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Abstract

For medicine to fulfill its promise of personalized treatments based on a better un-

derstanding of disease biology, computational and statistical tools must exist to

analyze the increasing amount of patient data that becomes available. A particular

challenge is that several types of data are being measured to cope with the com-

plexity of the underlying systems, enhance predictive modeling and enrich molecular

understanding.

Here we review a number of recent approaches that specialize in the analysis of

multimodal data in the context of predictive biomedicine. We focus on methods

that combine different OMIC measurements with image or genome variation data.

Our overview shows the diversity of methods that address analysis challenges and

reveals new avenues for novel developments.

Keywords: Multimodal Modeling, Predictive Modeling, Multi-Omics, Machine

Learning, Personalized Medicine

1. Introduction

The development of personalized treatment for patients with any disease and

condition is a current ambition in the medical research field. With our access to
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diverse molecular and phenotypic readouts of human bodies, their tissues, and cells,

we hope to eventually understand their relationships and decipher all possible causal

mechanisms behind diseases to act upon them. However, at the moment, this still

seems like a distant goal. There is still much to be understood about the mecha-

nisms of diseases and why certain drugs work the way they do.

A big challenge along this path of discovery is the integration of patient data mea-

sured from multiple modalities (multimodal). In this review we summarize recent

computational advances for multimodal analysis of data for the following tasks: (i)

patient survival prediction, (ii) disease biomarker and subtype classification, (iii)

therapy response prediction, and (iv) clinical decision making (Figure 1).

1.1. Multimodal Data Types

For these predictive tasks, we consider combinations of five high-level classes of

data types. First, are genetic data that measure parts of the DNA sequence of pa-

tients, such as single nucleotide polymorphisms (SNPs) or copy-number variations

(CNVs) using SNP arrays, enriching for regions of interest using panel-based, whole-

exome, or whole-genome-sequencing (WGBS) approaches. These data allow us to

assess DNA sequence variation and link them to disease [1].

Second, proteogenomic measurements of gene products from the human genome

are a common source of measurement, as the activity of a subset of genes is of-

ten changed in diseased cells due to misregulation. Measuring the transcriptome

of human cells is most commonly done using RNA-seq these days [2, 3]. It allows

quantifying the expression activity of tens of thousands of transcripts made from

cells. Many different types of RNAs can be quantified in this way for example

messenger RNAs (mRNAs) or micro RNAs (miRNAs). After DNA transcription,

mRNA transcripts are converted into proteins, which can be measured with Mass

spectrometry (MassSpec) technologies some of which are directly applicable in a

clinical setting [4]. MassSpec can be quantitative and can measure up to thousands

of proteins in cells studying their protein synthesis dynamics [5].

Third, epigenomic data provides a useful source of information to investigate the

function of genomic regions. Epigenome activity differs between human cell types

albeit the DNA nucleotide sequence of these cells is the same. Epigenome activity

can be measured by detecting histone modifications or accessible chromatin using

different approaches [6, 7]. These measurements provide a genome-wide readout
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on accessible regions, where regulatory proteins, such as transcription factors, bind

which play an important role in diseases. Another important epigenomic variation

is DNA methylation (DNAm), a stable modification of the DNA, which can be mea-

sured from cells or liquid biopsies and with changes related to the occurrence of

many diseases [8].

Fourth, imaging of human body parts and cells is routine in many clinical applica-

tions and different technologies exist. For example, thin tissue sections, stained with

hematoxylin and eosin (H&E), are frequently used as a gold standard in pathology

to confirm the presence of certain diseases and are thus available for most patients.

To further solidify a diagnosis for some of the cases an IHC (immune histo chem-

istry) staining can be prepared in addition, where a certain protein is labeled by

an antibody. These stained tissue sections can nowadays be digitalized with slide

scanners and are called whole slide images (WSIs). Other technologies, such as Mag-

netic resonance Imaging (MRI), can be used to record living parts of patient bodies

such as organs or individual blood vessels. Each method has different advantages

concerning resolution, cost, and time involved and some clinical applications may

involve the generation of multimodal images using different technologies [9].

Finally, clinical data that is compiled as part of medical examinations can contain a

diverse set of measurements (e.g. blood pressure, blood glucose levels, or inflamma-

tory markers) or patient characteristics (e.g. sex, age). It also may contain a record

of a patient’s drug prescription schedule or the history of previous therapies that

may be utilized by models. Clinical data is used in daily routines to aid decisions

and thus is vital to be considered in multimodal methods.

Protogenomics
(Transcriptome, Proteome, …)

Images 
(WSI, CT, MRI, …)

Epigenomics
(DNA methylation, chromatin)

Genetics
(Exome, WGS, …)

Clinical

Therapy response

Survival prediction

Biomarker & subtype
classification

Clinical decision
making

MEDICAL PREDICTIVE TASKSMULTIMODAL METHODSDATA TYPESPATIENTS

Figure 1: Overview of multimodal data types and prediction tasks that are discussed

in this review.
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1.2. Resources for Multimodal Data

To be able to integrate data from different modalities one often needs to obtain

large datasets from existing resources [10]. Many such resources are created from

systematic datasets that are produced by large consortia. In the course of the papers

discussed the following consortia are important. For example, The Functional AN-

noTation Of the Mammalian genome (FANTOM) Consortium has generated many

proteogenomic datasets for analysis [11]. The International Cancer Genome Con-

sortium (ICGC) and The Cancer Genomics Atlas (TCGA) program [12] have gath-

ered measurements of all five data types discussed here (Fig.1). The international

human epigenomics consortium (IHEC) [6] has gathered diverse epigenome and pro-

teogenomic datasets. The Genotype-Tissue Expression (GTEx) [13] consortium has

measured genetic and RNA expression data from diverse tissues. Consortia for

pathological analyses that will collect and provide data are BigPicture (https://

bigpicture.eu) and PathLAKE (https://www.pathlake.org/our-partners/).

Finally, the UK Biobank [14] provides one of the largest datasets of genetic data

with additional image and clinical data currently available.

There are resources specialized for the data types. For example, the NHGRI-EBI

GWAS catalog harbors results from genome-wide association studies (GWAS) from

human genetic studies [15]. Many processed epigenome datasets can be downloaded

from the IHEC portal [16]. RadImageNet is a new resource specialized to enable

transfer learning efforts using deep learning derived models for the analysis of radi-

ology images [17]. The cancer imaging archive [18] holds mainly radiology images,

but also whole WSIs and metadata and the NCI Imaging Data Commons [19] holds

many different types of images from cancerous tissue.

Data from other resources that catalog interactions between gene products, i.e.

STRING [20], or between regulatory regions and genes, i.e. EpiRegio [21], are some-

times used as prior information for integration.

1.3. Computational Challenges in Integrating Multimodal Data

A holistic characterization of patients and model organisms, which is key for

progressing personalized medicine, requires the comprehensive integration of data

from all available sources. However, the complex nature of these heterogeneous

multi-modal data poses distinct challenges for successful integration in a predictive

setting.
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First, missing values are very common in omics data due to dropouts, the limited

sensitivity of measuring instruments, and patients missing appointments.

Second, in predictive medicine clinical data is often available in addition to molecu-

lar data - the efficient integration of this typically low-dimensional data with high-

dimensional omics data poses a challenge to many standard algorithms.

Third, often models need not only to have a high predictive power, but also be

interpretable. In particular for deep-learning based methods there is a trade-off

between discriminative power and interpretability, with those models with the high-

est predictive power often being black-box in nature. Related to this challenge is

the existence of a wealth of prior knowledge in the form of gene set annotations or

protein-protein-interaction networks. Integration of this knowledge into multi-omics

models is challenging but can not only aid interpretability but also boost model per-

formance.

A common strategy to address these challenges is representation learning (Figure 2).

In this modeling paradigm, un-observable latent variables are inferred from observed

high-dimensional data. For predictive tasks, these latent variables are learned such

that they are associated with an outcome of interest (e.g. survival or therapy re-

sponse). In multimodal representation learning, a joint representation across all

modalities is inferred that paints a comprehensive picture of the underlying biolog-

ical processes driving the outcome of interest. If available, prior knowledge e.g. in

the form of protein-protein interaction networks can further guide the inference of

interpretable latent representations. An explanation of all abbreviations used in the

manuscript can be found in table 3.

2. Overview of Multimodal Analysis Methods

2.1. Methods for Multi-Omics

With advances in high-throughput techniques for molecular profiling, omics data

- molecular data that comprehensively assess a set of molecules - has been becoming

more and more prevalent in the context of predictive biomedicine [22]. These data

quantify different aspects of the proteogenomic and epigenomic makeup of patients

and a plethora of methods has been developed to integrate these diverse data types.

In the following, we will focus on algorithms that were specifically developed to solve

one of the four predictive tasks outlined above.
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Figure 2: Representation learning for multi-omics data integration. Low-dimensional

latent variables (LVs, middle) are derived from multimodal, high-dimensional molec-

ular data (omics layers, left). Based on different techniques including deep neural

networks, autoencoders, or graph-based methods (integration method) and optionally

leveraging existing prior knowledge, LVs are inferred such that they are associated

with a clinical outcome of interest (right).

2.1.1. Predictive Multimodal Data Integration Methods

Generally, we may group predictive multimodal data integration methods into

two main categories – two-step or end-to-end approaches – depending on whether

the discriminative task is optimized directly or in a post hoc manner. A two-step

approach typically involves a preliminary decomposition of the observed data modal-

ities into an integrated and lower dimensional latent space. Subsequently, this latent

representation can be utilized to perform a supervised task in clinical settings such as

subtype prediction or survival analysis. Multi-omics factor analysis (MOFA) [23] is

a well-established statistical method for integrating single-cell multi-omics data. In-

spired by group factor analysis [24], MOFA infers latent factors that capture sources

of variability within and across different data modalities. MOFA was initially ap-

plied to patients of chronic lymphocytic leukemia profiled across multiple modalities

such as RNA expression, DNA methylation, and drug response. A recent study on

the proteogenomic characterization of acute myeloid leukemia (AML) applies a two-

step approach based on MOFA to identify a subpopulation of patients exhibiting

poor survival outcomes, that is characterized by a high expression of mitochondrial

proteins [25]. More elaborate frameworks combine multiple unsupervised modules
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and statistical tests before generating the relevant features for the discriminative

task such as survival analysis [26, 27, 28, 29]. Poirion et al. [30] propose an en-

semble framework of deep learning and machine learning approaches for analyzing

patient survival times. Normalized features of each modality are passed to the cor-

responding autoencoders, which transform the high-dimensional input into compact

latent codes. A second set of modules applies a univariate Cox proportional hazards

model [31] for each feature inferred from the bottleneck part of the autoencoders

and selects only significant features based on a log-rank test. Next, a Gaussian mix-

ture model detects patient subpopulations with clinical relevance regarding survival.

Finally, a set of supervised classifiers predicts the disease subtype in new patients.

We refer to [32, 33, 34] for a more comprehensive overview of unsupervised methods

for multimodal integration.

Due to being very general in their approach, these methods perform relatively poorly

in specific prediction tasks when compared to related end-to-end methods, which

attempt to learn tailored representations for the task at hand. The main difference

between end-to-end approaches when compared to two-step approaches is the asso-

ciation of the observed multimodal data with the ground truth targets during the

optimization procedure.

In the next section, we focus exclusively on end-to-end methods that attempt to

perform classification, e.g. mortality, short- and long-term survival, and therapy re-

sponse, or perform time-to-event analysis such as survival prediction. There are,

however, approaches that accommodate both classification and survival analysis

tasks simultaneously. Zhang et al. [35], for instance, propose OmiEmbed, an end-

to-end multi-task deep learning framework for performing supervised tasks in multi-

modal data. OmiEmbed is based on a variational autoencoder (VAE), which serves

as an embedding module for mapping the observed modalities onto a lower dimen-

sional and non-linear manifold. The inferred latent code from each encoder is then

concatenated into a single latent code, which serves as the input for further down-

stream analysis tasks. The authors demonstrate the feasibility of their approach to

disease subtype classification and prognosis prediction on a brain tumor multi-omics

dataset and the Genomic Data Commons (GDC) pan-cancer dataset.
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2.1.2. Classification

DNN-based approaches. Sun et al. [36] propose a deep learning framework for inte-

grating multimodal data (MDNNMD) for the prognostic prediction of breast cancer.

Their approach incorporates individual deep neural networks (DNNs) for extracting

non-linear representations from each observed modality, which are then aggregated

by a score-fusing module. The aggregation function implements a weighted lin-

ear combination of the output from each DNN to balance the contribution of each

modality for the discriminative task. The authors validate their approach to clas-

sifying short- and long-term survivors on the METABRIC and TCGA dataset of

breast cancer patients, which includes gene expression profiling, copy number varia-

tion (CNV), and clinical information. Similarly, Lin et al. [37] suggest concatenating

the latent features inferred from each subnetwork before passing the resulting vector

to a final classification network. A related model for drug response classification,

MOLI [38], introduces an additional constraint in the objective function that encour-

ages responders to the drug to be more similar to each other than to non-responders.

Alternative approaches impose other statistical constraints on the latent space.

AE-based approaches. Lee and van der Schaar [39] introduce DeepIMV, a deep learn-

ing framework based on the principle of information bottleneck to learn a joint latent

space that maximizes the mutual information between the latent code and the pre-

diction target, while at the same time minimizing the mutual information between

the observed modalities and the latent code. The reasoning behind this dual op-

timization objective is to ensure that the latent code depict a minimal sufficient

statistic of the observed modalities for the observed label, while pruning all ad-

ditional task-irrelevant information. The authors validate their approach on two

real-world multi-omics datasets from TCGA and the Cancer Cell Line Encyclope-

dia, comprising multiple modalities such as mRNA expression, DNA methylation,

DNA copy number, microRNA expression, and reverse phase protein array, where

they attempt to predict the 1-year mortality and drug sensitivity of patients, re-

spectively. Alternatively, MOSAE [40] apply a similar approach to DeepIMV but

compute an average of the latent code inferred from each modality instead of employ-

ing a product of experts module. Alternative approaches rely on graph-based data

structures to better capture feature- and sample-wise similarities. Moreover, sources

of domain knowledge in computational biology typically support graph structures,
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e.g. protein-protein interaction networks [20], and can be effectively incorporated to

further facilitate interpretability.

Graph-based approaches. Ma and Zhang [41] propose a multi-view factorization au-

toencoder (MAE) architecture that accommodates prior information in terms of

molecular interaction networks across the observed features. This poses an addi-

tional constraint on the inferred feature representation by the decoder, by encour-

aging connected features to have similar numerical embeddings. The authors predict

the progression-free interval (PFI) and the overall survival (OS) events on two pa-

tient cohorts from the TCGA database, namely the bladder urothelial carcinoma

(BLCA) and brain lower-grade glioma (LGG), each comprising gene expression,

miRNA expression, protein expression, and DNA methylation as well as clinical

data. Wang et al. [42] introduce a multimodal graph convolutional network (GCN)

framework for biomedical classification. After applying a preprocessing step for re-

moving noisy and technical artifacts in each data modality, MOGONET utilizes

GCNs for learning a sample-wise similarity graph, which serves as a basis for select-

ing discriminative features and better learning of relationships between nodes, i.e.

samples. Finally, MOGONET learns the correlation structure across modalities by

employing a view correlation discovery network (VCDN) to integrate the relevant

information originating from each modality and provide the final features for the

prediction task. The authors apply MOGONET on several classification tasks such

as predicting patients with Alzheimer’s Disease in the ROSMAP dataset, predicting

the grade in low-grade glioma (LGG) patients, and classifying the cancer type in

the kidney (KIPAN) and breast (BRCA) cancer patients. Each sample spans across

three modalities: mRNA expression, DNA methylation, and miRNA expression.

Trustworthy approaches. Addressing crucial requirements on the trustworthiness of

predictive models in safety-critical tasks, Han et al. [43] propose a deep learning

framework for trustworthy multimodal classification in safety-critical applications.

Their approach, termed Multimodal Dynamics, quantifies for each sample its cor-

responding feature-level and modality-level informativeness for the predictive task.

They introduce a regularized gating module to achieve sparse feature representations

via the l1-norm, and implement True Class Probability (TCP) as a criterion to assess

the classification confidence of each modality. A low prediction confidence translates

to higher uncertainty, meaning the corresponding modality provides little informa-
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tion and vice versa. The authors benchmark their approach against a comprehensive

benchmark of competitive models including MOGONET [42], and demonstrate the

utility of their method on several datasets from TCGA, and ROSMAP.

2.1.3. Survival

DNN-based approaches. Huang et al. [44] propose a deep learning framework for

performing survival analysis with multi-omics neural networks (SALMON). In or-

der to significantly reduce the number of features during the analysis, while pre-

serving relevant information, the authors compute eigengene matrices of gene co-

expression modules in an intermediate step, before passing the result to the neural

network. Each neural network module learns a latent representation by performing

consecutive non-linear transformations to the input features of its corresponding

modality. The set of latent representations is then concatenated with additional

clinical information into a feature vector, which serves as the input of a Cox re-

gression module for predicting overall survival of the patients. The authors validate

their method on breast cancer (BRCA) patients comprising several modalities like

gene expression, miRNA, as well as demographic and clinical information such as

estrogen or progesterone receptor status. A hierarchical factorized bilinear fusion

strategy is proposed by Li et al. [45] with the HFBSurv for the integration of im-

ages, gene expression, CNV and clinical information in the context of breast invasive

carcinoma survival prediction. The decomposition of the embedding problem into

multiple levels reduces the trainable parameters and consequently the model com-

plexity. A modality-specific attentional factorized bilinear module (MAFB) captures

the modality-specific relations and a cross-modality attentional factorized bilinear

module (CAFB) is used for describing the relations between modalities.

AE-based approaches. Tong et al. [46] extend the architecture in [44] by introducing

two multimodal integration networks. Their first model, ConcatAE, is similar to

SALMON in that it performs a concatenation of the inferred latent features during

optimization. However, the authors employ an autoencoder pipeline which intro-

duces a trade-off in the loss objective, by balancing the reconstruction error of the

input features with the discriminative error generated by the survival prediction

task. In addition, the authors omit the gene co-expression analysis, and instead

perform a PCA or select highly variable features to reduce the input dimensional-

ity. Their second proposed model is a cross-modality autoencoder, CrossAE, which
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encourages each data modality to reconstruct the input features of complementary

modalities. The authors validate their approaches on synthetic and real data of

breast cancer patients from the TCGA database, incorporating gene expression,

DNA methylation, miRNA expression, and copy number variation.

Several other methods experiment with different approaches for integrating the in-

termediary features of each modality network into a single latent code representing

each patient numerically. Cheerla and Gevaert [47] introduce a similarity loss that

maximizes the cosine similarity between the latent feature vectors of the same sam-

ple, i.e. patient, while at the same time minimizing the cosine similarity of the latent

feature vectors of different patients. Vale-Silva and Rohr [48] follow a simpler ap-

proach for encoding each patient by computing the maximum along each dimension

in the latent space, effectively allowing only one modality to contribute in each

latent dimension. While both models perform an end-to-end multimodal survival

analysis, [47] employ a Cox-PH approach, whereas [48] rely on a discrete-time sur-

vival prediction method for cancer patient prognosis estimation. In recent work,

Wissel et al. [49] attempt to compare different integration techniques in a unified

benchmark, and suggest a hierarchical autoencoder architecture that outperforms

the current state-of-the-art in survival prediction from multimodal data. Specifically,

the authors compare several approaches in combining latent features such as simple

concatenation, mean-pooling, and max-pooling. The authors find that incorporating

more modalities during the analysis does not necessarily translate to better results.

On the contrary, this may even diminish the overall performance. The experiments

suggest the choice of the integration method is significantly less important than the

choice of the right modalities to include in the analysis. However, when including all

the available modalities, the hierarchical autoencoder architecture outperforms all

other baselines. The authors claim that this approach casts the problem as a group-

wise feature selection problem by introducing a soft modality selection mechanism,

thereby focusing the optimization on the most informative modalities.

Graph-based approaches. In contrast to most of the aforementioned methods, which

tackle the challenge of integrating multiple views by introducing individual feature-

extracting modules followed by an aggregation step, Althubaiti et al. [50] rely on

graph convolutional networks and graph-based domain knowledge to achieve data in-

tegration. The authors introduce DeepMOCCA, an end-to-end deep learning model
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that integrates multi-omics data by incorporating domain knowledge of cross-omic

feature networks such as protein-protein interaction networks [20], followed by a

Cox-PH module. DeepMOCCA relies on an attention mechanism that propagates

predictions back to individual features, thereby identifying cancer drivers and prog-

nostic markers of clinical relevance.

2.2. Methods for Combining Genetic and Other Data

Previously we introduced universal methods that combine multimodal data. Now

we want to focus on an important type of data when it comes to medical analysis:

the measurement of genetic mutations, such as those derived from SNP arrays,

exome, or whole-genome sequencing. While the occurrence of SNPs can be modeled

as a feature matrix and included in other methods mentioned thus far, there are

other types of multimodal methods, that are specialized to handle properties of

genetic data. For example, SNPs that are in the genomic vicinity often show genetic

correlation due to linkage disequilibrium. While informative, the genome is, mostly,

static in cells, and understanding the cellular context in which genomic mutations

are relevant and which genes are important for a disease are challenges. Thus, other

types of data need to be leveraged to address those questions. We will illustrate

different methods that combine the interpretation of genome data in clever ways

with image or epigenome data.

2.2.1. Genetic Data and Quantitative Traits from Images

Images of human body parts constitute a rich source of information to reveal

parameters of disease, and despite many advances in automated analysis of images,

there are novel ways in which images can be combined with genome data.

Commonly, two-step approaches are used to combine imaging-derived quantitative

patient phenotypes with genetic mutation data if they are available in large quan-

tities. Pirruccello et al. [51] use UK Biobank cardiac MRI images to train a deep

learning classifier that can predict the diameter of human aortas. They predict the

thickness of the aortas for 38K participants from the UK Biobank in order to con-

duct a genome-wide association analysis (GWAS) and identify correlated genetic

markers. They are able to discover over 100 loci related to aorta size and use the

combination of genetic markers and their predicted scores to derive new polygenic

risk scores for aortic disease risk. A similar approach was done using brain imaging

by deriving brain phenotypes, such as grey matter cortical thickness or structural
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connectivity from images. For each of these phenotypes associated SNPs are found

using a GWAS, revealing novel genomic loci related to brain disorders [52].

Building on this general idea, Kirchler et al. introduce the concept of transferG-

WAS [53]. Instead of quantifying human-visible phenotypes from images, they argue

that CNNs can learn features that may go beyond previously known patterns. They

first learn a CNN feature extractor on an image training dataset. Then the image

representation in the latent states of the CNN are interpreted as phenotypes and are

used for a classical GWAS analysis using statistical methods, essentially transferring

an image-derived quantity to reveal genetic associations. They show that this kind

of approach reveals novel loci related to eye-related diseases and traits.

A different type of method that uses image data is the DeepGestalt and Gestalt-

Matcher software [54, 55]. These are deep-learning based methods that predict the

occurrence of rare diseases in patients from their facial images. Training machine

learning models for diagnosing rare diseases is particularly hard, due to the lack of a

large dataset. Computational prediction of a patient’s disease from facial images can

be combined with exome-seq data and assessment of the clinical phenotypes (from

a physician’s inspection) to improve the prediction of rare diseases by supervised

classification [56] in a method called PEDIA.

As the above-mentioned approaches often need a large cohort of image and genetic

data, which is not standard, the number of published studies is limited. However,

with the availability of large paired datasets, e.g. the UK Biobank [14], more de-

tailed methods for their analysis can be developed. Notably, the proposed methods

for these problems are two-step approaches and do not employ tailored end-to-end

approaches, thus providing ample opportunity for improvement.

2.2.2. Genetic and Epigenome Data

The cell-type specificity of epigenome data can be exploited to reveal the con-

tribution of different cell types and mutations to diseases. For example, partitioned

LD-score regression allows estimating the enrichment of genetic heritability of a

phenotype using different genomic regions using statistical approaches [57]. These

regions can be defined by epigenomic data or transcriptome data. Alternative for-

mulations work particularly well for single-cell expression data in addition to the

GWAS data [58].

Another challenge is to predict disease genes for complex diseases from the genetic
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mutation data, meaning genes that are causally connected to the disease, and war-

rant further experimental investigation in relevant cell types and disease models to

possibly aid clinical decision-making. A variety of approaches exist, such as methods

that utilize expression-QTLs to reveal disease genes using different approaches [59]

or exploit co-localization of eQTLS and SNPs [60]. Another example is the EPIS-

POT algorithm, which can be used to combine mutation data with epigenome data

to predict molecular traits using a probabilistic graphical model [61] to investigate

individual loci in more detail. This can be used to discern the complexity of hotspots

of associated genetic mutations. Other methods specialize in using a large set of in-

dependent evidence in the form of multimodal information to prioritize genes most

likely connected to the disease of interest. For example, the iRIGS risk gene priori-

tization method uses a Bayesian framework to combine several types of information.

Their problem formulation returns the gene in a GWAS locus, a genomic window

around a significant GWAS SNP, which has the strongest association among the

multimodal data and is close within a gene-gene network [62].

2.3. Methods for Combining Histopathological Images and Other Data

Histopathological whole slide images (WSIs) contain information on the tissue

and cell morphology while they also provide information on the microenvironment

together with information on cell neighborhoods. This information is completely

distinct from genomic, radiology, and clinical data. So, intermediate and late fusion

techniques are more suited for images in combination with other data types com-

pared to early fusion techniques (no intermediate representation is learned, and pure

features are used as an input for a single learner), as they have the advantage to

handle feature imbalances, missing modalities and especially the huge heterogeneity

between the different extracted features. Late fusion approaches combine decisions

made by models trained by different data modalities and intermediate fusion tech-

niques learn a representation, which is fused in a later branch of the network [63].

WSIs are very large in size (˜1GB per image, despite jpeg compression), and contain

tens of thousands of pixels, which makes it hard to process the whole image at once.

In the case of deep learning the default strategy is to split the WSI into several tiles

that are processed individually [64]. A patient-level diagnosis could e.g. be achieved

by a simple consensus [65] or multiple instance learning(MIL) [66]. However, recent

approaches process directly the complete WSI, but only with a minor performance
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benefit [67].

In general computational methods could help to overcome intra- and inter-observer

variabilities and the integration of several datatypes has the potential to increase

the performance of algorithms, which later can be used as decision support tools. In

contrast to the well-established predictions, which are based solely on histopatholog-

ical WSI data [65, 66], models based on multi-modal data are not yet well explored

in the field of computational pathology at the moment [68]. But next to the fusion

of different data modalities of course the fusion of different stainings is an upcoming

question. For instance, Dwivedi et al. [69] proposed a method where a graph NN

extracts embeddings from each stain, which are subsequently concatenated and used

as an input for fully connected layers in order to predict the final score.

Image patches
C

Genomic features

D
Embedding Guided

embeddings
Prediction

Disease
Risk

Survival

Figure 3: Multimodal data fusion. Whole-slide images of a tissue (A) are segmented

into smaller patches (B). (C) Image patch and genomic feature-specific embeddings

are learned. (D) Multimodal-guided embeddings and concatenation allow prediction

of survival or disease risk.

2.3.1. WSIs and Molecular Data

One of the big drawbacks of integrating WSIs with molecular data is the fact

that molecular data is in many cases not available during routine diagnostics and

is only generated for research or clinical trials. Thus multi-modal data integration

of molecular data together with WSI data from pathology is at an early stage: For

example, a recent review from 2022 of Schneider et al. [70] have only identified 11

relevant articles in the timespan of 2015 to 2020 in the field of combining CNN-

processed WSI images, which is the state-of-the-art methodology in computational

pathology, and molecular data (genomic and epigenomic DNA or transcriptome

data). On the one hand, the combination of different data modalities improved

the performance of all described algorithms in comparison to the individual data

types. For data fusion, methods such as direct incorporation of features into fully
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connected layers or more advanced methods like tensor fusion or LSTM (long short

term memory) are used. On the other hand, most of the 11 studies lack an external

test dataset, indicating that little is known yet on the transferability and robustness

of these algorithms.

Chen et al. [71] propose an interpretable, multimodal learning framework called

MCAT (Multimodal Co-Attention Transformer) that can learn a dense co-attention

mapping between WSIs and genomics to predict survival outcomes and enable in-

terpretability (Fig. 3). The proposed model embeds the different modalities via

a genomic-guided co-attention (GCA) mechanism. Genomic features and image

patches encoded as bags are forwarded to the attention layer and the set-based MIL

Transformers. Tests on 7 different datasets reveal promising outcomes [71]. The

same authors have also extended their method and now use a self-normalizing net-

work (SNN) for molecular feature extraction and the Kronecker Product for fusion,

which can recognize interactions between the different modalities. The results of 14

cancer types are stored in an open access database (PORPOISE) for further inves-

tigations and attention- and attribution-based interpretability are visualized [72].

Additional recent work by Vale-Silva and Rohr [48] attempts to integrate six differ-

ent data modalities: tabular clinical data, mRNA expression, microRNA expression,

DNA methylation, gene copy number variation, and WSI data with multiple neural

networks. Every submodel (CNNs for the images and fully connected feed-forward

networks for other data) is dedicated to one data type to extract feature representa-

tions, which are fused in an intermediate manner and passed into a common network

that estimates survival. The MultiSurv model architecture achieves high prognostic

accuracy for multiple cancer types, while being able to handle missing data.

2.3.2. WSIs and Radiology Data

Combining WSIs with images from radiology is very promising, as macroscopic

and microscopic features are combined. The importance of this data integration

task is also reflected by the fact that recently a challenge was initiated on the sub-

type classification of brain cancers using 3D MRI images in combination with WSIs

(CPM-RadPath 2019 and 2020): Within this challenge Yin et al. [73] was ranked

first for the validation set. Here for every data modality a separate network is trained

first to separate subtypes: the tumor is segmented before classification in the MRI

images using a 3D-CNN and for the WSIs irrelevant regions (normal regions with
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a low number of cell nuclei) are excluded before classification. For the final classi-

fication, the features of both modalities are fused by a linear weighted module. A

newer method, which was also tested against this data, needs no segmentation of the

MRI images and performs better for the test set [74]. The authors trained separate

CNNs for the subtype prediction and averaged the output probabilities to directly

fuse their individual decisions. In addition, they performed a two-step approach for

the classification, first, they separate Glioblastomas from the rest and then differen-

tiated between the remaining Oligodendrogliomas and Astrocytomas, because the

latter two are much more similar to each other in comparison to Glioblastomas.

Other recent works consider the integration of pathology and radiology data: al-

ready an early fusion approach with gradient-boosted decision trees using features

directly extracted from MRI images and WSIs outperforms models that were exclu-

sively trained on one data modality in predicting the tumor regression grade (TRG)

in rectal cancer [75].

Boehm et al. [76] integrated not only image information from WSIs and CT images,

they also included the HRD value, a clinicogenomic feature that is calculated based

on gene panel sequencing, to stratify the patients according to their overall survival.

The combination of these three data types improved the performance significantly

compared to the individual modalities. However, using only two data modalities

(radiology and pathology, but not the HRD value) also yielded similar results. Each

datatype is processed individually to extract features and for data integration, a late

fusion is chosen: For each data modality a Cox model is trained to infer the hazard

for the individual patients and a multivariate Cox model integrates this information

afterward. For the WSIs for example the tissue type of individual tiles is inferred by

a CNN model and the cell nuclei were detected, based on that information the nuclei

and tissue type features (serving as input for the Cox model) were calculated [76].

Another example by Schulz et al. [77] uses an intermediate fusion to integrate radiol-

ogy (CT/MRI scans) and WSI data: individual images are all processed by a CNN,

the individual network outputs are concatenated by an attention layer and a fully

connected layer is used to e.g. perform binary classification of 5-year disease-specific

survival in renal cancer. Special for this approach is, that two CNNs for histopatho-

logical data are used to capture information at different resolutions. Similar to the

previous paper the addition of simple genomic data (presence and absence of the 10

most frequent mutations) did not increase model performance further [77].
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2.3.3. WSIs and Clinical Data

Similar to molecular and radiology data, the addition of clinical data to WSIs

can increase model performance. For these kinds of data integration tasks, it is im-

pressive that already few clinical features may improve the predictions. For example

to identify the origin of a cancer with an unknown primary (CUP) a multiclass, mul-

titask, multiple-instance learning approach using a CNN encoder and an attention

module was suggested. Before the final classification layer clinical data is concate-

nated: in this case, only the sex as a binary variable is added, adding additional

features (biopsy site) showed again reduced performance [78].

Nevertheless, other reports use many clinical features in addition to the WSIs suc-

cessfully. Yan et al. [79] used 29 clinical features, including information on sex,

personal and family disease history, and the potential tumor itself. Features of the

clinical data are extracted using a denoising autoencoder and image features are

extracted by a richer fusion network, a CNN where after several convolution blocks

an average pooling is performed and features are concatenated. The final decision is

made via an intermediate fusion by three fully connected layers using all generated

features as input [79].

However, reports on data integration of WSIs and clinical data are not always suc-

cessful. For example, it is reported that for the skin cancer classification a WSI-

based CNN classifier performed better than those where the image information was

fused to clinical data (e.g. sex, age, site of the lesion) using the concatenation or

Squeeze-and-Excitation approach. In this case, a naive approach with a late fusion

performed best, where the result of a CNN classifier, using single tiles of the WSI,

was simply replaced by a random forest classifier using the clinical data in case the

output score of the CNN is below a certain threshold [80].

3. Summary and Outlook

In this review, we are not able to comprehensively reconstruct the historic use

of multimodal methods for any of the data combinations studied. Instead, we want

to highlight recent developments and interesting methods for combining multimodal

data, as we believe this is a universal challenge for all diseases or other phenotype

studies of interest. To summarize the key models that have emerged from those

recent developments, we give an overview in tables 1 and 2, where we group algo-

rithms by application and characterize them with a brief method description, as well
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as the specific data types they integrate.

Tremendous progress has been made in recent years in developing new algorithms

for multimodal data integration in predictive modeling tasks, mainly by leveraging

advances in modern deep learning. However, the gap between the in silico modeling

bench and bedside remains wide [81, 82]. To narrow this gap and bring multimodal

predictive models into the clinic, several challenges have to be overcome. First, to

facilitate a translation into clinical application, models need to be trustworthy [83].

That is, practitioners need to be able to rely on a model’s predictions throughout

its life cycle. This does not only imply a good in-distribution generalization perfor-

mance on data from the same patient cohort but also transferability to other cohorts

that may exhibit some degree of distribution shift [84] as well as robustness to erro-

neous inputs. Importantly, for tools to be applied in a clinical setting, they must be

able to reliably estimate their uncertainty and communicate to a practitioner when

they “don’t know” [85].

A second, related challenge is explainability. For many biomedical applications,

a good predictive power of a black-box model is not sufficient: practitioners also

need to know why a model has made a specific prediction, a prerequisite for ensur-

ing human oversight and facilitating accountability. While this is currently mainly

being addressed via co-attention mechanisms [71, 72], a plethora of algorithms for

explainable AI has been developed in the context of single-view methods; the gen-

eral mechanisms of these models are also applicable in many multi-modal modeling

approaches and we refer to a recent survey on explainable AI approaches in medicine

for a detailed overview [86]. A third challenge for translational multimodal modeling

is for analyses to be privacy-preserving. While the use of multimodal data can often

lead to improved predictive performance, caution must be taken when storing or

allowing access to those. Individual data types could be exploited to re-identify the

patient [87, 88, 89], which may then be used to investigate molecular details of a

patient in other data layers. Thus a topic that will gain more attention in the future

will be the data-privacy secure analysis of multimodal data.

While method development has focused on common data modalities, such as

proteogenomics and imaging, new technologies have led to a rise in novel data types

including spatial transcriptomics [90], proteome sequencing [91] and single-cell pro-

teomics [92]. To date, only the first attempts have been made to develop tools

integrating such data in an unsupervised manner via a clustering approach [93].
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Developing novel predictive algorithms for data integration that generalize to these

novel data types will lead to ever more powerful tools in many areas of predictive

biomedicine.

However more data does not always lead to better models. It is important to

choose the modalities wisely and to ensure that they (at least have the potential)

to contain complementary information for the question at hand. Therefore, fu-

ture research must also address in which data analysis scenarios extension to more

modalities may be helpful, as additional data leads to increased costs and analysis

time. Even so, given that many processes and genes remain unknown for the ma-

jority of diseases, we believe that multimodal data integration methods will play an

important role in future discoveries.

Acknowledgements

This work has been supported by the DZHK (German Centre for Cardiovascular

Research, 81Z0200101) and the Cardio-Pulmonary Institute (CPI) [EXC 2026] ID:

390649896 (NK,MHS), DFG SFB (TRR 267) Noncoding RNAs in the cardiovascu-

lar system, Project-ID 403584255 (MHS) and DFG Proteo-genomische Charakter-

isierung des diffus großzelligen B-Zell-Lymphoms, Project-ID: 496906589 (FB). We

acknowledge funding from the Alfons und Gertrud Kassel-Stiftung as part of the

center for data science and AI (NK). NF has been supported by the Mildred Scheel

Career Center (MSNZ) Frankfurt.

Co-funded by the European Union (ERC, TAIPO, 101088594 to FB). Views and

opinions expressed are however those of the authors only and do not necessarily

reflect those of the European Union or the European Research Council. Neither the

European Union nor the granting authority can be held responsible for them.

20



Application Method Description
Data Types

Reference

Genetic Proteogenomic Epigenomic Images Clinical

Biomarker and Subtype Prediction

Prediction of aortic sizes and aortic disease risk CNN X X Pirruccello et al. [51]

Fine mapping of genetic loci Probabilistic graphical model X X X Ruffieux et al. [61]

Prediction of disease risk genes in Schizophrenia Bayesian model X X X Wang et al. [62]

Prediction of retinal related genes CNN X X Kirchler et al. [53]

Classification of breast cancer subtypes DL, latent feature concatenation X X X Lin et al. [37]

Classification of multiple disease subtypes AE, uncertainty quantification X X Han et al. [43]

Clinical Decision Making

Prediction of rare diseases DL, SVM X X X Hsieh et al. [56]

Classification of brain cancers CNN, linear weighted module X Yin et al. [73]

Prediction of the cancer origin of unknown primary CNN, multiple instance learning X X Lu et al. [78]

Classification of tumor type and survival prediction AE, multi-task learning X X X Zhang et al. [35]

Classification of multiple clinical outcomes AE, latent feature averaging X X X Tan et al. [40]

Classification of multiple clinical outcomes AE, feature interaction network X X X X Ma and Zhang [41]

Classification of patients with Alzheimer’s disease GCN, correlation discover network X X Wang et al. [42]

Table 1: Overview of different algorithms for multimodal data integration for biomarker and subtype prediction and clinical decision making.

Methods are grouped by application tasks, characterized with a brief method description, as well as the specific data types they integrate.
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Application Method Description
Data Types

Reference

Genetic Proteogenomic Epigenomic Images Clinical

Survival Prediction

Prediction of survival for cancer patients DL, attention mechanism X X Chen et al. [71]

Prediction of breast invasive carcinoma survival DL, factorized bilinear model X X X X Li et al. [94]

Prediction of overall survival CNN, Cox model X X Boehm et al. [76]

Prediction of 5-year survival in renal cancer CNN, attention mechanism X X Schulz et al. [77]

Classification of breast cancer patient survival DL, linear weighted module X X Sun et al. [36]

Prediction of survival in breast invasive carcinoma DL, feature selection X X X Huang et al. [44]

Prediction of survival in breast invasive carcinoma AE, feature selection X X X Tong et al. [46]

Prediction of survival in pan-cancer data DL, CNN, Cox-PH X X X X Cheerla and Gevaert [47]

Prediction of survival in pan-cancer data DL, CNN, discrete-time surv X X X X Vale-Silva and Rohr [48]

Prediction of survival in bladder cancer and sarcoma AE, hierarchical X X X X Wissel et al. [49]

Prediction of survival in pan-cancer data GCN, feature interaction network X X X Althubaiti et al. [50]

Therapy Response Prediction

Classification of drug response in cancer patients DL, triplet loss objective X Sharifi-Noghabi et al. [38]

Classification of drug response and mortality AE, information bottleneck, PoE X X X Lee and van der Schaar [39]

Table 2: Overview of different algorithms for multimodal data integration for survival prediction and therapy response prediction. Methods are

grouped by application tasks, characterized with a brief method description, as well as the specific data types they integrate.
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Abbreviation Description

Data Types

SNP Single Nucleotide Polymorphism

CNV Copy Number Variation

mRNA messenger RNA

miRNA micro RNA

DNAm DNA methylation

WSI Whole Slide Image

Resources

FANTOM Functional ANnotation Of the Mammalian genome

ICGC The International Cancer Genome Consortium

TCGA The Cancer Genomics Atlas

CCLE Cancer Cell Line Encyclopedia

GDC Genomic Data Commons

IHEC The International Human Epigenomics Consortium

GTEx Genotype-Tissue Expression

GWAS Genome-Wide Association Studies

STRING Search Tool for the Retrieval of Interacting Genes/Proteins

ROSMAP Religious Orders Study/Memory and Aging Project

PORPOISE Pathology-Omics Research Platform for Integrative Survival Estimation

Modeling Approaches

LVM Latent Variable Model

DL Deep Learning

VAE Variational AutoEncoder

DNN Deep Neural Network

CNN Convolutional Neural Network

GCN Graph Convolutional Network

Models

MOFA Multi-Omics Factor Analysis

MOLI Multi-Omics Late Integration

MOSAE Multi-omics Supervised Autoencoder

MAE Multi-view Factorization AutoEncoder

MDNNMD Multimodal Deep Neural Network by integrating Multi-dimensional Data

MOGONET Multi-Omics Graph cOnvolutional NETworks

SALMON Survival Analysis Learning with Multi-Omics Neural Networks

HFBSurv Hierarchical Factorized Bilinear fusion for cancer survival prediction

DeepMOCCA Deep Multi Omics CanCer Analysis

MCAT Multimodal Co-Attention Transformer

Table 3: Abbreviations and their corresponding descriptions.
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[52] Stephen M. Smith, Gwenaëlle Douaud, Winfield Chen, Taylor Hanayik, Fidel

Alfaro-Almagro, Kevin Sharp, and Lloyd T. Elliott. An expanded set of genome-

30



wide association studies of brain imaging phenotypes in UK Biobank. Nature

Neuroscience, 24(5):737–745, may 2021. ISSN 1097-6256.

[53] Matthias Kirchler, Stefan Konigorski, Matthias Norden, Christian Meltendorf,

Marius Kloft, Claudia Schurmann, and Christoph Lippert. transferGWAS:

GWAS of images using deep transfer learning. Bioinformatics, 38(14):3621–

3628, jul 2022. ISSN 1367-4803.

[54] Yaron Gurovich, Yair Hanani, Omri Bar, Guy Nadav, Nicole Fleischer, Dekel

Gelbman, Lina Basel-Salmon, Peter M. Krawitz, Susanne B. Kamphausen,

Martin Zenker, Lynne M. Bird, and Karen W. Gripp. Identifying facial pheno-

types of genetic disorders using deep learning. Nature Medicine, 25(1):60–64,

jan 2019. ISSN 1078-8956.

[55] Tzung-Chien Hsieh, Aviram Bar-Haim, Shahida Moosa, Nadja Ehmke,

Karen W. Gripp, Jean Tori Pantel, Magdalena Danyel, Martin Atta Mensah,

Denise Horn, Stanislav Rosnev, Nicole Fleischer, Guilherme Bonini, Alexan-

der Hustinx, Alexander Schmid, Alexej Knaus, Behnam Javanmardi, Hannah

Klinkhammer, Hellen Lesmann, Sugirthan Sivalingam, Tom Kamphans, Wolf-

gang Meiswinkel, Frédéric Ebstein, Elke Krüger, Sébastien Küry, Stéphane
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