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Abstract

Inclusive J/y yields and average transverse momenta in p—Pb collisions at a center-of-mass energy
per nucleon pair /sy = 8.16 TeV are measured as a function of the charged-particle pseudora-
pidity density with ALICE. The J/y mesons are reconstructed at forward (2.03 < yems < 3.53) and
backward (—4.46 < ycms < —2.96) center-of-mass rapidity in their dimuon decay channel while the
charged-particle pseudorapidity density is measured around midrapidity. The J/y yields at forward
and backward rapidity normalized to their respective average values increase with the normalized
charged-particle pseudorapidity density, the former showing a weaker increase than the latter. The
normalized average transverse momenta at forward and backward rapidity manifest a steady increase
from low to high charged-particle pseudorapidity density with a saturation beyond the average value.
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1 Introduction

Quarkonium states have long been considered as probes of the Quark—Gluon Plasma (QGP) produced in
ultra-relativistic heavy-ion collisions [1l]. The large color-charge density in the plasma prevents the for-
mation of bound states, in an analogous process to the Debye screening for electromagnetic processes [2].
The suppression of J/y production in nucleus—nucleus (AA) with respect to proton—proton (pp) colli-
sions was observed by several experiments [3-11]]. To determine whether the origin of this suppression is
the influence of the QGP or of Cold Nuclear Matter (CNM), data on proton(deuteron)-nucleus collisions
are also scrutinized.

The measurements in p—Pb collisions at the LHC show a suppression of J/y production [12-14], with
respect to pp collisions, at low transverse momentum (pt) and forward center-of-mass rapidity (p-going
direction, positive y.ns), consistent with various combinations of CNM effects: modification of the parton
distribution functions (PDFs) in nuclei, i.e. shadowing [15,16], the Color-Glass Condensate (CGC) [[17,
18], or coherent parton energy loss [19]. The measurement of y(2S) production in p—Pb collisions [20]
exhibits a larger suppression, with respect to pp collisions, than the one measured for J/y, both at forward
and backward rapidity, which was not expected from CNM predictions. This effect is reproduced by
models which consider the break-up of the bound quark—anti-quark pair via interactions with the final-
state comoving particles [21],22].

The p—Pb data at the center-of-mass energy per nucleon—nucleon collision of /sy = 5.02 TeV [23, 24]
showed that these effects depend on the centrality of the collision, as estimated from the energy deposited
in the Zero Degree Calorimeter in the Pb-going direction [25], and/or the produced charged-particle
multiplicity [26]. An increase of the normalized J/y and Y [26-28] yields, to their respective average
values, with the normalized charged-particle multiplicity is observed, similarly to the results from pp
collisions [27-29]. The increase of the J/y (prompt and non-prompt) normalized yields was observed
to be similar to the increase for D mesons [30, 131], suggesting that the origin of the trend is common
for charm and beauty production, and that hadronization does not play a dominant influence on this
measurement. The excited-to-ground state ratios, Y'(nS)/Y(1S), were found to decrease with increasing
charged-particle multiplicity, which was not expected from CNM predictions [27, 28].

The measurements of two-particle angular correlations in small systems have shown interesting struc-
tures in the angular correlation function. A near-side ridge, located at (A@) ~ 0, is observed in high-
multiplicity pp [32] and p—Pb [33] collisions, accompanied by an away-side structure, located at AQ ~ 7
and exceeding the away-side jet contribution, in p—Pb collisions [34, 135]. These structures are remi-
niscent of those in Pb—Pb data [36], interpreted as signatures of the collective motion of the particles
during the hydrodynamic evolution of the hot and dense medium. Correlations of J/y (at large rapidity)
and charged particles (at midrapidity) in p—Pb collisions [37, 38] revealed persisting long-range corre-
lation structures at high p, similar to those observed with charged hadrons. The corresponding elliptic
flow coefficients are found to be positive and of comparable magnitude to those measured in Pb-Pb
collisions [39-41], indicating that the mechanism at its origin could be similar in both collision systems.

This letter reports the measurement of the multiplicity-differential inclusive J/y yield and average trans-
verse momentum in p—Pb collisions at /sy = 8.16 TeV. The J/y mesons are reconstructed at for-
ward and backward center-of-mass rapidities in their dimuon decay channel. The charged-particle pseu-
dorapidity density is measured around midrapidity. It complements and extends previous J/y mea-
surements performed as a function of the collision centrality and the charged-particle multiplicity at
V/snN = 5.02 TeV [23,126]. The classification of events as a function of their charged-particle pseudora-
pidity density enables the scrutiny of rare events, corresponding to the 0.01-0.04% highest multiplicities
in the collision. This allows p—Pb events to be studied from low multiplicities, similar to those of pp
collisions, up to very large multiplicities corresponding to ~ 100 produced charged particles per rapidity
unit, similar to those of peripheral Pb—Pb collisions, which exhibit collective-like effects.
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2 Experimental setup and data samples

In this section, the detector subsystems relevant for this analysis are presented. A complete description
of the ALICE detector and its performance can be found in [42,43].

The muon spectrometer [42,43] covers the pseudorapidity window of —4.0 < 1 < —2.5 and consists of:
a 4 m long composite front absorber, corresponding to about 10 interaction lengths (10 A;y), starting at
90 cm from the nominal interaction point, ten layers of muon tracking chambers (MCH), coupled to a
dipole magnet with a 3 Tm field integral, and four layers of muon trigger chambers (MTR). The MCH
and MTR systems are separated by an additional iron wall of about 7.2 A;, that absorbs the remaining
hadronic and low-momentum particle contamination. A rear absorber positioned downstream of the
MTR filters out the background from beam-gas interactions. A conical absorber surrounds the beam pipe
and protects the spectrometer against secondary particles produced mainly by large-n primary particles
interacting with the beam pipe.

The Silicon Pixel Detector (SPD) [44] is the innermost part of the Inner Tracking System (ITS). It
consists of two cylindrical silicon pixel layers at radial distances of 3.9 and 7.6 cm from the beam line.
The respective pseudorapidity coverage of the two layers are || < 2 and 1| < 1.4. The SPD is used to
reconstruct the primary vertex and to measure the charged-particle pseudorapidity density at midrapidity.

The VO scintillator arrays [45] are located at each side of the interaction point, covering the pseudora-
pidity ranges of —3.7 <1 < —1.7 and 2.8 < 1 < 5.1. In this analysis, the VO provides an online trigger
and helps to reject contamination from beam-gas events.

The neutron Zero Degree Calorimeter (ZDC) [42] located at about 112.5 m on either side from the
interaction point are used to reject electromagnetic interactions and beam-induced background.

The results presented in this letter are obtained with data recorded during the p—Pb run at /sy = 8.16 TeV
in 2016. The J/y are reconstructed in the dimuon channel with data taken in two different beam con-
figurations. Due to the asymmetry of the beam energy per nucleon in p—Pb collisions at the LHC, the
nucleon—nucleon center-of-mass rapidity frame is shifted by Ay = 0.465 in the direction of the proton
beam. As a consequence, the J/y are measured in the forward rapidity range of 2.03 < y.pms < 3.53 (with
protons going in the direction of the muon spectrometer, p-going direction) and in the backward rapidity
region —4.46 < y.ms < —2.96 (Pb-going direction). Events used in this analysis were collected with a
dedicated dimuon trigger which requires the coincidence of signals in both VO arrays (minimum bias
trigger, MB) with at least two opposite-sign muons registered in the MTR. The trigger has an adjustable
online threshold, which for this data sample was set to only accept muons with transverse momenta
pt > 0.5 GeV/c (pr for which an efficiency of 50% is reached). The pr differential single-muon trig-
ger efficiency reaches a plateau of ~ 96% at pr ~ 1.5 GeV/c. In this data-taking period, the maximum
pile-up probability was about 4%. A dedicated event-selection strategy—exploiting the signals in the VO
and the ZDC, the correlation of the number of clusters and track segments reconstructed in the SPD, as
well as an algorithm to tag events with multiple vertices—allowed us to keep the pile-up below 0.5% for
the analysed events, even at large multiplicities. The data sample analyzed corresponds to an integrated
luminosity of %y =7.24+0.2 nb~" (10.6+0.3 nb~") for the p-going (Pb-going) configuration [44].

3 Charged-particle multiplicity measurement

The charged-particle pseudorapidity density (dNch/d7) is measured at midrapidity exploiting the in-
formation provided by the SPD detector [47, 48]. It is evaluated by counting the number of tracklets
(Niracklet)> 1-€. track segments joining pairs of hits in the two layers of the SPD pointing to the primary
vertex. The primary vertex is also computed with the SPD information. To minimize non-uniformities in
the SPD acceptance, only events with a z-vertex position determined within |zyi| < 10 cm are considered,
and tracklets are counted within || < 1.
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The raw Nyackler counts are corrected (Ngoy.) for the variation of the detector conditions with time

(fraction of active SPD channels) and its limited acceptance as a function of z using a data-driven event-
by-event correction [29, |30]. This correction ensures a uniform response as a function of zy. In this
analysis, the correction is done by renormalising the Nickiet (zvix) distributions to the overall maximum
with a Poissonian smearing to account for the fluctuations. The events are sliced in Ng,g ., intervals.
Monte Carlo (MC) simulations using the DPMJET [49] event generator and the GEANT3 transport
code [50] are used to estimate dNch /dn from Niog .., A second order polynomial correlation is assumed
between these two quantities for the full N, 5 ., interval. Several sources of systematic uncertainty were
taken into account. Possible deviations from the second order polynomial correlation were estimated by
using other functions to quantify the correlation or MC averages in each interval, with values ranging
from 0.1% at intermediate multiplicities to 6.9% (5.8%) at the lowest (highest) multiplicity intervals. The
systematic uncertainty on the residual z, dependence due to differences between data and MC amounts
to 3%. Finally, the event generator influence was considered and evaluated by comparing the DPMJET

simulations with events generated in EPOS [51], resulting in a 2% uncertainty.

The average charged-particle pseudorapidity density, (dNch/dn), in non-single diffractive (NSD) events
was obtained from an independent analysis and amounts to (dNg,/dn) = 20.33 +£0.83 (20.32£0.83) in
p—Pb (Pb-p) collisions for 1| < 1 [48], where the quoted uncertainty is systematic.

Table [Tl summarizes the contributions to the normalized charged-particle multiplicity uncertainty. The
total uncertainty is evaluated assuming that the different sources are uncorrelated.

Table 1: Sources of systematic uncertainties on the normalized charged-particle multiplicity. For the N0t ., to

dNgp/dn correlation an interval is quoted, varying with multiplicity, with a different maximum uncertainty for the
Pb(p)-going configuration.

Source In| <1
Nt e t0 AN /dn correlation | 0.1 —6.9(5.8)%
z-vertex dependence 3%
Monte Carlo event generator 2%
<chh /dn > 4%

4 J/y measurement

The normalized J/y yield, i.e. the yield in each multiplicity interval i normalized to the multiplicity-
integrated value, is evaluated as

dN'/dy _ NJl/W Nf/?B (AE)J/WSIQI_B
(dN/dy) — Nijy N3 (Ae);, e’
from the reconstructed number of J/y, Nj /y» the number of minimum bias (MB) events equivalent to

the analysed dimuon sample, Nf,?B, the J/y acceptance and efficiency correction, (A€)y/y,, and the NSD
event selection efficiency in the minimum bias sample, &yg.

ey

The J/y are reconstructed for each multiplicity interval by combining opposite-sign muons and comput-
ing the invariant mass of the pairs. The muon identification is ensured by requiring that the track candi-
dates reconstructed in the MCH have a matching track segment in the MTR. Furthermore, the individual
tracks must fulfill the following criteria to make sure they are within the acceptance of the spectrometer:
their radial distance from the beam axis at the end of the front absorber is within 17.6 < Rups < 89.5 cm
and their pseudorapidity in the detector reference frame is within —4 <1 < —2.5.

To extract the signal, the invariant-mass distributions are first corrected for the J/y acceptance times
efficiency (A¢€), differentially in pr and y. The resulting distributions are then fitted with a superpo-
sition of J/y and y(2S) signals and a background lineshape. Various combinations of lineshapes are

4
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used in order to evaluate the signal counts and their uncertainties. The two charmonium resonances
are parametrized by a sum of either two Crystal Ball or two pseudo-Gaussian functions with power-law
tails [52]. The tail parametrizations are fixed to the values determined from either fits of the J/y signal
from MC simulations or to values taken from fits to the multiplicity-integrated distribution in p—Pb data
at \/s\xw = 8.16 TeV [13] and in pp data at /s = 13 TeV [53]. The tails obtained from fitting the
multiplicity-integrated distributions using the Crystal Ball function are also considered, and fixed in the
binned fits. The J/y peak mean position and width are left free in the multiplicity-integrated fit, whilst
the y(2S) ones are bound to those of the J/y following the same procedure as in [54]. Note that the
y(2S) yields obtained are not physical values, as the invariant-mass spectrum is corrected by the Ae
correction for the J/y. In the multiplicity-differential fits, the mass and width of the J/y peak are fixed
to the integrated values to ensure the convergence of the fits in the few cases where statistical significance
is low. The background is parameterized by either a sum of two exponentials or the product of an expo-
nential and a fourth-order polynomial. Two fit mass ranges are taken into account when computing the
average number of J/y and its uncertainty: 1.7 <y, < 4.8 GeV/c? and 2.0 < myy, < 5.0 GeV /c*. Ex-
amples of fits at low, intermediate, and high multiplicity for data in the rapidity range 2.03 < y.ms < 3.53
are shown in Fig.[Il The signal lineshape is found to be independent of multiplicity, while the background
does change with multiplicity. Therefore, in order to minimize the uncertainty on the signal extraction,
the same signal lineshape is used in the fit function for both the numerator and denominator in Eq.[Il

The number of equivalent MB events Ny is computed from the number of dimuon triggered events, Nuy,
and the normalization factor of dimuon triggered to MB events (calculated as explained in next section)
as NK,?B = Fiorm * Nyy. The number needs to be corrected for by the NSD event selection efficiency,
emp = (97 £1)% [48], to take into account the fraction of events without a reconstructed SPD vertex
that are rejected. This factor &yp is found to be independent of the charged-particle multiplicity in all
the intervals studied, with the exception of the lowest multiplicity interval, where it decreases by 1%.

The J/y acceptance and efficiency correction is obtained from MC simulations as a function of pr and
Yems- The J/y are generated using pr and y.ns distributions tuned to data [13]. They are simulated to
decay into a muon pair using EvtGen [55]. The final state radiation is described with PHOTOS [56].
The acceptance and efficiency correction is independent of multiplicity in the measurement intervals.
Therefore, when estimating the uncertainty on the MC input, only the possible variation of the input pr
and y.ms distributions is taken into account by using as input a subsample of the lower/higher multiplicity
events.

To extract the J/y mean transverse momentum ( pJT/ ¥, the Ae-corrected transverse momentum of the
dimuon pair is fitted with the following function [26]:

(P mu) - = 0¥ () ()
+a¥ (mup) (pr ) o)
(1= ¥ () = 0 () ) (7)),

where the ratios of signal over the sum of signal and background of the two charmonium states o’/V =
SV /(Y 4 8¥ +B) and a¥ = SV /(S'V +SY + B) are fixed to the value extracted from fitting
the invariant-mass spectrum corrected by the J/w Age. The background is described by a function

( ptT’kgd>(m,J ). Two functional forms are used: either a sum of two exponentials or the product of an

exponential and a fourth-order polynomial. Note that the ( plT’/ /> does not represent a physical mean trans-
verse momentum of the y/(2S) as the spectra are corrected by the A€ for J/y. Figure 2lillustrates typical
( p‘T‘“ ) distributions for selected multiplicity intervals.
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Figure 1: Opposite-sign muon pair invariant mass distributions for selected multiplicity intervals, corrected for
the J/y acceptance and efficiency, at forward rapidity. The distributions are shown together with a typical fit
function (solid line, see text for details). The J/y signal contribution is also depicted by a dot-dashed red line, and
the background by a dotted line.
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Figure 2: Average transverse momentum of opposite-sign muon pairs for selected multiplicity intervals, corrected
for the J/y acceptance and efficiency. The distributions are shown together with a typical fit function (solid line,
see text for details).

5 Systematic uncertainties

The following sources of systematic uncertainty on the J/y yields in multiplicity classes are considered:
(i) the signal extraction, (ii) the normalisation, (iii) the effect of resolution and pile-up, (iv) the even-
t-by-event Nyackler 10 Niooye COTrection, and (v) the event selection efficiency of the NSD event class.
For the measurement of the yields in each multiplicity interval normalized to the event average, the sys-
tematic uncertainties are estimated directly for this ratio. Details on the signal extraction uncertainty
were addressed in the previous section. The values are estimated by varying the signal and background
shapes of the fit function, as well as by varying the invariant-mass range of the fit. The systematic uncer-
tainty is computed as the root-mean-square of the uncertainties on the ratio for each of these fits, ranging
between 0.8-2.3% (0.5-1.9%) at forward (backward) rapidity, being larger at large multiplicities where
the number of events is smaller. The normalisation factor of the dimuon triggered to MB events Fjorpy, is
studied using three alternative methods [[13]. The first method evaluates the probability of a coincidence
of a dimuon- and a MB-triggered event in a MB-triggered data set. The second method exploits the
higher probability of occurrence of a single-muon trigger by looking at the product of the probability of
coincidence of a single-muon- and MB-triggered event and of the probability of finding a dimuon event
in the single-muon triggered data. The third method is based on information from the trigger scalers. The
run-by-run spread of the Fyom/Fl,, values, ratio of the normalisation values in the integrated and spe-
cific multiplicity intervals, computed for these three methods determines a 2.5% systematic uncertainty,
independent of multiplicity. The effect of the method of choice for the event-by-event correction from
Niracklet t0 Niogqer On the J /v yield is also studied [29, 30]. Both the randomisation function (Poisson
or binomial) and the reference normalisation of the correction are varied. The Poissonian smearing is
applied when the maximum is selected as normalisation reference, while the binomial correction should
be used when considering all other possible reference values (in our case the minimum). The influence
of these modifications on the yield ranges from 0.1% to 2.6% (4.3%) at forward (backward) rapidity,
as a function of multiplicity. The uncertainty coming from pile up and multiplicity axis resolution is
estimated as a single contribution by repeating the analysis multiple times with a different randomisation
seed for the event-by-event correction, or introducing a small shift of the N, intervals, or varying the
pile-up rejection criteria. The uncertainty amounts to 2%, independent of multiplicity. The uncertainty
on the event selection efficiency for the NSD event class is estimated as in Ref. [48]. The uncertainty
amounts to 1% and is correlated in all multiplicity intervals. Table 2] summarizes all contributions to the

systematic uncertainty on the normalized yield.
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For the (pr), the effects of the uncertainty on the (pr) extraction procedure and of the A€ are considered.
Similar to the yields, the signal extraction uncertainty is estimated by varying the fit function and its
range. In addition, as the S/(S+ B) terms in Eq. Rlare fixed in the fit to the (pr) invariant-mass spectrum,
the influence of the statistical uncertainty on the J/y signal S is introduced via a Gaussian smearing of S
(with respect to its statistical uncertainty) to prevent artificially minimising the uncertainty. It ranges from
0.2% t0 3.0% (1.2%) at forward (backward) rapidity, increasing with multiplicity as a consequence of the
smaller number of events. The uncertainty on the absolute (pr) also takes into account the uncertainty on:
(i) the MC input shapes as a function of pt and y¢ys, ranging from < 0.1 to 6% (< 0.1 to 11%) at forward
(backward) rapidity, (ii) the tracking efficiency, 1% [13], (iii) the trigger efficiency, 2.6% (3.1%) [13],
and (iv) the matching efficiency between the tracks in the MCH and the MTR, 1% [13]. To evaluate the
uncertainty on the MC input, the data are divided into two multiplicity classes at the mean of the Not .
distribution for each rapidity interval. For each of these bins, the (pr) is estimated using a modified
Ag correction, which was re-weighted to better describe the pr- and y-dependent distributions of J/y
in given bin. The systematic uncertainty is taken as the difference of the original (pt) value, computed
with the initial Ag correction, and the new (pr) estimated with re-weighted correction. The uncertainty
on all the measured multiplicity intervals is extrapolated from these two values assuming that in each
class the uncertainty is proportional to the (pr). The contributions of the tracking, the trigger and their
matching to the uncertainty are correlated between multiplicity intervals. The normalized (pr) values
are only affected by the uncertainty on the signal extraction procedure and the MC input, which is partly
correlated in multiplicity and ranges from < 0.1% to 2% (< 0.1% to 4%) in the forward (backward)
rapidity interval. Table 3] summarizes all contributions to the average, (pr), and normalized average,
{pr)/{P™), pr measurements. The correlated uncertainties are added in quadrature and quoted in the
plot as a text.

Table 2: Sources of systematic uncertainties on the normalized yield. The contributions marked with an asterisk
are correlated in multiplicity.

Source 2.03 < yems < 3.53 | —4.46 < yems < —2.96
Signal extraction 0.8-2.3% 0.5-1.9%
Normalization (Fporm) 2.5% 2.5%
Event-by-event N2 ¢ 0.1-2.6% 0.14.3%
Bin-flow and pile-up 2% 2%
Normalization to NSD 1%* 1%*

Table 3: Systematic uncertainty sources on the average and normalized average pr. The values in parentheses
correspond to the multiplicity-integrated uncertainties related to the signal extraction. The contributions marked
with an asterisk are correlated in multiplicity. The uncertainty on MC input, marked with a diamond, is partially
correlated in multiplicity.

2.03 < yems < 3.53 —4.46 < yems < —2.96
Source (pr) (pr)/(P1) {p1) {pr)/(PT")
Signal extraction 0.2-3.0% (0.2%) 0.3-3.0% 0.2-1.2% (0.2%) 0.3-1.3%
Tracking efficiency 1%* - 1%* -
Trigger efficiency 2.6%* - 3.1%* -
Track—trigger matching 1%* - 1%* -
Monte Carlo input < 0.1 —6%° <0.1-2%°| <01-11%° <0.1—4%"°

6 Results and discussion

The normalized J/y yield, at forward and backward rapidities, is presented in Fig.[3las a function of the
normalized charged-particle pseudorapidity density, measured at midrapidity (|n| < 1). The normalized
yield increases with increasing multiplicity in both rapidity intervals. The yield at backward rapidity
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grows faster than the one at forward rapidity, reaching values above those expected from a linear (with
slope unity) increase at large multiplicities. On the other hand, at forward rapidity the values show a
slower-than-linear increase at large multiplicities. The forward and backward rapidity yields cross a
linear increase estimate (and each other) at around 1.5 times the average multiplicity. The underlying
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Figure 3: Normalized yield of inclusive J/y, at forward and backward rapidities, as a function of the normalized
charged-particle pseudorapidity density, measured at midrapidity, in p—Pb collisions at \/sx\n = 8.16 TeV. The
vertical bars represent the statistical uncertainties. The vertical and horizontal widths of the boxes represent the
respective systematic uncertainties for the J/y yields and the multiplicities. The dashed line indicates the one-to-
one correlation, to guide the eye.

mechanism remains unclear. The forward (p-going) rapidity region probes the Pb-nucleus low Bjorken-x
regime (xp, ~ 107> in a naive 2-body calculation for pr = 0), whereas the backward (Pb-going) rapid-
ity is sensitive to the intermediate-to-large values (xp, ~ 1072). The observed suppression of the pr-
and multiplicity-integrated J/y yield at forward rapidity, with respect to pp collisions, is described by
different cold nuclear matter models considering the probed shadowing/saturation domain [13]. The
centrality-differential measurements at \/syn = 5.02 TeV [23] of the nuclear modification factor, (pt)
and (p3), corresponding to relative multiplicities of at most 2.5 times the average one, can also be de-
scribed by these models. The contribution from beauty-quark decays to the inclusive J/y yield amounts
to ~ 10% [57]. It is not expected to affect significantly these results, since a similar trend was observed
for prompt and non-prompt J/y as a function of the charged-particle pseudorapidity density in pp colli-
sions [30]. Moreover, the autocorrelations influence is negligible in this analysis due to the large rapidity
gap between the measurement of the charged-particle multiplicity and the J/y yield [58].

Figure d presents (pr) as a function of the relative charged-particle pseudorapidity density, in p—Pb col-
lisions at \/sxny = 8.16 TeV. The measured (pr) is systematically smaller at backward than at forward
rapidity. This is also true for the multiplicity-integrated value, which is consistent with the observed
decrease of (pr) with increasing |ycms| in pp collisions [59]. The (pr) increases steadily for multiplic-
ities below the average, and saturates above the average multiplicity. Two naive scenarios are typically
considered to explain high-multiplicity events: the incoherent superposition of multiple parton—parton
collisions, or single parton interactions with higher energy transfer. One would expect the latter to be
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characterized by a higher (pr) of the produced J/y. Reality is probably somewhere in between these two
simplified scenarios. The simultaneous increase of the p—Pb yield together with the saturation of (pr)
at large multiplicities may point to J/y production from an incoherent superposition of parton—parton
collisions.

| ALICE, p-Pb, |/s = 8.16 TeV i

I — .
203 <y <353 (p-going)

. + 3.0 (3.4)% corr. unc. not shown
- B -446<y___<-2.96 (Pb-going) o e p(Ph).qoing .

1.5 \ \ |
6

0 2 4
dN,/dn NSP
[WN_ 7 dn0' g

Figure 4:  Average transverse momentum of inclusive J/y at forward and backward rapidities as a func-
tion of the normalized charged-particle pseudorapidity density, measured at midrapidity, in p—Pb collisions at
/Snn = 8.16 TeV. The vertical bars represent the statistical uncertainties, the boxes the systematic ones.

The measured yield in p—Pb collisions can be described with the EPOS 3 event generator [60, [61] (see
Fig.[3) based on a combination of Gribov-Regge theory and pQCD: where the individual scatterings are
identified with parton ladders emerging as flux tubes, the existence of multiple nucleon—nucleon colli-
sions in p—Pb collisions is accounted for, the initial conditions of the collision are modified due to CNM
effects including parton saturation, and slow string segments (far from the surface) can be further mapped
to fluid dynamic fields using a core-corona description. The J/y bound-state formation in EPOS 3 as-
sumes a color-evaporation approach, i.e. it is associated to a charm quark—anti-quark pair in a given mass
range. The influence of the 3D+1 viscous hydrodynamic evolution of the bulk (starting from flux tube
initial conditions) in the EPOS 3 calculation is small (see Fig.[5). However the number of simulated
events at large multiplicities is limited and does not allow us to elucidate possible hydrodynamic effects.
EPOS 3 description of the measurement suggests J/y production from an incoherent superposition of
parton—parton collisions.

The normalized J/y yield and (pr) are compared with the results in p—Pb collisions at \/sny = 5.02 TeV
[26] in Fig.[@land[7] respectively. The measurements are in remarkable agreement, within the uncertain-
ties, at both energies and rapidities. These results extend the probed charged-particle pseudorapidity
density interval, both at low and high multiplicity, examining events of up to almost six times the aver-
age value. The more precise /snn = 8.16 TeV data evidence a continuous increase of the normalized
yield with multiplicity up to the largest multiplicities attained. The similarities at \/syy = 8.16 TeV and
VSNN = 5.02 TeV suggest a common origin of the multiplicity trend, with a mechanism whose effect
varies with rapidity, but might have a small dependence on the collision energy, in the explored interval.
This is consistent with the large variation of the probed xpy with rapidity and its relative slow evolution
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Figure 5: Normalized yield of inclusive J/y as a function of the normalized charged-particle pseudorapidity
density, measured at midrapidity, in p—Pb collisions at \/syy = 8.16 TeV compared with EPOS 3 [60, [61] cal-
culations. Left (right) panel presents the measurement at forward (backward) rapidity. The vertical bars represent
the statistical uncertainties, the boxes the systematic ones. The dashed line indicates the one-to-one correlation, to
guide the eye. The shaded areas represent the statistical uncertainties on the EPOS 3 calculations.

on the collision energy (typically a factor of 2 in the simplified 2-body picture).

Figure [8 presents a comparison of the normalized J/y p—Pb yields with results from pp collisions at
VSNN =T TeV [29] (2.5 < Yems < 4.0) and Pb—Pb collisions at ,/sxy = 5.02 TeV [62] (2.5 < yems < 4.0).
The corresponding (dNe,/dn) in |n| < 1 for those measurements is 6.01 £ 0.01 (stat.)fgfg (syst.) [29]
and 544.7 £0.2 (stat.) + 7.3 (syst.) for 0-90% centrality [63], respectively. The ratio of the yields over
the corresponding charged-particle multiplicity is also shown in Fig.[8l The trend exhibited by the pp
data is similar to the one observed in the backward (Pb-going) direction. It should be noted that the pp
results are normalized to the inelastic ‘INEL’ event class, whereas the p—Pb measurements are normal-
ized to the non-single-diffractive ‘NSD’ one. In p—Pb collisions these two event classes mostly overlap
when comparing MB results [48]. The Pb—Pb data also show a faster-than-linear increase with the nor-
malized charged-particle pseudorapidity density. They are compatible within uncertainties with the p—Pb
backward rapidity result in the restricted multiplicity interval of the measurement. Whereas the pp and
p-Pb data include J/y with pp > 0, the Pb—Pb data points include J/y with 0.3 < pr < 12 GeV/c to
reduce the low-pr contribution from photoproduction, which is significant only in more peripheral col-
lisions [62, 164, 165]. The overall increase of multiple parton—parton collisions with the colliding system
(from pp up to Pb—Pb collisions) described in [66] is expected to cancel in the relative quantities reported
in this publication, sensitive to the relative evolution with charged-particle density in a given colliding
system. Model calculations are needed to interpret the similarities of pp, p—Pb, and Pb—Pb normalized
J/y yields at large rapidity as a function of the normalized charged-particle pseudorapidity density at
midrapidity.

7 Conclusions

The production of inclusive J/y at large rapidities in p—Pb collisions at \/sxy = 8.16 TeV is reported as
a function of the charged-particle pseudorapidity density at midrapidity. The normalized J/y yield shows
an increase with increasing normalised charged-particle pseudorapidity density. The yield at backward
rapidity grows faster than the forward rapidity one, reaching values above those of the linear (with slope
unity) increase estimate at large normalised multiplicity, whereas the values at forward rapidity show a
slower-than-linear increase. The trends of the normalised yield are reproduced by the EPOS 3 [60, 61]
event generator. The (pr) is smaller at backward than at forward rapidity, consistent with the expected

11



Multiplicity dependent J/y production in p-Pb at \/sxy = 8.16 TeV

ALICE Collaboration

[a)] I T [
%] L 4
z[] ALICE, p-Pb
O 8 _ 1
% %, : 203<y < ?153 (p-going) :
-~ Y - ' ”
Z|Z | @ |5 =816TeV ]
S5 6 NN_ |
L ¢ syy=5.02Tev |
4 P = = =
L /’,a'/ o - ¢ .
- /‘/—’ u% -
2 ™
B ‘f’ + 1% corr. unc. not shown at 8.16 TeV -
L '6' + 3.1% corr. unc. not shown at 5.02 TeV
0 ‘.0( I | I | I I I | I
0 2 4 6
NSD
dN,, /dn
AN _ 7 dnl)'pe
9) T T ‘ T I
zZ[1 o ALICE, p-Pb ]
O 8 , -
% % : —4.46<y <+—2:96 (Pb-going) :
~ |~ IY - Pt I:.:I 7
e =< i B s, =8.16TeV P
TS 6 NN_ |
N &Sy =5.02TeVv s |
4+ = =
L Elj |
2 — ]
o + 1% corr. unc. not shown at 8.16 TeV -
L -g‘- + 3.1% corr. unc. not shown at 5.02 TeV
0 " | L | L L L | L
0 2 4

6
dN_, /dn NP
N _ 7 dnDlpa

Figure 6: Normalized yield of inclusive J/y as a function of the normalized charged-particle pseudorapidity
density, measured at midrapidity, in p—Pb collisions at \/syy = 8.16 TeV and /syn = 5.02 TeV [26]. The top
(bottom) panel presents the measurement at forward (backward) rapidity. The vertical bars represent the statistical
uncertainties, the boxes the systematic ones. The dashed line indicates the one-to-one correlation, to guide the eye.
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ones. The dashed line indicates the one-to-one correlation, to guide the eye.
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softening of the spectra with increasing |ycms|. The (pr) increases steadily for multiplicities below the av-
erage, and saturates above the average multiplicity. The simultaneous increase of the yield together with
the saturation of (pr) may point to J/y production from an incoherent superposition of parton—parton
collisions. These measurements show trends compatible with those observed at \/snny = 5.02 TeV [26]
in p—Pb collisions, but in this work an improved precision and extended multiplicity coverage were
reached. The similarities suggest a common origin, with a mechanism whose effect varies with rapidity,
but with only a small dependence (if any) on the collision energy.
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