predictors
(Intercept)

Concept modality (Words – Objects)

SUBTLEX WF

Visuo-orthographic PC

Concept familiarity (replication)

Image typicality (replication)

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy (Correct – Incorrect)

Concept category (Natural – Man-made)

SUBTLEX x (Words – Objects)

β SE
6.479         0.021

0.094 0.005

-0.035 0.008

-0.009 0.007

0.012 0.007

-0.009 0.006

-0.001 0.006

0.013 0.006

0.010 0.006

-0.011 0.002

-0.017 0.009

0.012 0.013

-0.019 0.005

t p
303.428          <0.001

20.527 <0.001

-4.690 <0.001

-1.148 0.251

1.857 0.063

-1.513 0.130

-0.233 0.816

2.316 0.021

1.741 0.082

-4.933 <0.001

-1.905 0.057

0.925 0.355

-4.157 <0.001

17



Supplementary Materials 6 - Model selection in Experiment 2

Formula of the models computed in the selection process (1 model x 4 frequency measures x 2

modalities + baseline model without frequency measures x 2 modalities = 10 models):

Exp2_logRT ~ FREQUENCY MEASURE * Priming condition * Matching condition +

Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy + 379

(1|Participants) + (1/Concepts)

Supplementary table 7. Summary table of the models included in the selection process. “Frequency” indicates the

frequency measure included in the model, where ‘Baseline’ means no measures included. “AIC” is the criterion
used to evaluate the fit of the model. “Modality” indicates which subset of data was considered. “AIC difference” is
the difference in AIC between every model and the baseline model of the same modality. More negative
differences indicate a better fit of the model including the frequency measure; significant improvements of fit are
highlighted in bold.

Frequency

Baseline

SUBTLEX WF

ADE20K OF

DlexDB WF

Greene OF

Baseline

SUBTLEX WF

ADE20K OF

DlexDB WF

Greene OF

AIC

-5150.153

-5194.848

-5152.258

-5175.167

-5169.700

-6366.279

-6401.687

-6385.581

-6377.383

-6401.694

Modality

Objects

Objects

Objects

Objects

Objects

Words

Words

Words

Words

Words

AIC difference

0

-44.695

-2.105

-25.013

-19.547

0

-35.409

-19.302

-11.105

-35.415
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Supplementary materials 7 Results selected model in Experiment 2

Exp2_logRT ~ SUBTLEX WF * Priming condition * Matching condition * Target modality +

Greene OF * Priming condition * Matching condition * Target modality +

Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

Supplementary table 8. Results from the selected model for priming task

Predictors

(Intercept)

Greene OF

Matching condition (Mismatch – Match)

Target modality (Words – Objects)

Priming condition (Cross-modal – Uni-modal)

SUBTLEX WF

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy (Correct – Incorrect)

Greene x Matching condition

Greene x Target modality

Matching condition x Target modality

Greene x Priming condition

Matching condition x Priming condition
Priming condition x Target modality

β SE

6.225 0.020

0.008 0.002

0.073 0.002

-0.008 0.002

0.006 0.005

-0.004 0.002

0.010 0.002

-0.001 0.002

-0.004 0.002

0.002 0.002

0.004 0.002

-0.001 0.002

-0.036 0.003

0.030 0.005

-0.017 0.002

0.003 0.002

-0.009 0.004

0.008 0.002

0.003         0.004
0.013         0.004

t p

315.728 <0.001

4.474 <0.001

32.684 <0.001

-3.618 <0.001

1.173 0.241

-1.812 0.070

4.877 <0.001

-0.845 0.398

-2.562 0.010

1.217 0.224

2.788 0.005

-0.832 0.405

-13.357 <0.001

5.444 <0.001

-7.454 <0.001

1.396 0.163

-1.939 0.053

3.347 0.001

0.737           0.461
2.872           0.004
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SUBTLEX x Matching condition

SUBTLEX x Target modality

SUBTLEX x Priming condition

Greene x Matching condition x Target modality

Greene x Matching condition x Priming condition

Greene x Priming condition x Target modality

Matching condition x Priming condition x Target modality

SUBTLEX x Matching condition x Target modality

SUBTLEX x Matching condition x Priming condition

SUBTLEX x Priming condition x Target modality

Greene x Matching condition x Priming condition x Target modality

SUBTLEX x Matching condition x Priming condition x Target modality

0.021 0.002 9.074 <0.001

-0.005 0.002 -2.378 0.017

-0.015 0.002 -6.335 <0.001

0.003 0.005 0.668 0.504

-0.020 0.005 -4.256 <0.001

0.007 0.005 1.416 0.157

0.046 0.009 5.220 <0.001

-0.002 0.005 -0.472 0.637

0.017 0.005 3.687 <0.001

0.003 0.005 0.569 0.570

0.002 0.009 0.227 0.821

0.006 0.009 0.612 0.541

Supplementary table 9. Variance Inflation Factors for the estimated effects of the main model of Experiment 2

Term VIF

Greene OF 1.190

Matching condition (Mismatch – Match) 1.022

Target modality (Words – Objects) 1.032

Priming condition (Cross-modal – Uni-modal) 5.799

SUBTLEX WF 1.673

Visuo-orthographic PC 1.583

Concept familiarity 1.168

Image typicality 1.037

Image visual PC1 1.026

Image visual PC2 1.026

Image visual PC3 1.069

Trial accuracy (Correct – Incorrect) 1.007

Greene x Matching condition 1.078
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Greene x Target modality 1.077

Matching condition x Target modality 1.000

Greene x Priming condition 1.077

Matching condition x Priming condition 1.000

Priming condition x Target modality 1.004

SUBTLEX x Matching condition 1.078

SUBTLEX x Target modality 1.077

SUBTLEX x Priming condition 1.077

Greene x Matching condition x Target modality 1.077

Greene x Matching condition x Priming condition 1.078

Greene x Target modality x Priming condition 1.077

Matching condition x Priming condition x Target modality 1.000

SUBTLEX x Matching condition x Target modality 1.077

SUBTLEX x Matching condition x Priming condition 1.077

SUBTLEX x Target modality x Priming condition 1.077

Greene x Matching condition x Priming condition x Target modality 1.077

SUBTLEX x Matching condition x Priming condition x Target modality 1.077

Target repetition 5.857

The model showed moderate collinearity (VIFs = 5.8 and 5.9) between the Priming condition

and Target repetition. This was expected because, despite counterbalancing block order for

modalities (word-object or object-word) across participants, all participants performed the

cross-modal blocks before the uni-modal blocks (and after Experiment 1). We kept the term

for further analysis since collinearity was only just above the threshold for these terms, and

because we deemed it important to account for potential carry-over effect. The measured

SUBTLEX WF and Greene OF effects were independent of visual and visuo-orthographic

information of the stimuli, as well as of image typicality, subjective familiarity, target repetition,

and accuracy of categorization.
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Supplementary figure 8 - Raw RTs from Experiment 2

Raw response times for object (red) and word (blue) trials in the priming conditions (Cross-modal solid lines, Uni-

modal: dashed-dotted) and matching condition (Matching on the left, Mismatching on the right), as a function of

SUBTLEX frequency (top) and Greene frequency (bottom) in Experiment 2. Points show concepts with different

level of frequency, averaged across participants; lines represent linear fitting of points and shaded areas represent 95 %

confidence interval

Supplementary Materials 8 – Post-hoc of interactions in Experiment 2

Recoded factor is a factor we obtained merging Priming condition and Matching condition to explore

the interaction between frequency x Priming condition x Matching condition. This new factor has 4

levels (Cross-modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal
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Mismatching) and 3 contrasts of interest are computed (Cross-modal Matching – Uni-modal Matching,

Cross-modal Mismatching – Uni-modal Mismatching, Cross-modal Matching – Uni-modal 435

Mismatching)

Exp2_logRT ~ SUBTLEX WF * Recoded factor * Target modality +

Greene OF * Recoded factor * Target modality +

Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy + 442

(1|Participants) + (1/Concepts)

Supplementary table 10. Results from the post-hoc model with re-coded contrasts

Predictors

(Intercept)

SUBTLEX WF

Cross-modal matching – Uni-modal matching

Cross-modal mismatching – Uni-modal mismatching

Cross-modal matching – Cross-modal mismatching

Target modality (Words – Objects)

Greene OF

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy (Correct – Incorrect)

β SE

6.225 0.020

-0.004 0.002

0.005 0.006

0.008 0.006

-0.075 0.003

-0.008 0.002

0.008 0.002

0.010 0.002

-0.001 0.002

-0.004 0.002

0.002 0.002

0.004 0.002

-0.001 0.002

-0.036 0.003

0.030 0.005

t p

315.730 <0.001

-1.812 0.070

0.805 0.421

1.360 0.174

-23.733 <0.001

-3.618 <0.001

4.474 <0.001

4.877 <0.001

-0.845 0.398

-2.562 0.010

1.217 0.224

2.788 0.005

-0.832 0.405

-13.357 <0.001

5.444 <0.001
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SUBTLEX x (Cross-modal matching – Uni-modal matching)

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching)

SUBTLEX x (Cross-modal matching – Cross-modal mismatching)

SUBTLEX x Target modality

(Cross-modal matching – Uni-modal matching) x Target modality

(Cross-modal mismatching – Uni-modal mismatching) x Target modality

(Cross-modal matching – Cross-modal mismatching) x Target modality

Greene x (Cross-modal matching – Uni-modal matching)

Greene x (Cross-modal mismatching – Uni-modal mismatching)

Greene x (Cross-modal matching – Cross-modal mismatching)

Greene x Target modality

SUBTLEX x (Cross-modal matching – Uni-modal matching) x Target modality

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching) x Target modality

SUBTLEX x (Cross-modal matching – Cross-modal mismatching) x Target modality

Greene x (Cross-modal matching – Uni-modal matching) x Target modality

Greene x (Cross-modal mismatching – Uni-modal mismatching) x Target modality

Greene x (Cross-modal matching – Cross-modal mismatching) x Target modality

-0.023 0.003 -7.094 <0.001

-0.006 0.003 -1.870 0.062

-0.029 0.003 -9.027 <0.001

-0.005 0.002 -2.378 0.017

-0.010 0.006 -1.655 0.098

0.036 0.006 5.717 <0.001

-0.015 0.006 -2.320 0.020

0.018 0.003 5.379 <0.001

-0.002 0.003 -0.644 0.520

0.027 0.003 8.276 <0.001

0.003 0.002 1.396 0.163

-0.000 0.007 -0.031 0.975

0.005 0.007 0.834 0.404

-0.001 0.007 -0.099 0.921

0.005 0.007 0.842 0.400

0.008 0.007 1.161 0.246

-0.004 0.007 -0.632 0.527
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Supplementary figure 9. Raw RTs from post-hoc conditions of Experiment 2

Raw response times in the priming conditions (Cross-modal: solid lines, Uni-modal: dashed-dotted) and matching

condition (Matching on the left, Mismatching on the right), as a function of SUBTLEX frequency (top, dark green)

and Greene frequency (bottom, light green) in Experiment 2. Points show concepts with different level of frequency,

averaged across participants; lines represent linear fitting of points and shaded areas represent 95 % confidence

interval
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Supplementary figure 10 - RTs estimated from post-hoc of interaction effects of Experiment 2 (between condition)

Response times as a function of logarithmic SUBTLEX frequency (top plots, dark green) and Greene frequency

(bottom plots, light green) in the 3-way significant interaction with Matching condition and Priming condition (Cross-

modal matching vs. Uni-modal matching; Cross-modal mismatching vs Uni-modal mismatching; Cross-modal

matching vs. Cross-modal mismatching). RTs were estimated based on the selected model. Points present participant-

based mean response times for concepts in the different frequency levels. Lines represent linear fitting of points

(solid: cross-modal; dashed: uni-modal), and shaded areas represent 95 % confidence interval. Bottom left and top-left

plots represent the effects in prime-target matching condition, while bottom-right and top-right plots represent the

effects in prime-target mismatching condition

4 post-hoc models are additionally computed, one for every level of the re-coded factor (Cross-

modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal Mismatching)
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Exp2_logRT ~ SUBTLEX WF * Target modality + Greene OF * Target modality +

Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

Supplementary table 11. Results from the post-hoc individual models for conditions of interest

Uni-modal Matching Cross-modal Matching

Predictors β SE t p β SE t p
(Intercept)                                                        6.139 0.020       309.972 <0.001       6.238 0.021      290.842 <0.001

SUBTLEX WF

Target modality (Words – Objects)

Greene OF

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

-0.001 0.003

0.008 0.004

0.007 0.003

0.013 0.003

-0.000 0.003

-0.005 0.003

0.003 0.002

0.004 0.002

-0.003 0.002

-0.245 0.807

1.790 0.073

2.725 0.006

4.418      <0.001

-0.150       0.881

-1.835       0.067

1.289       0.197

1.758       0.079

-1.173 0.241

-0.019 0.006

-0.012 0.005

0.023 0.005

0.018 0.006

-0.003 0.003

-0.013 0.003

0.003 0.005

0.001 0.005

0.001 0.005

-3.230       0.001

-2.620       0.009

4.710 <0.001

3.077       0.002

-0.858       0.391

-3.825     <0.001

0.593       0.553

0.254       0.799

0.178 0.859

Target repetition -0.002 0.002 -0.792 0.428 -0.028 0.002 -12.095 <0.001

Trial accuracy (Correct – Incorrect)

SUBTLEX x (Words – Objects)

Greene x (Words – Objects)

0.058 0.010

-0.004 0.004

-0.001 0.004

6.001 <0.001

-0.982       0.326

-0.304 0.761

-0.008 0.010      -0.760       0.448

-0.005 0.005      -0.948       0.343

0.005 0.005 1.012 0.311

Uni-modal Mismatching Cross-modal Mismatching

Predictors β SE t p β SE t p
(Intercept)                                                        6.202 0.020       312.978 <0.001       6.286 0.022       279.822 <0.001

SUBTLEX WF

Target modality (Words – Objects)

Greene OF

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

0.005 0.003

-0.026 0.004

0.001 0.003

0.001 0.003

-0.003 0.003

0.001 0.003

0.000 0.002

0.008 0.002

-0.001 0.003

1.535 0.125

-5.943     <0.001

0.543 0.587

0.407 0.684

-1.225 0.221

0.221       0.825

0.024       0.981

3.082 0.002

-0.322 0.748

0.000 0.003       0.108       0.914

0.004 0.004       0.863       0.388

-0.002 0.002      -0.733      0.463

0.005 0.003       1.978       0.048

0.002 0.003       0.586       0.558

0.003 0.003       1.109       0.268

0.002 0.002       0.751       0.452

0.005 0.002 2.194 0.028

-0.003 0.002 -1.172 0.241

Target repetition -0.007 0.002 -3.341 0.001 -0.023 0.002 -10.344 <0.001

Trial accuracy (Correct – Incorrect)               0.083 0.012         6.712 <0.001         0.063 0.012      5.361 <0.001
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SUBTLEX x (Words – Objects)

Greene x (Words – Objects)

-0.009 0.004

0.001 0.004

-2.113 0.035

0.226 0.821

-0.004 0.005

0.009 0.005

-0.951 0.342

2.027 0.043

Supplementary figure 11 - RTs estimated from post-hoc models of Experiment 2 (within conditions)

Effects of SUBTLEX WF (dark green, top) and Greene OF (light green, bottom) on reaction times estimated from

the post-hoc models separately for each Priming condition (continuous and dashed-dotted line types) and

Matching condition (left and right plots). Points show concepts with different level of frequency, averaged across

participants; lines represent linear fitting of points and shaded areas represent 95 % confidence interval.
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Supplementary materials 9 – Results of new ratings on original data of Exp 2

Exp2_logRT ~ SUBTLEX WF * Priming condition * Matching condition * Target modality +

Greene OF * Priming condition * Matching condition * Target modality +

Concept familiarity (replication) + Image typicality (replication) +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

Supplementary table 13. Results from main model of Exp 2 including ratings from replication study

Predictors β SE t p
(Intercept)                                                                                                                            6.225 0.020        315.766 <0.001

Greene OF

Matching condition (Mismatch – Match)

Target modality (Words – Objects)

Priming condition (Cross-modal – Uni-modal)

SUBTLEX WF

Visuo-orthographic PC

Concept familiarity (replication)

Image typicality (replication)

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy (Correct – Incorrect)

Greene x Matching condition

Greene x Target modality

Matching condition x Target modality

Greene x Priming condition

Matching condition x Priming condition

Priming condition x Target modality

SUBTLEX x Matching condition

SUBTLEX x Target modality

SUBTLEX x Priming condition

Greene x Matching condition x Target modality

0.005 0.002

0.073 0.002

-0.008 0.002

0.006 0.005

-0.001 0.002

0.010 0.002

-0.002 0.002

-0.008 0.002

0.003 0.002

0.003 0.002

-0.002 0.002

-0.036 0.003

0.030 0.005

-0.017 0.002

0.003 0.002

-0.009 0.004

0.008 0.002

0.003 0.004

0.013 0.004

0.021 0.002

-0.005 0.002

-0.015 0.002

0.003 0.005

2.978       0.003

32.683     <0.001

-3.613     <0.001

1.175       0.240

-0.576       0.565

5.485      <0.001

-0.795       0.427

-4.829     <0.001

2.077       0.038

2.173       0.030

-1.518       0.129

-13.355     <0.001

5.453      <0.001

-7.458     <0.001

1.396       0.163

-1.938       0.053

3.347 0.001

0.736 0.462

2.874 0.004

9.075      <0.001

-2.376 0.018

-6.335     <0.001

0.666 0.505
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Greene x Matching condition x Priming condition
Greene x Priming condition x Target modality

Matching condition x Priming condition x Target modality

SUBTLEX x Matching condition x Target modality

SUBTLEX x Matching condition x Priming condition

SUBTLEX x Priming condition x Target modality

Greene x Matching condition x Priming condition x Target modality

SUBTLEX x Matching condition x Priming condition x Target modality

-0.020 0.005
0.007 0.005

0.046 0.009

-0.002 0.005

0.017 0.005

0.003 0.005

0.002 0.009

0.006 0.009

-4.257 <0.001
1.412       0.158

5.216 <0.001

-0.473      0.636

3.687      <0.001

0.569       0.569

0.228       0.819

0.612 0.540

Supplementary materials 10 – Exploratory analysis in Experiment 2

Since we detected similar frequency effects in both word and object modalities (i.e., no

significant interaction including target modality), as well as the presence of these effects only

when semantic processing is required (cross-modal trials), we decided to further explore

whether the frequency effects found in Experiment 2 represented common semantic processing

of objects and words. Thus, we restricted this exploratory analysis to the Cross-modal matching

trials. Response times from this subset showed substantial word and object frequency effects

and, at the same time, included predictive semantic processing to a high degree.

We considered three sources of data: 1) the actual response times from cross-modal

matching trials of words and objects; 2) response times estimated from the effect of SUBTLEX

WF in cross-modal matching trials of words and objects; 3) response times estimated from the

effect of Greene OF in cross-modal matching trials of words and objects. 2) and 3) were

estimated using two models (one for word trials and one for object trials) that included

SUBTLEX WF, Greene OF, and all the covariates and random effects of the main model of

Experiment 2 introduced before. The comparison between word and object processing was

made for each of the three datasets considering response times for every participant and for

every concept in both modalities. To test the similarity between frequency effects in words and

objects, we implemented paired-samples equivalence tests and product-moment correlation

tests between response times from word and object trials.
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With the equivalence test, we can check if two samples/conditions come from the same

distribution (i.e., they are equivalent). Thus, we computed test statistics for which low

probability values allow us to reject the null hypothesis of statistical difference (instead of

rejecting the null hypothesis of statistical equivalence of commonly used t-test). For the

equivalence test, we needed to set an epsilon parameter, i.e., the maximally allowed difference

to consider two conditions non-different; in our case, we used 50 % of the standard deviation

of the difference between object and word trials (Robinson & Froese, 2004). The correlation of

word-based vs. object-based reaction times could additionally prove whether associated entries

show similar behavior.

For actual response time data, we found a significant equivalence (mean of differences

= 0.005 log(ms), ε=0.045 log(ms), CI = [-0.018 0.028], p=0.003) and correlation (r=0.804,

t(40)=8.554, p<0.001), between participants’ performance in object and word trials; also, we

found a significant equivalence (mean of differences = 0.006 log(ms), ε=0.028 log(ms), CI =

[-0.004 0.015], p<0.001) and correlation (r=0.652, t(98)=8.503, p<0.001) between processing

of concepts in the two different modalities (Supplementary Figure 12A-B). That implies high

interrelation between the processing objects and words which becomes evident when

comparing participants and comparing stimuli with the same semantics.

Supplementary figure 12 - Linear relationship between object trials and word trials in Cross-modal matching

trials

Correlations among unique participants (dark blue: A, C, and E) and unique concepts (orange: B, D and F). A, B)

Actual response times for Cross-modal matching trials (solid lines). C, D) Response times estimated from

SUBTLEX WF effect in Cross-modal matching trials (dashed lines); E, F) Response times estimated from Greene

OF effect in Cross-modal matching trials (dashed-dotted lines). Points represent performance of individual

participants or concepts in the two tasks. Lines represent linear fitting of points, and shaded areas represent 95 %

confidence interval.
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To get an estimate to which degree the interrelation was driven by the WF effect, we

predicted RTs that were influenced by the SUBTLEX WF effect without confounds based on

the estimated models (one for cross-modal matching trials of objects, one for cross-modal

matching trials for words). For participants’ performance, we could not reject statistical

difference (mean of differences = 0.0049 log(ms), ε=0.0009 log(ms), CI = [0.0044 0.0053],

p=1), but we found a significant correlation (r=0.860, t(40)=10.667, p<0.001) between object

trials and word trials; similarly, but considering single concepts, we could reject statistical

difference (mean of differences = 0.005 log(ms), ε=0.010 log(ms), CI = [0.001 0.008],
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p=0.004), and we found also a significant correlation (r=0.717, t(98)=10.186, p<0.001)

(Supplementary Figure 12C-D).

We repeated the same procedure for the Greene OF effect and found the same pattern:

statistical difference could not be reject for individual participants (mean of differences =

0.0048 log(ms), ε=0.0009 log(ms), CI = [0.0044 0.0053], p=1), but it was rejected for

individual concepts performance (mean of differences = 0.005 log(ms), ε=0.010 log(ms), CI =

[0.001 0.008], p<0.001), while both showed a strong correlation between object and word trials

(participants: r=0.868, t(40)=11.067, p<0.001; concepts: r=0.779, t(98)=12.29, p<0.001)

(Supplementary Figure 12E-F). Overall, these exploratory analyses show that even if the WF

and OF do not affect object and word processing completely identically, the individual

participant’s frequency effects for words and object and the frequency effects for single

semantic concepts are strongly associated to each other across modalities.
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Supplementary Materials 11 – Effect of Greene OF with Conceptual

Distinctiveness

We can draw parallels between the experimental visual experience created and tested

by Konkle and colleagues (2010) (i.e., manipulating the frequency of visually presented objects

in the lab) and what the Greene OF used in our study aims to represent (i.e., the frequency of

visually encountered objects in the real world). This comparison might raise some concerns

since the two studies seem relatively different at first sight: First, Konkle et al. artificially

induced memory interference and second, they specifically measured visual LTM. That said,

we believe that Konkle et al. (2010) of course aimed at measuring a phenomenon of memory

interference that they think is happening intrinsically when encountering objects in the world.

While Konkle's task required retrieving specific exemplars, our task required retrieving a

concept (i.e., the prime meaning) from memory. For both tasks, however, interferences from

other exemplars are similarly possible. In addition, to correctly perform the Cross-modal

priming task in our study, participants in our study had to access representations in semantic

long-term memory (LTM), which was also the locus of the memory interferences as highlighted

by Konkle et al. (2010). This is in line with the observation that the Greene OF effect in our

study only came into play in Cross-modal Matching trials, where semantic processing and LTM

involvement was particularly high.

Recoded factor is a factor we obtained merging Priming condition and Matching condition to explore

interaction between frequency x Priming condition x Matching condition. This new factor has 4 levels
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(Cross-modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal Mismatching)

and 3 contrasts of interest are computed (Cross-modal Matching – Uni-modal Matching, Cross-modal

Mismatching – Uni-modal Mismatching, Cross-modal Matching – Uni-modal Mismatching)

Exp2_logRT ~ SUBTLEX WF * Recoded factor * Target modality +

Greene OF * Conceptual Distinctiveness * Recoded factor * Target modality+

Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

Supplementary table 14. Results from model including Conceptual Distinctiveness in interaction with Greene
frequency.
Predictors β SE t p
(Intercept)                                                                                                                                                  6.225 0.020 315.564 <0.001

Conceptual Distinctiveness (CD)

Greene OF

Cross-modal matching – Uni-modal matching

Cross-modal mismatching – Uni-modal mismatching

Cross-modal matching – Cross-modal mismatching

Target modality (Words – Objects)

SUBTLEX

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

0.002 0.002 0.799 0.424

0.008 0.002 3.709        <0.001

0.009 0.006 1.533 0.125

0.007 0.006 1.235 0.217

-0.070 0.003 -20.276     <0.001

-0.008 0.002 -3.356 0.001

-0.004 0.002 -1.923 0.055

0.009 0.002 4.807        <0.001

-0.001 0.002 -0.762         0.446

-0.004 0.002 -2.440         0.015

0.002 0.002 1.266           0.206

0.005 0.002 2.776           0.006

-0.002 0.002 -0.976 0.329

Target repetition -0.036 0.003 -13.333 <0.001

Trial accuracy (Correct – Incorrect)

Conceptual Distinctiveness (CD)x Greene

CD x (Cross-modal matching – Uni-modal matching)

CD x (Cross-modal mismatching – Uni-modal mismatching)

CD x (Cross-modal matching – Cross-modal mismatching)

Greene x (Cross-modal matching – Uni-modal matching)

Greene x (Cross-modal mismatching – Uni-modal mismatching)

Greene x (Cross-modal matching – Cross-modal mismatching)

Conceptual Distinctiveness (CD)x Target modality

Greene x Target modality

Target modality x (Cross-modal matching – Uni-modal matching)

Target modality x (Cross-modal mismatching – Uni-modal mismatching)

0.031 0.005 5.595 <0.001

-0.001 0.002 -0.749 0.454

0.004 0.004 1.051 0.293

0.001 0.004 0.246 0.806

0.007 0.004 1.937 0.053

0.021 0.004 5.364 <0.001

-0.003 0.004 -0.810 0.418

0.030 0.004 7.737 <0.001

-0.000 0.003 -0.065 0.948

0.003 0.003 1.155 0.248

-0.009 0.007 -1.252 0.211

0.030 0.007 4.432 <0.001
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Target modality x (Cross-modal matching – Cross-modal mismatching)

SUBTLEX x (Cross-modal matching – Uni-modal matching)

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching)

SUBTLEX x (Cross-modal matching – Cross-modal mismatching)

SUBTLEX x Target modality

CD x Greene x (Cross-modal matching – Uni-modal matching)

CD x Greene x (Cross-modal mismatching – Uni-modal mismatching)
CD x Greene x (Cross-modal matching – Cross-modal mismatching)

CD x Greene x Target modality

CD x (Cross-modal matching – Uni-modal matching) x Target modality

CD x (Cross-modal mismatching – Uni-modal mismatching) x Target modality

CD x (Cross-modal matching – Cross-modal mismatching) x Target modality

Greene x (Cross-modal matching – Uni-modal matching) x Target modality

Greene x (Cross-modal mismatching – Uni-modal mismatching) x Target modality

Greene x (Cross-modal matching – Cross-modal mismatching) x Target modality
SUBTLEX x (Cross-modal matching – Uni-modal matching) x Target modality

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching) x Target modality

SUBTLEX x (Cross-modal matching – Cross-modal mismatching) x Target modality
CD x Greene x (Cross-modal matching – Uni-modal matching) x Target modality

CD x Greene x (Cross-modal mismatching – Uni-modal mismatching) x Target modality

CD x Greene x (Cross-modal matching – Cross-modal mismatching) x Target modality

-0.013 0.007 -1.872 0.061

-0.023 0.004 -6.500 <0.001

-0.007 0.004 -1.873 0.061

-0.030 0.004 -8.512 <0.001

-0.005 0.003 -2.181 0.029

-0.010 0.003 -3.139 0.002
0.002 0.003 0.495 0.621 -
0.012 0.003 -3.774 <0.001

0.000 0.002 0.086 0.932

-0.001 0.008 -0.072 0.942

0.001 0.008 0.129 0.898

-0.002 0.008 -0.275 0.784

0.008 0.008 0.984 0.325

0.001 0.008 0.143 0.886

-0.002 0.008 -0.195 0.845

0.001 0.007 0.078 0.938

0.003 0.007 0.464 0.643

0.001 0.007 0.083 0.934

-0.004 0.006 -0.666 0.506

0.013 0.006 2.031 0.042

-0.004 0.006 -0.631 0.528
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Supplementary materials 12 – Results main model in priming task (Exp 3)

Exp3_logRT ~ SUBTLEX WF * Priming condition * Matching condition * Target modality +

Greene OF * Priming condition * Matching condition * Target modality +

Concept familiarity (replication) + Image typicality (replication) +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

Supplementary table 15. Results from the main model for priming task replication

Predictors β SE t p
(Intercept)

Greene OF

Matching condition (Mismatch – Match)

Target modality (Words – Objects)

Priming condition (Cross-modal – Uni-modal)

SUBTLEX WF

Visuo-orthographic PC

Concept familiarity (replication)

Image typicality (replication)

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy (Correct – Incorrect)

Greene x Matching condition

Greene x Target modality

Matching condition x Target modality

Greene x Priming condition

Priming condition x Matching condition

Priming condition x Target modality

SUBTLEX x Matching condition

SUBTLEX x Target modality

SUBTLEX x Priming condition

Greene x Matching condition x Target modality

Greene x Matching condition x Priming condition

Greene x Priming condition x Target modality

Matching condition x Priming condition x Target modality

6.354 0.017 374.088 <0.001

0.003 0.002 1.661 0.097

0.062 0.002 27.489 <0.001

-0.002 0.002 -0.896 0.370

0.014 0.033 0.413 0.680

-0.008 0.002 -3.932 <0.001

0.005 0.002 2.489 0.013

-0.001 0.002 -0.347 0.729

-0.009 0.002 -5.229 <0.001

0.001 0.002 0.633 0.527

0.003 0.002 1.929 0.054

0.001 0.002 0.592 0.554

-0.036 0.001 -31.062 <0.001

0.013 0.007 1.954 0.051

-0.008 0.002 -3.529 <0.001

0.001 0.002 0.371 0.711

0.001 0.004 0.195 0.845

0.012 0.002 5.158 <0.001

-0.016 0.004 -3.523 <0.001

-0.029 0.005 -6.285 <0.001

0.013 0.002 5.638 <0.001

-0.011 0.002 -4.830 <0.001

-0.010 0.002 -4.291 <0.001

-0.004 0.005 -0.917 0.359

-0.010 0.005 -2.165 0.030

0.000 0.005 0.019 0.985

0.030 0.009 3.406 0.001
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SUBTLEX x Matching condition x Target modality 0.016 0.005 3.399 0.001

SUBTLEX x Matching condition x Priming condition
SUBTLEX x Priming condition x Target modality

Greene x Matching condition x Priming condition x Target modality

SUBTLEX x Matching condition x Priming condition x Target modality

0.009     0.005 1.880           0.060
-0.006 0.005 -1.230         0.219

-0.011 0.009 -1.169 0.242

0.021 0.009 2.269 0.023
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Supplementary table 16. Variance Inflation Factors for the effects of the main model of Replication experiment.

Term VIF

Greene OF 1.535

Matching condition 1.022

Target modality 1.003

Priming condition 1.000

SUBTLEX WF 1.974

Visuo-orthographic PC 1.725

Concept familiarity (replication) 1.705

Image typicality (replication) 1.337

Image visual PC1 1.084

Image visual PC2 1.093

Image visual PC3 1.206

Target repetition 1.097

Trial accuracy 1.006

Greene x Matching condition 1.076

Greene x Target modality 1.076

Matching condition x Priming condition 1.000

Greene x Priming condition 1.076

Matching condition x Target modality 1.000

Priming condition x Target modality 1.077

SUBTLEX x Matching condition 1.077

SUBTLEX x Target modality 1.076

SUBTLEX x Priming condition 1.076
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Greene x Matching condition x Target modality 1.076

Greene x Matching condition x Priming condition 1.076

Greene x Priming condition x Target modality 1.076

Matching condition x Priming condition x Target modality 1.000

SUBTLEX x Matching condition x Target modality 1.076

SUBTLEX x Matching condition x Priming condition 1.076

SUBTLEX x Priming condition x Target modality 1.076

Greene x Matching condition x Priming condition x Target modality 1.076

SUBTLEX x Matching condition x Priming condition x Target modality 1.076

The measured SUBTLEX WF and Greene OF effects were independent of visual and visuo-

orthographic information of the stimuli, as well as of image typicality, subjective familiarity, target

repetition and accuracy of categorization.
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Supplementary figure 13 - Raw RTs from Experiment 3

Raw response times for object (red) and word (blue) trials in the priming conditions (Cross-modal solid lines,

Uni-modal: dashed-dotted) and matching condition (Matching on the left, Mismatching on the right), as a function of

SUBTLEX frequency (top) and Greene frequency (bottom) in the Replication experiment. Points show

concepts with different level of frequency, averaged across participants; lines represent linear fitting of points and

shaded areas represent 95 % confidence interval
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Supplementary Materials 13 – Post-hoc of interactions in priming task (Exp 3)

Recoded factor is a factor we obtained merging Priming condition and Matching condition to explore

the interaction between frequency x Prining condition x Matching condition. This new factor has 4

levels (Cross-modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal

Mismatching) and 3 contrasts of interest are computed (Cross-modal Matching – Uni-modal Matching,

Cross-modal Mismatching – Uni-modal Mismatching, Cross-modal Matching – Uni-modal

Mismatching)

Exp3_logRT ~ SUBTLEX WF * Recoded factor * Target modality +

Greene OF * Recoded factor * Target modality +

Concept familiarity (replication) + Image typicality (replication) +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

Supplementary table 17. Results from the post-hoc model with re-coded contrasts in the Replication exp Predictors
β SE t p

(Intercept)                                                                                                                            6.355 0.017 374.337 <0.001

SUBTLEX WF

Cross-modal matching – Uni-modal matching

Cross-modal mismatching – Uni-modal mismatching

Cross-modal matching – Cross-modal mismatching

Target modality (Words – Objects)

Greene OF

Visuo-orthographic PC

Concept familiarity (replication)

Image typicality (replication)

Image visual PC1

Image visual PC2

Image visual PC3

Trial accuracy (Correct – Incorrect)

-0.008 0.002 -3.865 <0.001

0.022 0.033 0.649           0.517

0.006 0.033 0.175           0.861

-0.063 0.003 -19.787 <0.001

0.001 0.002 0.614           0.539

0.003 0.002 1.636           0.102

0.005 0.002 2.465           0.014

-0.001 0.002 -0.309         0.758

-0.009 0.002 -5.220      <0.001

0.001 0.002 0.557           0.577

0.003 0.002 1.881           0.060

0.001 0.002 0.618           0.537

0.009 0.007 1.317 0.188
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SUBTLEX x (Cross-modal matching – Uni-modal matching)
SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching)
SUBTLEX x (Cross-modal matching – Cross-modal mismatching)

SUBTLEX x Target modality

Target modality x (Cross-modal matching – Uni-modal matching)

Target modality x (Cross-modal mismatching – Uni-modal mismatching)

Target modality x (Cross-modal matching – Cross-modal mismatching)

Greene x (Cross-modal matching – Uni-modal matching)

Greene x (Cross-modal mismatching – Uni-modal mismatching)

Greene x (Cross-modal matching – Cross-modal mismatching)

Greene x Target modality

SUBTLEX x (Cross-modal matching – Uni-modal matching) x Target modality

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching) x Target mod

SUBTLEX x (Cross-modal matching – Cross-modal mismatching) x Target mod

Greene x (Cross-modal matching – Uni-modal matching) x Target modality Greene

x (Cross-modal misatching – Uni-modal mismatching) x Target modality

Greene x (Cross-modal matching – Cross-modal mismatching) x Target modality

-0.014 0.003 -4.324 <0.001
-0.006 0.003 -1.664 0.096
-0.018 0.003 -5.291 <0.001

-0.011 0.002 -4.786 <0.001

-0.006 0.006 -0.949 0.343

0.025 0.006 3.872 <0.001

-0.017 0.006 -2.591 0.010

0.017 0.003 5.165 <0.001

0.007 0.003 1.959 0.050

0.013 0.003 3.874 <0.001

0.001 0.002 0.344 0.731

-0.016 0.007 -2.401 0.016

0.005 0.007 0.794 0.427

-0.027 0.007 -4.008 <0.001

0.005 0.007 0.818 0.414

-0.006 0.007 -0.871 0.384

0.010 0.007 1.487 0.137
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Supplementary figure 14 - Raw RTs from post-hoc conditions of Experiment 3 (between condition)

Raw response times in the priming conditions (Cross-modal solid lines, Uni-modal: dashed-dotted) and matching

condition (Matching on the left, Mismatching on the right), as a function of SUBTLEX frequency (top, dark green) and

Greene frequency (bottom, light green) in Replication experiment. Points show concepts with different level of

frequency, averaged across participants; lines represent linear fitting of points and shaded areas represent 95 %

confidence interval
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Supplementary figure 15 - RTs estimated from post-hoc of interaction effects of Experiment 3 (between

conditions)

Response times as a function of logarithmic SUBTLEX frequency (top plots, dark green) and Greene frequency (bottom

plots, light green) in the 3-way significant interaction with Matching condition and Priming condition (Cross-modal

matching vs Uni-modal matching; Cross-modal mismatching vs Uni-modal mismatching; Cross-modal matching vs

Cross-modal mismatching). RTs were estimated based on the selected model. Points present participant-based mean

response times for concepts in the different frequency levels. Lines represent linear fitting of points (solid: cross-modal;

dashed: uni-modal), and shaded areas represent 95 % confidence interval. Bottom left and top-left plots represent the

effects in prime-target matching condition, while bottom-right and top-right plots represent the effects in prime-target

mismatching condition
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4 post-hoc models are additionally computed, one for every level of the re-coded factor (Cross-

modal Matching, Uni-modal Matching, Cross-modal Mismatching, Uni-modal Mismatching)

Rep_logRT ~ SUBTLEX WF * Target modality + Greene OF * Target modality +

Concept familiarity (replication) + Image typicality (replication) +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

Supplementary table 18. Results from the post-hoc individual models for conditions of interest in the Replication

experiment.

Uni-modal Matching Cross-modal Matching

Predictors β SE t p β SE t p

(Intercept)                                                     6.304         0.022 289.192 <0.001 6.3400.027 237.811 <0.001

SUBTLEX WF -0.011 0.003 -3.470 0.001 -0.013 0.006 -2.253 0.024

Target modality (Words – Objects) 0.016 0.004 3.748 <0.001 -0.036 0.005 -7.115 <0.001

Greene OF

Visuo-orthographic PC

0.001 0.003 0.398

0.002 0.003 0.818

0.691 0.010

0.413 0.009

0.005 1.873 0.061

0.006 1.613 0.107

Concept familiarity

Image typicality

-0.000 0.003 -0.010

-0.001 0.003 -0.463

0.992 -0.004 0.006 -0.754 0.451

0.643 -0.026 0.005 -5.426 <0.001

Image visual PC1

Image visual PC2

0.001 0.002 0.422

0.006 0.002 2.379

0.673 0.001

0.017 0.002

0.004 0.274 0.784

0.004 0.499 0.618

Image visual PC3 0.003 0.003 1.191 0.234 -0.000 0.005 -0.005 0.996

Target repetition -0.026 0.002 -12.208 <0.001 -0.051 0.003 -20.200 <0.001

Trial accuracy (Correct – Incorrect) 0.019 0.011 1.781 0.075 -0.012 0.012 -1.051 0.293

SUBTLEX x (Words – Objects) -0.011 0.004 -2.516 0.012 -0.027 0.005 -5.433 <0.001

Greene x (Words – Objects) 0.000 0.004 0.018 0.985 0.006 0.005 1.141 0.254

Uni-modal Mismatching Cross-modal Mismatching

Predictors β SE t p β SE t p

(Intercept)                                                        6.369      0.023 276.110      <0.001     6.367      0.027 233.415      <0.001

SUBTLEX WF                                                 -0.003 0.003       -1.204       0.229       -0.004 0.003       -1.234       0.217

Target modality (Words – Objects)                 0.001     0.004      0.337        0.736      -0.010 0.005       -2.018       0.044

Greene OF                                                        -0.002 0.003       -0.699       0.484      0.003     0.003      1.044        0.297

Visuo-orthographic PC                                    0.002     0.003      0.565        0.572      0.006     0.003      2.018        0.044
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Concept familiarity                                          0.002     0.003      0.692        0.489       -0.000 0.003       -0.094       0.925

Image typicality                                                -0.000 0.002       -0.205       0.838       -0.007 0.003       -2.695       0.007

Image visual PC1                                             0.004     0.002      1.896        0.058       -0.003 0.002       -1.071       0.284

Image visual PC2                                             0.003     0.002      1.489        0.137      0.001     0.002      0.221        0.825

Target repetition                                               -0.028 0.002      -13.127       <0.001 -0.040 0.002       -16.764     <0.001

Image visual PC3                                             -0.001 0.002       -0.538       0.591      0.002     0.002      0.733        0.464

Trial accuracy (Correct – Incorrect)                0.048     0.017      2.920        0.004      0.065     0.015      4.251      <0.001

SUBTLEX x (Words – Objects)

Greene x (Words – Objects)

-0.006 0.004

0.001 0.004

-1.340 0.180

0.314 0.754

-0.000 0.005

-0.004 0.005

-0.072 0.943

-0.796 0.426

Supplementary figure 16 – RTs estimated from post-hoc models of Experiment 3 (within conditions)

Effects of SUBTLEX WF (dark green, top) and Greene OF (light green, bottom) on reaction times estimated from the

post-hoc models separately for each Priming condition (continuous and dashed-dotted line types) and Matching

condition (left and right plots) in the Replication experiment. Points show concepts with different level of frequency,

averaged across participants; lines represent linear fitting of points and shaded areas represent 95 % confidence interval.
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Supplementary table 19. Results from the post-hoc individual models for conditions of interest in Experiment 3.

Cross-modal Matching Words Cross-modal Matching Object

Predictors

(Intercept)

SUBTLEX WF

Greene OF

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

β           SE

6.341       0.027

-0.027 0.007

0.015 0.006

0.008 0.007

-0.008 0.007

-0.024 0.006

-0.001 0.005

0.000 0.005

0.004 0.006

t

239.179

-3.699

2.307

1.221

-1.165

-4.039

-0.195

0.082

0.726

p β

<0.001      6.345

<0.001 0.000

0.021 0.005

0.222 0.010

0.244 -0.000

<0.001 -0.028

0.846 0.003

0.935 0.004

0.468 -0.004

SE t p

0.029     215.770       <0.001

0.007 0.042 0.966

0.006 0.802 0.422

0.006 1.528 0.126

0.006 -0.074 0.941

0.005 -5.162 <0.001

0.005 0.669 0.503

0.005 0.734 0.463

0.005 -0.751 0.453

Targer repetition

Trial accuracy

-0.051 0.007

-0.017 0.016

-7.415 <0.001 -0.055

-1.001 0.317 -0.018

0.007 -8.106 <0.001

0.017 -1.065 0.287

Supplementary figure 17 – RTs estimated from post-hoc models of Experiment 3 (within modalities)

Effects of SUBTLEX WF (left) on reaction times estimated from the post-hoc models for Cross-modal matching

trials of words (blue) and Cross-modal matching trials of objects (red) in the Replication experiment. Points show

concepts with different level of frequency, averaged across participants; lines represent linear fitting of points and

shaded areas represent 95 % confidence interval.
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Supplementary Materials 14 – Effect of dlexDB on Experiment 1

Exp1_logRT ~ dlexDB WF * Concept modality +

Concept category + Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition +

Trial accuracy + (1|Participants) + (1/Concepts)

Supplementary table 20. Results from main model of Exp 1 including dlexDB instead of SUBTLEX

Predictors
(Intercept)

Target modality (Words – Objects)

dlexDB WF

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy (Correct – Incorrect)

Concept category (Natural – Man-made)

dlexDB x (Words – Objects)

β SE
6.480          0.021

0.094          0.005

-0.021 0.008

-0.000           0.008

-0.004          0.003

-0.005          0.003

-0.002         0.006

0.020          0.006

0.009          0.006

-0.011 0.002

-0.018           0.009

0.001 0.013

-0.020 0.005

t p
301.419           <0.001

20.523            <0.001

-2.801               0.005

-0.050               0.960

-1.263               0.206

-1.416               0.157

-0.261               0.794

3.272               0.001

1.481                0.139

-4.926             <0.001

-2.032               0.042

0.074               0.941

-4.394 <0.001

Results from 2 post-hoc models one for each stimulus modality

Exp1_logRT ~ dlexDB WF +

Concept category + Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition +

Trial accuracy + (1|Participants) + (1/Concepts)

Supplementary table 21. Results from post-hoc models of Exp 1 including dlexDB instead of SUBTLEX

Objects trials Word trials
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Predictors β SE t p β SE t p
(Intercept)                                                                6.450 0.022       289.121 <0.001       6.520 0.025        265.635 <0.001

dlexDB WF                                                              -0.012 0.009      -1.289      0.197       -0.031 0.008       -4.081 <0.001

Concept category (Natural – Man-made)

Visuo-orthographic PC1

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Trial accuracy (Correct – Incorrect)

0.009 0.016

-0.000 0.010

-0.001 0.005

-0.009 0.004

-0.004 0.007

0.026 0.007

0.005 0.008

0.009 0.021

-0.059 0.013

0.601       0.548

-0.018      0.986

-0.277      0.782

-2.054      0.040

-0.597      0.551

3.524     <0.001

0.665       0.506

0.428       0.668

-4.403 <0.001

-0.009 0.013      -0.664      0.506

-0.001 0.008      -0.090      0.928

-0.007 0.004      -1.480      0.139

-0.002 0.004      -0.462      0.644

0.001 0.006       0.179       0.858

0.013 0.006      2.172       0.030

0.014 0.006       2.192       0.028

-0.030 0.024      -1.290      0.197

0.004 0.011 0.398 0.690

Supplementary Materials 15 – Conceptual Distinctiveness in Experiment 1

Exp1_logRT ~ SUBTLEX WF * Concept modality +

Concept category + Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Conceptual Distinctiveness +

Trial accuracy + (1|Participants) + (1/Concepts)

Supplementary table 22. Results of Experiment 1 including CD as covariate

Predictors

(Intercept)

Concept modality (Words – Objects)

SUBTLEX WF

Visuo-orthographic PC

Concept familiarity

Image typicality

Image visual PC1

Image visual PC2

Image visual PC3

Target repetition

Conceptual Distinctiveness (CD)

β SE

6.479          0.021

0.094 0.005

-0.032 0.008

-0.006 0.007

-0.003 0.003

-0.004 0.003

-0.002 0.006

0.019 0.006

0.008 0.006

-0.011 0.002

0.002 0.007

t p

302.570           <0.001

20.529 <0.001

-4.150 <0.001

-0.805 0.421

-0.980 0.327

-1.279 0.201

-0.263 0.792

3.259 0.001

1.295 0.195

-4.932 <0.001

0.295 0.768
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Trial accuracy (Correct – Incorrect)

Concept category (Natural – Man-made)

SUBTLEX WF x (Words – Objects)

-0.017 0.009 -1.940 0.052

0.003 0.013 0.206 0.837

-0.019 0.005 -4.160 <0.001
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Supplementary Materials 16 – Effect of ADE20K on Experiment 2

Exp2_logRT ~ SUBTLEX WF * Recoded factor * Target modality +

ADE20K OF * Recoded factor * Target modality +

Concept familiarity + Image typicality +

Image visual PC1 + Image visual PC2 + Image visual PC3 +

Visuo-orthographic PC + Target repetition + Trial accuracy +

(1|Participants) + (1/Concepts)

Supplementary table 23. Results from main model of Exp 2 including ADE20K instead of Greene
Predictors β SE t p
(Intercept) 6.225 0.020 315.721 <0.001

SUBTLEX WF                                                                                                                        -0.005 0.002 -2.420 0.016

Cross-modal matching – Uni-modal matching

Cross-modal mismatching – Uni-modal mismatching

0.005 0.006

0.008 0.006

0.829 0.407

1.380 0.168

Cross-modal matching – Cross-modal mismatching

Target modality (Words – Objects)

-0.075 0.003 -23.729 <0.001

-0.008 0.002 -3.612 <0.001

ADE20K OF

Visuo-orthographic PC

0.008 0.002

0.010 0.002

4.391 <0.001

5.256 <0.001

Concept familiarity

Image typicality

-0.001 0.002 -0.739 0.460

-0.004 0.002 -2.638 0.008

Image visual PC1

Image visual PC2

0.002 0.002 1.085 0.278

0.005 0.002 3.463 0.001

Image visual PC3 -0.002 0.002 -1.134 0.257

Target repetition -0.036 0.003 -13.329 <0.001

Trial accuracy (Correct – Incorrect) 0.029 0.005 5.393 <0.001

SUBTLEX x (Cross-modal matching – Uni-modal matching)                                               -0.027 0.004 -7.622 <0.001

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching)                                   -0.006 0.004 -1.568 0.117

SUBTLEX x (Cross-modal matching – Cross-modal mismatching)                                      -0.035 0.004 -9.901 <0.001

SUBTLEX x Target modality

Target modality x (Cross-modal matching – Uni-modal matching)

-0.007 0.003 -2.651 0.008

-0.010 0.006 -1.657 0.098

Target modality x (Cross-modal mismatching – Uni-modal mismatching)                            0.036 0.006 5.720 <0.001

Target modality x (Cross-modal matching – Cross-modal mismatching)                              -0.015 0.006 -2.322 0.020

ADE20K x (Cross-modal matching – Uni-modal matching)                                                  0.018 0.004 5.167 <0.001
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ADE20K x (Cross-modal mismatching – Uni-modal mismatching)
ADE20K x (Cross-modal matching – Cross-modal mismatching)

ADE20K x Target modality

SUBTLEX x (Cross-modal matching – Uni-modal matching) x Target modality

SUBTLEX x (Cross-modal mismatching – Uni-modal mismatching) x Target modality

SUBTLEX x (Cross-modal matching – Cross-modal mismatching) x Target modality

ADE20K x (Cross-modal matching – Uni-modal matching) x Target modality ADE20K

x (Cross-modal mismatching – Uni-modal mismatching) x Target modality

ADE20K x (Cross-modal matching – Cross-modal mismatching) x Target modality

-0.002 0.004 -0.617         0.537
0.028 0.004 7.731         <0.001

0.004 0.003 1.726 0.084

-0.005 0.007 -0.743 0.457

0.005 0.007 0.762 0.446

-0.003 0.007 -0.448 0.654

0.014 0.007 1.937 0.053

0.004 0.007 0.588 0.557

0.003 0.007 0.441 0.660
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1 Abstract

2

3 The arrangement of objects in scenes follows certain rules (“Scene Grammar”), which we exploit to

4 perceive and interact efficiently with our environment. We have proposed that Scene Grammar is

5 hierarchically organized: scenes are divided into clusters of objects (“phrases”, e.g., the sink phrase);

6 within every phrase, one object (“anchor”, e.g., the sink) holds strong predictions about identity and

7 position of other objects (“local objects”, e.g., a toothbrush). To investigate if this hierarchy is

8 reflected in the mental representations of objects, we collected pairwise similarity judgments for

9 everyday object pictures and for the corresponding words. Similarity judgments were stronger not

10 only for object pairs appearing in the same scene, but also object pairs appearing within the same

11 phrase of the same scene as opposed to appearing in different phrases of the same scene. Besides,

12 object pairs with the same status in the scenes (i.e., being both anchors or both local objects) were

13 judged as more similar than pairs of different status. Comparing effects between pictures and

14 words, we found similar, significant impact of scene hierarchy on the organization of mental

15 representation of objects, independent of stimulus modality. We conclude that the hierarchical

16 structure of visual environment is incorporated into abstract, domain general mental

17 representations of the world.

18

19 Keywords: scene hierarchy, scene grammar, phrasal structure, object similarity, stimulus modality

20

21

22

23
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24

25 Introduction

26

27 Objects in our environment are not arranged randomly but usually appear in certain contexts

28 (“semantic rules”) and in certain positions (“syntactic rules”), according to physical laws and typical

29 use [1]. We refer to this set of rules of objects in scenes as “Scene Grammar” (for a recent review

30 see [2]), in analogy with the linguistic grammar that governs words in sentences. It has been shown

31 that Scene Grammar is exploited by our cognitive system to efficiently represent objects during

32 visual perception and to guide allocation of attention during scene perception [3, 4] supporting

33 complex behaviors like object recognition [5], search [6], and object interaction [7].

34 More recently, it has been proposed that Scene Grammar could be structured according to

35 a hierarchy [8]: a scene on the top level is divided into meaningful clusters of spatially related

36 objects, which we refer to as “phrases”; in every phrase, one object holds a special status (“anchor

37 object”), with strong predictions regarding both the identity and position of the other objects within

38 the cluster (“local objects”; Fig. 1A). Anchor objects are proposed to be typical (i.e., frequently

39 present) of a scene, bigger in size and rather stationary (e.g., a sink), while local objects tend to be

40 smaller and more moveable (a toothbrush). The proposed role of this hierarchy entails that during

41 complex behavior within a scene, like object search or interaction, we first and foremost process

42 objects based on their phrasal membership within a scene.

43 So far, mostly the top “scene level” as organizing structure of objects has been investigated.

44 It is believed that priors regarding object-to-object and object-to-scene relationships are activated

45 after a quick extraction of a scene’s “gist” [9, 10]. As a result, typically studies have manipulated the

46 consistency between an object and its background scene (e.g., a priest in a church vs. a football

47 court [11]), and have tried to identify which ingredients of a scene are sufficient to retrieve this
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48 contextual knowledge (e.g., color and texture [12]; orientation [13]; materials [14]; layout,[15]; for

49 a review [16]).

50 The ”phrase level” has hardly received any attention thus far, but there have been attempts

51 to disentangle what the role of pairs and groups of objects is in supporting object identification. For

52 instance, co-occurrence (a pot and a stove) and spatial dependency (a pot on top of a stove)

53 between objects have been also found to be relevant for object processing during visual search [17,

54 18] and object recognition [19, 20], even beyond the effect of background scene information [21].

55 Indeed, the complex network of object-to-object relationships seems to be retrieved even when

56 objects are seen in isolation on a neutral background, as shown by the correlation between fMRI

57 patterns evoked by single object pictures and a computational model that uses distributional

58 statistics of objects in scenes [22]. Besides, typical semantic and spatial arrangements of multiple

59 objects are processed in a more efficient way both at behavioral and neural level [23, 24] supposedly

60 due to a grouping mechanism that allows to reduce the complexity of visual input. This grouping

61 based on meaning and spatial relationship might also be supportive of extraction of action

62 affordances, which seems to play an important role in scene understanding [25] and might be the

63 organizing principle behind the phrasal structure in man-made scenes [2].

64 Finally, for what concerns the “object type level”, first empirical results supporting the

65 prominent role of anchor objects in structuring a scene came from a study where participants were

66 asked to arrange objects in a virtual environment according to their scene grammar (creating a

67 typical arrangement of objects in scenes [7]): Anchor objects were preferentially used during initial

68 stages of object arrangements underlining their role as primary building blocks of a scene. The

69 important role of anchor objects in visual search has been further corroborated by a series of eye-

70 tracking experiments where the absence of anchor objects (e.g., the toilet being replaced by a

71 washing machine) resulted in less efficient search performance as seen in faster RTs and reduced
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72 gaze coverage of the scene [26]. These results were then replicated in more ecologically valid and

73 immersive setting provided by virtual reality (VR [27]). Participants had to search for target local

74 objects within virtual environments that either displayed anchor objects or anchors replaced by gray

75 cuboids in the same position. The presence of anchors had strong beneficial effects on search

76 behavior as seen in more efficient gaze and body movements.

77

78 Fig. 1 – A) Schema of the hierarchical structure of objects in scenes tested in the study: a scene is divided into clusters 79

(phrases) and each phrase is formed by one anchor objects and several local objects (figure adapted from [8]); B) 80

Estimation of hierarchical measures using a priori assignment of objects to a scene, phrase and object type or using a 81

datasets of annotated and segmented images from which we can extract co-occurrence and clustering information 82

(image taken from the dataset [28] and visualized through LabelMe [29]); C) Example of a trial from Experiment 1 and 83

Experiment 2 showing a triplet of objects (pictures or words), as well as the way we measured behavioural similarity 84

from the response in the trial: pairs including the selected “odd-one” object have minimal similarity while the pair 85

including the unselected objects have maximal similarity. Object images are taken from [30] and are not the one used 86

in the real experiment.

87
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88 The goal of the current study was to investigate whether the contextual knowledge

89 associated with mental representations of object is organized according to a hierarchy, where the

90 levels of scene, phrase, and object type (anchor vs. local) can be distinguished. Moreover, we

91 wanted to assess whether the organization of object representations is modality-specific or

92 independent of specific modalities (e.g., verbal and non-verbal stimuli [31]).

93 To achieve these goals, we organized a set of everyday objects according to the above-

94 mentioned hierarchical structure in two ways (Fig. 1B): one based on common-sense and intuition

95 (a priori hierarchy model), and the other one based on the distribution of objects in a real-world

96 image dataset [28] (data-driven hierarchy model), both organizing objects on three levels: scene,

97 phrases and object types. Then, we collected pairwise similarity ratings for the set of objects,

98 adapting an “odd-one-out” triplet task (Fig. 1C) previously used to study perceptual and conceptual

99 dimensions underlying mental representation of objects [32]. Finally, we compared the odd-one-

100 out ratings to the hierarchy models using Representational Similarity Analysis (RSA [33]), which

101 allows to estimate if the representational space underlying behavioural responses is structured

102 according to the levels of our proposed hierarchical organization, representing pairwise similarity of

103 both behaviour and hierarchical models in terms of Representational (Dis)similarity Matrices (RDMs;

104 see Fig. 2 for the organization of individual objects in the RDMs, and Fig. 3 for RDMs of each

105 hierarchical predictor). To estimate the simultaneous impact of different levels of the hierarchy and

106 different types of hierarchy, we combined RSA with Generalized Linear Mixed-effects Models

107 (GLMMs [34]).

108

109 Fig. 2 – One half of a symmetric Representational Dissimilarity Matrix (RDM) showing the organization of individual

110 object pairs based on the a priori hierarchical organization. Gray and black portions of the triangle represent pairs of

111 objects assigned to the same scene category, while black portions represent pairs of objects assigned to the same phrase

112 within the scene. Scene category labels and composition of the phrases are also reported, the letter (A) indicates an 113

anchor object, the letter (L) indicates local objects. The remaining white portion of the triangle represents pairs of
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114 objects that are assigned to different scenes. This order of objects is maintained in the RDMs and used to represent

115 different levels of the hierarchical models (see Fig. 3).

116

117

118

119

120
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129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147 Fig. 3 – Representational (Dis)similarity Matrices (RDMs) for the a priori hierarchical predictors (A, B and C) and for the

148 data-driven hierarchical predictors (D, E and F). RDMs are symmetric matrices where entries on rows and columns are

149 the objects stimuli, and cells represent pairwise similarity along a specific dimension. In A, B and C, yellow represents

150 pairs of objects that are assigned to the same scene, phrase or type (maximal similarity), while blue represents pairs 151

that are assigned to different scenes, phrases or types (minimal similarity). In D, the log10(counts +1) of co-occurrence
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152 in scene is normalized to span between 0 (blue, few counts) to 1 (yellow, many counts). In E and F, the colors represent

153 proportion of counts to the total co-occurrence counts of each pair.

154

155

156

157 Results

158

159 Ratings divided by modality were plotted in the RDM format (Fig. 4), where every cell represents

160 the pairwise similarity ratings for a given pair averaged across all the triplets where the pair is

161 present. The GLMM resulted to be singular, due to the random factor term (1 | ᵅ�ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵆ�ᵆ�)

162 explaining no variance, since this was already explained by the other two random factors

163 (1 | ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�) and (1 | ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵆ� ᵅ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ�), that identify unique observations.

164
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165 Fig. 4 – Representational (Dis)similarity Matrices (RDMs) for the ratings collected in Exp 1 (object pictures, A) and Exp 2

166 (words, B). Cells represent pairwise similarity ratings averaged across all the triplets where the pair was present. Every

167 pair was presented in a triplet with all the other remaining objects (“context object”), and it was judged either as similar

168 (1) or dissimilar (0), so that In the RDMs pairwise similarity spans from 0 (never judged as similar) to 1 (always judged 169

as similar).

170
171

172

173

174 To evaluate potential multicollinearity in the model, we computed the variance inflation factors

175 (VIFs) for each term in the model, using the check_collinearity function in R (package “performance”

176 [35]). Typically, when VIFs are below 5, there is low correlations between predictors and the model

177 does not need any adjustment, as it was in our case (VIFs and correlations among predictors are

178 shown in detail in Supplementary Materials 1).

179 Results from the GLMM (Fig. 5) showed a main effect of stimulus modality (β=-0.107, SE=0.031,

180 z=-3.448, p=0.001), with objects pictures estimated to be more similar to each other than object

181 words. The a priori hierarchical structure was reflected in participants’ similarity ratings, with

182 significant main effects of scene condition (β=1.078, SE=0.075, z=14.474, p<0.001), phrase condition
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183 (β=0.270, SE=0.128, z=2.111, p=0.035), and object type condition (β=0.245, SE=0.048, z=5.106,

184 p<0.001), showing that objects belonging to the same scene / phrase / object type were considered

185 more similar than objects belonging to different scenes / phrase / object types. At the same time,

186 we also found main effects of the data-driven hierarchy predictors measuring co-occurrence in

187 scene (β=0.397, SE=0.029, z=13.922, p<0.001) and co-occurrence in phrase (β=0.063, SE=0.028, z=-

188 2.229, p=0.022), where in both cases the more two objects co-occurred, the more they were judged

189 to be similar. However, the anchored co-occurrence between two objects was not significantly

190 reflected in pairwise similarity ratings (β=0.005, SE=0.028, z=0.165, p=0.869). Overall, these results

191 already show a hierarchical organization of mental representations not only on the scene level, but

192 also at the phrasal and object type level.

193 Regarding the covariate measures (see Supplementary Materials 2), we found main effects of the

194 early layer of AlexNet DNN (β=-0.133, SE=0.025, z=-5.317, p<0.001), with pairs that looked more

195 similar in terms of low-level visual features being considered less similar at behavioural level, while

196 the main effect of late layer of AlexNet (β=0.126, SE=0.031, z=4.078, p<0.001) showed that object

197 pairs that looked more similar in terms of high-level visual features were also estimated to be more

198 similar by our participants. Finally, we detected a main effect of word embeddings (β=0.338,

199 SE=0.025, z=13.363, p<0.001), with object pairs that have stronger similarity in terms of

200 distributional semantics features being considered more similar. These results show that distinction

201 emerging from both complex visual features (AlexNet late layer) and word meaning (Word

202 embeddings) are important factor in determining the mental representation supporting behaviour,

203 while contrary to that, similarity based on low-level visual features (AlexNet early layer) acts as a

204 confound making more similar objects less distinguishable.

205

206        Fig. 5 – Model-estimated effects of the hierarchy predictors on pairwise similarity ratings for object pictures and words.

207        Colours of violins and points reflect the values of pairs for the given predictor and match the ones in the RDMs showed
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208 above. Stimulus modality is indicated by x-axis position (left = objects, right = words). Points and violins reflect estimated

209 similarity for each pair of objects averaged across all the different contexts (i.e., the third object a triplet) in which they

210 were presented. 95 % confidence interval are represented by error bars in the violins (point is the mean), and by the 211

shaded area around lines for continuous predictors.

212

213

214

215 In terms of interaction between stimulus modality and our predictors, the model showed a

216 significant effect in scene condition (a priori predictor, β=-0.280, SE=0.050, z=-5.601, p<0.001), and

217 in co-occurrence in scene (data-driven predictor, β=-0.124, SE=0.019, z=-6.361, p<0.001), where in

218 both cases the effect of the hierarchical predictor was found to be stronger in ratings of object

219 pictures than ratings of words. Object ratings had also stronger effect of the late layer of AlexNet

220 than word ratings (β=-0.112, SE=0.022, z=-5.157, p<0.001), while word ratings had a stronger effect

221 of word length than object ratings (β=0.082, SE=0.028, z=2.977, p=0.003; for more details, see

222 Supplementary Materials 2). This is expected since both predictors are estimated based on their

223 preferential stimulus modalities (AlexNet activation with object pictures; Word length with words),
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224 and signifies that these dimensions are more strongly related to modality specific representations

225 compared to the hierarchical predictors.

226 For more details regarding how object size, manipulability and moveability interact with

227 different object types (anchor and local objects) see Supplementary Materials 3 and 4.

228

229 Discussion

230

231 Objects in visual scenes are arranged in a structured way. These structural regularities are

232 learnt and stored in long-term memory (“scene grammar”) to make meaningful predictions and

233 efficiently perceive and interact with the environment [2]. In this study, we wanted to explore

234 whether scene grammar is organized in a hierarchical way. We hypothesized that at the top of the

235 hierarchy, objects are grouped together according to whether they appear in the same context

236 (scene level), followed by objects that spatially cluster within that context (phrase level), which

237 again consist of anchor objects that hold strong predictions about identity and position of other

238 local objects within a cluster [8]. Moreover, we wanted to understand if this organization emerges

239 differently in one modality than the other (e.g., object pictures vs. written words). For this purpose,

240 we adopted the odd-one-out task as introduced by Hebart and colleagues [32], a method that has

241 been used to study perceptual and conceptual dimensions underlying mental representation of

242 objects.

243 We have shown that when participants are asked to judge the similarity between pairs of

244 objects, the underlying mental representations seem to be organized according to our proposed

245 hierarchy. That is, pairs of objects that were assigned a priori to the same scene, to the same phrase,

246 or to the same object type, were judged as more similar than pairs of different scenes, phrases and

247 types. This finding largely held up even when the hierarchy was estimated from statistical
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248 distributions of objects in real-world images [28]. Besides, we showed that these results were overall

249 consistent and stable across modalities, with only the scene level predictors showing an even

250 stronger effect for object pictures than words. Finally, we highlighted how the a priori division of

251 objects between anchors and local objects is strongly based on object size and moveability, as

252 previously proposed and showed [26].

253 To our knowledge, this is the first attempt to explore whether the hierarchical organization

254 of objects in scenes is incorporated into our mental representations. Previous research either

255 focused on effects of scene context on object processing (e.g., [2]; for a review see [16]) or on the

256 relationship between anchors and related local objects (e.g., [26, 27]). Here, we aimed at bridging

257 the gap between these two levels considering the role of meaningful clusters of objects (“phrase”

258 level) as an intermediate structure within the hierarchy.

259 Employing two different sources of estimation of the hierarchy allowed us to draw some

260 interesting conclusions. The weak correlations between a priori and data-driven hierarchy

261 predictors and the absence of multicollinearity (see Supplementary Materials 1) show that, despite

262 the same direction of the effects, the two models of hierarchy are only partly overlapping. We can

263 only speculate about the reasons of these differences, which also might also speak to the limitations

264 of both types of hierarchy estimations: on the one hand, previous research has shown that

265 subjective experience of how frequently objects in the world occur is overestimated [36], which

266 might have resulted in differences between a priori estimations and measures taken from the

267 distribution of objects in labeled image databases; on the other hand, it is important to note that

268 any given dataset of annotated images only represents a rough (and often biased) approximation of

269 the real-world distribution of objects. Compared to word frequency measures based on corpora of

270 at least 20 million words [37], fully annotated image datasets are much smaller in size (in our case,

271 circa 45,000 annotations). The two hierarchical organizations (a priori vs. data-driven) might also
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272 reflect object processing in two different ways: for instance, the a priori hierarchy is based on

273 discrete, dichotomic divisions of objects dependent on whether they appear in the same context or

274 not, and therefore might be used when a task requires the processing of rough contextual

275 information; on the other hand, the continuous co-occurrence measures from the data-driven

276 approach might offer a more fine-grained representation of object-to-object contextual information

277 when necessary. Using distributional properties of objects in scenes as calculated from annotated

278 datasets (similar to research on language) is becoming increasingly popular and provides interesting

279 insights on learning statistical regularities in both vision an in language [22, 38), offering an

280 alternative to traditionally employed categorical divisions based on experimenters’ intuition or

281 crowd-sourced ratings.

282 The measures that can be extracted from this type of datasets can offer even more fine-

283 grained information than what we highlighted here: for example Boettcher et al. [26] measured that

284 the relationship between anchor and local objects has strong regularities on the vertical axis, that

285 is, it is possible to predict the position of a certain local object from a certain anchor object in terms

286 of “is above” or “is below”, but as much on the horizontal axis (“is left of” or “is right of”), similar to

287 linguistic grammar where in most languages the components of a phrase (e.g., subject and object)

288 have predictable positions with respect to each other. This seems to match the intuition that the

289 structure of a room is much more vertically organized: objects typically found on the lower part of

290 a room tend to differ from objects typically found in the top part of the room (e.g., shoes usually

291 are found on the floor, while paintings are hanging up on the wall) , while on the horizontal axis

292 there is much more variability (e.g., the towels can be found either left or right of the shower. This

293 vertical organization of the environment seems to indeed also be reflected in the neural

294 representation of scenes [39].
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295 The significant results of both types of hierarchy predictors suggest that, despite some of

296 their limitations, these are capturing aspects of the visual world that seem to be incorporated in our

297 mental representations of objects. This is particularly interesting as these layered representations

298 seem to be triggered by simply viewing isolated objects or words. It is important to point out that –

299 similar to Hebart and colleagues [32] - no explicit definition of similarity or specific instructions on

300 how to judge the (dis)similarity of the three presented objects/words were given to the participants

301 when performing the “odd-one-out” triplet task. The aim was to collect similarity judgements that

302 are not biased towards specific dimensions while allowing different dimensions to emerge in

303 different contexts. For example, “cat” and “elephant”might be similar in a triplet with “table”, based

304 on animacy, but “cat” and “elephant” might be dissimilar in a triplet containing “dog”, where the

305 similarity might be based on whether the animals are pets or not. However, it has been shown that

306 - using the same triplet task with different similarity instructions - it is possible to measure the

307 flexibility of mental representations in highlighting one dimension more than others according to

308 task demands [40]. We believe this could also apply to the hierarchical organization of objects in

309 scenes, whose strength in shaping mental representation might be increased by tasks that require

310 interactions with objects (e.g., judging similarity based on function) and reduced by tasks that rely

311 less on object-to-object contextual relations (e.g., judging similarity based on visual features).

312 Future investigations directly comparing different “odd-one-out” triplet task might shed more light

313 on these aspects.

314 A question that remains open is whether this hierarchical organization is present in every

315 type of scenes. In the present study, we have employed only an organization that relates to indoor

316 man-made environments, because we believe that here the hierarchical structure is optimized to

317 efficiently perform everyday actions like brushing teeth or cooking. Outdoor scenes in general, and

318 natural scenes in particular, might show less of a hierarchical structure. First of all, in the way they
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319 are experimentally investigated, they have much bigger scale than indoor environments. This has

320 consequences on navigational and action patterns, which differs from the ones of smaller scale

321 indoor scenes. Second, natural scenes, in which man-made objects are rare or even absent, lack

322 object arrangements that reflect the need for efficient human-object interaction. That said, nature

323 of course has its own “grammar” as well (e.g., the way that rivers flow or rocks fall into place), and

324 it might be worth investigating the hierarchical structure of natural scenes and how these might be

325 mirrored in mental representations.

326 While we did not measure brain responses in this study, it is still worth discussing how such

327 hierarchical organization could be implemented in the brain. For instance, the hierarchical

328 organization of objects in scenes might be represented in the parahippocampal cortex (PHC), in the

329 anterior part of the ventral-temporal cortex. Within the PHC lies the parahippocampal place area

330 (PPA), a scene-selective region which shows stronger activation for scene stimuli rather than single

331 objects [41]. Subsequent investigations have suggested that PPA/PHC might represent spatial and

332 non-spatial context in a more general way [9, 42], and not just based on visual scenes. This is in line

333 with recent findings that viewing single isolated objects evoked a complex representation of objects’

334 co-occurrence in the anterior portion of PPA [22]. Here also lies the perirhinal cortex, which has

335 been proposed to represent semantic information for individual objects [43], and is the medial

336 portion of the Anterior Temporal Lobe (ATL), which has been proposed to be the primary hub of the

337 semantic network [44].

338 Finally, our results - according to which hierarchical predictors show significant main effects

339 and minor differences between modalities - suggest that scene grammar might act on domain-

340 general representations. That is, the hierarchical structure of our visual world might be incorporated

341 into semantic memory representations of objects which are accessed when an object’s meaning is

342 retrieved from processing input from different modalities, here either pictures or words. Some
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343 visual and hierarchical features are not completely independent, but we took great care to not have

344 extreme levels of multicollinearity invalidate the interpretation of our results (see Supplementary

345 Materials for correlation plots and VIF estimates). We therefore want to propose that a scene’s

346 hierarchical structure is incorporated into the abstract semantic representations of both objects and

347 words that can be used to flexibly form predictions when encountering new visual environments or

348 written text. We believe that with this paper we were able to demonstrate that using several visual

349 and linguistic covariates, as well as measuring effects on both object pictures and words, we can

350 now provide some first evidence that the hierarchical predictors are 1) independent of the visual

351 and linguistic dimensions measured here and 2) are independent of the specific modality of stimulus

352 presentation.

353 To conclude, in the current study we provided first evidence that abstract mental

354 representations of objects in scenes might be hierarchically organized, incorporating not only scene

355 semantic information at the highest level, but also a more fine-grained, mid-level phrasal structure,

356 as well as distinctions of object types. We therefore believe that these phrasal substructures of

357 scenes play an important role in the organization of our mental representations of the world and

358 therefore should be considered when studying visual cognition.

359

360

361 Materials and Methods

362

363 Participants

364 Eighty-six participants took part in our study. Half of them took part in Experiment 1 (age: M = 24.72

365 yrs, SD = 5.33 yrs, range = 18 – 40 yrs; gender: F = 31, M= 12), the other half took part in Experiment

366 2 (age: M = 22.60 yrs, SD = 5.18 yrs, range = 19 – 50 yrs, 1 person did not report age; gender: F = 28,
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367 M= 15). The number of participants in each experiment (N=43) was determined as the optimal ratio

368 between the total number of unique trials and an optimal number of trials to present to a single

369 participant. All participants reported that they had normal or corrected to normal vision and had no

370 history of psychiatric or neurological disorders. Participants of Experiment 2 also reported to be

371 German native speakers. Additionally, a third group of participants (N=20), who did not take part in

372 either Experiment 1 and Experiment 2, participated in a rating experiment to judge some features

373 of objects (age: M = 22.9 yrs, SD = 4.00 yrs, range = 19 – 35 yrs; gender = 12 F, 7 M and 1 NB). These

374 participants matched the same criteria of participants in Experiment 1. No minors participated in

375 the study. All participants gave their informed consent and received course credits or monetary

376 reimbursement for their participation. The Ethics Committee of the Goethe University Frankfurt

377 approved all experimental procedures (approval # 2014-106), that have been performed in

378 accordance with the Declaration of Helsinki.

379

380 Stimuli

381 Forty-five everyday indoor object concepts were selected for the study (see section below for more

382 details). For Experiment 1, pictures of the objects in isolation were downloaded from copyright-free

383 internet databases (e.g., https://pnghunter.com/,              http://pngimg.com/,

384 https://www.cleanpng.com/), pasted on a white background, grey-scaled to rule out influence of

385 color, and resized to 392 x 392 pixels (jpg format). For Experiment 2, we used the German words

386 associated with the objects, presenting them in bold black Arial font, with the first letter in

387 uppercase and the other letters in lowercase, as by correct German spelling for nouns.

388

389

390
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391 Measures of scene hierarchy

392 To predict similarity judgments as a function of scene hierarchy, we estimated two sets of scene

393 hierarchy measures.

394 - A priori hierarchy measures: these measures were based on intuition of experimenters as

395 well as common sense; therefore, we selected our 45 stimuli as typically belonging to one of

396 5 different indoor scenes (bathroom, bedroom, kitchen, living room and home office). For

397 every scene, we divided objects in 3 phrases; within every phrase, 1 object was identified as

398 anchor object, and the other 2 as local objects (Figs. 1B and 2).

399 - Data-driven hierarchy measures: these measures were based on a dataset of real-world

400 scene images containing pixel-wise segmentation and annotation of objects [28]. The

401 dataset contained 3499 unique coloured images, grouped into 16 scene categories (both

402 indoor and outdoor, natural and man-made, and including the 5 categories considered in the

403 a priori assignment), with more than 48,000 annotations grouped into 617 different object

404 categories (including the 45 objects selected for the study). Annotations were done by 4

405 different workers using the LabelMe tool [29] and were carefully cleaned of misspelling and

406 synonyms (Fig. 1B).

407 Following the procedure used in Boettcher et al. [26], we first pre-processed the

408 annotation and segmentation data in MATLAB (MathWorks, 2018), extracting identity,

409 coordinates and centroids of each object in the 2D space of pixels of each image. Futher

410 analysis were carried on in R (version 3.6.3, R Core Team, 2020). Second, we discarded

411 objects that have a more structural function (e.g., walls, windows, ceiling, doors, pipes)

412 rather than being relevant for the object-to-object relationship we were interested in

413 investigating, leaving us with 567 unique object categories. Given the structure of the data,

414 we could compute how many times two objects co-occur in the same image, which is the
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415 data-driven counterpart of the scene level of the hierarchy. Then, representing the objects

416 in an image through their centroids and the image area as a 2D space, we ran a clustering

417 algorithm to find the optimal spatial grouping of objects in every scene: the algorithm was

418 based on the partitioning around medoids clustering method and estimated the number of

419 clusters using average silhouette width (pamk function from R package “fpc” [45]). We

420 identified the resulting clusters of objects as phrases, and within every cluster, we identified

421 the object with the largest area as anchor object, while the other objects in each cluster were

422 considered local objects.

423

424 Visual and linguistic covariates

425 Additionally, to ensure that effects of the scene hierarchy did not emerge from a confound of lower-

426 level information, we estimated several measures of visual features (for object pictures in

427 Experiment 1) and linguistic features (for words in Experiment 2):

428 - Visual measures (for pictures): we estimated visual features of our object images feeding

429 them to a pre-trained Deep Neural Network (DNN), a state-of-the-art computer vision

430 algorithm that is trained to perform object categorization at human-like level. In our case,

431 we used the popular AlexNet, trained on the ImageNet dataset [46]. AlexNet, like most

432 DNNs, is based on many sequential layers of processing units, which extract and transform

433 features from the previous layer. The first layer extracts features from the input layer, which

434 is formed by the pixel values of an image; then the information is transformed in an

435 increasingly complex way through the many intermediate layers until it reaches the final

436 output layer, which assigns the image to one category (e.g., “cat”). We estimated unit

437 activations for our object images in 3 different layers of AlexNet: convolutional layer 1

438 (conv1, “early layer”), which processes low-level visual features (e.g., edges, brightness);
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439 convolutional layer 4 (conv4, “mid layer”), which process mid-level visual features (e.g.,

440 shape); and the fully connected layer 7 (fc7, “late layer”), which processes high-level visual

441 features (complex configurations, like faces, handles, etc.).

442 - Orthographic measures (for words): we estimated orthography of our word stimuli using 2

443 measures: word length, as the number of letters in a word; orthographic distance from

444 neighboring words (i.e., words that differ for a letter from a target word), computed using

445 the OLD20 measure [47].

446 - Distributional semantic measures (for words): distributional semantic is a model of word

447 meaning based on the idea that words that appear in similar linguistic contexts (i.e., they

448 have a similar distribution in text) have similar meaning (for a review [48]). This approach

449 has been widely used in Natural Language Processing (NLP) to create algorithms that use

450 distributional measures from text corpora to build representations of word meaning and

451 perform operations on it. One common way of representing word meaning in NLP is through

452 Word embeddings which are multi-dimensional vectors. Words whose embeddings are

453 closer in this vector space have also similar meanings. For our set of word stimuli, we used

454 the embeddings trained on German Wikipedia using fastText and the skip-gram model with

455 default parameters [49].

456

457 Object features

458 To better understand what features underlying the division of objects between anchors and local

459 objects, we have collected ratings about three dimensions that have been discussed in connection

460 to the status of anchor and local objects: real-world size (how big an object is), moveability (how

461 easily an object is moved in space) and manipulability (how much the position of an object or of one

462 of its part or its configuration is changed during the interaction with it).

21



463

464 Apparatus and Procedure

465 Apparatus and procedure were mostly identical across Experiments 1 and 2. Where there were

466 differences, those are reported explicitly. For the study, we adapted an “odd-one-out” triplet task

467 introduced by Hebart and colleagues, which elegantly is used to collect pairwise similarity

468 judgments of object pictures [32]. First, we generated all the possible combinations of triplets of

469 stimuli (45! / (3! * (45 – 3)!) = 14190 unique triplets). We then divided the triplets randomly into 43

470 groups of 330 triplets, to have a practical number of trials and participants. Every participant,

471 therefore, performed the task on a different subset of triplets.

472 Experiments were programmed in Python using PsychoPy (version 2020.2.4, Builder GUI

473 [50]) and administered online through the hosting platform Pavlovia (https://pavlovia.org/).

474 Participants were asked to start the experiment only when they had between 30 min / 1 h of free

475 time and only when they could carry on the procedure with calm and in an undisturbed

476 environment. Instructions told participants they would have seen triplets of stimuli and their task

477 would have been to choose the “odd-one-out” stimulus, i.e., the one they considered the least

478 similar to the other two. No explicit definition of similarity was given to participants, as in the original

479 study. This is in line with the purpose played by the “odd-one-out” triplet task: similarity between a

480 pair of objects is evaluated across multiple trials (i.e., triplets), in which the context keeps varying

481 (i.e., the third object of the triplet). This way, many different dimensions are allowed to emerge and

482 be prioritized to judge the pair similarity, giving back a more complex picture of object

483 representations [32].

484 In our study, triplets were presented on a white background screen, with one stimulus on

485 the left, one stimulus in the center and one stimulus on the right (the position of every stimulus in

486 the triplet was randomized within every triplet before the presentation; Fig. 1C). Experiments were
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487 programmed so that stimulus size were normalized based on screen size, so that every participant

488 saw stimuli occupying the same proportion of screen: each picture spanned about 1/4 of width and

489 height size, while each word spanned about 1/10 of height size and varying width size according to

490 word length. To choose the odd-one-out stimulus, participants had to press the corresponding

491 arrow (left arrow for the stimulus on the left, down arrow for the stimulus in the center, right arrow

492 for the stimulus on the right). Once they pressed the key, a 500 ms black fixation crossed appeared

493 in the center of the screen and then the next triplet was presented. Trials were divided into 6 blocks,

494 between which participants could take a break. Participants were allowed to take as much time as

495 they wanted to make their “odd-one-out” decision, and if they could not recognize one of the

496 stimuli, they were asked to make their decision based on what they thought the stimuli were.

497 In the object features rating experiment, participants performed the ratings of moveability,

498 manipulability, and real-world size in three different blocks (in this order). Within every block,

499 participants saw the pictures of the object stimuli from Experiment 1 one at the time (in randomized

500 order), together with the rating question (above the picture) and a 6-point likert scale (below the

501 picture). Before the block, they were presented with a definition of the investigated dimension, and

502 were asked to press a number between 1 to 6 corresponding to their judgments.

503

504 Analysis

505 To analyze how measures of scene hierarchy predict pairwise similarity judgments, we combined

506 two main analytical approaches: Representational Similarity Analysis (RSA [33]) and Generalized

507 Linear Mixed-effects Models (GLMMs [34]). RSA is a tool that allows comparison of different sources

508 of data that have different dimensionalities (brain data, behavioral data, computational models,

509 stimulus features). To do so, it requires the creation of Representational (Dis)similarity Matrices

510 (RDMs), which are symmetric matrices where column and row entries are typically corresponding
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511 to the different stimuli (Fig.2-3). Every cell in an RDM contains a measure of (dis)similarity for that

512 pair of stimuli. Once the different sources of data are represented in the same RDM format, it is

513 possible to compare them and estimate how similar two RDMs are, i.e., how the structure of

514 pairwise similarity in one source (e.g., behavior) is predicted by the structure of pairwise similarity

515 in another source (e.g., a computational model).

516 In our study, we followed this approach to compute pairwise similarities from the “odd-one-

517 out” triplet behavioral task, as well as from the measures of hierarchy and covariates introduced

518 above.

519 - Behavioral similarity: we estimated behavioral similarity between pairs of stimuli in a

520 dichotomic way: similar (dummy coded as 1) vs dissimilar (dummy coded as 0). This estimate

521 was assigned as a result of the “odd-one-out” choice on every triplet. Given a triplet (e.g., A,

522 B and C), once an “odd-one” stimulus is selected (e.g., C), the similarity between the

523 unselected stimuli results to be maximal (Sim(A,B) = 1 -> “similar”), while the similarity

524 between the “odd-one” stimulus and one of the unselected stimuli results to be minimal

525 (Sim(C,A) = 0 -> “dissimilar”; Sim(C,B) = 0 -> “dissimilar”; Fig. 1C).

526 - A priori hierarchy similarity: we estimated pairwise similarity based on the hierarchy status

527 assigned a priori. This results in 3 categorical predictors. First, we considered scene condition,

528 with dichotomic categorization: pairs from the same scene (dummy coded as 1) vs pairs from

529 different scene (dummy coded as 0). Then, we considered phrase condition, with three

530 groups: pairs from the same phrase (1) vs pairs from different phrases within the same scene

531 (0.5) vs pairs from different phrases in different scenes (0). Finally, we considered object type

532 condition, with two categories: pairs of objects of the same type (1) vs pairs of objects of

533 different type (0), where object type refers to the object being either an anchor object or a

534 local object.
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535 - Data-driven hierarchy similarity: we estimated pairwise similarity based on the hierarchical

536 status emerging from the clustering procedure on the labelled image dataset. This results in

537 3 continuous predictors. First, we estimated a measure of co-occurrence of pairs in a scene,

538 as the number of times a pair appears in the same image; in the analysis we used log10

539 (counts + 1), so that we had a more uniform distribution along this dimension and avoid

540 having -Infinite values. Then, we estimated a measure of co-occurrence of pairs in a phrase,

541 as the proportion of co-occurrence counts where a pair not only appears in the same image

542 but also in the same cluster. Finally, we estimated a measure of anchored co-occurrence, as

543 the proportion of co-occurrence counts where one object of a pair is “anchored” to the

544 other.

545 - Covariates: for the visual, orthographic, and distributional semantic measures, similarity was

546 estimated in different ways. For multidimensional measures (i.e., the 3 AlexNet layers and

547 the Word embedding), similarity was estimated by computing the product-moment

548 correlation coefficient between pairs of vectors (e.g., the embedding vector for “pan” and

549 the embedding vector for “pot”); for mono-dimensional measures (i.e., word length and

550 orthographic distance), similarity was computed as the absolute value of the difference

551 between the two values of each pair (e.g., the absolute value of the difference between word

552 length for “pot” and word length for “pan”).

553

554 GLMMs are an extension of Linear Mixed-effects Models (LMMs [51]) for responses / dependent

555 variables that have a non-gaussian distribution (in our case, the bimodal dichotomic behavioral

556 similarity). The main advantage of (G)LMMs over simple regression models and ANOVAs is that one

557 can consider each trial from each participant simultaneously, without the need for aggregation or

558 separate estimation of the effects across participants and item (i.e., crossed random effects of items
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559 and participants [52]). Therefore, the response is estimated based on several predictors (fixed

560 factors) and considering grouping factors that have common portion of variance (random factors).

561 Using R syntax, our model had this structure:

562

563 ᵄ�ᵅ�ℎᵄ�ᵆ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�ᵆ� ~ ᵆ�ᵆ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�ᵆ� ∗ (ᵆ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� + ᵅ�ℎᵅ�ᵄ�ᵆ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�

564 + ᵅ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵆ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� + ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ� + ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ� ᵅ�ℎᵅ�ᵄ�ᵆ�ᵅ�

565 + ᵄ�ᵅ�ᵅ�ℎᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� + ᵅ�ᵅ�ᵆ�ᵄ�ᵅ�ᵅ�ᵄ�ᵆ�ᵅ�ᵆ�)

566 +(1 | ᵅ�ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵆ�ᵆ�) + (1 | ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�) + (1 | ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵆ� ᵅ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ�)

567

568 In the formula, on the left of the tilde (~), we have the response, i.e., the dichotomic behavioral

569 similarity from the triplet task; on the right of the tilde, we have the predictors, i.e., the categorical

570 and continuous pair similarity from the a priori and data-driven hierarchical organization, as well as

571 pair similarity for covariate measures; finally, we have the random factors, i.e., participant, pair, and

572 context object (the third object in the triplet). We fitted the statistical models via maximum

573 likelihood estimation, and continuous predictors were scaled, as this typically improves model fit.

574 For categorical predictors, we planned specific contrasts between conditions: for scene condition,

575 the contrast was set to same scene – different scenes; for object type condition, the contrast was

576 set to same object type – different object types; for phrase condition, one contrast was set to same

577 phrase – different phrases of the same scene, while the other contrast was set to (same phrase and

578 different phrases of the same scene) – different phrases of different scenes. Since this last contrast

579 is identical to same scene – different scenes, and since the scene similarity and phrase similarity

580 predictors are highly correlated, we removed from the model the scene condition predictor and

581 incorporate its contrast in the phrase similarity predictor. This way, we removed redundancies and

582 reduced multi-collinearity to an acceptable level. Besides, every measure was put in interaction with

583 the categorical predictor stimulus modality, which compares the effect of the measures between
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584 words and objects pictures. Finally, for random effects, we included only an intercept term, so that

585 we followed the recommendations of Bates et al. about parsimony in random effect structure [53]

586

587 RSA was previously used in combination with general linear model (e.g., [54, 39]), modeling

588 response RDMs of different participants (from brain or behaviour) as a linear combination of

589 multiple predictors RDMs (from stimulus features or computational models) and going beyond the

590 simple 1-to-1 correlation between response and predictor RDMs originally presented in RSA. In our

591 approach we went one step further: since the similarity of each pair is estimated multiple times in

592 different context (the third object of the triplet), and since each context object appeared multiple

593 times with different pairs, we considered these additional sources of random variance (pairs and

594 context objects) exploiting the flexibility of GLMMs.

595 Analysis was performed using R (version 3.6.3, R Core Team, 2020).

596

597

598
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Supplementary Materials

Supplementary Materials 1 – Factor correlations and VIFs in the main model

Sup. Fig. 1 – Matrix of correlations between the predictors used in the model



Sup. Table 1 – Variance Inflation Factors (VIFs) for the predictors used in the main model

Predictors VIF
Modality (Words – Objects)                               3.645

Object type condition                                     1.065
Phrase condition                                         1.291

Anchored co-occurrence                                  1.464
Co-occurrence in scene                                   1.525
Co-occurrence in phrase                                  1.425

AlexNet early layer                                       1.184
AlexNet mid layer                                        1.768
AlexNet late layer                                        1.771

Word length                                             2.821
Orthographic distance                                    2.841

Word embeddings                                       1.189
Modality x Object type cond                               1.084

Modality x Phrase cond                                   3.909
Modality x Anchored co-oc                                1.450
Modality x Co-oc in scene                                 1.506
Modality x Co-oc in phrase                                1.386

Modality x AlexNet early layer                             1.190
Modality x AlexNet mid layer                              1.771
Modality x AlexNet late layer                              1.789

Modality x Word length                                   2.929
Modality x Orth distance                                  2.943

Modality x Word embeddings                             1.178



Sup. Fig. 2 – Representational (Dis)similarity Matrices (RDMs) for the visual covariates for pictures (A, B and C) and

for the orthographic and distributional semantics covariates for words (D, E and F). In A, B, C and D, colours represent

the correlation between vectors (blue = 0 no correlation, yellow = 1 maximal correlation). In E and F, absolute value of

the difference between word length / old20 of the pair is normalized to span between 0 (blue, bigger difference) to 1

(yellow, smaller difference).



Supplementary Materials 2 – Results of the main model

Sup. Table 2 – Results of the GLMM

Predictors
(Intercept)

Modality (Words – Objects)

Object type condition (Same – Different)

Phrase condition (Same – Different)

Scene condition (Same – Different)

Anchored co-occurrence

Co-occurrence in scene

Co-occurrence in phrase

AlexNet early layer

AlexNet mid layer

AlexNet late layer

Word length

Orthographic distance

Word embeddings

Modality x Object type condition

Modality x Phrase condition

Modality x Scene condition

Modality x Anchored co-occurrence

Modality x Co-occurrence in scene

Modality x Co-occurrence in phrase

Modality x AlexNet early layer

Modality x AlexNet mid layer

Modality x AlexNet late layer

Modality x Word length

Modality x Orthographic distance
Modality x Word embeddings

β SE z p
-0.321          0.065           -4.809           <0.001

-0.107          0.031           -3.448             0.001

0.245           0.048           5.106            <0.001

0.270           0.128           2.111             0.035

1.078           0.075          14.474           <0.001

0.005           0.028           0.165             0.869

0.397           0.029          13.922           <0.001

0.063           0.028           2.292             0.022

-0.133          0.025           -5.317           <0.001

0.026           0.031           0.846             0.397

0.126           0.031           4.078            <0.001

0.049           0.039           1.271             0.204

-0.050          0.039           -1.270             0.204

0.338           0.025          13.363           <0.001

-0.006          0.034           -0.181             0.857

0.117           0.087           1.346             0.178

-0.280          0.050           -5.601           <0.001

0.009           0.019           0.498             0.619

-0.124          0.019           -6.361           <0.001

0.018           0.019           0.967             0.334

0.022           0.017           1.242             0.214

0.007           0.022           0.333             0.739

-0.112          0.022           -5.157           <0.001

0.082           0.028           2.977             0.003

0.008           0.028           0.302             0.763

-0.034 0.018 -1.932 0.053



Sup. Fig. 3 – Model-estimated effects of the covariates on pairwise similarity ratings for object pictures and words.

Colours of points reflect the values of pairs for the given predictor and match the ones in the RDMs showed above.

Stimulus modality is indicated by x-axis position (left = objects, right = words). Points reflect estimated similarity for

each pair of objects averaged across all the different contexts (i.e., the third object a triplet) in which they were

presented. 95 % confidence interval are represented by the shaded area around lines for continuous predictors.

Supplementary Materials 3 – Factor correlations and VIFs in the model with ratings

We explored what makes anchor objects different from local objects (as seen from the

effect of the Object type condition predictor), comparing this division with the ratings we

collected in a separate experiment. First of all, we organized our ratings of moveability,

manipulability and real-world size in an RDM format (similarity values were computed as the



absolute value of the difference between the two values of each pair, as done for e.g., word

length). We then computed pairwise correlations between each of the ratings RDMs and the

object type condition RDM. We found that object type condition had a strong correlation with

real-world size (r = 0.713) and moveability (r = 0.639), with the two measures also being strongly

correlated (r = 0.659). On the other hand, manipulability did not show to have strong correlation

with either object type condition (r = -0.042), or moveability (r = -0.065) and real-world size (r = -

0.082).

Sup. Fig. 4 – Matrix of correlations between the ratings and the object type condition factor



Second, we implemented another GLMM modeling the data with the same structure of fixed and

random factors, but adding also the three rating predictors:

ᵄ�ᵅ�ℎᵄ�ᵆ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�ᵆ� ~ ᵆ�ᵆ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵆ� ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�ᵆ� ∗ (ᵆ�ᵅ�ᵅ�ᵅ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�ᵆ� + ᵅ�ℎᵅ�ᵄ�ᵆ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�ᵆ�

+ ᵅ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵆ�ᵅ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�ᵆ� + ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ� + ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ� ᵅ�ℎᵅ�ᵄ�ᵆ�ᵅ�

+ ᵄ�ᵅ�ᵅ�ℎᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� + ᵉ�ᵈ�ᵉ�ᵈ�ᵈ�ᵈ�ᵉ� + ᵅ�ᵅ�ᵆ�ᵄ�ᵅ�ᵅ�ᵄ�ᵆ�ᵅ�ᵆ�)

+(1 | ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�) + (1 | ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵆ� ᵅ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ�)

This new model including the ratings had a significantly better fit compared to the previous one

without those measures (AIC difference = 57, χ2 = 58.528, p < 0.001), and despite the new model

being more complex in terms of number of parameters. The model also did not show problematic

levels of multicollinearity, when inspecting the VIFs of each term.

Sup. Table 1 – Variance Inflation Factors (VIFs) for the predictors used in the model including rating measures

Predictors VIF

Modality (Words – Objects) 3.651

Moveability 2.064

Real-world size 2.518

Manipulability 1.027

Object type condition 2.359

Phrase condition 1.300



Anchored co-occurrence 1.535

Co-occurrence in scene 1.559

Co-occurrence in phrase 1.431

AlexNet early layer 1.234

AlexNet mid layer 1.769

AlexNet late layer 1.776

Word length 2.866

Orthographic distance 2.886

Word embeddings 1.197

Modality x Moveability 2.049

Modality x Real-world size 2.505

Modality x Manipulability 1.029

Modality x Object type condition 2.308

Modality x Phrase condition 3.940

Modality x Anchored co-occur. 1.535

Modality x Co-occur. in scene 1.538

Modality x Co-occur. in phrase 1.392

Modality x AlexNet early layer 1.247

Modality x AlexNet mid layer 1.772

Modality x AlexNet late layer 1.794

Modality x Word lenght 2.974



Modality x Orthographic distance 2.993

Modality x Word embeddings 1.190



Sup. Fig. 5 – Representational (Dis)similarity Matrices (RDMs) for the a priori object type distinction (A), and for the

object features ratings (B, C and D). Every cell represents pairwise similarity for that given dimension. In A yellow

represents pairs of objects that belong to the same type (maximal similarity), while blue represents pairs that belong to

different types (minimal similarity). In B, C and D, absolute value of the difference between ratings of the pair is

normalized to span between 0 (blue, bigger difference) to 1 (yellow, smaller difference).



Supplementary Materials 4 – Model with ratings measures

Results overall resembled the one from the previous model, but with some important

differences. First, adding the rating measures, the main effect of Object type condition got

strongly reduced and was no longer significant (β=0.120, SE=0.071, z=1.681, p=0.093). On the

other hand, we found significant main effects of the newly introduced moveability (β=0.079,

SE=0.033, z=2.386, p=0.017) and manipulability measure (β=0.046, SE=0.023, z=1.984, p=0.047),

both showing that pairs that are similar along those dimensions are also more likely to be judge

more similar behaviourally. Real-world size did not show a significant main effect (β=0.022,

SE=0.037, z=0.587, p=0.557), but resulted in having a significant interaction with stimulus

modality (β=-0.057, SE=0.026, z=-2.158, p=0.031), with a stronger effect of this dimension on

behavioural similarity for object pictures than for words. Similarly, manipulability had a

significant interaction with stimulus modality (β=-0.111, SE=0.017, z=-6.713, p<0.001), having a

stronger effect on perceived similarity for object pictures than for words.

Sup. Table 4 – Results of the GLMM including object features ratings

Predictors
(Intercept)

Modality (Words – Objects)
Moveability

Real-world size
Manipulability

Object type condition (Same – Different)
Phrase condition (Same – Different)

Scene condition (Same – Different)

β SE z p
-0.314          0.065           -4.853           <0.001
-0.101          0.031           -3.252            0.001
0.079          0.033           2.386             0.017
0.022          0.037           0.587             0.557
0.046          0.023           1.984             0.047
0.120          0.071           1.681             0.093
0.249          0.128           1.951             0.051
1.065 0.074 14.339 <0.001



Anchored co-occurrence
Co-occurrence in scene
Co-occurrence in phrase

AlexNet early layer
AlexNet mid layer
AlexNet late layer

Word length
Orthographic distance

Word embeddings
Modality x Moveability

Modality x Real-world size
Modality x Manipulability

Modality x Object type condition
Modality x Phrase condition
Modality x Scene condition

Modality x Anchored co-occurrence
Modality x Co-occurrence in scene
Modality x Co-occurrence in phrase

Modality x AlexNet early layer
Modality x AlexNet mid layer
Modality x AlexNet late layer

Modality x Word length
Modality x Orthographic distance

Modality x Word embeddings

0.015          0.028           0.544             0.586
0.387          0.029          13.488           <0.001
0.060          0.028           2.184             0.029
-0.119          0.025           -4.658           <0.001
0.024          0.031           0.793             0.428
0.122          0.031           3.971            <0.001
0.043          0.039           1.101             0.271
-0.048          0.039           -1.227            0.220
0.343          0.025          13.554           <0.001
0.019          0.024           0.807             0.420
-0.057          0.026           -2.158            0.031
-0.111          0.017           -6.713           <0.001
0.039          0.049           0.791             0.429
0.153          0.087           1.750             0.080
-0.267          0.050           -5.322           <0.001
0.001          0.020           0.057             0.955
-0.116          0.020           -5.870           <0.001
0.021          0.019           1.107             0.268
0.021          0.018           1.184             0.236
0.010          0.022           0.456             0.648
-0.114          0.022           -5.267           <0.001
0.085          0.028           3.037             0.002
0.016          0.028           0.555             0.579

-0.036 0.018 -2.025 0.043



Sup. Fig. 6 – Model-estimated effects of the object type condition predictor as well as for the object features ratings,

estimated from the model including the ratings themselves. Colours of violins and points reflect the values of pairs for

the given predictor and match the ones in the RDMs showed above. Stimulus modality is indicated by either x-axis

position (left = objects, right = words). Points and violins reflect estimated similarity for each pair of objects

averaged across all the different contexts (i.e., the third object a triplet) in which they were presented. 95 %

confidence interval are represented by error bars in the violins (point is the mean), and by the shaded area around

lines for continuous predictors.
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1 Abstract

2

3 Like words in sentences, objects in our environment do not appear randomly, but follow a

4 hierarchically organized structure. Objects can be part of a scene and, within a scene, are grouped

5 into different spatial clusters, where they serve different functions. Is this organization reflected in

6 mental representations of individual objects, and which behavioural goal does it support? We

7 collected pairwise similarity judgments for objects: 1) based on visual appearance; 2) without

8 explicit instructions; and 3) based on actions. Results showed modulations of mental

9 representations as a function of hierarchy, which were enhanced by the “actions” task, while in the

10 “visual appearance” task visual similarity played a primary role. Crucially, without explicit

11 instructions, judgements were almost identical to the “actions” task. We therefore propose that

12 scene hierarchy seems to organize mental representations of objects and can be flexibly adapted to

13 changing behavioural goals by supporting efficient interactions with objects.

14

15 Keywords: object representations, scene hierarchy, scene grammar, task flexibility, action goals,

16 RSA

17

18 Statement of relevance

19

20 We constantly look for, recognize, and interact with objects and do so effortlessly despite the many

21 things going on in our mind. One reason for this unmatched ability is that we can use knowledge

22 regarding which objects typically appear where in our environment: a toothbrush is usually found

23 in the bathroom, and therein on the sink. Here, we were interested in whether such external

24 hierarchical structure is also internally mirrored in our minds when seeing individual objects and

2



25 how action affordances modulate these mental representations. We asked participants to tell us

26 which of three objects is the odd-one-out and by these mere similarity judgements were able to

27 show that a scene‘s hierarchical structure is indeed reflected in how objects are organized in our

28 mind. Crucially, we showed that this mental organization is driven by possible actions one can

29 perform with the objects and can be flexibly adapted to task demands.

30

31

3



32 Introduction

33

34 Most of the time we live in and interact with a structured world where objects typically

35 appear in certain contexts and not others (e.g., a toilet appears in the bathroom and not in the

36 kitchen), as well as in certain positions and not others (e.g., a toilet is positioned against a wall, not

37 floating in the middle of the room). We have referred to knowledge regarding “what” objects

38 (“semantics”) appear “where” (“syntax”) within a scene as “Scene Grammar” in analogy to sentence

39 processing (Biederman et al., 1982; for a review, Võ, 2021). Crucially, the structure given by Scene

40 Grammar seems to aid our cognitive system in representing objects during visual perception to

41 efficiently guide attention allocation during perception of complex visual stimuli (i.e., scenes; Võ &

42 Henderson, 2009; Võ & Wolfe, 2013a). This mental organization has been shown to support a wide

43 range of behaviourally crucial processes involving objects in the environment like recognition

44 (Cornelissen & Võ, 2017), search (Võ & Wolfe, 2013b), or interaction (Draschkow & Võ, 2017).

45 More recently, we have suggested that Scene Grammar is organized hierarchically (Võ et al.,

46 2019) with the visual scene at the highest level. Within that scene, there are meaningful clusters of

47 spatially related objects, so-called “phrases” (continuing the analogy with linguistic grammar), and

48 within every phrase one can identify an object with a special status (“anchor object”), which anchors

49 strong predictions regarding both the identity and position of the other objects within the phrase

50 (“local objects”; Fig. 1A). According to this framework, anchor objects are supposed to be frequently

51 present in a scene, bigger in size, and mostly stable in their position (e.g., a stove), while local objects

52 are thought to be smaller and more easily moveable during interactions (e.g., a pot). There has been

53 some first evidence that the hierarchical structure of Scene Grammar also organizes mental

54 representations of individual object concepts, independent of their visual features (e.g., shape,

55 brightness) or stimulus modality (i.e., pictorial or verbal; Turini & Võ, 2022).
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56 However, it remains unclear whether and how this mental organization of objects changes

57 as a function of different behavioural goals and which purpose it primarily serves. In the realm of

58 high-level vision, it has been shown that different features of complex visual stimuli can be

59 enhanced or inhibited according to different task demands, such as deployment of attention (full

60 vs. reduced, Groen et al., 2016), criteria of categorization (e.g., colour vs. real-world size, Harel et

61 al., 2014) or level of categorization (superordinate vs. basic-level, Clarke et al., 2011). At the same

62 time, it seems reasonable - given the body of previous research presented above - that such a

63 hierarchical structure would also be optimal for efficient action preparation involving the objects

64 present in the environment (Greene et al., 2016). For instance, if you were asked to help a friend

65 cooking in their new house, the hierarchical organization of objects in the scene would quickly allow

66 you to first identify which of the rooms is the kitchen, then efficiently locate the “stove phrase”

67 therein and within that phrase to locate the pot on top of the stove.

68 To investigate the impact of different tasks on the mental representation of objects, we

69 selected a set of everyday objects for which we assume a hierarchical structure (Fig. 1B; Turini &

70 Võ, 2022). Then, for each set of objects, pairwise similarity judgements were collected from human

71 participants, using an “odd-one-out” triplet task (Fig. 1C; Hebart et al., 2020). Crucially, the task was

72 performed by three different groups of participants, each of which followed a different set of

73 instructions: one group judged similarity based on the visual appearance of the objects (“Visual

74 task”), a second group judged objects’ similarity without an explicit definition of what to base the

75 similarity judgements on (“No task”), while the last group judged the similarity of objects based on

76 the actions that can be performed with those objects (“Action task”). Finally, we compared the odd-

77 one-out ratings to the hierarchy measures across tasks, employing a combination of

78 Representational Similarity Analysis (RSA; Kriegeskorte et al., 2008) and Generalized Linear Mixed-

79 effects Models (GLMMs; McCulloch & Neuhaus, 2005). As the employment of the “odd-one-out”
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80 triplet task using different instructions has shown flexible prioritization of task-related features in

81 scene categorization (Greene & Hansen, 2020), we expected that aspects of scene hierarchy would

82 be enhanced by the task based on actions, while visual features would dominate similarity

83 judgements based on visual appearance. Importantly, if the “default setting” of mental

84 representations is based on actions that can be performed with objects, we would expect a strong

85 resemblance between similarity judgments without instructions and similarity judgements based on

86 actions, suggesting that the hierarchical organization of Scene Grammar is supporting efficient

87 interaction with objects in the environment in order to perform goal-oriented behaviour.

88

89

90

91

92

93

94

95

96      Figure 1 – Schema of Scene hierarchy (A), how we measured it (B) and the tasks to collect similarity judgements (C),

97      adapted from Turini & Võ (2022). A) Presentation of the hierarchical organization of objects in scenes (adapted from Võ

98      et al., 2019): scenes is divided into clusters of objects (phrases), and every phrase contain one anchor objects pointing

99      to several local objects. B) Such hierarchical organization was measured here in two ways: a priori, assigning objects to

100      different scenes, to different phrases within a scene and to different types within a phrase (anchor vs local); and data-

101      driven, using a set of real-world images with annotations and segmentations of objects (image from Greene, 2013,

102      visualized via LabelMe, Russel et al., 2008). C) Example trial (with our stimuli) for the odd-one-out triplet task (Hebart

103      et al., 2020): participants saw a triplet of objects and had to select the one they considered the least similar to the other

104      two. Different groups have different definitions of similarity: one based on visual appearance, one that was not

105 explicated and one based on action goals.
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106

107

108 Materials and Methods

109

110 Materials and methods used in this study mostly resemble the ones employed in a previous study

111 by the same authors (Turini & Võ, 2022). We highlighted crucial differences in the text.

112

113 Participants

114 One hundred and twenty-nine (129) adult volunteers took part in our study. One third of them

115 (N=43) participated in Experiment 1 (“Visual task”; age: M = 22.28 yrs, SD = 5.69 yrs, range = 18 – 45

116 yrs; gender: F = 33, M = 9, NB = 1); another third participated in Experiment 2 (“No task”; age: M =

7



117 24.72 yrs, SD = 5.33 yrs, range = 18 – 40 yrs; gender: F = 31, M= 12); and the last third participated

118 in Experiment 3 (“Action task”; age: M = 21.95 yrs, SD = 3.64 yrs, range = 18 – 33 yrs; gender: F = 36,

119 M= 6, NB = 1). Data collected in the “No task” (Experiment 2) were already analyzed in a previous

120 study investigating the hierarchical organization of mental representations and the role of different

121 stimulus modalities (Turini & Võ, 2022).

122 The participants’ sample size in each experiment (N=43) was chosen as an optimal number

123 between the total number of unique trials and an optimal number of trials to present to an

124 individual participant. All participants reported to have normal or corrected-to-normal vision and to

125 have no history of neurological or psychiatric disorders. All of them gave their informed consent and

126 received course credits or monetary reimbursement for their participation. The Ethics Committee

127 of the Goethe University Frankfurt approved all experimental procedures that were carried out in

128 line with the Declaration of Helsinki (approval #2014-106).

129

130 Stimuli

131 Forty-five objects of familiar usage were considered for the experiment. We collected pictures of

132 the objects in isolation from copyright-free databases on the internet; we pasted them on a white

133 background, grey-scaled them to remove influence of color, and resized them to 392 x 392 pixels.

134 The same stimuli were used in a previous study (Turini & Võ, 2022) and remained the same across

135 the three experiments reported here.

136

137 Scene hierarchy predictors

138 To measure if similarity judgments were organized according to a scene hierarchy, two sets of

139 predictors were estimated (for more details see Turini & Võ, 2022).
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140 - A priori hierarchy predictors: we based these predictors on common sense and intuition; we

141 assigned the 45 objects to one of 5 different indoor scenes (bathroom, bedroom, kitchen,

142 living room and home office). Within every scene, objects were grouped in 3 different

143 phrases; finally, for every phrase, 1 object was assigned the role of anchor object, and the

144 other 2 as local objects.

145 - Data-driven hierarchy predictors: we based these predictors on the occurrence in a dataset

146 of real-world scene images with segmented and annotated objects (Greene, 2013; see

147 Supplementary Materials 1 for more details). From this dataset, we measured how many

148 times two objects co-occur in the same image. Then, a clustering algorithm was run to

149 measure how objects grouped together spatially in every image (as in Boettcher et al., 2018,

150 see Supplementary materials 1): we identified the obtained clusters of objects as phrases,

151 and within each cluster, we considered the object with the largest area as anchor object,

152 while the other objects in each cluster were assigned the status of local objects.

153

154 Visual features covariates

155 As in Turini & Võ (2022), we made sure that effects of the scene hierarchy did not result from a

156 confound of purely perceptual information by considering different measures of visual features of

157 our object pictures: we fed the object images to a pre-trained Deep Neural Network (DNN), a state-

158 of-the-art computer vision algorithm that is trained to perform object categorization with human-

159 like performance. We used AlexNet, trained on the ImageNet dataset (Krizhevsky et al., 2017), which

160 is based on many sequential layers of processing units that extract and transform features from the

161 previous layer. The first layer extracts features from the pixel values of an image; then the

162 information is transformed in the intermediate layers until the final output layer is reached, where

163 the image is finally assigned to a category (e.g., “bed”). Unit activations for our object images were
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164 estimated in 3 different layers of the network: convolutional layer 1 (conv1, “early layer”) processing

165 low-level visual features (e.g., edges, brightness); convolutional layer 4 (conv4, “mid layer”)

166 processing mid-level visual features (e.g., shape); and the fully connected layer 7 (fc7, “late layer”)

167 processing high-level visual features (e.g., complex configurations like object parts).

168

169 Apparatus and Procedure

170 Apparatus and procedure were almost identical across the three experimental tasks (and mostly

171 replicated the ones of Turini & Võ, 2022). We employed an “odd-one-out” triplet task introduced

172 by Hebart and colleagues (2020), which has been used to collect pairwise similarity judgments of

173 object pictures. As a first step. all the possible combinations of triplets of stimuli were generated for

174 each experiment separately (45! / (3! * (45 – 3)!) = 14190 unique triplets). Then, triplets were

175 randomly divided into 43 groups of 330 triplets to ensure a practical number of trials and

176 participants. Therefore, the task was performed on a different subset of triplets for each participant.

177 Stimulus presentation and response recording were programmed in Python using PsychoPy

178 (version 2020.2.4, Builder GUI; Peirce et al., 2019) and the procedure was carried on online hosted

179 by the platform Pavlovia (https://pavlovia.org/). We informed participants that the experiment

180 would take between 30-60 min., and asked them to carry it out in a calm and undisturbed

181 environment. Then participants were told that they would see triplets of object pictures and their

182 task was to choose the “odd-one-out” stimulus, i.e., the one they considered the least similar with

183 respect to the other two. In Experiment 1, participants were instructed to base their decision solely

184 on visual similarity. In Experiment 2, no explicit definition of similarity was given to participants (see

185 Turini & Võ, 2022). Finally, in Experiment 3, participants were instructed to base their decision on

186 similarity in terms of action goals.
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187 Triplets were presented on a white background screen: one stimulus on the left, one stimulus

188 in the center, and one stimulus on the right (with randomized position of each stimulus within every

189 triplet; see Fig. 1C). We programmed the experiment so that the size of object pictures was

190 normalized based on screen size, to have every participant seeing stimuli occupying the same

191 proportion of screen (a picture spanned about 1/4 of screen width and height). We asked

192 participants to press keyboard arrows to choose the odd-one-out stimulus: left arrow for the

193 stimulus on the left, down arrow for the stimulus in the center, right arrow for the stimulus on the

194 right. After the key was pressed, a black fixation cross was presented for 500 ms in the center of the

195 screen, followed by the presentation of the next triplet. Experiments were divided into 6 blocks with

196 breaks in between. Participants could take as much time as they wanted to make their response,

197 and if they were not sure about the answer, they were invited to make the best judgement they

198 could.

199

200 Analysis

201 As in Turini & Võ (2022), we combined two approaches for the analysis: Representational Similarity

202 Analysis (RSA, Kriegeskorte et al., 2008) and Generalized Linear Mixed-effects Models (GLMMs,

203 McCulloch & Neuhaus, 2005). RSA is an analytical method that allows to compare the

204 representational organizations of data with different dimensionalities (e.g., brain recordings,

205 behavioural responses, computational models, stimulus features): data are organized into

206 Representational (Dis)similarity Matrices (RDMs), symmetric matrices whose column and row

207 entries typically correspond to the different stimuli. Every cell of an RDM represents a measure of

208 (dis)similarity for that pair of stimuli. Once different data are represented in the same RDM format,

209 it is possible to estimate how similar two RDMs are, i.e., how the organization of pairwise similarity

210 in one source (e.g., behaviour) is predicted by the organization of pairwise similarity in another
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211 source (e.g., a computational model). According to this, we have computed pairwise similarity for

212 the behavioural responses in the “odd-one-out” tasks, as well as for the hierarchical predictors and

213 the covariate computational models introduced previously (see RDMS for the hierarchy predictors

214 and the covariate factors in Figure 2).

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229 Figure 2 – Representational (Dis)similarity Matrices (RDMs) of the a priori hierarchical predictors (A, B and C), for the

230 data-driven hierarchical predictors (D, E and F) and for the visual covariates (G, H and I). In A, B and C, yellow cells 231
indicate pairs of objects that appear in the same scene, phrase or belong to the same type (maximal similarity, coded

232 as “1”), while blue cells indicate pairs that appear in different scenes or belong to different types (minimal similarity,

233 coded as “0”). Gray cells in the “phrase condition” indicates pairs that appear in different phrases within the same scene

234 (medium similarity, coded as “0.5”). In D, the log10(counts +1) of co-occurrence is normalized to span between 0 (blue,

235 few counts) to 1 (yellow, many counts). In E and F, the colours represent proportion of counts to the total co-occurrence

236 counts of each pair (blue = 0, no counts; yellow = 1, all counts). In G, H, and I, colours represent the correlation between

237 activation vectors (blue = 0, no correlation; yellow = 1, maximal correlation).
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238

239
240 - Behavioural similarity: for each task, we calculated behavioural similarity between pairs of

241 objects using a dichotomic classification; we considered pairs as either similar (a condition

242 that was dummy coded to be “1”) or dissimilar (a condition that was dummy coded to be

243 “0”). This resulted from the “odd-one-out” response on every triplet: considering a triplet

244 (e.g., A, B and C) and selecting an “odd-one” stimulus (e.g., C), the similarity between the

245 unselected stimuli was considered maximal (Sim(A,B) = 1 -> “similar”), while the similarity
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246 between the “odd-one” stimulus and one of the unselected stimuli was considered minimal

247 (Sim(C,A) = 0 -> “dissimilar”; Sim(C,B) = 0 -> “dissimilar”).

248 - A priori hierarchy similarity (Fig. 2, first row): we estimated pairwise similarity according to

249 the hierarchical status assigned a priori. This resulted in 3 categorical predictors: scene

250 condition, with a dichotomic categorization in pairs from the same scene (dummy coded as

251 1) vs. pairs from different scene (dummy coded as 0); phrase condition, based on three

252 groups, with pairs from the same phrase (1) vs pairs from different phrases within the same

253 scene (0.5) vs pairs from different phrases in different scenes (0); finally, object type

254 condition, divided between pairs of objects of the same type (1) vs pairs of objects of

255 different type (0; “object type” indicates if objects are either anchor or a local objects).

256 - Data-driven hierarchy similarity (Fig. 2, second row):: we estimated pairwise similarity

257 according to the hierarchical status measured in the labelled image dataset. This resulted in

258 3 continuous predictors: co-occurrence of pairs in a scene, which counts how many times a

259 pair of objects appears in the same image (measured as logarithm based 10 of counts + 1, to

260 make distribution more uniform and avoiding -Infinite values); then, co-occurrence of pairs

261 in a phrase, measuring the proportion of co-occurrence counts in which a pair belongs not

262 just to the same image but to the same cluster; finally, anchored co-occurrence, measuring

263 the proportion of co-occurrence counts in which one object is “anchored” to the other in the

264 phrase.

265 - Covariates (Fig. 2, last row):: for the three visual measures (i.e., the activation from the 3

266 layers of AlexNet DNN), similarity was measured via product-moment correlation coefficient

267 of pairs of activation units vectors (e.g., the activation vector for “toilet” in convolutional

268 layer 1 and the activation vector for “sink” in convolutional layer 1).

269
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270 GLMMs are a more general extension of Linear Mixed-effects Models (LMMs; Bates et al.,

271 2014) to model responses with a non-gaussian distribution. The main advantage of (G)LMMs over

272 simple regression models and ANOVAs is that it is possible to consider each trial from each

273 participant at the same time, without any need to aggregate data or to estimate separately the

274 effects across participants and stimuli (Baayen et al., 2008). In (G)LMMs, a response variable is

275 measured as a function of many predictors (fixed factors) while considering grouping factors that

276 identify common portions of variance (random factors; see Supplementary Materials 2 for more

277 details).

278 In our model, the dichotomic behavioural similarity (similar vs. dissimilar) from the triplet

279 task represented the response variable; as fixed factors, we considered the 3 categorical predictors

280 from the a priori hierarchy, the 3 continuous predictors from the data-driven hierarchy as well as

281 the 3 continuous predictors from the visual covariates; additionally, a categorical predictor

282 identifying the tasks (“Visual task”, “No task” and “Action task”) was introduced in interaction with

283 each of the other fixed factors; finally, as random factors, we considered individual participants,

284 individual object pairs, and individual “context” objects (which is the third object present in every

285 triplet; for more details see Supplementary Materials 2).

286 Combining RSA with GLMMs (Turini & Võ, 2022), we can measure the impact of many RDMs

287 at the same time, as in a general linear model (Proklova et al., 2016; Kaiser et al., 2019), instead of

288 a single RDM (Kriegeskorte et al., 2008), while additionally taking into account multiple sources of

289 group-based variance (i.e., our random factors: participants, pairs and context objects). Correlations

290 between factors and the test of multicollinearity can be found in Supplementary Materials 3.

291 Analyses were performed in R (version 3.6.3, R Core Team, 2020). Data and scripts are available at

292 the following link: https://osf.io/mxkwz/.

293
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294 Results

295 We organized the behavioural ratings divided by task into the RDM format (see Figure 3);

296 there, every cell represents the pairwise similarity ratings for a given pair of objects averaged across

297 all the triplets where the pair is present. From mere visual inspection, one can already tell that the

298 structure of the RDM for ratings in the “action task” (A) seems almost identical to the structure of

299 RDM for ratings in the “no task” (B) (no task – action task r=.92), while the structure of RDM for

300 ratings in the “visual task” (C) differs more distinctly from the other two (no task – visual task r=.76;

301 action task – visual task r=.70).

302

303

304

305

306

307

308

309

310

311

312

313

314

315 Figure 3 – Representational (Dis)similarity Matrices (RDMs) for the behavioural similarity ratings collected in the three

316 experiments (A = Visual task, B = No task, C = Action task). Cells represent pairwise similarity ratings averaged across all

317 the triplets where the pair was present. Every pair was presented in a triplet with all the other remaining objects, and

318 it was judged either as similar (1) or dissimilar (0), so that In the RDMs pairwise similarity spans from 0 (never judged as

319 similar = blue) to 1 (always judged as similar = yellow).
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341

342 Results from the GLMM for the a priori hierarchy (see Figure 4 A-C) showed a significant main

343 effect of Scene condition (β=1.142, SE=0.074, z=15.335, p<0.001) and Object type condition

344 (β=0.175, SE=0.049, z=3.586, p<0.001), and a trend for the Phrase condition (β=0.234, SE=0.130,

345 z=1.800, p=0.072): Objects that were assigned to the same scene or to the same object type were

346 judged to be more similar than objects assigned to different scenes or types. Numerically, also pairs

347 assigned to the same phrase were judged to be more similar than pairs from different phrases of

348 the same scene. Looking at these effects across the different tasks, we found that the Scene

349 condition effect was similarly pronounced between Action task and No task (β=0.049, SE=0.049,

350 z=1.005, p=0.315), while in the Visual task condition the effect was largely reduced (β=-0.773,

351 SE=0.049, z=-15.926, p<0.001).

352 For the data-driven hierarchy (see Figure 4 D-F), we found a significant main effect of Co-

353 occurrence in scene (β=0.325, SE=0.029, z=11.334, p<0.001) and of Co-occurrence in phrase

354 (β=0.059, SE=0.028, z=2.111, p=0.035), but not of Anchored co-occurrence (β=0.022, SE=0.028,

355 z=0.782, p=0.434). That is, objects that co-occurred more often in the same scene or in the same

356 phrase were judged as more similar than objects co-occurring less often in the same scene or

357 phrase. The effect of Co-occurrence in scene was stronger in the No task condition than in the other

358 two (vs. Action task: β=-0.102, SE=0.019, z=-5.332, p<0.001; vs. Visual task: β=-0.158, SE=0.019, z=-

359 8.282, p<0.001), while the effect of Co-occurrence in phrase was enhanced in the Action task

360 compared to No task (β=0.042, SE=0.019, z=2.204, p=0.028). Finally, the effect of Anchored co-

361 occurrence was similarly strong in the Action task and No task conditions (β=-0.017, SE=0.019, z=-

362 0.893, p=0.372), but was reduced in the Visual task (β=-0.083, SE=0.019, z=-4.447, p<0.001).

363 Finally, for the visual covariates (see Figure 4 G-I), we found that the effect of Early layer

364 similarity and Mid layer similarity were significant and stronger in the Visual task than in other tasks
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365 (Early layer: β=-0.053, SE=0.016, z=-3.227, p=0.001; Mid layer: β=0.151, SE=0.021, z=7.119,

366 p<0.001). In particular for the Early layer, object pairs that were more similar in terms of low-level

367 visual features (e.g., edges, brightness) were judged as less similar, while for the Mid layer, objects

368 pairs that showed stronger similarity in terms of mid-level visual features (e.g., shape) were judged

369 to be more similar. More detailed results can be found in the Supplementary Materials 4.

370

371 Figure 4 – Model-estimated effects of the hierarchy and visual predictors on pairwise similarity ratings for objects in the

372 three similarity tasks. Colours of violins and points reflect values of pairs for the given predictor and match the ones in

373 the RDMs showed in Figure 2. Task is indicated by x-axis position for categorical predictors and different facets for 374

continuous predictors (left = Visual task, center = No task, right = Action task). Points and violins reflect estimated 375

similarity for each pair of objects averaged across all the different contexts (i.e., the third object in a triplet) in which

376 they appeared. 95 % confidence interval are represented by error bars in the violins (point is the mean), and by the 377

shaded area around lines for continuous predictors.

378
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379

380 Discussion

381

382 How do current task demands alter the mental representations of real-world objects? Do

383 they become more or less hierarchical in nature as a function of the degree of action a task affords?

384 By mere use of behavioural similarity judgments, we were able to make visible the otherwise

385 invisible content of our mind, i.e., the hierarchical arrangement of objects in the environment which

386 is also mirrored in the organization of their mental representations (see also Turini & Võ, 2022).

387 More importantly, we were able to show that, despite being stable across different tasks, such

388 organization flexibly adapts to varying task demands. In particular, we were able to show how more

389 detailed aspects of the hierarchical organization, such as the phrasal structure assumed by clusters

390 of objects, become more defined when objects are considered in the context of actions typically

391 performed with them. On the contrary, when objects were considered purely with regard to their

392 visual appearance, not only visual features gained importance in guiding behaviour, but the

393 hierarchical organization of object representations also diminished. Interestingly, when objects

394 were judged without explicit task instructions, their behavioural estimation closely resembled the

395 one based on actions. This suggests that the potential actions one can perform with objects provide

396 a default organizing principle for mental representations.

397 On the one hand, the stability of hierarchical organization of object representations across

398 the different tasks (shown by the significant main effects of hierarchy predictors) is additional

399 evidence of how this structure of the environment has a deep and ubiquitous influence on memory

400 representations for objects. We have shown previously that these object representations are

401 independent of stimulus modality (i.e., pictorial vs verbal) or perceptual aspects of the stimuli (e.g.,

402 visual appearance, orthography; Turini & Võ, 2022). The idea that such rich contextual information
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403 (i.e., the hierarchy) could be incorporated in the knowledge associated with single, isolated objects

404 resonates with Bar’s proposal of “context frames” (Bar, 2004), according to which an object’s

405 memory representation captures, for instance, other associated objects and their relative position

406 to each other. In line with this, it has been shown that single object processing involves the

407 activation of a wide and complex set of information, such as an object’s occurrence in relation to

408 other objects both in vision and in language (Bonner & Epstein, 2021).

409 On the other hand, the flexibility shown by the hierarchical organization and the

410 resemblance of object representations between “Action task” and “No task”, revealed the

411 importance of action and action preparation in default visual object processing. Already the

412 ecological approach to visual perception proposed by Gibson (Gibson, 1986) emphasized the rapid

413 extraction of motor-related information from visual input (“affordances”), although in our case we

414 instructed participants to evaluate object similarity based on actions performed together or with

415 similar goals (e.g., cooking, cleaning, eating, reading), not simply on the similarity of their motor

416 output (e.g., tilting, lifting, handling, pressing, pushing). In general, these results seem to back the

417 proposal that action, perception, and memory are closely linked processes that support each other

418 in continuously updated cycles by purposefully responding to constantly changing task demands

419 (see Hayhoe, 2017).

420 To conclude, we replicated previous findings showing that the hierarchical organization of

421 objects in the environment is reflected in how objects are represented in the mind. Furthermore,

422 we showed that this mental organization is stable across tasks, yet flexibly prioritizing different task-

423 related information. We therefore propose that incorporating the hierarchical structure of our

424 environments in object representations has the feat of supporting object processing for efficient

425 interactions with them during goal-directed behaviour and is therefore a crucial part of the

426 unmatched human action and perception abilities.
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1 Supplementary Materials

2

3 Supplementary Materials 1 – Image dataset and data-driven hierarchy
4

5 Information on the image dataset

6 The dataset comprises 3499 unique images from 16 different scene categories (both indoor and

7 outdoor, natural and man-made, and including the 5 categories of the a priori assignment); the

8 images contain more than 48,000 object annotations grouped into 617 different categories

9 (including the 45 objects selected for the study). Annotations were made by 4 different workers

10 using the LabelMe tool (Russel et al., 2008), and were carefully cleaned from typos and synonyms

11

12 Procedure to extract data-driven hierarchy information

13 First, annotated and segmented data were pre-processed using MATLAB (MathWorks, 2018),

14 allowing the extraction of identity, coordinates and centroids of each object in the 2D pixel-space

15 of each image. Subsequent analyses were done using R (version 3.6.3, R Core Team, 2020). Second,

16 objects that have mainly a structural function (e.g., walls, windows, ceiling, doors, pipes) rather than

17 being relevant for the object-to-object relationship we were interested in investigating, were

18 discarded, leaving us with 567 unique object categories.

19 We then ran a clustering algorithm to find optimal grouping of objects in the images. The

20 algorithm was based on the partitioning around medoids clustering method and estimated number

21 of clusters using average silhouette width (pamk function from R package “fpc”, Hennig, 2020). In

22 this sense, we represented the objects in an image through their centroids and the image area as a

23 2D space.

1



24 After this procedure, we could measure object-to-object co-occurrence in images, in clusters

25 within an image, and also, considering objects’ area, the co-occurrence between anchor and local

26 pairs.

27

28 Supplementary Materials 2 – Analysis details
29

30 Formula of the GLMM and model specifications

31 Using R syntax, our model had this structure:

32

33 ᵄ�ᵅ�ℎᵄ�ᵆ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�ᵆ� ~ ᵆ�ᵄ�ᵆ�ᵅ� ∗ (ᵆ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� + ᵅ�ℎᵅ�ᵄ�ᵆ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�

34 + ᵅ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ� ᵆ�ᵆ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ� + ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ� ᵆ�ᵅ�ᵅ�ᵅ�ᵅ� + ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ� ᵅ�ℎᵅ�ᵄ�ᵆ�ᵅ�

35 + ᵄ�ᵅ�ᵅ�ℎᵅ�ᵅ�ᵅ�ᵅ� ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ�ᵅ� + ᵅ�ᵅ�ᵆ�ᵄ�ᵅ�ᵅ�ᵄ�ᵆ�ᵅ�ᵆ�) + (1 | ᵅ�ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵆ�ᵆ�) + (1 | ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�)

36 + (1 | ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵆ� ᵅ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ�)

37

38 We fitted the statistical models via maximum likelihood estimation, and continuous predictors were

39 scaled, as this typically improves model fit. For random effects, we included only an intercept term,

40 so that we followed the recommendations of Bates et al., (2015) about parsimony in random effect

41 structure (Bates et al., 2015).

42 For categorical predictors, we planned specific contrasts between conditions:

43 - for Scene condition, the contrast was set to same scene – different scenes;

44 - for Object type condition, the contrast was set to same object type – different object types;

45 - for Phrase condition, one contrast was set to same phrase – different phrases of the same

46 scene, while the other contrast was set to (same phrase and different phrases of the same

47 scene) – different phrases of different scenes. Since this last contrast is identical to same

48 scene – different scenes, and since the Scene condition and Phrase condition predictors are

2



49 highly correlated, we removed from the model the scene condition predictor and

50 incorporate its contrast in the phrase similarity predictor. This way, we removed

51 redundancies and reduced multi-collinearity to an acceptable level.

52 - for the Task predictor, we compared the effect of the measures between action task – no

53 task and between visual task – no task.

54

55 Supplementary Materials 3 – Factor correlations and VIFs in the main model

56

57 Sup. Fig. 1 – Matrix of correlations between the predictors used in the model

58

59

3



60 To evaluate potential multicollinearity in the model, we computed the variance inflation factors

61 (VIFs) for each term in the model, using the check_collinearity function in R (package “performance”;

62 Lüdecke et al., 2021). Typically, when VIFs are below 5, there is low correlations between predictors

63 and the model does not need any adjustment, as it was in our case.

64

65

66 Sup. Table 1 – Variance Inflation Factors (VIFs) for the predictors used in the main model

67
68
69
70
71
72
73
74

75

76

77
78

Term VIF
Task                                                   1.000

Object type condition                                   1.064
Phrase condition                                        1.238

Anchored co-occurrence                                 1.424
Co-occurrence in scene                                  1.487
Co-occurrence in phrase                                 1.421

AlexNet early layer                                      1.099
AlexNet mid layer                                       1.753
AlexNet late layer                                       1.737

Supplementary Materials 4 – Results of the model
79
80 The GLMM resulted to be singular, due to the random factor term (1 | ᵅ�ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵆ�ᵆ�) explaining no

81 variance, since this was already explained by the other two random factors

82 (1 | ᵅ�ᵄ�ᵅ�ᵅ�ᵆ�) and (1 | ᵅ�ᵅ�ᵅ�ᵆ�ᵅ�ᵆ�ᵆ� ᵅ�ᵄ�ᵅ�ᵅ�ᵅ�ᵆ�ᵆ�), that identify unique observations. Therefore

83 (1 | ᵅ�ᵄ�ᵅ�ᵆ�ᵅ�ᵅ�ᵅ�ᵅ�ᵄ�ᵅ�ᵆ�ᵆ�) random factor term was excluded from the final model.

84
85
86 Sup. Table 2 – Results of the GLMM

Predictors
(Intercept)
Action task – No task
Visual task – No task

β SE
-0.274     0.065
0.044     0.031
-0.332 0.030

z p
-4.215 <0.001
1.429        0.153

-11.038 <0.001
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Object type condition (same – different)
Phrase condition (same – different)
Scene condition (same – different)
Anchored co-occurrence
Co-occurrence in scene
Co-occurrence in phrase
AlexNet early layer
AlexNet mid layer
AlexNet late layer
Object type condition x (Action task – No task)
Object type condition x (Visual task – No task)
Phrase condition x (Action task – No task)
Phrase condition x (Visual task – No task)
Scene condition x (Action task – No task)
Scene condition x (Visual task – No task)
Anchored co-occurrence x (Action task – No task)
Anchored co-occurrence x (Visual task – No task)
Co-occurrence in scene x (Action task – No task)
Co-occurrence in scene x (Visual task – No task)
Co-occurrence in phrase x (Action task – No task)
Co-occurrence in phrase x (Visual task – No task)
AlexNet early layer x (Action task – No task)
AlexNet early layer x (Visual task – No task)
AlexNet mid layer x (Action task – No task)
AlexNet mid layer x (Visual task – No task)
AlexNet late layer x (Action task – No task)
AlexNet late layer x (Visual task – No task)

87

0.175     0.049
0.234     0.130
1.142     0.074
0.022     0.028
0.325     0.029
0.059     0.028
-0.067     0.025
0.095     0.031
0.196     0.031
-0.141     0.034
-0.052     0.034
0.064     0.086
0.012     0.085
0.049     0.049
-0.773     0.049
-0.017     0.019
-0.083     0.019
-0.102     0.019
-0.158     0.019
0.042     0.019
0.002     0.019
0.016     0.017
-0.053     0.016
0.019     0.022
0.151     0.021
-0.052     0.021
0.026 0.021

3.586 <0.001
1.800        0.072
15.335      <0.001
0.782        0.434

11.334      <0.001
2.111        0.035
-2.706        0.007
3.058        0.002
6.329       <0.001
-4.151      <0.001
-1.562        0.118
0.747        0.455
0.139        0.889
1.005        0.315

-15.926     <0.001
-0.893        0.372
-4.447      <0.001
-5.332      <0.001
-8.282      <0.001
2.204        0.028
0.106        0.915
0.990        0.322
-3.227        0.001
0.882        0.378
7.119 <0.001
-2.419        0.016
1.221 0.222

88

89 Additional bibliography
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