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We show the absence of an instability of homogeneous (chiral) condensates against spatially inho-
mogeneous perturbations for various 2+1-dimensional four-fermion and Yukawa models. All models
are studied at non-zero baryon chemical potential, while some of them are also subjected to chiral
and isospin chemical potential. The considered theories contain up to 16 Lorentz-(pseudo)scalar
fermionic interaction channels. We prove the stability of homogeneous condensates by analyzing the
bosonic two-point function, which can be expressed in a purely analytical form at zero temperature.
Our analysis is presented in a general manner for all of the different discussed models. We argue that
the absence of an inhomogeneous chiral phase (where the chiral condensate is spatially non-uniform)
follows from this lack of instability. Furthermore, the existence of a moat regime, where the bosonic
wave function renormalization is negative, in these models is ruled out.
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I. INTRODUCTION

Quantum field theories (QFTs) with four-fermion (FF) interactions, so-called FF models, are relevant for several
branches of physics and, recently, much attention has been paid to their investigation. FF models, such as the
Nambu-Jona-Lasinio (NJL) model [1, 2], and also Yukawa-type models, such as the quark-meson (QM) model [3], are
considered as low-energy effective models of Quantum Chromodynamics (QCD) and light meson physics, describing,
e.g., spontaneous chiral symmetry breaking or color superconductivity. The models are applied to study strongly-
interacting, fermionic matter under (extreme) external conditions such as, e.g., temperature, density, chiral or isospin
imbalance or magnetic fields (see, e.g., Refs. [4–21]). In contrast to QCD, the models do not exhibit a sign problem
for finite baryon chemical potential rendering, e.g., lattice investigations possible (see, e.g., Refs. [9, 22, 23]).

Often, FF models are studied in two spatial dimensions, where they are, in contrast to three spatial dimensions,
renormalizable [24, 25]. The motivation of many works [26–41] is the study of physical phenomena in high energy
physics such as chiral symmetry breaking or color-superconductivity in rather simple, low-dimensional QFTs. For
example, the phenomenon of spontaneous chiral symmetry breaking induced by an external magnetic field has first
been observed in a 2 + 1-dimensional Gross-Neveu (GN)-type model [42, 43] (see Ref. [44] for the original definition
of the GN model in 1+1 dimensions). Also, 2+1-dimensional FF and Yukawa models are interesting for the study of
technical aspects and the development of techniques in QFT, see Refs. [24, 25, 27, 45–54]. Another motivation for the
study of these models is the application to condensed matter systems with an effectively planar structure, which can
be described by a relativistic fermionic dispersion relation1. For example, symmetry breaking schemes of graphene
effective field theory [65–68] are also present in FF models. Thus, studies of fermionic models in 2 + 1 dimensions
under the influence of external parameters, as, e.g., Refs. [40, 41, 59, 60, 69–74], are motivated both from the high
energy and the condensed matter perspective.

In many of the above works the (chiral) order parameters are considered to be homogeneous in space. This
is a reasonable choice for first investigations of the phase diagram. In strongly-interacting systems in condensed
matter physics, however, crystalline-like ground states are quite common [75–82] suggesting that the assumption of
homogeneous order parameters has to be reevaluated. More refined investigations of FF and Yukawa-type models
have indeed revealed the presence of a chiral inhomogeneous phase (IP), where the corresponding order parameter is a
function of the spatial coordinates, also in effective theories in nuclear and high energy physics, see Refs. [83–85], where
IPs have first been found in this context. This has stimulated conjectures that inhomogeneous chiral condensates and
related phenomena might also be relevant in the phase diagram of QCD. However, it has to be remarked that many
of the existing model investigations have been carried out within the mean-field approximation, where the bosonic
quantum fluctuations are neglected.

One of the most prominent examples for an IP is the chiral kink in the 1 + 1-dimensional GN model2 [56, 86], but
also various other types of IPs with a more complicated structure have been found in 1+1-dimensional models [87–93].
In recent literature, there is an on-going discussion whether these phases persist when allowing for bosonic quantum
fluctuations [94–99], where a spontaneous breaking of translational invariance, as in an IP, should be forbidden in
1 + 1 dimensions according to the Mermin-Wagner theorem [100–103].

In 3+1 dimensions, many of the models for spontaneous chiral symmetry breaking in QCD feature an IP – typically
appearing at low temperature and intermediate densities, where one would expect a first-order phase transition
between homogeneous phases, see Ref. [104] for a review. However, these results are mostly obtained in the mean-
field approximation and their predictive power for QCD can be questioned. In case of the FF models, we recently
documented a regulator dependence of the IP in the NJL model [23], where the existence and shape of the IP depends
on the chosen regularization scheme. In combination with the non-renormalizability of the NJL model this raises
questions about the predictive power for QCD, especially since the chemical potentials in the region of the IP are in
the order of the necessary regulator. The results in the renormalizable QM model suffer from other technical problems,
such as instabilities at large field values [105, 106].

Besides these difficulties of the model studies, there are still indications that inhomogeneous chiral condensates
might be relevant in QCD [107, 108]. A recent Functional Renormalization Group study of QCD [109] finds a so-
called moat or Lifshitz regime, where the bosonic wave-function renormalization is negative and a modified dispersion
relation is obtained [110]. Such a phenomenon is often related to an IP [111]. Experimental signals of this regime are
discussed in Refs. [110, 112–114].

In 2 + 1-dimensional models, only recently the attention has moved towards the study of IPs [41, 115–120]. In
the 2 + 1-dimensional GN model, IPs were observed at finite lattice spacing [115], but it turned out that these are

1 For example, it was shown that the 1 + 1-dimensional GN model is suitable for the description of polyacetylene and similar systems
[55, 56]. In a similar way, 2+1-dimensional FF and Yukawa models can be applied in descriptions of condensed matter systems in 2+1
dimensions [57–64].

2 In condensed matter, the equivalent model is known as the Fröhlich model [77].
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regulator artifacts depending on the chosen regularization scheme [116, 117]. After renormalization homogeneous
phases are favored. This regulator dependence further highlights the problem of non-renormalizability with respect to
high chemical potentials relevant in the IP of the 3+1-dimensional NJL model [23]. In lattice simulations of the 2+1-
dimensional GN model, oscillating, but damped correlators have been observed in Refs. [37, 38], but considering the
found regulator dependence of the IP [116, 117] it is unclear whether these are reminiscent from the above described
regulator artifacts or from underlying physical reasons, such as Fermi surface effects. We note that the existence of
an IP is also not favored by the introduction of chiral imbalance [118, 119] nor of a magnetic field [41].

In this paper, we rule out the instability of homogeneous condensates with respect to inhomogeneous perturbations
for a large class of models with Lorentz-(pseudo)scalar isospin FF interactions. This extends the previous findings in
the GN model to a variety of different FF and Yukawa models. We apply the framework of analyzing the stability of
the bosonic two-point functions (as, e.g., used in Refs. [23, 111, 115, 117, 119–126]) to these models. This analysis tests
whether homogeneous field configurations are energetically unstable against inhomogeneous perturbations. Among
the limitations of the method is that one can only show the existence of an IP and not the shape of energetically
preferred inhomogeneous field configuration (see Ref. [111] for a detailed discussion of this method). As discussed in
Ref. [111], there might still exist an IP, which is not detected by the stability analysis. However, to our knowledge no
phase diagram has been found, where an IP does not at least enclose a region in parameter space with instabilities of
the homogeneous minimum against inhomogeneous perturbations. Moreover, all IPs so-far observed in model studies
are connected by a second-order phase transition to the chirally symmetric phase. Such a phase transition can always
be detected by analyzing the stability of the symmetric minimum of the effective potential.

This work is outlined as follows. A general FF model, containing all the studied interaction channels, is introduced
in Section II. Furthermore, we present an extension of these models to Yukawa models. In Section III, the stability
analysis of the bosonic two-point function for finite baryon chemical potential and temperature is presented for the
FF models and their extension to Yukawa models. Based on this analysis, we argue that all models with Lorentz-
(pseudo)scalar interaction channels do not exhibit IPs or moat regimes. In Section IV, examples for these FF models
are presented. Allowing for multiple chemical potentials, we also show the stability of homogeneous condensates for
a few theories each containing a small subset of the previously discussed interaction channels. Finally, we sum up our
results and conclude in Section V.

II. DEFINITION OF THE CONSIDERED MODELS

In this section, we introduce a FF model, which serves as the general prototype for the models, which will be later
studied using the stability analysis introduced in Section III. We perform a bosonization with auxiliary fields and
obtain the effective action. Finally, in Section II B, the Yukawa models, obtained from extending the bosonized FF
models, are defined.

A. Four-fermion models

In order to set up our general analysis, we define

SFF[ψ̄, ψ] =

∫ β

0

dτ

∫
d2x

ψ̄ (/∂ + γ3µ
)
ψ −

 16∑
j=1

λj

2N

(
ψ̄ cj ψ

)2 , (1)

as the most general FF action studied in this work in 2+1-dimensional Euclidean spacetime (x = (x, τ) represents the
spacetime coordinate). The integration over the periodic Euclidean temporal coordinate τ goes from 0 to β = 1/T ,
where T is the temperature, while the integration over d2x goes over the two-dimensional spatial plane. The vector
ψ contains 2N four-component fermion fields (N identical spinors with isospin up/down respectively). We work in
the chiral limit, so no bare mass term is introduced. The Dirac matrices are reducible, 4 × 4 representations of the
2 + 1-dimensional Euclidean Clifford algebra

{γµ, γν} = γµγν + γνγµ = 2δµνI, µ, ν = 1, 2, 3, (2)

where I is the 4× 4 identity matrix. Useful representations for computations in 2 + 1 dimensions can, e.g., be found
in Refs. [117, 119, 127, 128]. The interaction vertices cj are 8× 8 matrices in isospin and spin space and elements of

C = (cj)j=1,...,16 = (1, iγ4, iγ5, γ45, τ⃗ , iτ⃗ γ4, iτ⃗ γ5, τ⃗γ45) , (3)
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where τ⃗ is the vector of Pauli-matrices acting on the isospin degrees of freedom. The spin matrices γ4 and γ5 anti-
commute with the γν , while γ45 ≡ iγ4γ5 commutes with the γν . All elements of C are 8 × 8 matrices, where the
identity matrices in spin and isospin space are not explicitly written down whenever the matrix cj is diagonal in the

corresponding space. The channels
(
ψ̄(x) cj ψ(x)

)2
are local, Lorentz-(pseudo)scalar FF interactions in the SU(2)

isospin space and spinor space. The vector and matrix-like FF channels are not taken into account, since the analysis
of these interactions differs technically from the (pseudo-)scalar ones. Therefore, these interaction terms will be left
to forthcoming work. The couplings λj of each channel have inverse energy dimension and will be set to either 0 or
λ in order to study different models and allow for different symmetry groups of the action3. The chemical potential
µ is introduced in the usual way and induces a non-vanishing baryon density ∝ ψ̄γ3ψ.

It is well known, that the partition function of Eq. (1) is identical to a partition function with auxiliary bosonic

scalar fields ϕ⃗, where ϕj can be introduced via a Hubbard-Stratonovich transformation (an inverse shifted Gaussian

integration) in order to get rid of the FF interaction
(
ψ̄(x) cj ψ(x)

)2
, up to a physically irrelevant integration constant

[44]. The partially bosonized action is then given by

S[ψ̄, ψ, ϕ⃗] =
∫

d3x

N∑
j∈J

ϕ2j
2λj

+ ψ̄Qψ

 , Q = /∂ + γ3µ+
∑
j∈J

cj ϕj , (4)

where J is an index set containing4 all integers 1 ≤ j ≤ 16 with λj ̸= 0. The auxiliary fields ϕj have the dimension
of an energy and fulfill the Ward identity5

⟨ϕj⟩ = −λj

N ⟨ψ̄cjψ⟩, j ∈ J. (5)

In order to relate to the literature about FF models as low-energy effective models (e.g. Refs. [1–3, 5, 8, 10, 12, 19,
21, 104]), we define phenomenologically motivated symbols for the ϕj , i.e., the tuple

Φ = (ϕj)j=1,...,16 = (σ, η4, η5, η45, a⃗0, π⃗4, π⃗5, π⃗45) . (6)

The ordering of this tuple is used to directly map a field ϕj to the corresponding fermion bilinear ψ̄cjψ by reading
of the index j in the tuple C in Eq. (3). As one can see from Eq. (4), non-vanishing ⟨ϕj⟩ give rise to dynamically
generated mass terms for the fermion fields. These mass terms spontaneously break different symmetries of the action
Eq. (4). The possibility of certain symmetry breaking schemes is, of course, dependent on the choice of interaction
channels, i.e., on the set J (see the definition below Eq. (4)).

In Appendix A, we define the (chiral) symmetry group for 2 + 1-dimensional fermion fields. Considering no inter-
action terms, the fermion fields contained in ψ are invariant under transformations of the group U(4N) composed
of chiral transformation of the group Uγ(2N) and isospin transformations, which are elements of SUτ⃗ (2). This in-
variance is not explicitly broken in the action (4) (or Eq. (1)) if λj = λ for6 j = 1, . . . , 16. When a subgroup of the
interaction channels is taken into account in the partially bosonized action (4), only subgroups of the chiral symmetry
transformations might be realized (depending on the choice of J). The reminiscent symmetry transformations, which
are relevant in Section IV, are also defined in Appendix A.

A mass term of the form mψ̄ψ, as spontaneously generated by a non-vanishing expectation value of ϕ1 = σ, breaks
the full symmetry group Uγ(2N) down to the UI4(N)×Uγ45

(N) subgroup of vector transformations. Mass terms of
the form im4ψ̄γ4ψ (generated by ϕ2 = η4) and im5ψ̄γ5ψ (generated by ϕ3 = η5) have the same symmetry breaking
pattern, but, in addition also break one of the two Z2 parity transformations7

P4 : ψ(x) → γ4ψ(−x) , ψ̄(x) → ψ̄(−x)γ4; (7)

P5 : ψ(x) → γ5ψ(−x) , ψ̄(x) → ψ̄(−x)γ5. (8)

In addition, there is a fourth mass term m45ψ̄γ45ψ, which does not break a continuous symmetry, but both P4 and
P5. This parity-odd mass can be dynamically generated by a non-vanishing expectation value of ϕ4 = η45. These four
different mass terms have an interpretation in condensed matter applications, such as graphene or similar systems

3 Typically, a FF model, which is invariant under a continuous chiral symmetry transformation, involves two or more FF channels, whose
couplings all take an identical value in order to allow for a rotational symmetry transformation between them.

4 The definition of this set ensures that an auxiliary field ϕk is only introduced, when the coupling λk of the corresponding channel is
non-vanishing.

5 The relations for these 1-point functions can derived imposing the invariance of the functional integration measure
∏

i Dϕi under the

infinitesimal shifts of the fields ϕ⃗.
6 In fact, the full chiral symmetry group is already realized, when λj = λ for j = 1, 2, 3.
7 The parity transformation in 2+1-dimensional Euclidean spacetime is defined as an inversion of an odd number of axes. Our convention
is to flip all 3 spacetime coordinates. The ambiguity of having two different parity transformations, that can act on the fermion fields,
has its origin in the reducible spinor representation.
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[129–131], see Ref. [51] for a summary. We assign quantum numbers +,− to the auxiliary bosonic fields in Eq. (6)
according to their transformation behavior under the parity transformations (7) and (8). The fields and their quantum
numbers are listed in Table I. Later, we will refer to the fields by their behavior under parity, e.g., η4 and π⃗4 are fields
with quantum numbers (−,+) and σ, a⃗0 are (+,+) fields.

(P4, P5) ϕj

(+,+) σ, a⃗0

(−,+) η4, π⃗4

(+,−) η5, π⃗5

(−,−) η45, π⃗45

TABLE I. The quantum numbers (P4, P5) of the fields ϕj in Eq. (6).

After integration over the fermion fields in Eq. (4), one obtains an effective action, depending solely on the bosonic
fields,

Seff

[
ϕ⃗
]

N
=

∫
d3x

∑
j∈J

ϕ2j
2λj

− Tr lnβQ, (9)

where Q has been multiplied with β in order to ensure a dimensionless argument of the logarithm. This introduces
only a temperature-dependent constant to the partition function. We recognize that Seff is proportional to N . Taking
the limit N → ∞ for the FF models is equivalent to a mean-field approximation at finite N , which is what we
consider for the rest of this work. In this approximation one takes the fermionic fluctuations fully into account
through the functional Tr ln over the Dirac operator Q, while all quantum fluctuations in the bosonic degrees of

freedom are neglected. This causes the global minimum ϕ⃗(x) = Φ⃗(x) of Seff to be the only relevant contribution in
the partition function. Thus, expectation values of observables can be computed by evaluating them on the respective
global minimum. This can become problematic when the effective action has multiple, degenerate global minima, for
example in the case of a first order phase-transition or minima which are related by symmetry transformations on the
level of the effective action. In the latter case, one formally has to introduce a small symmetry breaking parameter
z and make the extrapolation z → 0 in order to remove ambiguities. In the mean-field approximation, however, it
is common (see, e.g., Refs. [4, 8, 104]) and more practical to pick one of the degenerate minima whenever facing
this situation. In the case of a first order phase-transition or critical end point, we will refrain from evaluating any
quantities that depend on the minimum of the effective action in order to avoid ambiguities.

B. Yukawa models

In order to generalize our analysis of the FF models, as defined in Eq. (1), to corresponding Yukawa models in
Section III, we introduce their action in 2 + 1-dimensional Euclidean spacetime as

SY [χ⃗] =
Seff[hχ⃗]

N
+

∫
d3x

1
2
(∂ν χ⃗(x))

2
+
∑
n>1

κn

∑
j∈J

χ2
j (x)

n , (10)

where χ⃗ = (χj)j∈J contains scalar fields of canonical dimension energy1/2, h is the Yukawa coupling, κn are the cou-

plings of the self-interaction terms between the fields χ⃗ and Seff is defined in Eq. (9). In the mean-field approximation,
these models can be analyzed using the stability analysis in the same manner as the FF models, as is discussed in
Section III B. Thus, quantum fluctuations of the fields χ⃗ are neglected and observables are computed by evaluating
them on the global minimum of SY using the same formalism as described above for the FF models. A field χj , that
by its interaction channel in Seff corresponds to a field ϕj in a FF model, has the same parity quantum numbers
defined in Table I from ϕj . Eq. (10) defines a QM-type of model. One can think of the fermion fields contained in
Seff via the fermionic determinant as interacting through the exchange of the dynamical bosonic fields χj , which in
the QM model correspond to light mesons.

We note that the Ward identity for the expectation values of the scalar fields χj , analogous to Eq. (5) for the auxiliary
fields ϕj , contains additional contributions from the self-interaction and kinetic terms. Thus, the expectation value of
χj does not directly yield the expectation value of a fermion bilinear (although these can nevertheless be computed).
However, the spatial homogeneity of the bosonic fields still directly leads to the absence of inhomogeneous condensates.
Consequently, the investigation of IPs in Yukawa models is possible by studying the stability of the fields χj in the
same way as we study the stability of ϕj in the FF models.
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III. STABILITY ANALYSIS OF MODELS WITH A BARYON CHEMICAL POTENTIAL

The stability analysis is a technique to determine whether a spatially homogeneous field configuration is unstable
with respect to inhomogeneous perturbations. It follows from this instability that an inhomogeneous field configu-
ration is energetically favored over the homogeneous expansion point. This technique has seen regular use in such
investigations, e.g., in Refs. [111, 117, 123, 126] and, thus, we recapitulate only the most relevant steps. We provide,
however, a more detailed derivation in Appendix B. Note that the central result of this work, i.e., showing the sta-
bility of homogeneous condensates against inhomogeneous perturbations in all models with Lorentz-(pseudo)scalar
interaction channels in a general manner, is discussed below in Section IIIA.

We start by considering homogeneous field configurations ⃗̄ϕ and apply spatially inhomogeneous perturbations δϕ⃗
to them, i.e.,

ϕ⃗(x) = ⃗̄ϕ+ δϕ⃗(x), (11)

where the perturbations are of an arbitrary shape and assumed to be of an infinitesimal amplitude. Inserting this
into the effective action (9) enables a systematic expansion of Seff in powers of δϕ. The zeroth order contribution

S(0)
eff (B5) is the so-called homogeneous effective potential and the leading order contribution S(1)

eff (B6) is proportional

to the homogeneous gap equation (compare with Eqs. (B10) and (B11)). Thus, S(1)
eff vanishes if the homogeneous

expansion point ⃗̄ϕ corresponds to a solution of the gap equation. The second order contribution contains the Hessian
of the effective action, which is found to be diagonal in momentum space, but not necessarily diagonal in field space.

The diagonalization – if possible – is done via a change of the field basis ϕ⃗→ φ⃗. For the theory considered in Eq. (9),

where only a baryon chemical potential is present, the Hessian is already diagonal in field space, i.e., φ⃗ = ϕ⃗, if we
set all non-zero λj to λ. Nevertheless, we use the “new” basis from here on in order to be consistent with the later
analysis, where a proper diagonalization is indeed needed. We then obtain as the second order contribution

S(2)
eff

N
=
β

2

∫
d2q

(2π)2

∑
j∈J

|δφ̃j(q)|2 Γ(2)
φj

(
M2, µ, T, q2

) (12)

where δφ̃(q) are the Fourier coefficients of the perturbations and the magnitude of the perturbation’s momentum

q = |q|. The bosonic two-point function Γ
(2)
φj

(
M2, µ, T, q2

)
is the curvature of the effective action with respect to

|δφ̃(q)|. For the curvature we find the explicit form

Γ(2)
φj

(
M2, µ, T, q2

)
=

1

λ
+

8

β

∑
n

∫
d2p
(2π)2

(
−1

ν̃2n + p2 +M2
+

1

2

q2 + aφj M
2

[ν̃2n + p2 +M2][ν̃2n + (p+ q)2 +M2]

)
≡ (13)

≡ 1

λ
− ℓ1

(
M2, µ, T

)
+

1

2

(
q2 + aφj M

2
)
ℓ2
(
M2, µ, T, q2

)
≡

≡ 1

λ
− ℓ1

(
M2, µ, T

)
+ L2,φj (M

2, µ, T, q2),

where ν̃n = (νn − iµ), the fermionic Matsubara frequencies νn = 2π(n− 1
2 )/β and

M2
(
ϕ⃗
)
=
∑
j∈J

c⋆jcj(ϕj)
2 ≡M2 with c⋆j =

{
cj for cj = 1, τ⃗

−cj otherwise
. (14)

We find that aφj
= a+ = 4 for fields φj with parity quantum numbers (P4, P5) = (+,+), (−,−) and aφj

= a− = 0
for fields with (P4, P5) = (+,−), (−,+). Accordingly, we find two possible momentum dependent contributions

L2,+(M
2, µ, T, q2) =

1

2

(
q2 + 4M2

)
ℓ2(M

2, µ, T, q2) , L2,−(M
2, µ, T, q2) =

1

2
q2ℓ2(M

2, µ, T, q2) (15)

to the two-point function. The integral ℓ2 at T = 0 assumes the simple form

ℓ2(M
2, µ, T = 0, q2) =

2

πq


0 , µ2 > M2 + q2/4

arctan

(√
q2+4(M2−µ2)

2µ

)
, M2 ≤ µ2 ≤M2 + q2/4

arctan
(

q
2|M |

)
, µ2 < M2

. (16)

Further expressions for ℓ1 and ℓ2 for various cases of µ, T,M2, q2 can be found in Appendices B 1 and B2.
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FIG. 1. L2,+ and L2,− for T/M0 = 0, 0.05 and µ/M0 = 1.0 as a function of q and M. Also at finite temperature
L2,−(M

2, µ, T, q2 = 0) = 0. However, the 0.0 contour line and its label are not drawn, because they would be obscured
by the axis. In the ancillary files to this paper, we provide a script, which allows to do the numerical computation of L2,± for
arbitrary values of (M2, µ, T, q2) and that produces this figure. See Eqs. (13) and (15) for the definition of L2,±.

In order to make conclusions about whether inhomogeneous condensates are favored over homogeneous ones, we use

the global homogeneous minimum as the homogeneous expansion point, i.e., the field configuration ⃗̄Φ that minimizes

S(0)
eff globally with the corresponding massM2 :=M2(⃗̄Φ). This field configuration is also a solution of the gap equation

(B11). Therefore, S(0)
eff assumes its minimal value while S(1)

eff vanishes (since it is proportional to the gap equation,

compare with Eqs. (B10) and (B11)). Thus, negative values of Γ
(2)
φj (M2, µ, T, q2) will signal that there is an even

deeper minimum in the direction of δφ̃j(q). In order to provide dimensionless quantities, we express all parameters
in units of the mass M0, which is the mass corresponding to the global homogeneous minimum in the vacuum of the
theory.

A. Absence of instability

The global homogeneous minimum, that is the only relevant expansion point when searching for an IP, is stable

against homogeneous perturbations, i.e., Γ
(2)
φj (M2, µ, T, q2 = 0) ≥ 0 ∀φj . Consequently, negative values for finite

q2 and, thus, an instability against inhomogeneous perturbations can be ruled out, if the q-dependent part L2,φj

of Γ
(2)
φj (M2, µ, T, q2) is a monotonically increasing function of q2. This is exactly the case for L2,±. For T = 0 the
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analytical form of L2,± given by Eqs. (15) and (16) reveals its monotonically increasing behavior for all M2, µ, q2.
The same is true for finite temperatures which can be verified by numerical calculations of ℓ2. In Fig. 1, the functional
behavior of L2,± for µ/M0 = 1.0 and T/M0 = 0.0, 0.05 is plotted in a color plot. We conclude that the general model
defined by Eq. (9) does not experience an instability towards an IP. This conclusion holds when considering any set
of interaction channels as given by J . Moreover, these models also do not feature a so-called moat regime [110].
This regime is defined by a negative wave-function renormalization Z ∝ d2Γ(2)/dq2 and is often an accompanying
phenomenon to an IP but can also exist independently [111]. Our computations show that L2,± always yields Z ≥ 0,
since they are monotonically increasing functions in q.
Additionally, we note that ℓ2 ∼ Θ

(
µ2 −M2 − q2/4

)
at T = 0, which causes the two-point function to be constant

for momenta 0 < q2/4 < µ2 −M2. Here not only the wave function renormalization Z vanishes, but also any higher
derivative of Γ(2) with respect to q. A special point is at µ/M0 = 1 and T = 0, where the homogeneous phase
transition in the 2 + 1-dimensional GN is often regarded as being first order. However, the system rather exhibits a
critical endpoint at this point [29]. This means that the effective potential (e.g. computed in Refs. [26, 117]) is flat
between some homogeneous field values with M ∈ [0.0, 1.0]. Such a flatness is also observed in the two-point function
where the contribution 1/λ − ℓ1 vanishes, which causes the two-point function to be constant zero for momenta
0 < q2/4 < µ2−M2. This vanishing curvature of the effective action is a hint for a degeneracy between homogeneous
and inhomogeneous condensates. Such a behavior has already been observed in the case of the 2+ 1-dimensional GN
model also at µ/M0 = 1.0, T/M0 = 0, which has been revealed by a study [132] with an one-dimensional ansatz
for the chiral condensate. We expect this degeneracy to be restricted to (µ, T )/M0 = (1.0, 0.0) and, especially,
the homogeneous condensates to be favored against inhomogeneous ones for all non-vanishing T . The analysis in
Ref. [132] suggests that also higher orders of the expansion of the effective action would vanish for a certain range of
finite momenta. In Section IVA, we show that the homogeneous phase diagram of all possible models described by
Eq. (9) is identical to the one of the 2 + 1-dimensional GN model. Thus, the above discussion of the flatness of the
effective potential and the two-point function also applies to these models.

It should be noted that the absence of an instability does not completely rule out the existence of an IP. As discussed
in Ref. [111] at the example of the 1 + 1-dimensional GN model, it is possible for the homogeneous minimum and
global inhomogeneous minimum to be separated by a energy barrier. Here, the homogeneous minimum appears stable
against inhomogeneous perturbations even though an IP is energetically favored. Such a phase can only be found by
calculations with a guess of ansatz functions for the condensates or by explicit numerical brute-force minimizations
using lattice field theory. For the 2 + 1-dimensional GN model, there is evidence in the literature that this is not
realized. Lattice minimizations of this model have not found any other IP at finite lattice spacings than the ones
also obtained by a stability analysis of the lattice regularized models [117, 119, 120]. It is important to note that
these IPs vanish when taking the continuum limit [116, 117], as the bosonic two-point function converges towards
a momentum dependence proportional to L2,+. These results of the 2 + 1-dimensional GN model suggest that the
stability analysis applied to our general FF model (9) also does not miss an IP. Also, to our knowledge all IPs, which
are observed in model investigations, can at least in some parameter region be detected by the stability analysis.
In these studies, one finds a second order phase transition between the IP and the chirally symmetric phase. At
least, this second-order transition can always be detected by analyzing the stability of the symmetric minimum of
the effective potential. The sum of these arguments combined with our analysis is strong evidence for the absence of
inhomogeneous condensates in all of the models described by Eq. (9) (or, equivalently, Eq. (4)) independent of the
considered (sub)set of interaction channels given by J .

Since this result is obtained in the mean-field approximation, one needs to consider its predictive power for the full
quantum theories. It is typically found that bosonic fluctuations tend to disfavor and/or disorder (in-)homogeneous
condensation8 [41, 94, 95, 98, 99, 134]. Based on these findings, we expect that the non-existence of IPs in 2 + 1-
dimensional FF and Yukawa models in the mean-field approximation is a clear signal that inhomogeneous ground
states are not present in the corresponding full quantum theories. A scenario with an inhomogeneous ground state
in a full quantum theory which is not present in the mean-field approximation has – to our knowledge – never been
observed. In 2 + 1-dimensional FF models, one has so far only seen oscillating but also damped correlation functions
for the auxiliary fields [38]. However, these lattice results [38] have been obtained on rather crude lattices. So, we
expect these oscillations to be reminiscent of the IP, which can be found in mean-field investigations of FF models at
finite lattice spacings, but vanish in the continuum limit [116, 117].

8 Ref. [133] provides a rather general argumentation which excludes the spontaneous breaking of a discrete symmetry in one dimension,
which is backed by the results in Ref. [98] that found no homogeneous condensation in this model at T ̸= 0. The breaking of a continuous
symmetry such as the translational symmetry is forbidden in 1 + 1 dimensions at finite temperature by the no-go theorem presented in
Ref. [100]. Thus, we expect that also inhomogeneous phases are disordered by the bosonic fluctuations. In Ref. [94], the authors cannot
distinguish between a long-range order scenario and an IP in the (1 + 1)-dimensional GN model.
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B. Generalization to Yukawa models

When the models are only subjected a baryon chemical potential, it is rather straightforward to generalize the
stability analysis of FF models to Yukawa models, which are defined as in Eq. (10). We only discuss the final result
here and a more detailed derivation can be found in Appendix B 3.

Applying the stability analysis to the effective action as defined in Eq. (10), the second order contribution again

is the first non-vanishing correction to the homogeneous action S
(0)
Y , when the homogeneous expansion point is a

solution of the gap equation. We find the second order contribution to the effective action

S(2)
Y

N
=
β

2

∫
d2q

(2π)2

∑
j∈J

|δζ̃j(q)|2 Γ(2)
ζj

(q2)

 , (17)

where ζ is the field basis that was used in the diagonalization of the Hessian9. The two-point function

Γ
(2)
ζj

(
M2, µ, T, q2

)
=

1

λ
− ℓ1

(
M2, µ, T

)
+ L2,ζj (M

2, µ, T, q2)+ (18)

+
1

2
q2 +

∑
n>1

κnn

[
2
(
⃗̄ζ2
)n−1

+ 4(n− 1)ζ̄2j

(
⃗̄ζ2
)n−2

]
can now be identified as the curvature of the effective action in the field direction δζ̃j(q). Again, one finds either
L2,+ or L2,− as the momentum dependence of the two-point function. As is obvious from Eq. (18), the additional
contributions compared to the FF two-point function are either constant or monotonically increasing in q2. Thus,
by the reasoning given in the last section, these additional terms cannot facilitate the appearance of an instability

towards an IP since the corresponding FF model does not exhibit such an instability for any ⃗̄Φ, µ, T, q2 already.

IV. RESULTS OF THE ANALYSIS FOR SPECIFIC MODELS

In this section, we present examples of FF and Yukawa models where the condensates do not develop an instability
towards inhomogeneous perturbations and are, thus, very unlikely to feature an IP. In Section IVA1, FF models
with only a baryon chemical potential but multiple interaction channels (see Eq. (1)) are presented. These results are
obtained using the stability analysis, as explained in detail in Section III, where also the reasoning for the absence of
instabilities is explained in detail. After that, we allow for multiple chemical potentials in Section IVA2 and explain
the differences of the analysis compared to only a baryon chemical potential. Again, examples for model calculations
are discussed. Finally, we turn towards the extension of our findings to Yukawa models in Section IVB.

A. Four-fermion models

Before we turn towards the stability analysis of the bosonic two-point functions, we shortly present our finding for
the homogeneous phase diagram of FF models described by Eqs. (1) and (4) (by considering different interactions
channels in the set J).
The homogeneous phase diagram of the 2 + 1-dimensional GN model, i.e., the phase diagram when restricting

the field to homogeneous field configurations, as first obtained in Ref. [26], features a phase at low temperature and
chemical potential where the discrete chiral symmetry is spontaneously broken by a non-zero chiral condensate [24, 26].
At finite temperature this phase is separated from the chirally symmetric phase by a second order phase transition.
At (µ, T )/M0 = (1.0, 0.0) one obtains a first order transition point, where degenerate minima with M/M0 ∈ [0.0, 1.0]
have the same minimal effective potential, which becomes flat.

The homogeneous phase diagram for all possible models, that can be obtained from Eq. (1) by setting certain
couplings either to zero or λ, is identical to that of the GN model. This result is related to the present symmetries of
the action, which allow to pick homogeneous minima, where only the scalar channel σ develops a non-zero expectation
value (note that this is only possible when the fields are restricted to being homogeneous). Other homogeneous,

9 In contrast to the ordinary FF models, it is possible for the Yukawa models with a baryon chemical potential to exhibit off-diagonal terms
in the Hessian matrix. These contributions are, however, independent of q and can be removed by using symmetry transformations on
the homogeneous expansion point.
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global minima are connected to this one via a (chiral) symmetry transformation. Exempt from this are the fields
with parity quantum numbers (−,−) namely η̄45 and π⃗45. By analyzing the homogeneous effective potential, we can
nevertheless show that the homogeneous fields η̄45, π⃗45 develop vanishing expectation values for all temperatures and
baryon chemical potentials. First, we discuss this allowing for all isoscalar channels, which yields the introduction
of the auxiliary fields σ, η4, η5, η45. Using the symmetries of Eq. (9) (or equivalently Eq. (4)) one can use the chiral
transformations Eq. (A5) to obtain non-vanishing expectation values only for σ and η45, Then, we analyze the
fermion contribution Tr lnQ, which can be represented in a block-diagonal form with 2 × 2 blocks corresponding to
the irreducible spin representation in 2 + 1 dimensions. These blocks can be interpreted as GN model contributions
in the irreducible fermion representation with chemical potential µ and homogeneous fields ϕ̄L/R ≡ σ̄ ± η̄45 (see the
theory sections of Refs. [117, 119] for a more in-depth discussion of these irreducible blocks). The model decomposes
into two GN models with the same chemical potentials, which gives us ϕ̄L = ϕ̄R and, thus η̄45 = 0. An analogous
analysis involving some additional isospin rotations is valid for π⃗45. Thus, we do not observe spontaneous parity
breaking in the FF models for all µ and T .
The order of the homogeneous phase transition might be relevant, since the stability analysis of the bosonic two-

point function in the 1 + 1-dimensional GN revealed that a first order phase transition can cause stability of the
homogeneous minimum even though there is an energetically preferred IP [111]. Here, the global energetically pre-
ferred inhomogeneous minimum was only connected to the symmetric homogeneous field configuration which was
not energetically favored over the stable non-zero minimum. The fact that in 2 + 1 dimensions the critical point
occurs at a single point at zero temperature increases the confidence in the presented results obtained via the stability
analysis. Moreover, by inspecting all possible expansion points via varying the mass M , we can rule out a scenario as
in 1+1 dimensions, since in 2+1 dimensions there is no other unstable expansion point while the physically relevant
expansion point M is stable.

1. Models with baryon chemical potential

Table II summarizes the central findings from the stability analysis for some models that are obtained from Eq. (4)
by defining J and setting λj = λ, j ∈ J . The specific models are chosen with respect to their relevance to phe-
nomenology and the literature. The two-point functions for models with other combinations of channels can easily be
calculated as discussed in Section III. The respective symmetry transformations of the effective actions allow to obtain
homogeneous expansion points ϕ̄j , which are vanishing except for σ̄. None of the two-point functions in these models
exhibit a different momentum dependence than L2,±. As discussed in Section III and illustrated by Fig. 1, L2,± are
positive, monotonically increasing functions of the square of the momentum q of the inhomogeneous perturbations.
Thus, we expect the absence of IPs and moat regimes in all of these models, as discussed in detail in Section IIIA.
Therein, we also explain that there is the possibility of a degeneracy between the homogeneous condensate and the
inhomogeneous condensate, as observed at (µ, T )/M0 = (1.0, 0.0) in the GN model [132]. By our analysis, we expect
this degeneracy to be restricted to (µ, T )/M0 = (1.0, 0.0) and, especially, the homogeneous condensates to be favored
against inhomogeneous ones for all non-vanishing T .
In Table II, we discuss four FF models explicitly and give their respective symmetry groups (defined in Appendix A)

and indicate whether the momentum dependence of the two-point functions are L2,+ or L2,−.
The first row shows the renowned GN model with one single isoscalar channel with parity quantum number (+,+)

(see Eq. (7) and Eq. (8) for the definition of the parity in 2 + 1 dimensions and Table I for the quantum numbers of
the fields). The two-point function exhibits the L2,+ dependence, which was already documented in Ref. [117].
The second row shows the 2 + 1-dimensional analog of the 3 + 1-dimensional NJL model. It breaks the axial

symmetry transformations Eqs. (A3) and (A4), leaving only the combined isospin and axial symmetries Eqs. (A7)
and (A8) as chiral transformations. Due to the ambiguity of the γ5 operator in 2+1 dimensions, it makes sense to use
the generators of both transformations to construct an “NJL” Lagrangian. Similar to the case in 3 + 1 dimensions,
we find that the momentum dependence of the two-point functions of the π-fields are given by L2,−, while it is L2,+

for the σ field [23, 126].
The third row shows the 2 + 1-dimensional chiral Heisenberg-Gross-Neveu (χHGN) model [62] with an additional(
ψ̄γ45ψ

)2
interaction term that is special to 2 + 1 dimensions10. Again, due to there being two axial transformations

Eqs. (A3) and (A4), a Lagrangian involving both generators is an appropriate choice. A non-zero bosonic field
η45 breaks both parity symmetries Eqs. (7) and (8) spontaneously, but does not break one of the continuous chiral
symmetries. Due to η̄45 = 0 for all temperatures and baryon chemical potentials, the two-point functions of the

10 The analysis of this model with respect to an IP and their disordering at finite flavor numbers is also motivated in Ref. [112].



11

Model Used channels cj Field basis φ⃗j

diagonalizing S(2)
eff

Momentum
dependence of

Γ
(2)
φj

Symmetry groups

L2,+ L2,−
GN 1 σ σ UI4(N)×

Uγ45(N)×Zγ5(2)×
SUτ⃗ (2)× P4 × P5

NJL 1, iτ⃗ γ4, iτ⃗ γ5 σ, π⃗4, π⃗5 σ π⃗4, π⃗5 UI4(N)×Uγ45(N)×
SUA,γ4(2N)×
SUA,γ5(2N)×

SUτ⃗ (2)× P4 × P5

χHGNP 1, iγ4, iγ5, γ45 σ, η4, η5, η45 (for
η̄45 = 0)

σ, η45 η4, η5 Uγ(2N)× SUτ⃗ (2)×
P4 × P5

PSFF 1, iγ4, iγ5, γ45,
τ⃗ , iτ⃗ γ4, iτ⃗ γ5, iτ⃗ γ45

σ, η4, η5, η45
a⃗0, π⃗4, π⃗5, π⃗45 ( for
η̄45 = ¯⃗π45 = 0 )

σ, η45, ς⃗ , π⃗45 η4, η5, π⃗4, π⃗5 Uγ(2N)× SUτ⃗ (2)×
P4 × P5

TABLE II. Stability analysis of the bosonized FF models. We allow for finite baryon chemical potential µ and finite temperature
T . The first column gives the models abbreviations for their names for further reference (whenever available names existing
in the literature are used). In the second column, the respective interaction channels kept from Eq. (1) are listed. The rest is
removed by setting λk = 0. The third column lists the field basis φj , for which the Eq. (B7) can be diagonalized and, thus,

a meaningful stability analysis can be performed. The fourth column indicates whether the momentum dependence of Γ
(2)
φj is

given by L2,+(M
2, µ, T,q2) or L2,−(M

2, µ, T,q2). The fifth column gives the full symmetry group of the model. The groups
are clickable and refer to the definition of the symmetry group.

fields do not mix (as the only off-diagonal terms are ∝ η̄45, compare with Eq. (B15)) and the diagonalizing field basis
coincides with the auxiliary bosonic fields introduced in the bosonization. Thus, one of the two parity transformations
could only be spontaneously broken if one of the fields with a negative parity quantum number (compare Table I)
develops a spatial modulation. However, also for this model we found that the momentum dependent part of the
two-point functions of all present bosonic fields is either L2,+ or L2,− and, thus, homogeneous condensates never
develop an instability towards a spatially dependent condensate.

The last row lists what we call the complete Lorentz-(pseudo)scalar four-fermion (PSFF) model, since it features
all interaction channels present in Section II and Eq. (1). Again, note that η̄45 = ⃗̄π45 = 0 which prevents off-diagonal
second order terms from the fermionic contribution, see Eq. (B16). Even though we considered by far the largest
amount of interaction channels in this model, no two-point function with a different momentum dependence than
L2,± is obtained.
As discussed in Section IIIA, two-point functions for fields, which have mixed parity quantum numbers ((P4, P5) =

(+,−) or (P4, P5) = (−,+) ), have a momentum dependence proportional to L2,−, while the others have a momentum
dependence proportional to L2,+. This is independent of how large the symmetry group is and of the number of
interaction channels considered. Even when considering all 16 Lorentz-scalar FF interactions (see Eq. (3)), we do not
see a different mathematical structure of the two-point functions.

Therefore, according to the argument given in Section IIIA, none of the models, which can be described by Eq. (4)
by defining J and setting λj = λ, j ∈ J , exhibits an instability towards an IP for any M2, µ, T,q2. As argued in
detail in Section IIIA, this is strong evidence for the absence of IPs in these models.

2. Models with multiple chemical potentials

In this section, we allow for multiple chemical potentials in FF models in addition to the baryon chemical potential,
which is introduced in Eq. (1) via the usual µψ̄γ3ψ term. Namely, we will study the effect of finite isospin chemical
potential, introduced with the term µI ψ̄γ3τ3ψ, and chiral chemical potential, that is introduced as µ45ψ̄γ3γ45ψ.
Although this requires an extensive analysis, we can again identify the well-known function L2,+ in the two-point
functions. Thus, also the models discussed below do not develop an instability towards an IP. Also, the existence of
a moat regime with a negative wave-function renormalization can be ruled out, as Z ≥ 0 according to the discussion
in Section III.

In general, the introduction of multiple chemical potentials induce that (homogeneous) expectation values of several
of the auxiliary fields ϕ̄i will have non-zero expectation values, e.g., studying finite µ45 can lead to a non-vanishing
expectation value of η̄45. Also, the homogeneous phase diagram has to be computed separately for each individual
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case and can have a more involved phase structure (compare, e.g., Ref. [119]).
This also significantly complicates the analysis of the bosonic two-point functions, although in principle the method

can be applied as introduced in Section III. The main difficulty is the diagonalization of the bracketed field space
matrix in Eq. (B16), which becomes quite involved depending on the studied action. For a large number of interaction
channels and multiple non-vanishing ϕ̄i it can become even impossible to diagonalize this expression. Thus, a general
analysis for multiple theories, as in Section III for FF models with baryon chemical potential, cannot be presented by
us.

However, there are still some combinations of interaction channels and chemical potentials, where one can still
obtain the momentum dependence of the two-point functions by a comparatively easy diagonalization obtained by
a suitable choice of field coordinates φj . For these models, we find the fields φj such that the fermion propagator
(B8) is block-diagonal with 2 × 2 blocks, where each corresponds to an irreducible spinor representation. Then, the
contribution of the fermion-loop (as written down in, e.g., Eqs. (B12) and (B14)) also decomposes when ∆Q is written
as a function of the δφj . The vertices11 corresponding to the interaction of the fermions with the new field basis φj

project out either one or multiple of the 2 × 2 blocks and diagonalize the bracketed field space matrix in Eq. (B16).
Then one can proceed with the analysis as described in Section III and Appendix B.

Table III summarizes the models, where such an analysis with respect to the stability of homogeneous condensates
against inhomogeneous perturbations was performed by us. All two-point functions obtained in the models in Table III
are proportional to L2,+. This originates in the circumstance, that in our derivation of the two-point function the field
variables φj are chosen such that one obtains a block-diagonal structure of the homogeneous fermion propagator (B8).
These blocks behave as 2 + 1-dimensional GN models (see Table II for the momentum dependence of the two-point
function of the σ field in the GN model) with a single effective chemical potential and a single field φj or sums of
the fields. The effective chemical potentials are linear combinations of µ, µ45, µI . The momentum-dependence of the
obtained two-point functions is given by linear combinations of L2,+ with M2 and effective chemical potentials.

The model in the first row is a GN model with an additional
(
ψ̄γ45ψ

)2
interaction channel and a chiral imbalance

via finite µ45. A standard GN model subjected to µ45 without the additional interaction channel has been studied in
Ref. [119]. The corresponding homogeneous expectation value of the field η45, as induced by finite µ45 breaks parity
spontaneously. However, the new field basis ϕL/R effectively decouples the theory into two, independent GN models
with chemical potentials µ ± µ45. This leads to two “GN-like” two-point functions each with one independent field
and chemical potential. The same procedure can be performed for the model in the second row, where instead of a(
ψ̄γ45ψ

)2
the isospin channel

(
ψ̄τ3ψ

)2
(leading to an auxiliary bosonic field a0,3 in the bosonic theory) is added to

the GN interaction and an isospin chemical potential µI introduces an isospin imbalance.
In the third row, we allow for both isospin and chiral imbalance introducing both corresponding chemical potentials

in addition to the baryon chemical potential µ. A
(
ψ̄γ45τ3ψ

)2
interaction channel is studied in addition to the

(
ψ̄ψ
)2

interaction. The corresponding bosonic auxiliary fields π45,3 and σ can again be combined via linear combination to

obtain the diagonalizing field basis φ±. The two-point functions Γ
(2)
φ± are now sums of different L2,+ contributions,

each with M2 = Φ2
±, but with differing linear combinations of the chemical potentials dictating the exact form of

L2,+. Again, we refer to Ref. [119] where an analogous competition between two chemical potentials is studied in the
phase diagram and, although this is not explicitly computed therein, in the two-point function of the σ field.

In the forth row, the most involved model in Table III is considered containing both previously introduced interac-
tions resulting in the presence of the auxiliary bosonic field η45 and a0,3 in addition to the σ channel simultaneously
at a finite baryon, isospin and chiral density. We find the diagonalizing field basis to be ϕL, ϕR, a0,3. The momentum
dependence of the two-point functions of ϕL/R are again sums of two L2,+ contributions each with different linear

combinations of the chemical potentials and M2 =
(
ϕ̄L/R ± ā0,3

)2
. However, Γ

(2)
a0,3 is proportional to the sum of Γ

(2)
ϕL

and Γ
(2)
ϕR

, combining four different contributions each proportional to L2,+.
Concluding, all the studied FF models in Table III do not exhibit an instability of the homogeneous ground state

when subjected to inhomogeneous perturbations and, thus, it is very unlikely that they feature an IP (c.f. Refs. [111,
116, 117] and Section IIIA). Nevertheless, it is important to state that in the investigation of FF models subjected to
multiple, non-vanishing chemical potentials we restricted ourselves to a very limited set of interaction channels. We
want to highlight at this point that the restriction to a few interaction channels also limits the predictive power of
our models for high energy phenomenology. For example, at finite isospin chemical potential one needs to take into
account for charged pion condensation (see, e.g., Ref. [135]). Attentive readers may notice that the corresponding
channels are not present in the models in Table III. In order to provide an adequate description of this phenomenon
one certainly has to extend our study in this direction. To study a larger set of interactions with several of the chemical

11 By vertices, we mean the 8× 8 matrices, that describe the coupling between the bosonic field to the spin/isospin degrees of freedom of
the fermion fields.
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Used
channels cj

Bosonic
auxiliary
fields ϕj

Non-zero
chemical
potentials

Field basis φ⃗j

diagonalizing S(2)
eff

Momentum dependence of Γ
(2)
φj

f(M2, µ) = L2,+(M
2, µ, T,q2)

Underlying
symmetry group

1, γ45 σ, η45 µL = µ+ µ45

µR = µ− µ45

ϕL = (σ + η45)
ϕR = (σ − η45)

f(ϕ̄2
L, µL)

f(ϕ̄2
R, µR)

UI4(N)×Uγ45(N)×
Zγ5(2)× SUτ⃗ (2)×

P4 × P5

1, τ3 σ, a0,3 µ↑ = µ+ µI

µ↓ = µ− µI

ϕ↑ = (σ + ς3)
ϕ↓ = (σ − ς3)

f(ϕ̄2
↑, µ↑)

f(ϕ̄2
↓, µ↓)

UI4(N)×Uγ45(N)×
Zγ5(2)×Uτ3(1)×

P4 × P5

1, τ3γ45 σ, π45,3 µL,↑ = µL + µI

µL,↓ = µL − µI

µR,↑ = µR + µI

µR,↓ = µR − µI

φ+ = (σ + π45,3)

φ− = (σ − π45,3)

f(φ̄2
+, µL,↑)

+f(φ̄2
+, µR,↓)

f(φ̄2
−, µL,↓)

+f(φ̄2
−, µR,↑)

UI4(N)×Uγ45(N)×
Zγ5(2)×Uτ3(1)×

P4 × P5

1, τ3, γ45 σ, a0,3, η45 µL,↑, µL,↓,
µR,↑, µR,↓

ϕL = (σ + η45)

ϕR = (σ − η45)

a0,3

f((ϕ̄L + ā0,3)
2, µL,↑)

+f(ϕ̄L − ā0,3)
2, µL,↓)

f((ϕ̄R + ā0,3)
2, µR,↑)

+f(ϕ̄R − ā0,3)
2, µR,↓)

Γ
(2)
ϕL

+ Γ
(2)
ϕR

UI4(N)×Uγ45(N)×
Zγ5(2)×Uτ3(1)×

P4 × P5

TABLE III. Stability analysis of the bosonized FF models with multiple chemical potentials and interaction channels. The first
column describes the used FF interaction vertices (compare Eq. (3)) in the model. The second column gives the corresponding
auxiliary bosonic fields after bosonization, that correspond to the fermion bilinear via the Ward identity (5). The third column
lists the used chemical potentials. In the fourth column, the field basis φj is defined, which diagonalizes the second order

correction, as described in detail in Section IVA2. Then, the momentum dependence of the two-point functions Γ
(2)
φj is given

in the fifth column, right to the field definition. The last column givens an overview of the present symmetries in the model.
The groups are clickable and refer to the definition of the symmetry group.

potentials µ, µ45, µI or even more axial imbalances12 in models with more interaction channels, is in principle possible
but requires a different, technically more involved analysis than the one done in this work. Thus, we postpone such
an analysis to future works. However, our study allows us to conclude that the presence of multiple imbalances in
fermion densities does not generically allow for the existence of inhomogeneous ground states.

B. Yukawa models

In this section, the results for the Yukawa model extension of the FF models discussed above are presented. The
generalization of the bosonized FF models (4) to a Yukawa model is discussed in Section II B. In Eq. (10), the Yukawa
action is constructed out of the FF models’ effective action (9).

The homogeneous phase diagram of these models might drastically change compared to the FF models due to the
introduction of additional couplings and self-interaction terms. Nevertheless, the stability analysis, as described in
Section III, can be performed for all possible, homogeneous expansion points χj = χ̄j such that conclusions about the
stability of these homogeneous condensates against inhomogeneous perturbations can be made.

First, we discuss the generalization of the results in Section IVA1, where the FF models are studied at finite
baryon chemical potentials µ. The key observation is that all bosonic two-point functions are positive, monotonically
increasing functions of q2 and, thus, no instabilities are observed. This observation is directly obtained for the
Yukawa extensions of these models, as these only affect the momentum independent offset (compare Eq. (18)) and
the physical expansion point M. The momentum structure of the two-point function is still proportional to L2,±

12 For example, one could introduce chemical potentials for the conserved currents ψ̄γνγ5ψ or ψ̄γνγ4ψ as in Refs. [39, 72].
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plus an additional positive, monotonically increasing q2 term. As discussed in Section IIIA and illustrated by Fig. 1,
there is no expansion point for which L2,± is not a monotonically rising function of q2. Thus, we can conclude that
there exist no instabilities towards an IP for the Yukawa models, which are generated by extending the FF models in
Table II. According to the reasoning in Section IIIA, the moat regime with a negative wave-function renormalization
is also ruled out. Nevertheless, it might be possible, that such a Yukawa model features a first order phase transition
between the homogeneous phases. Then, one might also find the existence of a first order phase transition towards
an IP. In many model calculations the IP covers the homogeneous first order transition [86, 104, 105, 125, 126] and,
thus, the existence of such a transition could also mean that an IP exists in these models, which is not detected by our
analysis. To our knowledge, however, a model, which features no instability towards an inhomogeneous perturbation
in the whole phase diagram, but which still has an IP, has never been observed before.

Next, we discuss the extension of the FF models from Table III with multiple chemical potentials to Yukawa
models. In the case of multiple chemical potentials, it is not straightforward to derive the two-point functions for the
Yukawa models, corresponding to the FF models by Eq. (10), starting from the FF model results. This is caused
by the necessity of multiple non-vanishing homogeneous expectation values χ̄j as expansion points for the analysis
when the models are subjected to multiple chemical potentials. Then, the Yukawa self-interactions of the bosonic
fields cause non-vanishing second order contributions, which are off-diagonal in the field perturbations δχj (compare
Appendix B 3 and Eq. (B31)), in addition to the off-diagonal fermion contributions Eq. (B16). This is the case for all
Yukawa extensions of the models in Table III.

In the analysis of such a model one needs to diagonalize the whole second-order contribution in Eq. (B31). Typically,
we choose a basis ζj for the dynamical scalar fields that corresponds to the field basis φj , which diagonalizes the
FF model part. Then, one still needs to diagonalize the off-diagonal contributions coming from the bosonic self-
interactions. The diagonalization can become very complicated, even when using symbolic diagonalization of the
expressions as provided by Matlab [136]. We provide an example of this procedure in Appendix C, where we discuss
the Yukawa extension of the model in the first row in Table III. In this analysis, we find a more complicated structure of
the two-point functions and a diagonalizing field basis, which depends on the studied momentum q of the perturbation
as well as the homogeneous expectation values of the scalar fields and the external parameters such as temperature and
the chemical potentials. Nevertheless, the obtained two-point functions can be shown to be monotonically increasing
functions in q and, thus, again no instabilities towards inhomogeneous perturbations are observed. For the other
three models in Table III, we do not show an explicit calculation as the expressions become very lengthy and the
analysis becomes very involved. However, by first calculations and due to the fact that the off-diagonal contributions
coming from the scalar fields’ self-interaction terms are not dependent on the momentum q of the inhomogeneous
perturbations we expect that also these Yukawa models do not develop an instability towards an IP.

V. CONCLUSION AND OUTLOOK

In this work, we analyzed the stability of homogeneous condensates against inhomogeneous perturbations in a wide
range of 2+1-dimensional four-fermion (FF) models and their Yukawa extensions under the influence of combinations of
baryon chemical potential, isospin chemical potential and chiral chemical potential. All investigations were performed
in the mean-field approximation, i.e., neglecting bosonic quantum fluctuations. The most involved model features 16
Lorentz-(pseudo)scalar FF interaction channels and the other models are subsets of this model (see Eqs. (1) and (3)
for the FF model).

Our main finding is the stability of homogeneous condensates against inhomogeneous perturbations in these FF and
Yukawa models at any finite baryon chemical potential and temperature. As argued in Section IIIA, this is strong
evidence that IPs do not exist in 2 + 1-dimensional FF models with Lorentz-(pseudo)scalar interaction channels and
their corresponding Yukawa extension (the correspondence is given in Section II B). Also, we can completely rule out
the existence of a moat regime whose characteristic is a negative wave-function renormalization Z (see Section I for
a short discussion). The momentum dependence of the obtained two-point functions only allow Z ≥ 0. We draw
similar conclusions for models with a subset of the above mentioned FF interaction subjected to multiple chemical
potentials. In the case of multiple chemical potentials, the extension to Yukawa models causes technical difficulties,
but, in principle, we expect the result regarding stability of homogeneous phases to be the same. This is motivated
in Section IVB and an example computation for an explicit model is provided in Appendix C. We note, however,
that the used models are not very well suited for high energy phenomenology in the presence of multiple chemical
potentials, as they lack, for example, the description of charged pion condensation for finite isospin chemical potential.
Thus, one should interpret our results as a first step to generically show that multiple imbalances of fermion densities
do not result in the existence of an IP.

Our results suggest that there might be a general argument, similar to Derrick’s theorem [137], behind the absence
of IPs in 2 + 1-dimensional models. Such a principle could possibly be found by studying the properties of a general
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Ginzburg-Landau free energy as done in Ref. [138]. Therefore, one would probably need to encode the fermionic
determinant in our models by allowing for higher orders in the gradient expansion.

In the present study, we did not consider vector FF interactions, since their inclusion yields a technically different
analysis than the one presented in Section III. The inclusion of these channels would also be relevant for low-energy
effective theories of QCD, where both vector and scalar FF interaction should emerge. However, the interplay of
(repulsive) vector interactions and the scalar interactions could play a crucial role in developing an instability towards
an IP, especially as vector fields directly couple to fermionic momenta in the calculation13. In 3+1-dimensional models
it was already observed that vector interactions can enlarge the IP [139, 140]. The presence of such interactions causes
additional contributions to appear in the two-point functions of the corresponding bosonic fields, which do not have
a definite monotony as the momentum dependence of the two-point functions in the present work. Calculations for
2 + 1-dimensional FF models with vector interactions are already underway and we hope to report soon about the
results.

With respect to high energy phenomenology, there are many ways to build on the present work – for example
allowing for finite quark-masses, studying three-flavor versions of the FF models allowing for strangeness effects or
the inclusion of bosonic quantum fluctuations using lattice field theory. With respect to the stability analysis, it
is interesting to note that using finite bare quark masses disfavors an IP [126] and the inclusion of strange quarks
only has marginal effects on inhomogeneous condensation [141]. However, the effect of bosonic quantum fluctuations
beyond the mean-field approximation on the phase diagram is a very important aspect and also currently discussed in
the literature [41, 94, 95, 98, 99, 134]. The general result of these studies is that bosonic quantum fluctuations tend
to disfavor ordered phases (such as condensed phases) similar to the effect of thermal fluctuations. Thus, it can be
anticipated that the absence of an IP in a mean-field calculation implies that there will be no inhomogeneous ground
states in the full quantum theories. To our knowledge, there is no observation of an inhomogeneous ground state
being generated by bosonic quantum fluctuations when there is no IP present when these fluctuations are suppressed.
An interesting aspect for 2+1-dimensional theories in general could be the inclusion of difermion interactions in order
to allow for color-superconducting order parameters, which often are in competition with the chiral ones, see, e.g.,
Refs. [11, 72, 142, 143].

Regarding the general understanding of strongly-interacting fermions in 2+1 dimensions, it would be very interesting
to study the interference and competition of the different chiral chemical potentials, which can be introduced as
µ4ψ̄γ3γ4ψ, µ5ψ̄γ3γ5ψ or µ45ψ̄γ3γ45ψ (as done in the beginning of Section IVA2) and correspond to different conserved
charges. However, the first results in our work and in Ref. [119] suggest that this would not change the phase diagram
with respect to the existence of IPs.
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Appendix A: Symmetries of (2 + 1)-dimensional fermions

In this section, we want to elaborate on the symmetries of the fermionic models, which are introduced in Section II
in Eq. (1). Their partially bosonized action can be found in Eq. (4) and are invariant under certain symmetry
transformations acting on the 2N four-component spinor fields (the factor of 2 comes from introducing an isospin
space). The specific symmetry group, under which the model is invariant, is determined by the choice of the set J , i.e.
by the choice λj ̸= 0, j ∈ J and, correspondingly, by which auxiliary bosonic fields ϕj , j ∈ J have to be introduced
in the bosonization. This section is intended to provide an overview of the relevant symmetry groups present in the
models discussed in Section IV and the tables Table II and Table III.

13 This is also the reason, why the analysis of these models differs from the ones presented in this work and has to be consistently presented
elsewhere.
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Taking J = {j}j=1,...,16 the N isospin up/down fermion fields in Eq. (4) will be invariant under transformation of

the group U(4N), similar to the free case. This group has (4N)
2
generators, which we split up into three different

categories. There are rotations within the internal space of the N spinors generated by N ×N matrices given by the

generalized Gell-Mann matrices T a with a = 1, . . . , N2 − 1 and the identity matrix TN2

= IN . These generators T a

can be combined with any of the chiral symmetry transformations of a free fermion fields, which are generated by
(I4, γ4, γ5, γ45). Together with the internal rotations either of these can generate a U(N) symmetry, labeled by the
corresponding chiral generator, namely

UI4(N) : ψ → eiα
aI4T

a

ψ , ψ̄ → ψ̄e−iαaI4T
a

, (A1)

Uγ45(N) : ψ → eiβ
aγ45T

a

ψ , ψ̄ → ψ̄e−iβaγ45T
a

, (A2)

Uγ4
(N) : ψ → eiζ

aγ4T
a

ψ , ψ̄ → ψ̄eiζ
aγ4T

a

, (A3)

Uγ5
(N) : ψ → eiι

aγ5T
a

ψ , ψ̄ → ψ̄eiι
aγ5T

a

, (A4)

with real parameters αa, βa, ζa, ιa. Thus, the whole chiral symmetry group can be defined as

Uγ(2N) : ψ → Uψ, (A5)

where U is a matrix element of U(2N). In addition, the FF model in Eq. (1) is invariant under isospin transformations
of the group U(2), which is composed of a U(1) phase factor and

SUτ⃗ (2) : ψ → eiξ⃗τ⃗ψ , ψ̄ → ψ̄e−iξ⃗τ⃗ , (A6)

where ξ⃗ are three real parameters.

Some of the models discussed in Section IV are only invariant under a subgroup of the U(4N) transformations. We
will define these symmetry transformations as a reference for Table II and Table III. As in the NJL model, one can
choose J such, that one or more of the two axial transformations (A3) and (A4) are broken. Then, the action can be
still invariant under a combined isospin and chiral rotation given by

SUA,γ4(2N) : ψ → eiζ⃗
′aτ⃗γ4T

a

ψ, ψ̄ → ψ̄eiζ⃗
′aτ⃗γ4T

a

, (A7)

SUA,γ5(2N) : ψ → eiι⃗
′aτ⃗γ5T

a

ψ, ψ̄ → ψ̄eiι⃗
′aτ⃗γ5T

a

, (A8)

where the isovectors ι⃗′
a
and ζ⃗ ′

a
contain 3 real parameters and a = 1, . . . , N2. Typically in these cases, the vector

symmetry Eq. (A6) is not broken.
Some of the choices of J break the continuous chiral symmetries to discrete subgroups

Zγ4
(2) : ψ → γ4ψ, ψ̄ → −ψ̄γ4, (A9)

Zγ5
(2) : ψ → γ5ψ, ψ̄ → −ψ̄γ5. (A10)

Typically, when a model is in addition invariant under the transformation (A2), then either of (A9) and (A10) can
be reproduced by a combination of (A2) and the other of the discrete symmetries.

In Table III, only a remnant of the isospin symmetry transformation SUτ⃗ (2) is present in some of the models,
namely

Uτ3(1) : ψ → eiξ3τ3ψ , ψ̄ → ψ̄e−iξ3τ3 . (A11)

Appendix B: Derivation of the stability analysis

In this section, the stability analysis for a general FF theory subjected to a baryon chemical potential is derived.
This discussion is similar to model-specific discussions, as, e.g., found in Refs. [111, 117, 126]. The core idea of
this technique is to analyze the stability of a homogeneous field configuration under inhomogeneous perturbations.
Furthermore, we outline how an extension to Yukawa models can be done.

Consider an expansion of the auxiliary bosonic fields

ϕ⃗(x) = ⃗̄ϕ+ δϕ⃗(x), (B1)
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where δϕ⃗(x) is a spatially dependent inhomogeneous perturbation of the homogeneous expansion point ⃗̄ϕ. These
perturbations are of an arbitrary shape and assumed to be of an infinitesimal amplitude. The Dirac operator then
also separates into a homogeneous and an inhomogeneous part

Q =
(
/∂ + γ3µ+

∑
j∈J

cj ϕ̄j

)
+
∑
k

ckδϕk(x) ≡ Q̄ + ∆Q(x), (B2)

which we can use to expand the lnDetQ as

lnDet [βQ] = lnDet
[
βQ̄
]
−

∞∑
n=1

1
n Tr

[(
−∆QQ̄−1

)n]
, (B3)

where Tr denotes a functional trace over all spaces. We insert the expansion from Eq. (B3) and Eq. (B1) into the
effective action Eq. (9) to obtain the expansion

Seff[ϕ⃗]

N
=

∫
d3x

∑
j∈J

(ϕ̄+ δϕ(x))2

2λj
− lnDet

[
βQ̄
]
+

∞∑
n=1

1
n Tr

[(
−∆QQ̄−1

)n] ≡ 1

N

∞∑
n=0

S(n)
eff , (B4)

where S(n)
eff contains all terms of order n in the perturbations δϕj , i.e., terms ∝

∏
j δϕ

mj

j with
∑

j mj = n. The first
three terms in the series are given by

S(0)
eff

N
= βV

∑
j∈J

ϕ̄2j
2λj

− lnDet
[
βQ̄
]
, (B5)

S(1)
eff

N
= β

∑
j∈J

ϕ̄j
λj

∫
d2x δϕj(x)− Tr

[
∆QQ̄−1

]
, (B6)

S(2)
eff

N
=
β

2

∑
j∈J

1

λj

∫
d2x δϕ2j (x) +

1

2
Tr
[
∆QQ̄−1∆QQ̄−1

]
, (B7)

where the zeroth order term is proportional to the effective potential. In the position space representation, the fermion
propagator depends only on the difference of two space-time variables, i.e., Q̄−1 = Q̄−1(x, y) ≡ Q̄−1(x − y). The
functional traces are represented in position space as

Tr
[(
∆QQ̄−1

)n]
=

∫ n∏
j=1

d3x(j) tr
(
∆Q(x(1))Q̄−1

(
x(1), x(2)

)
. . .∆Q(x(n))Q̄−1

(
x(n), x(1)

))
,

with tr denoting the trace in spinor and isospin space. In order to evaluate these traces, it is instructive to consider
the Fourier representation of the homogeneous propagator

Q̄−1(x, y) ≡ 1

β

∞∑
n=−∞

∫
d2p
(2π)2 e

i[νn(τx−τy)+p(x−y)] ˜̄Q
−1

(νn,p), (B8)

with

˜̄Q
−1

(νn,p) =
−iγip̃i +

∑
k c

⋆
kϕ̄k

ν̃2n + p2 +M2
(B9)

where ν̃n = (νn − iµ), νn = 2π(n − 1
2 )/β are the fermionic Matsubara frequencies, and M and c⋆ are defined in

Eq. (14). Using the Fourier representation, Eq. (B6) evaluates to

S(1)
eff

N
=
∑
j∈J

β

[∫
d2x δϕj(x)

][
ϕ̄j
λj

− 1

β

∑
n

∫
d2p
(2π)2 tr

(
˜̄Q−1(νn,p) cj

)]
, (B10)

which we can identify to be proportional to the homogeneous gap equations

1

N

∂S(0)
eff

∂ϕ̄k

∣∣∣∣∣
⃗̄ϕ=⃗̄ϕ′

= β

[∫
d2x

][
ϕ̄k
λk

− 1

β

∑
n

∫
d2p
(2π)2 tr

(
˜̄Q−1(νn,p) ck

)]∣∣∣∣∣
⃗̄ϕ=⃗̄ϕ′

= 0, (B11)
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where ⃗̄ϕ′ is a homogeneous field configuration that is a solution of the gap equations. Therefore, S(1)
eff vanishes when

the homogeneous field configurations used as an expansion point are solutions of the gap equations. If these expansion
points are used, the second order term is the first non-zero correction. We evaluate the trace in Eq. (B7) to

Tr
[
Q̄−1 ∆QQ̄−1 ∆Q

]
=

∫
d2q

(2π)2

∑
j,k∈J

δϕ̃∗j (q) δϕ̃k(q) Γ
F
ϕjϕk

(
M2, µ, T, q2

) , (B12)

where q = |q| and we used the Fourier representation of the spatial inhomogeneous perturbations

δϕj(x) =

∫
d2q

(2π)2 e
iqx δϕ̃j(q). (B13)

The matrix in field space ΓF
ϕjϕk

can be cast into the form

ΓF
ϕjϕk

=
1

β

∑
n

∫
d2p
(2π)2 tr

(
cj

˜̄Q−1(νn,p+ q) ck
˜̄Q−1(νn,p)

)
= (B14)

= − 1

β

∑
n

∫
d2p
(2π)2

Acjck

[ν̃2n + p2 +M2][ν̃2n + (p+ q)2 +M2]

with

Acjck = (ν̃2n + p2 + p · q) tr [cjγickγj ]−
∑

l,m∈J

ϕ̄lϕ̄m tr
[
cjc

⋆
l ckc

⋆
m

]
= (B15)

= δj,k8(ν̃
2
n + p2 + p · q)−

∑
l,m∈J

ϕ̄lϕ̄m tr
[
cjc

⋆
l ckc

⋆
m

]
,

where we used that tr(γicjckcl) = 0, c2j = ±I and that the anti-commutator {γi, ck} evaluates to 0 or 2ckγi for all
considered cj . Thus, we obtain for the second order correction of the effective action

S(2)
eff

N
=
β

2

∫
d2q

(2π)2

∑
j,k∈J

δϕ̃∗j (q) δϕ̃k(q)
[
δj,k λ

−1
j + ΓF

ϕjϕk

(
M2, µ, T, q2

)]
. (B16)

In order to make statements about the stability of a homogeneous field configuration one has to determine a basis

φj(ϕ⃗), j ∈ J for which δj,k λ
−1
j +ΓF

ϕjϕk
(q2) is diagonalized. This is not possible in general and depends on the present

chemical potentials and the interactions of the model. Furthermore, we assume that all λj are either λ or 0 according
to the subset J of the field content that we consider. If this diagonalization is then indeed possible as it is the case
for all channels considered in Eq. (1) at finite baryon chemical potential, one obtains the form

S(2)
eff

N
=
β

2

∫
d2q

(2π)2

∑
j∈J

|δφ̃j(q)|2 Γ(2)
φj

(
M2, µ, T, q2

) (B17)

with

Γ(2)
φj

(
M2, µ, T, q2

)
=

1

λ
− 8

β

∑
n

∫
d2p
(2π)2

(
p̃2 + p · q+ a′φj

M2

[ν̃2n + p2 +M2][ν̃2n + (p+ q)2 +M2]

)
, (B18)

where a′φj
is a coefficient that is determined by the considered field φj . In this diagonalized form, we identify Γ

(2)
φj (q

2)
as the curvature of the effective action for an inhomogeneous perturbation in field direction φj with momentum q.
By writing the denominator of the integrand in Eq. (B18) in a partial fraction, we can split the integral and obtain
the final form of the bosonic two-point function as given in Eq. (13), where aφj

= 2(a′φj
− 1). Note that the integral

ℓ1 is also obtained in the fermionic trace in the gap equation (B11) for ϕ̄1 = σ̄ (compare also the GN model gap
equation in Section III of Ref. [117]). The gap equation and, correspondingly, ℓ1 is typically used as a renormalization
condition in the vacuum for the coupling constant λj = λ.
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1. The momentum independent part L1

We consider the integral

ℓ1(M
2, µ, T ) =

8

β

∑
n

∫
d2p
(2π)2

1

(νn − iµ)2 + E2
, (B19)

where E2 = p2+M2. The factor of 8 comes from the traces over the four-dimensional spinor and the two-dimensional
isospin space. Performing the sum over n, we obtain the standard result

ℓ1(M
2, µ, T ) = 8

∫
d2p
(2π)2

1− n(β(E + µ))− n(β(E − µ))

2E
, (B20)

where n(x) is the fermionic distribution function

n(x) =
1

ex + 1
. (B21)

The vacuum part is UV-divergent, which we can regulate with a spatial momentum cutoff Λ

ℓ1(M
2, 0, 0) =

8

2π

∫ Λ

0

dp
p

2E
=

8

4π
(
√
Λ2 +M2 − |M |) Λ≫M2

→ 8

4π
(Λ− |M |) (B22)

and use to set the value of λk via the gap-equations Eq. (B11)

1

λk
=

8

4π
(Λ− |M0|) (B23)

with the mass M0 corresponding to the minimum of the effective action in the vacuum (defined in Section III).
We are interested in the contribution of ℓ1 to the two-point function Γ(2), where ℓ1 appears exclusively as L1 =

1
λk

− ℓ1. Using Eqs. (B22) and (B23) we find

L1(M
2, µ, T ) = 8

[
|M | − |M0|

4π
+

∫
d2p
(2π)2

n(β(E + µ)) + n(β(E − µ))

2E

]
, (B24)

where the medium integral over the fermionic-distribution function can be evaluated to

L1(M
2, µ, T ) =

8

4π

[
|M | − |M0|+ 1

β ln
(
1 + e−β(|M |−µ)

)
+ 1

β ln
(
1 + e−β(|M |+µ)

)]
. (B25)

For T = 0, this evaluates to

L1(M
2, µ, T = 0) =

8

4π

[
|M | − |M0|+Θ

(
µ2 −M2

)
(|µ| − |M |)

]
, (B26)

from which we can naively take the limits µ→ 0 and/or M → 0.

2. The momentum dependent part L2,±

In order to calculate the momentum dependent part of the two-point function, we start by carrying out the
Matsubara summation in ℓ2 and obtain

ℓ2(M
2, µ, T, q2) = 8

∫
d2p
(2π)2

1

2p · q+ q2

[
1− n(β(E + µ))− n(β(E − µ))

2E
− 1− n(β(Eq + µ))− n(β(Eq − µ))

2Eq

]
,

(B27)

where Eq =
√
M2 + (p+ q)2. This integral is UV-finite and, thus, we do not have to implement a regularization

scheme. However, the integrand has a divergence at 2p · q = −q2 that has to be treated with a Cauchy principal
value prescription. The vacuum contribution can be calculated analytically and we obtain

ℓ2(M
2, µ, T, q2) =

8

4πq

[
arctan

(
q

2|M |

)
−
∫ q/2

0

dp
p

E

n(β(E + µ)) + n(β(E − µ))√
q2/4− p2

]
. (B28)
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At any finite T , the medium contribution has to be calculated numerically. However, taking the limit T → 0 enables
us to also calculate the medium contribution analytically and we find Eq. (16). From this expression, we can take
either the limit q → 0 to obtain

ℓ2(M
2, µ, T = 0, q2 = 0) =

1

π


0 , µ2 > M2

1
|M | , µ2 < M2

(B29)

or the limit |M | → 0 to obtain

ℓ2(M
2 = 0, µ, T = 0, q2) =

2

πq


0 , µ2 > q2/4

arctan

(√
q2−4µ2)

2µ

)
, 0 < µ2 ≤ q2/4

π
2 , µ2 = 0

.

While ℓ2 is not defined for M = q = T = 0 for some values of µ, the whole momentum-dependent contribution to the
two-point functions L2,± is defined with

L2,±(M
2 = 0, µ, T = 0, q2 = 0) = 0. (B30)

3. Generalization to Yukawa models

It is straightforward to generalize the stability analysis of FF models to Yukawa models, which are defined as in
Section II B in Eq. (10). Thus, we outline only the meaningful differences with respect to the discussion of FF models
in order to preserve brevity.

After an expansion of SY in powers of inhomogeneous perturbations of the fields, one identifies again S(0)
Y as

proportional to the effective potential. The first order correction S(1)
Y is proportional to the gap equations and,

consequently, vanishes when one expands about homogeneous extrema of SY .

For the second order correction S(2)
Y we find

S(2)
Y

N
=
β

2

∑
j∈J

1

hλj

∫
d2x δχ2

j (x)− Tr
[
Q̄−1 h∆QQ̄−1 h∆Q

]
+ (B31)

+
1

2

∑
j∈J

{∫
d2x (∂νδχj(x)) (∂νδχj(x)) +

∑
n>1

κn2n
(
⃗̄χ2
)n−1

∫
d2x δχ2

j (x)

}
+

+ 2
∑
j,k∈J

∑
n>1

κnn(n− 1)χ̄jχ̄k

(
⃗̄χ2
)n−2

∫
d2x δχj(x)δχk(x),

where the second line and third line contain the additional terms resulting from the extension to Yukawa models.
Note that the third line contains non-diagonal contributions from the self-interaction terms of the χ⃗ fields. However,
these are proportional to χ̄jχ̄k, and, thus, vanish when either of χ̄j , χ̄k can be rotated to zero through a symmetry
transformation, as is the case for all Yukawa-type extensions of the model Eq. (9), where only a baryon chemical
potential is present. If this is not the case, one needs to take into account this off-diagonal contribution in addition
to the, in principle, off-diagonal fermionic contribution. This is the case for the models discussed in Table III
with additional chemical potentials. A more involved diagonalization needs to be performed, although the Yukawa
contribution is not expected to change the general momentum-dependence of the two-point function, as the term is
q-independent. An example for such an analysis is presented in Appendix C.

In the case of only a baryon chemical potential, we utilize symmetry transformations to obtain a homogeneous
expansion point χ⃗ = ⃗̄χ such that the off-diagonal contributions in the third row of Eq. (B31) vanish. Performing
similar steps as between Eq. (B15) and Eq. (13) leads to the second order correction Eq. (17) and the corresponding
bosonic two-point function Eq. (18).
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Appendix C: Stability analysis for a Yukawa model with more than one chemical potential

In this section, we will show how the off-diagonal contribution from the Yukawa self-interactions (compare the

third line of Eq. (B31)) makes the diagonalization of S(2)
Y more involved. However, we will also demonstrate that this

q-independent contribution does not alter the predictions coming out of the analysis.
The model that we will study is defined as the Yukawa model extension according to Eq. (10) of the FF model in

the first row of Table III, i.e., it contains the σ and η45 fields as well as a baryon chemical potential µ and a chiral
chemical potential µ45. As documented in in Table III and [120], the FF part of the model is diagonalized by the field
basis proportional to

(σ ± η45) . (C1)

In analogy to this FF model, we study the effective action

Seff[χL, χR]

N
= − Tr ln

[
/∂+ γ3 (PLµL + PRµR) + hPLχL + hPRχR] + (C2)

+

∫
d3xh2

[
χ2
L+χ2

R

2λ + 1
2 (∂χL)

2
+ 1

2 (∂χR)
2
+
∑
n>1

κnh
2(n−1)

(
χ2
L + χ2

R

)n ]
,

where χL/R are fields of canonical dimension and proportional to the dynamical scalar fields χσ and χη45 as

χL = 1√
2
(χσ + χη45) , χR = 1√

2
(χσ − χη45) . (C3)

We, again, introduced a Yukawa coupling h as well as couplings κn for the self-interactions and define projectors and
chemical potentials accordingly

PL = 1√
2
(1 + γ45) , PR = 1√

2
(1− γ45) , (C4)

µL = 1√
2
(µ+ µ45) , µR = 1√

2
(µ− µ45) . (C5)

All terms except for the last row in Eq. (C2) either contain only14 χL or only χR. Thus, the second order correction
is given by

S(2)
eff

N
=
β

2

∫
d2q

(2π)2

{ ∑
j=L,R

|δχj(q)|2
[
h2ΓF

χj
+ q2 +

∑
n>1

κnn
(
2(M2)n−1 + 4(n− 1)χ̄2

j (M
2)n−2

) ]
+ (C6)

+ δχL(−q)δχR(q)4κnn(n− 1)χ̄Lχ̄R(M
2)n−2 + L↔ R

}
,

where M2 = χ̄2
σ + χ̄2

η45
= χ̄2

L + χ̄2
R and

ΓF
χj

=
1

λ
− ℓ1 + L2,+(h

2χ̄2
j , µj , T, q

2) (C7)

is the contribution, that also appears in the corresponding FF model (see Table III and Ref. [120]). The integrals ℓ1
and L2,+ are defined in Eqs. (13) and (15).
The last row of Eq. (C6) contains the off-diagonal contribution of the self-interaction. This contribution is not

dependent on the spatial momentum q of the perturbation, but it makes the diagonalization more complicated
(compare Eq. (B31) for the form of this contribution in the more general case). In fact, we are only able to diagonalize
this symbolically using Matlab [136]. Using the definitions

Yj = q2 +
∑
n>1

κnn
(
2(M2)n−1 + 4(n− 1)χ̄2

j (M
2)n−2

)
, (C8)

with j = L,R as well as

I =
∑
n>1

4κnn(n− 1)χ̄Lχ̄R(M
2)n−2 (C9)

14 The Dirac operator within the Tr ln can be decomposed into a block-diagonal form, where each block only contains either µL and χL

or µR and χR. In this sense, the fermionic contributions completely decouple χL and χR.
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and

A =
√
(h2ΓF

χL
− h2ΓF

χR
+ YL − YR)2 + (2I)2 (C10)

we write the diagonalization of S(2)
eff in the (δχL(q), δχR(q))-space

S(2)
eff

N
=
β

2

∫
d2q

(2π)2 (δχL(−q), δχR(−q))B(q2, χ̄L, χ̄R, µL, µR, T )× (C11)

×

(
h2

2

(
ΓF
χL

+ ΓF
χR

)
+ 1

2 (YL + YR)− 1
2A

h2

2

(
ΓF
χL

+ ΓF
χR

)
+ 1

2 (YL + YR) +
1
2A

)
×

×B−1(q2, χ̄L, χ̄R, µL, µR, T ) (δχL(q), δχR(q))
T
,

where B(q2, χ̄L, χ̄R, µL, µR, T ) is a basis changing matrix determined by Matlab, whose form is not relevant for our
analysis. In this form one can determine, whether the diagonal entries of the matrix in Eq. (C11) are non-negative.
For the physically relevant homogeneous expansion point M both entries are non-negative for q = 0, since otherwise
the expansion point would not be a minimum when only considering homogeneous field values. Therefore, in order
to prove positivity for all q = |q| it suffices again to show that the entries are monotonically increasing functions of
q. We take the derivative of the entries with respect to q and require it to be non-negative

h2

2

[
(L2,L)

′
+ (L2,R)

′]
+ 2q ∓ h2

2

[
(L2,L)

′ − (L2,R)
′] h2ΓF

χL
− h2ΓF

χR
+ YL − YR

A

!
≥ 0, (C12)

where L2,L/R = L2,+(h
2χ̄2

L/R, µL/R, T, q
2) and its derivative with respect to q is non-negative, i.e., d

dqL2,L/R =(
L2,L/R

)′ ≥ 0, since it is a monotonically increasing function of q (compare Section III). We can rearrange Eq. (C12)
and square it to obtain([

(L2,L)
′
+ (L2,R)

′]
+

2q

h2

)2

≥
[
(L2,L)

′ − (L2,R)
′]2 (

h2ΓF
χL

− h2ΓF
χR

+ YL − YR
)2

(h2ΓF
χL

− h2ΓF
χR

+ YL − YR)2 + (2I)2
= (C13)

=
[
(L2,L)

′ − (L2,R)
′]2

c2,

where obviously 0 ≤ c2 ≤ 1 and, thus, the inequality is fulfilled for all q.
Summarizing this lengthy and delicate analysis: We diagonalized the second order corrections (C6) of a Yukawa

model with multiple chemical potentials given by Eq. (C2) using computer algebra systems such as Matlab [136].
Analyzing the resulting expression, we find that both eigenvalues of the relevant curvature matrix in the second
order corrections are positive, monotonically increasing functions of the momentum squared q2 of the inhomogeneous
perturbation. Thus, we do not observe instabilities of the homogeneous condensates in the Yukawa model given by
Eq. (C2). By the same reasoning, a negative wave-function renormalization (proportional to the second derivative of
the two eigenvalues with respect to q), i.e., a so-called moat regime is not observed in the model. Similar behavior
is expected for the other Yukawa models that correspond to the FF models in Table III according to Section II B
and Eq. (10).
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