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We investigate the space-time dependence of electromagnetic fields produced by charged partic-
ipants in an expanding fluid. To address this problem, we need to solve the Maxwell’s equations
coupled to the hydrodynamics conservation equation, specifically the relativistic magnetohydrody-
namics (RMHD) equations, since the charged participants move with the flow. To gain analytical
insight, we approximate the problem by solving the equations in a fixed background Bjorken flow,
onto which we solve Maxwell’s equations. The dynamical electromagnetic fields interact with the
fluid’s kinematic quantities such as the shear tensor and the expansion scalar, leading to additional
non-trivial coupling. We use mode decomposition of Green’s function to solve the resulting non-
linear coupled wave equations. We then use this function to calculate the electromagnetic field
for two test cases: a point source and a transverse charge distribution. The results show that the
resulting magnetic field vanishes at very early times, grows, and eventually falls at later times.

I. INTRODUCTION

In heavy-ion collisions, intense transient electromagnetic fields are produced due to the motion of spectators,
reaching magnitudes of approximately ∼ 1018 − 1019 G at RHIC-LHC energies [1–7]. These intense electromagnetic
fields may give rise to many novel phenomena, such as chiral magnetic effect (CME), chiral separation effect (CSE),
etc [8–10]. Detecting these phenomena in heavy-ion collisions is still an ongoing process. It is well-known that the
bulk matter produced in heavy-ion collisions has low kinematic viscosity (η/s) [11–13] and is well-described using the
viscous relativistic hydrodynamics formulation [14–16]. The relativistic generalization of first-order hydrodynamics in
the Landau frame is acausal, so one needs to go to second-order in gradients of hydrodynamic fields to make the theory
causal [17]. On a similar footing, for charged fluids, the generic framework is that of relativistic magnetohydrodynamics
(RMHD) [18, 19]. As with uncharged fluids, the above framework has recently been extended to second-order in
gradients of fluids and fields [20–23]. Other theoretical developments [24–28] in this direction have also been made,
along with numerical implementation for a comprehensive study of the bulk dynamics [29–37]. For more detailed
discussions on the developments in the field of RMHD one can follow [18, 38].

Nonetheless, all previous analyses focused on calculating the generation of electromagnetic fields from moving
spectators. In Refs. [1, 39], electromagnetic fields generated by participants are calculated from the geometric overlap
region of the participants, using electromagnetic fields generated by the spectators. However, we believe that this
method can be improved upon. Since charged participants constitute the bulk of the flow, the electromagnetic field
generated by them requires thorough investigation, and that is the focus of our work. As previously mentioned, the
generic framework for studying the dynamics of charged participants is RMHD, which can be challenging and often
requires numerical simulation. Our approach here will be more modest, with a focus on analytical insights. To this
end, we approximate the problem by studying Maxwell’s equations in a charged background fluid flow, which we
take to be a simple one-dimensional Bjorken flow [40]. Eqs (44)-(49) are the main results of this work, generalizing
Maxwell’s equations on top of a Bjorken flow. Later, we use the mode decomposition of Green’s function to solve
these nonlinear coupled wave equations, with Eq.(65) being the solution. The present work provides exact results for
the electromagnetic fields for expanding fluid without relying on any time-dependent asymptotic expansion, which
is a common approach in literature. However, we make two key assumptions: (i) neglecting the influence of the
electromagnetic fields on the fluid flow, and (ii) setting all dissipative quantities, such as conductivity and diffusion,
to zero.

The paper is arranged in the following manner: we start with a recap to the basic equations Sec. (II) followed by
Sec. (III) which decribes the background model and the underlying assumptions, solution to the Green’s function
is described in Sec. (IV). Finally we discuss our results in the Sec. (V) followed by conclusion and outlook in the
Sec. (VI).
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II. BASIC EQUATIONS

We will now recap the fundamental equations that we will need later; their derivation can be found in [41, 42]. The
energy-momentum tensor of the fluid in the Landau frame reads

Tµνf ≡ εuµuν + p∆µν , (1)

where ∆µν is the spatial projection operator defined as

∆µν ≡ gµν + uµuν , (2)

and ε is the energy density, p the isotropic pressure and uµ is the fluid four-velocity respectively. As usual, the fluid
four-velocity is normalized so that uµuµ = −1.

The four-velocity uµ and projection operator ∆µν can be used to decompose the covariant derivative of uµ into
irreducible basic kinematic quantitites

uµ;ν = σµν + ωµν +
θ

3
∆µν − u̇µuν , (3)

where the shear tensor σµν , the vorticity tensor ωµν , the expansion scalar θ and the four-accleration u̇µ are defined as

σµν ≡
∆ α
µ ∆ β

ν

2
(uα;β + uβ;α)− θ

3
∆µν , (4)

ωµν ≡
∆ α
µ ∆ β

ν

2
(uα;β − uβ;α) , (5)

θ ≡ uµ;µ , (6)

u̇µ ≡ uµ;νu
ν . (7)

where σµνu
µ = ωµνu

µ = u̇µuµ = 0 by definition.
The first set of Maxwell’s equations are given as

Fµν;µ = −Jν , (8)

where Jν = Jµf + Jνext is the total charge four-current, i.e it contains both the charged current generted in the fluid
Jf and also that is generated from external source Jνext e.g., from spectators. The fluid charge current obeys the
conservation law

Jµf ;µ = 0. (9)

The second set of equations is a direct consequence of the existence of a four-potential and is given by the following
relation

Fαβ;γ + Fβγ;α + Fγα;β = 0 . (10)

As seen by an observer moving with four-velocity uµ, the electromagnetic field tensor can be decomposed into an
’electric’ (Eµ) and ’magnetic’ (Bµ) part defined by

Eµ ≡ gµαFανuν , (11)

and

Bµ ≡ 1

2
εµναβFαβuν , (12)

where εµναβ is the totally antisymmetric tensor with ε0123 =
√
−g. Using the definitions Eqs.(11) and (12), it can be

immediately deduced that

Eµu
µ = 0 , (13)

Bµu
µ = 0 . (14)
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Using the above definitions, the electromagnetic tensor Fµν can be projected onto the observer’s instataneous rest
frame in the following way

Fµν ≡ uµEν − Eµuν + εµναβu
αBβ . (15)

Similarly, the charge current can be decomposed into local charge density ρ ≡ ρf = −Jµuµ and charge diffusion
current V µ ≡ V µf = Jν∆ µ

ν ,

Jµ ≡ Jµf = ρfu
µ + V µf . (16)

Note that as mentioned in the introduction we will not consider any external charges and currents here, all of them
are of fluid origin, and for later convenience we will drop the subscript ’f ’.

Maxwell’s equations Eq.(8) and Eq.(10) can be decomposed into temporal and spatial parts using uµ and the
projector ∆µν yielding the following set of equations

Eµ;µ −Bµνωµν − Eν u̇ν = ρ , (17)

Bµν;µ − uνBαβωαβ − Eµ
(
ωµν + σµν −

2θ

3
∆µν

)
+ ∆ α

ν Ėα = −Vν , (18)

Bµ;µ − Eµνωµν −Bν u̇ν = 0 , (19)

Eµν;µ − uνEαβωαβ −Bµ
(
ωµν + σµν −

2θ

3
∆µν

)
+ ∆ α

ν Ḃα = 0 , (20)

where we have defined new antisymmetric tensors Bµν ≡ εµναβuαBβ , Eµν ≡ εµναβuαEβ .
The electromagnetic energy-momentum tensor is given as

Tµνem ≡ FλµF ν
λ −

1

4
gµνFαβF

αβ , (21)

and the total energy-momentum tensor of the system is given by

Tµν ≡ Tµνf + Tµνem . (22)

The divergence of Tµν is given as

Tµν;µ = 0 . (23)

These equations also imply that

Tµνf ;µ = F νλJf,λ . (24)

Projecting Eq.(24) in the direction of uν and ∆α
ν gives the following equations of motion

ε̇ = −((ε+ p)θ + EλVλ) (25)

u̇α =
1

(ε+ p)

(
∇αp+ Eαρ−BαλVλ

)
(26)

The second and third terms of Eq.(26) are the Lorentz forces which do work on the fluid. Here, we have neglected
dissipative forces arising from shear and bulk viscosity etc. Eqs.(17)-(20) and Eqs.(25)-(26), together with an equation
of state for the fluid completely describe the system under consideration provided consistent initial and boundary
data are given. In the next section, we will simplify these equations by ignoring the back-reaction of electromagnetic
fields on the fluid described in Eqs.(25)-(26).

III. BACKGROUND MODEL

The previous analysis is quite general given that the background evolution is specified, Eqs.(17)-(20) apply to a range
of physical situations. For example, in the absence of matter sources one can always set the observer’s acceleration to
zero. Similarly, if the fluid evolution is stationary and non-rotating we can set expansion scalar and vorticity tensor
to zero, etc. In the following we will assume that the background fluid is undergoing a longitudinal boost-invariant
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Bjorken expansion [40]. As well known the invariance under boosts is easily manifest by using Milne coordinates,
than the Minkowski coordinates, we will be using the former.

The line element in Milne coordinates (τ, x, y, η) is given as:

ds2 = −dτ2 + dx2 + dy2 + τ2dη2 (27)

Eq.(27) is manifestly invariant under the following combined symmetry SO(1, 1) ⊗ ISO(2) ⊗ Z2, namely boost-
invariance along the beam direction η, rotational and translational invariance in the transverse (x, y) coordinates and
reflection under η → −η. The flow consistent with the combined symmetry property is uµ = (1, 0, 0, 0). Similarly,
the only nonvanishing Christoffel symbols are: Γτηη ≡ τ , Γητη = Γηητ ≡ 1/τ . We also observe that Bjorken symmetry
implies ωµν = u̇µ ≡ 0, θ ≡ 1/τ and σµν ≡ diag(0,−1/(3τ),−1/(3τ), 2τ/3).

However, it should be noted that the generic anisotropy of the electromagnetic energy-momentum tensor causes
the Maxwell’s fields to be incompatible with the high symmetry of the Milne metric. When considering ideal Bjorken
flow- that is, in the absence of dissipation and effects of the electromagnetic field- Eq.(26) becomes trivially zero.
This is attributed to the expansion being boost invariant, thereby resulting in zero acceleration. In a similar vein,
Eq.(25) yields the well-understood Bjorken scaling ε ∼ τ−4/3 assuming squared speed of sound c2s = 1/3. If there
exists a back-reaction from the electromagnetic field impinging on the fluid, this will induce net acceleration. Such
acceleration will subsequently influence the electromagnetic fields as per Eqs.(17)-(20). Moreover, the influence of the
electric field will lead to modifications in Eq.(25), altering the conventional Bjorken scaling ε ∼ τ−4/3. For instance,
in [30], the authors utilized a 1+1-dimensional transversely homogeneous resistive MHD calculation without ignoring
any back-reaction to demonstrate that boost invariance is broken due to the ensuing self-consistent dynamics of matter
and electromagnetic fields.

Central to our discussion is an assumption. Given that the right side of Eq.(26), containing the Lorentz forces, is
multiplied by the factor 1/(ε + P ), we can introduce the inverse plasma β-parameter: β−1 ≡ B2

0/(2p0) responsible
for determining the relative strength. If the inverse plasma β-parameter β−1 � 1, we can ignore the back-reaction of
the electromagnetic field on the fluid. Since it is known that the strength of the electromagnetic field (that produced
by spectators in mid-central collision) decreases faster with an increase of collision energy, while the energy density
of the fluid is comparably higher with an increase in collision energy, it is expected that the β−1 is small at large
collision energy. Nevertheless, it could be possible that certain regions of the fireball, for example, the periphery of
the fireball can have large β−1 even at moderate energies. In the remainder of this section, we will work in this regime
and neglect any back-reaction of the electromagnetic fields on the background fluid.

Lastly, we assume that the fluid is an ideal insulator with vanishing conductivity and, hence, zero diffusion current
V µf according to Ohm’s law. This assumption is also not too bold since the conductivity of the plasma obtained from

lattice simulations is small, with σ/T = 8παEM/3 ' 0.06 [43], where σ is the conductivity, T is the temperature, and
αEM is the fine structure constant. However, for the sake of brevity, we keep this term in the following derivation but
drop it later when we discuss specific cases (see Sec. (V)).

With the above assumption, Eqs.(17)-(20) simplify to:

∂xEx + ∂yEy + τ−2∂ηEη = ρ , (28)

∂xBx + ∂yBy + τ−2∂ηBη = 0 , (29)

which are usual Gauss law for electric and magnetic fields. Similarly the equations for Faraday’s law can be given as:

∂τ (τBx) = −(∂yEη − ∂ηEy) , (30)

∂τ (τBy) = (∂xEη − ∂ηEx) , (31)

∂τ
(
τ−1Bη

)
= −(∂xEy − ∂yEx) , (32)

and equations for Ampère’s law are given as :

∂τ (τEx) = (∂yBη − ∂ηBy)− τV x , (33)

∂τ (τEy) = −(∂xBη − ∂ηBx)− τV y , (34)

∂τ
(
τ−1Eη

)
= (∂xBy − ∂yBx)− τV η , (35)

As mentioned in the introduction, we are interested in finding the wave equation of electromagnetic fields in this
expanding background. To realize the former, we first redefine the electromagnetic fields along with the charge and
currents in the following way: Ẽ(x,y) = τE(x,y), B̃(x,y) = τB(x,y) Ẽη = τ−1Eη , B̃η = τ−1Bη, and ρ̃ = τρ, Ṽ i = τ2V i.
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With the following redefinations, the Maxwell’s equation Eq.(28)-(35) simplify to :

∂iẼi = ρ̃ , (36)

∂iB̃i = 0 , (37)

∂τ B̃x = τ−1∂ηẼy − τ∂yẼη , (38)

∂τ B̃y = τ∂xẼη − τ−1∂ηẼx , (39)

∂τ B̃η = τ−1∂yẼx − τ−1∂xẼy , (40)

∂τ Ẽx = τ∂yB̃η − τ−1∂ηB̃y − τ−1Ṽ x , (41)

∂τ Ẽy = τ−1∂ηB̃x − τ∂xB̃η − τ−1Ṽ y , (42)

∂τ Ẽη = τ−1∂xB̃y − τ−1∂yB̃x − τ−1Ṽ η , (43)

Now, to get the wave equation we employ the following procedure, e.g, to get the wave equation for B̃x, we take the
∂η(Eq.(42)) and ∂y(Eq.(43)) and substitute the former in ∂τ (Eq.(38)) while making use of the constraints Eq.(36)
and Eq.(37). Similar procedure is carried for other components of electromagnetic fields and we have the following

�Ẽx = 2∂yB̃η − (∂xρ̃+ τ−1∂τ Ṽ
x) , (44)

�Ẽy = −2∂xB̃η − (∂yρ̃+ τ−1∂τ Ṽ
y) , (45)

�Ẽη = −τ−1∂τ Ṽ η − τ−2∂ηρ̃ , (46)

�B̃x = −2∂yẼη + ∂yṼ
η − τ−2∂ηṼ y , (47)

�B̃y = 2∂xẼη − ∂xṼ η + τ−2∂ηṼ
x , (48)

�B̃η = τ−2∂xṼ
y − τ−2∂yṼ x , (49)

where � is the d’Alembert operator in the Milne coordinates, defined as :

� ≡ ∂2τ + τ−1∂τ − τ−2∂2η − ∂2x − ∂2y . (50)

Eqs.(44)-(49) are the main results of this work. These equations, without the external charges and currents, can be
compared to the standard source-free wave equation in Minkowski coordinates [39], which does not have the additional
couplings between the field components appearing in the right-hand side as seen in the former coordinate system.
One interesting consequence of these coupling terms is that one can produce a magnetic field for a stationary charge
in an expanding medium without even having any charge current Ṽ i. The resulting magnetic fields are dictated
by the gradients of electric fields, which act as sources1. This will be discussed briefly in Sec. (V). The origin of
these terms can be traced back to the non-vanishing expansion scalar θ and shear stress tensor σµν in Eqs.(17)-(20).
We must also stress that the electromagnetic fields obtained from the solutions of these Eqs.(44)-(49) are not the
coordinate-transformed solution of electromagnetic fields in Minkowski coordinates. Unless one solves Eqs.(44)-(49)
with longitudinal fluid velocity vz ≡ uz/ut = tanh η in the latter coordinate, the solutions will differ (here uz and
ut are the components of the four-velocity in Minkowski coordinates). Since the velocity in Minkowski coordinates
is coordinate-dependent, the fields cannot be obtained simply by boosting from the rest frame to this frame. In the
following section, we shall solve Eqs.(44)-(49) based on mode decomposition of Green’s equation.

IV. SOLUTION OF THE WAVE EQUATIONS

To solve the non-linear coupled wave equation system Eqs.(44)-(49), we first notice that the longitudinal components
of the electromagnetic fields solely depend on external sources while the transverse components are dependent on the
gradient of the former. Therefore, we can solve the system of equations iteratively, by first solving for the longitudinal
components and then using this solution to find the transverse components. The equation for the longitudinal
components is a well-known problem in the literature [45–47], and is encountered in solving the Klein-Gordon equation
in Milne coordinates. We mention that often either the WKB procedure [48, 49] or the mode decomposition of Green’s
function [50, 51] is used to solve these equations, but we adopt the latter approach which leads to an exact solution.
For completeness, we outline our calculations in the paper.

1 The solutions to these equations in Minkowski coordinates are sometimes also called Jefimenko’s equations or Jefimenko-Feynman
formula [44].
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Using the 2-point Green function G(xµ;x′µ) between xµ ≡ (τ,x⊥, η) and x′µ ≡ (τ ′,x′⊥, η
′) we make the following

definitions

Gr(xµ;x′µ) = −Θ(τ − τ ′)G(xµ;x′µ) , (51)

Ga(xµ;x′µ) = Θ(τ ′ − τ)G(xµ;x′µ) , (52)

Ḡ(xµ;x′µ) =
1

2

[
Gr(xµ;x′µ) +Ga(xµ;x′µ)

]
, (53)

where Θ(τ−τ ′
) is the Heaviside step function with Gr(xµ;x′µ), Ga(xµ;x′µ) and Ḡ(xµ;x′µ) being the retarded, advanced

and symmetric propagators respectively.
Now we decompose the Green function into modes via a Fourier expansion

G(xµ;x′µ) =
1

(2π)3
√
ττ ′

∫
d3kei[k⊥·(x⊥−x′

⊥)+kη(η−η′)]
[
akη (τ)bkη (τ ′)− akη (τ ′)bkη (τ)

]
, (54)

where pµ ≡ (k⊥, kη). If we denote the particular solutions of the above equations by akη (τ) and bkη (τ) in such a way
that they satisfy the following relations

akη (τ) = 1 , ∂τakη (τ) = 0 , (55)

bkη (τ) = 0 , ∂τ bkη (τ) = 1 , (56)

at a given instant τ = 1, then it can be verified that following relation is valid for any τ ,

akη (τ)∂τ bkη (τ)− ∂τakη (τ)bkη (τ) = 1. (57)

given the Green’s function G(xµ;x′µ) satisfies the homogeneous wave equation

�G(xµ;x′µ) = 0 (58)

together with boundary condition:

G(xµ;x′µ) = 0, ∂τG(xµ;x′µ) = −1

τ
δ(xi − x′i) , (59)

at τ = τ ′.
We can also show that the symmetric propagator Ḡ(xµ;x′µ) satisfies the following inhomgeneous wave equation,

�Ḡ(xµ;x′µ) =
1√
ττ ′

δ4(xµ − x′µ) (60)

where δ4(xµ − x′µ) = δ(τ − τ ′)δ3(xi − x′i). Now using the definition of d’Alembert operator from Eq.(50), it can be
verified that the particular solution satisfy following relations,

akη (τ)bkη (τ ′)− akη (τ ′)bkη (τ) =
π
√
ττ ′

2

[
Jikη (k⊥τ)Yikη (k⊥τ

′)− Jikη (k⊥τ
′)Yikη (k⊥τ)

]
, (61)

where the Jikη (k⊥τ), Yikη (k⊥τ) are the Bessel function of 1st and 2nd kind respectively with k⊥ ≡ |k⊥|. Plugging
Eq.(61) into Eq.(54), we arrive at the following equation for Green’s function:

G(xµ;x′µ) =
1

16π2

∫ ∞
−∞

dkηe
ikη(η−η′)

∫ ∞
0

dk⊥k⊥

∫ 2π

0

dθeik⊥r⊥ cos θ·[
Jikη (k⊥τ)Yikη (k⊥τ

′)− Jikη (k⊥τ
′)Yikη (k⊥τ)

]
=

1

8π

∫ ∞
−∞

dkηe
ikη(η−η′)

∫ ∞
0

dk⊥k⊥J0(k⊥r⊥)·[
Jikη (k⊥τ)Yikη (k⊥τ

′)− Jikη (k⊥τ
′)Yikη (k⊥τ)

]
=− ε(τ − τ ′)θ(λ2)

4π

∫ ∞
0

k⊥dk⊥J0(λk⊥)J0(r⊥k⊥)

=− ε(τ − τ ′)
2π

δ(s2) (62)
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where λ2 = τ2 + τ ′2− 2ττ ′ cosh(η− η′), r2⊥ ≡ (x−x′)2 + (y− y′)2, s2 = λ2− r2⊥ and ε(τ − τ ′) = Θ(τ − τ ′)−Θ(τ ′− τ)
respectively.

Substituting Eq.(62) into the definition of symmetric propagator Eq.(53), we have

Ḡ(xµ;x′µ) =
1

4π
δ(τ2 + τ ′2 − 2ττ ′ cosh(η − η′)− r2⊥). (63)

Eq.(62) is very similar to its counterpart in the usual representation in Minkowski space-time but the expression for
s2, in Eq.(62) (s2 = 0 has support only at the lightcone) is entirely different from that in the later.

Thus, for any field Φ(xµ) satisfying an equation of the form.

�Φ(xµ) = S(xµ) (64)

with a generic source S(xµ), we have the solution of the form :

Φ(xµ) =

∫
Ḡ(xµ;x′µ)S(x′µ)

√
g′d4x′ (65)

V. RESULTS

In this section, we present the results for the electromagnetic fields generated by the participants. First, we consider
a simple case of a stationary point charge, for which the fields corresponds to the fields from the Liénard–Wiechert
potential for the expanding fluid. This is to test our formulation for a simplistic case. Next we move to a more
realistic senario of charge particles being distributed in a gaussian profile in the transverse plane with a constrain on
the region of participant charge distribution.

A. Field of a stationary point charge

Firstly, the charge density of a point particle at rest (co-moving) in an expanding fluid with four velocity uµ =
(1, 0, 0, 0), is given as

ρ(τ,x) = Ze
δ3(x− x0)Θ(τ − τ0)

τ
(66)

where Ze, x0, is the magnitude and position of the charge. To avoid the singularity of the Green’s function at
τ = 0, we assume that the charge appeared at a finite time in the past, τ = τ0. This is motivated by the fact that
hydrodynamics in heavy-ion collisions typically starts after a finite time, around ∼ 0.5 − 0.6 fm. It should be noted
that, in this theory, there is no conservation law for charge, and a charge can be spontaneously created if there is
enough energy available. Additionally, since we have assumed the fluid to be a perfect insulator, the charge diffusion
current V µ is zero. Therefore, the particular solution for the η component of the magnetic field Eq.(49) can be set
to zero without loss of generality, and it decouples from the other components of the electromagnetic fields. By
substituting the gradient of the point charge Eq.(66) as a source in the Green’s function Eq.(65), we obtain

Ẽη(τ,x) = −Ze
∫

1

(τ ′)
2 Ḡ(τ,x; τ ′,x′)∂ηρ̃(τ ′,x′)

√
g(τ ′)d3x′dτ ′ (67)

as a solution of Eq.(46). Integration of Eq.(67) with the symmetric Green’s function of Eq.(63) is elementary, and we
obtain

Ẽη(τ,x) =

{
Ze τ sinh(η−η0)

4π[(r⊥−r⊥0)2+τ2 sinh2(η−η0)]3/2
, if τ0 < τf (x;x0) < τ

0, otherwise
(68)

where, τf (x;x0) := τ cosh(η − η0) −
√

(r⊥ − r⊥0)2 + τ2 sinh2(η − η0) and the inequality satisfies the causality con-

straints.
The transverse components of electric fields can also be computed similarly and are given as

Ẽx(τ,x) =

{
Ze τ(x−x0) cosh(η−η0)

4π[(r⊥−r⊥0)2+τ2 sinh2(η−η0)]3/2
, if τ0 < τf (x;x0) < τ

0, otherwise
(69)
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Ẽy(τ,x) =

{
Ze τ(y−y0) cosh(η−η0)

4π[(r⊥−r⊥0)2+τ2 sinh2(η−η0)]3/2
, if τ0 < τf (x;x0) < τ

0, otherwise
(70)

As discussed in Sec.(IV) the transverse magnetic fields can be computed by taking the gradients of longitudinal
component of electric field Eq.(68), which acts as source in Eq.(65) and is given as

B̃y(τ,x) = 2

∫
Ḡ(τ,x; τ ′,x′)∂x′Ẽη(τ ′,x′)

√
g(τ ′)d3x′dτ ′ (71)

as a solution of Eq.(48). The integration over τ ′ is elementary and we are left with

B̃y(τ,x) =


Ze 3

8π2

∫
d3x′

τf (x
′;x)2(x′−x0) sinh(η0−η′)

[(r′⊥−r⊥0)2+τf (x′;x)2 sinh2(η′−η0)]5/2
1√

(r⊥−r′⊥)2+τ2 sinh2(η−η′)
, if (τ0 < τf (x′;x0) < τ) ∧

(τ0 < τf (x′;x) < τ)

0, otherwise

(72)

where, τf (x′;x) = τ cosh(η − η′) −
√

(r⊥ − r′⊥)2 + τ2 sinh2(η − η′). In the above expression, one of the constraints

is inherited from the electric field Eq.(68) while the other is from the Green’s function appearing in Eq.(71). The x
component of magnetic field can also be obtained by following a similar procedure. The spatial integration in Eq.(72)
can not be reduced to an elementary form and we perform the integration numerically in the rest of this section.

To gain insight into the space-time dependence of electromagnetic fields produced by the charged participants, we
make a simplifying assumption that the charges are located at x0 = (b/2, 0, 0) and the initial time τ0 = 0.6 fm, where
b is the coordiante where the source is located taken as b = 7 fm. We calculate the fields at points with transverse
coordinates x⊥ = (0, 0), but for variable rapidities η and time τ . The magnitude of charge Ze is a free parameter, and
we took Z = 79, which is half of the total charged spectators for an Au-Au collision and is, of course, a simplification.
With the above geometry, the only non-vanishing components of electromagnetic fields are Ẽη, Ex and By.
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FIG. 1: Left panel: The electric-field component eẼη as a function of η for a stationary point source. Various
symbols represent the values of electric field at different times. Right panel: Same as left panel but for the

electric-field component eEx.

Fig.(1) shows the electric field components eẼη and eEx as a function of η. The various symbols in the figure
represent different time frames. As shown in the figure, the x-component of the electric field is even under rapidity
and its magnitude is roughly ten times larger than that of the η-component, while the η-component of the electric
field is odd under rapidity. At a given η, the electric fields decay as ∼ τ−3 (see Eqs. (68) and (69)). Since the fields
are retarded, prior to τ = 4.6 fm, the electric field for both components is zero. At a later time, only the region
allowed by causality experiences the electric field, which appears as a piecewise function in the figure above. This
region of influence depends, of course, on the initial time τ0 and the relative distances x− x0.

Fig.(2) (left panel) shows the magnetic field component eBy as a function of η, with various symbols representing
different time frames. Firstly, we note that at early times (τ < 3.1 fm), the magnetic field is zero, owing to the
first causality constraint (see Eq. (72)) inherited from the electric field. However, unlike the electric field, which has
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FIG. 2: Left panel: The magnetic-field component eBy as a function of η for a stationary point source. Various
symbols represent the values of magnetic field at different times. Right panel: Time evolution of eBy at rapidities

η = 1 and η = 2 respectively. The black dotted lines are a fit to a power law function.

support only at τf (x;x0), the magnetic field’s support τf (x′;x0) extends to a larger region of space-time. This is also
readily seen in the left panel of Fig. (2) (left panel), where the magnetic field attains non-zero values prior to the
corresponding electric field, which remains zero until τ = 4.6 fm. Nevertheless, the magnetic field for such an early
time is limited to a smaller rapidity region owing to this constraint. Next, for 3.1 fm < τ < 4.6 fm, the magnitude of
the magnetic field increases and shows continuous evolution throughout the rapidity region.

The domains of influence for both the electric and magnetic fields can be discerned from their respective equations
(i) electric field, eẼη from Eq. (68) given as τ0 < τf (x;x0) < τ and (ii) magnetic field, eBy from Eq. (72) given as
τ0 < τf (x′;x0) < τ ∧ τ0 < τf (x′;x) < τ .

-4 -2 0 2 4

1

2

3

4

5

η

τ

η,
=1.5

η,
=0.0

η,
=-1.0

-4 -2 0 2 4

1

2

3

4

5

η

τ

FIG. 3: Left panel: Domain of influence τ0 < τf (x;x0) < τ for the electric field component eẼη. Right panel: for the
magnetic field component eBy ,τ0 < τf (x′;x0) < τ ∧ τ0 < τf (x′;x) < τ . The transverse coordiantes and η0 are set

to zero (r⊥ = r⊥0 = η0 = 0) for simplicity.

From Fig.(3) (left panel), which visualizes the domain of influence or the causal region, one can observe that for
smaller values of τ , the support of τf (x;x0) is restricted to narrower η intervals for electric field. However, referring
to Fig.(3) (right panel) for the magnetic field, the support spans larger areas based on the specific value of η′. To
elucidate, at η′ = 0, the magnetic field’s support mirrors that of the electric field. But when η′ = −1.0 or η′ = 1.5,
the depicted (shaded) region encompasses a more extensive area than the prior scenario. As we transition to later
times, both the electric and magnetic fields exhibit a progressive expansion in their supportive domains.

Fig.(2) (right panel) shows the time evolution of the magnetic field for two different values of rapidity, η = 1, 2
respectively. For η = 1, we have also fitted the obtained numerical solution with a power law (black dotted lines). As
can be seen clearly, the whole time evolution can be divided into two regions: at early times, the growth of magnetic
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field ∝ τ5, while at late time it decays as ∝ τ−2.2, and in the intermediate region around τ ∼ 4.6 fm, there is a
discontinuity. For larger rapidities, e.g. η = 2, the magnitude of the magnetic field is an order of magnitude smaller
than for smaller rapidities, e.g. η = 1. It is also instructive to compare the above results with that generated from
spectators [39], which, at vanishing conductivity, simply decays as ∝ τ−3, although at early times the magnitude
is much larger than due to participants and depends on the colliding energy. Nevertheless, a unique feature of the
magnetic field produced by the participants, unlike the spectators, is that they remain non-negligible throughout the
evolution even at very late times. For example, at τ = 10 fm for smaller rapidity η = 1, the magnitude is in the order
of O(10−3) vs O(10−5) (in units of m2

π) for the spectators.

B. Field of a transverse charge distribution

Next, we turn to the problem of finding the fields generated by a stationary charge distribution. Without any loss
of generality, we assume that the charge density of the target and projectile is distributed along the transverse plane
while it is still localized in the rapidity direction. We shall make the simplifying assumption that the protons in a
nucleus are uniformly distributed according to a Gaussian distribution with mean x0 and standard deviation σ⊥. The
charge density can then be described as follows:

ρ(τ,x) = Ze
f⊥(x, x0; y, y0)δ(η − η0)

τ
Θ(τ − τ0) (73)

where f⊥(x, x0; y, y0) is the charge distribution in the transverse direction and which is given as:

f⊥(x, x0; y, y0) =
1

πσ2
⊥

[
exp

(
− (x− x0)2 + (y − y0)2

σ2
⊥

)
+ exp

(
− (x+ x0)2 + (y + y0)2

σ2
⊥

)]
Θ

(
1− x2

r2a
− y2

r2b

)
(74)

with x0 = b/2, y0 = 0 which corresponds to the centers of the nuclei in the transverse plane and we took σ⊥ = 5 fm
respectively. Here b is the impact parameter which is choosen as b = 7 fm. The semi-major and semi-minor axis of
the elliptical region of the participants are given by the quantities ra = R − x0 and rb =

√
R2 − x20, where R is the

radius of a nucleus and we took R = 7 fm. The unit step function in Eq.(74) guarentees us that we consider only the
charges in the elliptical region in the transverse plane.

Following procedure similar to point charge as discussed in Sec. (V A), we can find the different field components
using the Green’s function Eq.(63) for the equations Eqs.(44) to (49). The integration over τ and η are elementary
and the resulting expressions for electromagnetic field components turns out to be:

Ẽη(τ,x) =
Ze

4π

∫
d2x′

τ sinh(η − η0)

[(x− x′)2 + (y − y′)2 + τ2 sinh2(η − η0)]
3/2

f⊥(x′, x0; y′, y0)Θ

(
1− x′

2

r2a
− y′

2

r2b

)
(75)

B̃y(τ,x) = Ze
3

8π2

∫
d3x′d2x′′

τf (x′;x)2(x′ − x′′) sinh(η0 − η′)
((x′ − x′′)2 + (y′ − y′′)2 + τf (x′;x)2 sinh2(η0 − η))5/2

×

f⊥(x′′, x0; y′′, y0)√
(x− x′)2 + (y − y′)2 + τ2 sinh2(η − η′)

Θ

(
1− x′′

2

r2a
− y′′

2

r2b

)
(76)

where the integration over x′ is again limited to the causal region satisfying the inequality τ0 < τf (x′;x) < τ along
with the physical boundary of the elliptical region which is expressed via the unit-step function. Here, we have
explicitly shown the expression for Ẽη and B̃y, other components of the electromagnetic fields can be calculated using
a similar procedure and will not be discussed further.

Fig.(4) shows the variation of eẼη with respect to η at different time frames. Compared to the electric field generated
by a point charge distribution Fig.(1) (left panel), the electric field generated by a charge distribution has support
even for time as early as τ ∼ 1.1 fm although still localized in space. At late times, the electric field asymptotically
goes to zero at large rapidities. The magnitude of of electric field is of the order of ∼ 0.1m2

π and this acts as the source
for magnetic field. Fig.(5) shows the temporal evolution of transverse component of magnetic field eBy at rapidity
η = 0.5 and the blue band is an estimate of the error in the numerical integration. Since, the integrand in Eq.(75)
is highly oscillatory, we could not extrapolate to smaller time interval regions, nevertheless the qualitative behavior
of magnetic field at late time τf > 4.6 fm is similar to that of a point charge distribution Fig.(2) (right panel) and
remains non-vanishing for times long enough in the context of heavy-ion collisions. The long life time is the result of
retardation effect which can be readily seen from Fig.(3) and emphasizes the fact that for late time the support of
the integral in Eq.(75) increases to larger spatial regions which has non-vanishing gradients of electric field.
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VI. CONCLUSION AND OUTLOOK

In this study, we investigated the spatiotemporal behavior of electromagnetic fields generated by charged particles in
an expanding fluid under a background Bjorken flow. We solved Maxwell’s equations in this background, assuming no
back-reaction to the flow. The inclusion of coupling to the fluid’s shear and expansion scalar has made the dynamics
much more intricate. An important finding of this study is that even in the absence of charged currents, the gradient
of the electric field can produce a magnetic field for a stationary charge distribution co-moving with the fluid. The
resulting magnetic field initially vanishes, grows, and eventually decays. Causality plays a decisive role for describing
the space-time evolution for such charge distributions. We also discussed a more realistic case of continuous charge
distribution in the context of heavy-ion collision. The resulting magnetic field remains appreciable even for time as
large as ∼ 10 fm. This finding supports the works that discuss the effect of magnetic field in the hadronic stage of
heavy-ion collision [52–54].

A major limitation of this study is the assumption of vanishing charged currents. This could have significant and
interesting consequences on the results obtained in this study when non-equilibrium processes such as charge diffusion
and conductivity come into play. These processes eliminate any gradients present in the electric charge distribution
and may have non-trivial effects on the space-time variation of dynamic electromagnetic fields. When such terms
were included, we were unable to find a closed analytical solution to the Green’s function and are therefore difficult
to solve. Other possible directions for future work could include considering flow fields with non-vanishing vorticity
and acceleration. These and other intriguing phenomena will be left for future investigations.
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