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Abstract 
 

In bioinformatics, biochemical pathways can be mod-
eled by many differential equations. It is still an open 
problem how to fit the huge amount of parameters of the 
equations to the available data. Here, the approach of 
systematically learning the parameters is necessary.  

This paper propose as model selection criterion the 
least complex description of the observed data by the 
model, the minimum description length. For the small, 
but important example of inflammation modeling the per-
formance of the approach is evaluated. 

1. Introduction 

In living organisms many metabolisms and immune re-
actions depend on specific, location-dependent interac-
tions. Since the interactions occur in a timed transport of 
matter and molecules, this can be termed as a network of 
biochemical pathways of molecules. In Bioinformatics, 
these pathways or signal interactions are modeled by 
many differential equations. For complicated systems, 
differential equations systems (DES) with up to 7,000 
equations and 20,000 associated parameters exist and 
model reality. The motivation for life science industry to 
use such systems is evident: A prediction of reactions and 
influences by simulated models helps avoiding time-
consuming, expensive animal and laboratory experiments, 
decrease the high costs for developing new drugs and 
therefore may save millions of Euros. For small signal 
transduction networks, this has already been done by 
estimating the parameters by data-driven modeling of ex-
pression profiles of DNA micro arrays, see e.g.[2]. Inter-
estingly, no problems were reported fitting the mo dels to 
the data. 

Although the basic idea is quite seducing, the practical 
problems associated with the simulation approach are dif-
ficult to solve: How do we know that our selected model is 
valid and how can all parameters be set to the correct val-
ues? And if all parameters are different for each individual, 
how can they be adapted to the real values based only on 
a small set of measured data per organism?  

In this paper we will try to answer some of theses 
questions for the example of the small but important prob-
lem of inflammation and septic shock.  

2. The differential equation neural network of 
inflammation and septic shock 

The symptoms of septic shock contain low blood pres-
sure, high ventilation and high heart rates and may occur 
after an  infection or a trauma (damage of tissue). The sep-
tic shock research has no convincing results yet; there is 
still a high mortality of about 50% on the intensive care 
units (ICU) and nobody knows why. It is only possible to 
predict the outcome for a patient in advance just for 3 
days [1]. In 1999, about 250,000 death were associated 
with sepsis in the USA. 
The septic shock state is produced by a confusing myriad 
of immune pathways and molecules. For studying the ba-
sic problems we restrict ourselves first to a simplified but 
still functional version of the model which uses only three 
variables and 12 constant parameters [3]. Let P be the 
pathogen influence, M the immunological response, e.g. 
the macrophages involved and D the obtained cell dam-
age. Then, using some basic assumptions [4], we might 
combine them into a coupled system of three first order 
differential equations (DES): 

 P'(t)  = a1(1–P)P  + a2MP (1) 

 M'(t) = a3M +a4M(1–M)P + a5M(1–M)D (2) 

 D'(t)  = a6D + a7 h( (M–a9)/a8) (3) 

The plot of the time course for the three outputs (three 
variables) for the set of parameters shown in Tab. 1 is 
shown in Fig. 1. For this, the differential equations were 
numerically integrated using the Runge-Kutta method. 

 
a1 =   0.054 a3 = -1.0 a6 = -0.01 
a2 = –0.2155 a4 =  5.0 a7 = 0.00384 
a9 = 0.2018 a5 = 1.0 a8 = 0.1644 

Tab. 1 The constant parameter values 

It can be concluded that an infection (P) causes cell dam-
age (D) and a delayed activity of the macrophages (M). 
The infection is defeated by the macrophages which de-
crease to a sufficient level afterwards. 
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Fig. 1 The time dynamics of the equations (4), (5) 
and (6). 

In this case (parameter regime), the infection remains 
chronically and the cell damage reaches a stable level. In 
the next section let us regard the adaptation of the parame-
ters more closely. 

3. Learning the Parameters 

Generally, the biochemical pathways are very complex. 
It is not clear, which influences are important and which 
are not important. For the analytical description by equa-
tions this means that the number of terms (“model selec-
tion”) and the values of its parameters (“model adapta-
tion”) are not given a priori, but have to be estimated 
(“learned”) by the real observed data. How can this be 
done? 
First, we are troubled by the fact that we do not have the 
full data set of Fig. 1 but only the small set of observed 
data. An example is given in table 2. For instance, the dy-
namics of inflammation might be in the range of hours, 
whereas the observed data is taken once each day. 
 

Time 
step 

P M D 

0 0.05000
0 

0.00100
0 

0.15000
0 

100 0.20121
5 

0.20607
9 

0.25434
7 

200 0.18375
1 

0.20684
4 

0.34202
7 

300 0.17727
0 

0.20675
0 

0.37428
2 

400 0.17487
6 

0.20668
0 

0.38614
1 

500 0.17399
5 

0.20664
9 

0.39050
0 

Tab. 2 The observed sparse data  

In Fig. 2 this situation is shown. Here, the variable y(t) 
changes after each time tick, but it is only measured at time 
points ti. The different time scales will change heavily the 

approximated coefficients and difference equations, see 
[4]. Therefore, if we ignore the time steps b etween the ob-
servations and assume that system iterates once for one 
observation we will not be able to predict the best fitting 
parameters ai for the difference equations that have sev-
eral time steps between the observations. 

   

y ( t )  

t i m e  t i c k s t1  t 2  t3  t 4   
Fig. 2 The different time intervals for the differen-

tial equation and the observations 

It turned out [4] that a variant of the classical evolutionary 
approach [5] did the job quite well. The advantage of this 
approach is its independency of the complexity of the ob-
jective function. The disadvantage is its high computa-
tional burden: we have to recompute the objective func-
tion each time we change only one parameter, and we can 
not adapt the step width in advance. Nevertheless, for a 
given DES and given observed data this approach shows 
good performance, see [4]. 
For a given model, this is fine. If the model is not given we 
are in trouble: How should we select the model and adapt 
the parameters at the same time? The initial idea of first 
adapting the parameters and then selecting the model by 
pruning all terms that has very small parameter values 
might work. Consider for instance our model of eqs. 
(1),(2),(3). We might consider the following ideas: 

(1) If the pathogen influence (microbes) is present at the 
location where cell damage occurs, the pathogen influ-
ence will be increased: P’ ~ PD 

(2) Macrophages will die due to toxic influence of mi-
crobes, proportional to the co-occurrence probability 
and the microbe concentration : M’ ~ –P2M 

These two possible extensions of the model are translated 
into the modified differential equations 

 P'(t)   = a1(1–P)P  + a2MP + a10PD    (4) 

 M'(t) = a3M+a4M(1–M)P+a5M(1–M)D+ a11P2M (5) 

 D'(t)  = a6D + a7 h( (M–a9)/a8) (6) 

On the other hand, we might have a more simple model in 
reality than we expect. For instance, we might have a 
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model without influence of variable D to variable M, i.e. a5 
= 0, or a changed model with both a10,a11≠0 and a5 = 0. 

With these ideas, we have now four different possible 
models. How can we decide which model is implemented 
by reality? How can we choose the best model? 

4. Model selection 

The choice of the model is important for all diagnosis and 
therapies of the septic process. First, we have to discuss 
several possibilities for selecting the appropriate model 
and then we will select one strategy of our choice. 

4.1 Model selection by parameter pruning 

As the first, naïve approach let us consider the case where 
we have the pure differential equations (1),(2),(3) or  
(4),(5),(6) encountering no nois e and we have recorded 
observation samples. How do we know which model is the 
right one for the observations? In this case, we might ex-
pect that the additional terms produce an error in mo deling 
the observations. In the other way, reducing the error in 
the parameter adaptation process might result in setting 
the unnecessary parameters to zero, if they exist: the de-
scribing model is automatically tailored to the observed 
data. 

We observe that in the long run the approximation 
with additional terms does not improve while the correct 
model does. How can this be explained? The additional 
interactions that are caused by the additional parameters 
a10 and a11 in the augmented model will produce small dis-
turbances that will deviate the approximation process: the 
approximation will slow down in relation to the non-
augmented model which fits well to the observed data. 
Also, adapt the parameters of all models.  

So, another plausible idea might be: Select the model, 
which converges best. Is this a good selection criterion for 
the model? The answer is no: the additional interactions 
slow the convergence down, but the inverse is also true 
for too simple models which can not approximate the ob-
served samples well, but initially converge faster than the 
true model.  
Additionally, in nearly almost all natural systems we en-
counter noise that is not considered in this approach. So, 
we have to relay on other approaches. 

4.2 Model selection by minimum description 
length 

In the previous section we have seen that the conver-
gence of the parameters cannot automatically replace the 
model selection process. Instead, we have to evaluate the 
performance of each model, i.e. each form of DES sepa-

rately related to the observed time course samples. What 
kind of performance measure should we choose? We 
know that the deviation of the samples to the predicted 
values, the mean squared error, is not a good approach: by 
the additional parameters the more complex models will 
tend to overfit on adapting to the observed values per-
fectly whereas the best model will produce sample differ-
ences within the variance of the samples. This leads to our  

Strategy: Adapt the parameters of all models to fit the 
observed data. Select the model which gives the short-
est description of the observed data, on average and 
asymptotically. 

So, we are looking for a model which neither fits too good 
nor too bad and needs only a small amount of information 
to describe the observations. How do we evaluate this? 
Let us formalize our problem: For each of the k subjects 
and each variable, we observe values at different time 
steps t1, t2, …,tn. For example as shown in Fig. 3, we might 
measure the dynamics at four times. All the four samples 
of one subject might be grouped together in one set. The 
set of observations for one subject is called a sample x = 
(x1,…,xn) of all possible observations {x}. Each model m  
which has been fit to the sample also produces by simula-
tion a sample f = (f1,…,fn) for the designated n time steps.  

  f(t) 
 
 
 
 
 
 
 
 
 
 
 
 

t1  t2  t3  t4 t 

model 1 

model 2 

 
Fig. 3 Selecting the best fitting model 

The deviation of the i-th observed sample x(i) from its 
adapted model f(i) of the same type is for all time steps t = 
1…N  its empirical variance [6] 

 
2
iσ  = ∑

=

−
−

N

1t

2
tt ))i(f)i(x(

1N
1

= 
1N

1
−

(x(i)– f(i))2 (7) 

Observing S subjects, the variance for all subjects from 
their approximated models is  

 
σ2 = ∑

=

σ
S

1i

2
i  (8) 

Since each sample of each subject contain measurements 
at the same time period, we might draw these samples to-
gether in one chart as it is done in Fig. 3.  
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Assuming that the deviations at each time step are differ-
ently distributed, i.e. time dependent, we might compute 
the variance for one time step t for the set of all observed 
subjects to all models i by 

 
2
tσ  = ∑

=

−
−

S

1i

2
tt ))i(f)i(x(

1S
1

 and  σ2 = ∑
=

σ
N

1t

2
t  (9) 

Now, we might analyze the system by two different ap-
proaches: 
a) Either we have only one model for all subjects. Then, 

all samples are random deviations of the true model 
sample f. We select as best model the one which best 
“fits the data “. Biologically, the approach of only 
one fixed model is improbable. 

b) Or we assume a different model f(i) for each subject i. 
This means that either the parameters of m are differ-
ent or even the basic model type m might be differ-
ent. Then, each observed sample x(i) deviate slightly 
from the best fitting model sample f(i). As best model 
m* we might select the one which, after the individ-
ual parameter adaptation, “fits best” for all subjects. 

 
Now, in order to evaluate the fitting of the model we have 
to compute the description length L of the data, given the 
model. This is the average information of the data. It can 
be shown that the description length L, is bounded below 
by the entropy of the probability distribution of the data 
set X [7] 

 L > H(X)  

Thus, the minimal description length of the data is ob-
tained for the model which provides the smallest entropy 
of the observed data. For normally distributed data ac-
cording to [8], we know that for the compound random 
variable X we have 

 H(X) = ln XX
n Cdet)e2( π   

For uncorrelated samples x we have  

 det CXX = ∏σ
t

2
t   

and therefore  

 H(X,m) = ½ ln (2πe)n + ½ ln ∏σ
t

2
t )m(   

             = A + ½ ∑
=

σ
n

1t

2
t )m(ln  

(10) 

Therefore, the best model m* is the one which minimizes 
H(X,m ), i.e. which has the smallest variances for all time 
steps.  

The information can be measured for two cases: the situa-
tion for training and the situation for testing. For training, 
we have the mean squared error between the observations 
of the training sample and those of the model sample, av-
eraged over all variables  v and all mo dels k  of the same 
type  

 MSEtrain = 

( )∑∑∑
= = =

−
⋅⋅

S

1k

m

1v

N

1t

2
tt )v,k(f)v,k(x

NmS
1

 (11) 

For the test case, we compare the model sample with all 
other possible observations, i.e. the rest of the training 
set, also averaged over all variables and all models of the 
same type  

 MSEtest = 

( )∑∑ ∑∑
= = = ≠

−
−⋅⋅⋅

S

1k

m

1v

N

1t kj

2
tt )k(f)j(x

)1S(NmS
1

 (12) 

For the two cases, the information of eq.(10) is averaged 
over all models k  of same type m  and variables v and be-
comes  

 H(m) = v,k)v,k(H  

= ∑∑
==

m

1v

S

1k m
1

S
1 (½ N⋅ln (2πe) 

+½ ∑
=

σ
n

1t

2
t )v,k(ln ) 

(13) 

with )v,k(2
tσ =  ( xt(k,v) – ft(k,v) )2  for training   

or 
)v,k(2

tσ =  ∑
≠−

S

kj2S
1 ( xt(j,v) – ft(k,v) )2   

  for testing 

 

Therefore, we get for the averaged information H of a 
model of type m  

 H(m ) = 

∑∑∑
= = =

σ
⋅⋅

S

1k

m

1v

N

1t

2
t ))v,k(ln(

NmS
1

+ )e2ln(
2
N π   

5.  Evaluating the data simulations  

For the simulation, we generated four data files for two 
different model types and M = 10 subjects. The M indi-
vidually generated time courses start with the same initial 
values, but differentiate in the following aspects: 
a) All subjects have the same standard model parameters 

and all observations are the same.  
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b) All subjects have the same standard model parameters, 
but the observations have random deviations 
(N(0,0.02) distribution) of the true values. 

c) All subjects have individual, different model parame-
ters (N(0,0.001) distribution); the observations are the 
true values. 

d) All subjects have individual, different model parame-
ters; but the observations have random deviations of 
the true values. 

These four model assumptions are used to generate four 
observation data files. Each set of observ ations contain n 
= 5 sampled values of all three variables for each of the M 
= 10 subjects.  
These four observed data files are analyzed by four differ-
ent model types: 

m1)  The smaller model with a5 = 0. 
m2)  The “standard” model with a5 ≠  0 and a10,a11 = 0. 
m3)  The augmented model with a5,a10,a11≠0. 
m4)  The changed (dropped and added terms) model 

with a10,a11≠0 and a5 = 0. 
Each of the four observation files is used to adapt the pa-
rameters of each of the M = 10 subjects of the same model 
type to the observations by the evolutionary method de-
scribed in section 3. So, we get 16 result sets for 10 sub-
jects each.  
For each adaptation try we use 100 cycles of adapting all 
parameters in order to minimize the mean squared error R 
between the model prediction and the observations. For 
each subject, 10 tries are performed and the one with the 
smallest R is recorded in order to avoid getting stuck in a 
suboptimum. After adaptation, the performance of the 
models was evaluated by computing the minimum descrip-
tion length, i.e. entropy H for the model adaptations. The 
evaluated values for the entropy H for the four model 
types m1, m2, m3, m4 adapting to the data of the four ob-
served situations a),b),c) and d) are presented in table 1. 
 

 Ha Hb Hc Hd 

m1 -90,34 -61,07 -86,34 -79,73 

m2 -105,89 -105,11 -123,83 -81,03 

m3 -63,90 -67,32 -76,43 -33,87 

m4 -53,70 -82,50 -110,60 -58,06 

Table 1 The evaluated observations for n = 5 
samples 

What can we conclude by these results? 
Keeping in mind that m2 is the standard model type that 
was used to produce all data, we see that this model type 
has the smallest entropy of all other models – it turns out 
as the best model to select. Therefore, our model selection 
criterion is valid in our example.  

For the case d) of different parameter regimes and random 
deviations the smaller model fits only slightly worse to the 
data. Why? The reason behind is that the random devia-
tions and the systematic deviations are in the same range; 
for only a small number of observations for one individual 
(n = 5) the difference becomes hard to detect. 

Here we encounter a fundamental problem of data 
modeling: how do we know that for a given observation 
variance the number of observed data points are sufficient 
to select a model properly? What difference of complexity 
should be taken as a reason for a model to be more valid 
than another one? Theses questions are still open for re-
search. 

6. Discussion 

Data driven modeling is an important attempt to ration-
alize the efforts of creating models guided not by assump-
tions but by reality. The paper shows some of the prob-
lems involved in this kind of modeling and proposes the 
minimum description length of the observed data as selec-
tion criterion.  

For the small but important problem of inflammation 
and septic shock differential equations we consider four 
different models types: a standard model, the model with 
one term dropped, the model with two additional terms and 
a changed model. These four models are confronted with 
synthetic data, generated by random versions of the stan-
dard model. Here, all four possible model types converge 
more or less fast to fit the data; no terms can be pruned 
due to small parameter values; an automatic tailoring of 
the model to the data is not possible.  

Thus, the model selection can neither be based on the 
convergence speed nor on the “complexity” of the formu-
las (is a multiplication more complex than an addition?) but  
have to be based on another criterion. In this paper we 
chose the minimum description length MDL of the data 
using the model as performance criterion. Assuming nor-
mally distributed deviations we computed the entropy as 
lower limit of the MDL by using the observed variance 
between the adapted models and the observed data. The 
simulation results validated our approach: The analyzing 
model describes the data with the lowest MDL if data gen-
eration model type and analyzing model type coincide. 
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