
Phenomenological aspects

of an anisotropic

Quark-Gluon Plasma

Dissertation
zur Erlangung des Doktorgrades

der Naturwissenschaften

vorgelegt beim Fachbereich Physik

der Johann Wolfgang Goethe-Universität

in Frankfurt am Main

von

Mauricio Mart́ınez Guerrero

aus Socorro, Kolumbien

Frankfurt am Main 2009

(D30)



ii

vom Fachbereich Physik (13) der Johann Wolfgang Goethe-Universität
als Dissertation angenommen.

Dekan: Prof. Dr. D. H. Rischke

Gutachter: Pr. Dr. C. Greiner, Dr. Michael Strickland

Datum der Disputation: 30.04.2010



iii

In the memory of the little child, Amira Mart́ınez G.



iv

Un camino que no solamente nadie conoćıa sino que
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Abstract

0.1. Zusammenfassung

In der folgenden Arbeit werden die Auswirkungen von Impuls-Raum Anisotropien im Quark-Gluonen
untersucht. Es wird erwartet, dass Impuls-Raum Anisotropien im Frühstadium einer Schwerionenkol-
lision aufgrund der Unterschiedlichkeit der Ausdehnungsraten in longituditonaler und transversaler
Richtung auftreten.
Im ersten Teil der Arbeit werden zwei Modelle, die beide von einer Beschreibung einer an-

fangszeitlichen 0+1 dimensionalen Vor-Gleichgewichts Expansion hin zu einer hydrodynamischen
Beschreibung der zentralen Rapiditätszone interpolieren, beschrieben. Die Modelle beinhalten die
Auswirkungen der Impuls-Raum Anisotropien indem sowohl die EigenzeitabhängigkeitProper time

dependence auf der Impulsskala der harten Partronen, phard, alsauch der Parameter, ξ, der die
Anisotropien misst, mitberücksichtigt wird. Das erste Modell beschreibt die Interpolation zwischen
einem anfangszeitlichen 0+1 dimensionalen freien Fluss, und einer 0+1 dimensionalen Expansion,
beschrieben durch ideale Hydrodynamik. Im zweiten Modell wird zusätzlich die, durch Kollisio-
nen verursachte, Verbreiterung der Partronen-Verteilungsfunktion, im Vorgleichgewichtszustand des
Plasmas berücksichtigt. Es zeigt sich in beiden Modellen, dass, bei gleichen Anfangsbedingungen,
die Dileptonenproduktionsrate durch Abstrahlung im Vorgleichgewicht vergrößert wird. Wenn in
den Modellen die Einschränkung angenommen wird, dass die Pionen Multiplizitäten am Ende der
Kollision fixiert sind, so ergibt sich, dass die Abhängigkeit der resultierenden Spektren von der
angenommenen Isotropisierung des Plasmas abnimmt. Wenn das realistischere Beschreibungsmod-
ell, welches Effekte durch Kollisionen miteinbezieht, verwendet wird, ergibt sich, bei einer Thermal-
isierungszeit von 2 fm/c, dass die Produktion von Dileptonen mit einem hohen transversalen Impuls
um 40% am RHIC und um 50% am LHC vergrößert würde. Des Weiteren wird eine, nach vorne
gerichtete Dileptonenabstrahlung beobachtet, wenn die Rapiditätsabhängigkeit der harten Impuls
Skala der Partronen,phard, berücksichtigt wird. Daher geben die Rechnungen Grund zur Annahme,
dass die nach vorne gerichteten Dileptonen, bei LHC Energien unterdrückt sind.
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Im zweiten Teil der Arbeit wird die Beschreibung der Dynamik des Impuls-Raumes Anisotropien
des gebildeten Feuerballs weiter verfeinert. Dissipative Korrekturen, die durch den viskosen shear

tensor verursacht werden, bewirken, dass sich die transversalen und longitudinalen Drücke des
Feuerballs zeitlich verändern. Zur Lösung dieses neuen hydrodynamischen Gleichungssystems wer-
den zwei physikalische Beschränkungen auf die Eingabewerte der viskosen hydrodynamischen Gle-
ichungen vorgenommen.: (a) Die Forderung nach positiven Werten des longitudinalen Druckes zu
allen Zeiten (b) Die Beschränkung auf kleine Werte des viskosen shear tensors verglichen mit dem
Gleichgewichtsdruck, d.h. |Πµν | ≤ αP wobei hier α ∈ {0, 1}. Wenn nun diese zwei Beschränkungen
auf 0+1 dimensionale konforme viskose Hydrodynamik in 2ter Ordnung angewendet werden, so
ergeben sich nicht triviale Zusammenhänge, zwischen den Anfangswerten der Komponenten des
shear tensors, der Energie, dem Druck und der Anfangszeit der numerischen Simulation. Es
wird im Laufe dieser Arbeit erklärt, wie diese Beschränkungen auch auf höhere Ordnungen in der
Störungsreihe erweitert werden können. Abschließend wird eine Methode entwickelt, mit welcher die
0+1 dimensionale Vor-Gleichgewichts Expansion in Zusammenhang gebracht werden kann, mit der
0+1 dimensionalen viskosen Hydrodynamik in zweiter Ordnung Störungstheorie. Die Anfangswerte
des viskosen shear tensors und der Energiedichte werden dabei gegen die Lebenszeit der Vor-
Equilibrierten Phase des QGP aufgetragen. Des Weiteren werden die Auswirkungen der Vor-
Equilibrierten Dynamik auf die Entropieproduktion untersucht und eine genaue Definition dieser
neuen Nicht-Gleichgewichts Entropie gegeben.

Einleitung

Bei geringen Temperaturen und kleinen Dichten ist Materie aufgebaut aus Elektronen, Protonen und
Neutronen. Wird nun ein System dieser Bestandteile erhitzt, so beginnen thermische Anregungen
einen wichtigen Einfluss auf die Dynamik dieses Systems auszuüben. Es ist bekannt, dass Protonen
und Neutronen aus Quarks und Gluonen aufgebaut sind. Wird nun das oben beschriebene System
weiter erhitzt, so überlappen die Wellenfunktionen der Protonen und Neutronen und die Quarks und
Gluonen, welchen in jenen enthalten sind können sich frei bewegen. Ab einer bestimmten Temper-
atur verhält sich das System wie ein Plasma aufgebaut aus Quarks und Gluonen. Dieses Plasma wird
daher ein QGP, d.h. ein Quark Gluonen Plasma genannt. Gitterrechnungen sagen voraus, dass sich
eine scharfe Übergangstemperatur von der hadronischen Phase zur QGP Phase bei 175− 200 GeV
befindet. Die zu dieser für diesen Übergang notwendige Energiedichte beträgt E & 1 GeV/fm3. In der
Natur können solche Dichten zum Beispiel in den Zentren von Neutronensternen oder bei Supernovae
Explosionen detektiert werden. Um ähnliche Dichten im Labor zu erzeugen, werden schwere Kerne
mit sehr hohen Energien aufeinander geschossen. Die daraus entstehende Kernmaterie entsteht, da
Kerne bei solch hohen Geschwindigkeiten stark längenkontrahiert in longituditionaler Richtung sind,
wodurch die Materie sehr heißund dicht wird. Experimente dieser Art wurden bisweilen schon am
RHIC in Brookhaven New York durchgeführt und sollen am LHC des CERN in Genf zu noch höheren
Energien ausgeweitet werden. Bei den Experimenten am RHIC wurde ein großes Spektrum an ver-
schiedenen Kollisionen untersucht. Es wurden hierbei p+p,d+Au und Au+Au Kollisionen bei Schw-
erpunktsenergien Energien (

√
s) von 20 bis 200 GeV durchgeführt. Am LHC soll sich die Stahlenergie

um eine Größenordnung, gegenüber der am RHIC, auf
√
5, 5 TeV pro Nukleon, vergrößern. Eine

der größten Herausforderungen der in der modernen Schwerionenphysik ist es eine genaue thermo-
dynamische Beschreibung der Transporteigenschaften dieses Materiezustandes zu finden. Alleine
das Auffinden eines eindeutigen Signals, welches das Entstehen eines QGP bestätigt ist schwierig.
Anstelle weiter nach einem direkten Signal zu suchen, werden daher Datensätze verschiedener Ob-
servablen auf Spuren einer freien Quark Gluon Phase untersucht. Dabei kommen viele Observablen,
wie z.B. elektromagnetische Proben, der eliptische Fluss-Koeffizient, die Lösung schwerer Quarks
aus Quarkonium Zuständen usw., in Frage. Diese Arbeit wird sich vornehmlich mit Dileptonen Aus-
beuten, die eine sehr wichtige Observable bei ultra-relativistischen Schwerionenkollisionen darstellen,
beschäftigen.
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Ein sehr interessantes und bisweilen ungelößtes Problem ist dabei, ob das QGP thermalisiert oder
nicht. Die Resultate der ersten Versuchsreihe am RHIC konnten allesamt durch ideale Hydrody-
namik erklärt werden, mit welcher sämtliche transversalen Spektren von zentralen und halbzen-
tralen Stößen, einschließlich der Anisotropien in nicht zentralen Stößen, die durch den elliptischen
Flusskoeffizienten v2 quantifiziert werden,erklärt werden. Modelle der idealen Hydrodynamik kon-
nten dabei erfolgreich die Abhängigkeit von v2 von der Ruhemasse der Hadronen bei transversalen
Impulsen von 〈p2L〉 ≪ 〈p2T 〉 erklären. Dabei mussten die idealen Hydrodynamikrechnungen schon
bei frühen Zeiten, d.h. τhydro = 1 fm/c gestartet werden, um zu funktionieren. Aufgrund dieser
Ergebnisse wurde angenommen, dass die Materie, die bei der Kollision geschaffen wurde eine geringe
Thermalisierungszeit hat und sich daher fast wie eine perfekte Flüssigkeit verhält. Wenn nun aber
die dissipativen Korrekturen bis zur 2ten Ordnung in der Gradientenentwicklung mit in die Rech-
nung einbezogen werden, so ist es nicht mehr notwendig, die hydrodynamische Rechnung von solch
frühen Zeiten aus zu starten, um die Messdaten zu beschreiben. Die Abschätzungen der Thermal-
isierungszeiten, die aus den hydrodynamischen Rechungen folgen sind sehr ungenau, da die genauen
Eingabewerten der Rechnung, sowie eine genaue Beschreibung der Hadronisierung und der Plasmady-
namik nicht gegeben ist. Eine, vor kurzer Zeit durchgeführte Rechnung, bei der 2-Ordnung konforme
viskose Hydrodynamik verwendet wurde, gibt Anlass zu der Annahme, das Thermalisierungszeiten
von über 2 fm/c nicht in der Lage sind RHIC Daten [1] zu beschreiben.
Aus theoretischer Sicht gesehen, ist es sogar noch schwerer zu Erklären, wie das QGP thermal-

isiert, wenn sich Partronen des heranfliegenden Kerns abspalten. Ausgehend von einem umge-
drehten Szenario kann die Thermalisierungszeit des QGP auf ∼ 2, 7 fm/c für RHIC Energien
geschätzt werden. Bei dieser Abschätzung werden 2 ↔ 3 Kollisionen betrachtet. Leider werden in
diesem Szenario die Anisotropien, die sich in den Anfangszeiten der Kollision bilden, vernachlässigt.
Diese Anisotropien werden durch die rasche longitudinale Ausbreitung des QGPs verursacht, welche
das System stärker in longitudinaler Richtung abkühlen lässt als in transversaler. Daher ist zu
dieser Zeit die Ausbreitungs Rate größer als die Kollisions Rate und es bildet sich eine lokale
Impuls-Raum Anisotropie. Wenn das System in die Nähe eines lokalen Gleichgewichts kommen
soll, so muss zu einem bestimmten Zeitpunkt die Kollisionsrate größer als die Expansionsrate sein.
Sobald dies passiert kann ein hydrodynamisches Verhalten des Systems angenommen werden. Es ist
bekannt, dass Anisotropien im Impulsraum mit Plasmainstabilitäten korelliert sind. Diese lokalen
Anisotropien des QGP können als chromo-Weibel Instabilitäten beschrieben werden [2]. Chromo
Weibel Instabilitäten verursachen ein rasches Wachstum der weichen Feldmoden die wiederum die
Isotropisierung des Plasmas zu restaurieren versuchen, wobei diese rasche Restaurierung auf viel
kleineren Zeitskalen als denen der Kollisionen stattfindet. Die meisten Fortschritte in der theoretis-
chen und numerischen Beschreibung eines QGP mit chromo Weibel Instabilitäten wurden bis jetzt in
einem asymptotischen Energiebereich gewonnen, in dem Vergleiche zu Störungsrechnungen möglich
waren. Daher konnte bis jetzt die Isotropisierung am RHIC und LHC noch nicht bewiesen werden.
Solange eine eindeutige physikalische Beschreibung des Thermalisierungsprozesses fehlt, ist ein

möglicher Beschreibungsweg, durch die phänomenologische Beschreibung der von v2 unabhängigen
Variablen gegeben. Diese Observablen sollten Auskunft über das Frühstadium des Plasmas geben.
In dieser Arbeit werden die phenomenologischen Konsequenzen von Impuls Raum Anisotropien in
Schwerionenkollisionen erforscht und beschrieben.

Dileptonenproduktion aus einem anisotropen QGP

Eine sehr wichtige Art von Signalen des QGP sind elektromagnetische Signale, wie hoch energetische
Photonen und Dileptonen. Da diese Teilchen an die stark wechselwirkende Materie nur über die
elektromagnetische Kraft ankoppeln können, haben sie eine große freie Weglänge und können somit
aus der starkwechselwirkenden Zone entweichen. Aus diesem Grunde tragen Teilchen dieser Art
wichtige Informationen über die Anfangszeiten der Kollision. Im ersten Abschnitt dieser Arbeit werde
Dileptonen berechnet, die im Medium entstehen und aus der Strahlung des Mediums hervorgehen,
die vor dem Gleichgewichtszustand abgestrahlt wurde. Um die Dileptonen Spektra zu ermitteln ist
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Figure 0.1.: Zeitliche Entwicklung der Energiedichte (linke Seite), des harten Impulses und des
Anisotropie Parameters (rechte Seite) wobei ein Modell mit kollisionaler Verbreiterung
einbezogen wurde. Es wurden vier verschiedene Isotropisierungszeiten verwendet τiso ∈
{1, 4, 6, 18} τ0. Die Übergangsbreite ist γ = 2. Um sie inphysikalische Einheiten
umzurechnen wird τ0 ∼ 0.3 fm/c für RHIC und τ0 ∼ 0.1 fm/c für LHC Daten. Die
obere Reihe is für das Interpolationsmodel mit festen Anfangsbedingungen und die un-
tere für feste Endbedingungen.

es wichtig, zuerst die differenzielle Dileptonen Rate zu berechnen. Diese differentielle Dileptonen
Rate ist aus der kinetischen Theorie gegeben als:

dRl+l−

d4P
=

∫
d3p1

(2π)3
d3p2

(2π)3
fq(p1) fq̄(p2) vqq̄ σ

l+l−

qq̄ δ(4 )(P − p1 − p2 ) , (0.1)

Wobei hier fq,q̄ die Phasenraumverteilungsfunktion der Mediumquarks (Antiquarks), vq,q̄ die Rela-

tivgeschwindigkeit zwischen Quarks und Antiquarks und σl+l−

qq̄ der totale Wirkungsquerschnitt des
Vernichtungsprozesses q+ q̄ → l++l− ist. Um Impuls-Raum Anisotropien in der Verteilungsfunktion
mitzuberücksichtigen, wird eine azimuthale Symmetrie der Materie im Impulsraum angenommen,
so dass die anisotropen Quark/Antiquark Phasenraumverteilungen aus einer beliebigen isotropen
Phasenraumverteilungsfunktion durch Stauchung ξ > 0 oder Strecken ξ < 0 relativ zu einer Rich-
tung im Impulsraum ermittelt werden kann, als

fq,q̄(p, ξ, phard) = f iso
q,q̄ (

√
p2 + ξ(p · n̂)2, phard) , (0.2)

Hierbei ist phard die Skala des harten Impulses, n die Richtung der Anistropie und ξ > −1 ein
Parameter der Auskunft über die Stärke und Art der Anisotropie gibt. Es ist bekannt, dass es für
eine gute Beschreibung nicht ausreicht, nur die Dileptonenrate mit den Experimenten zu vergleichen.
Zusätzlich muss eine Beschreibung der zeitlichen Entwicklung des Feuerballs im Ortsraum gegeben
werden. Dazu ist es wiederum notwendig, über den gesammten Raum zu integrieren, was mit einem
Entwicklungsmodell für den harten Impuls geschehen kann. Dabei sind die Dipeltonen Ausbeuten
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Figure 0.2.: Dileptonen Ausbeute simuliert mit einem kollisionsberücksichtigendem Modells aufge-
tragen gegen die invariante Masse bei Au+Au Kollisionen bei LHC Daten mit Rapidität
y=0 und fester Endmultiplizität.

gegeben als.:

dN l+l−

dM2dy
= πR2

T

∫
d2pT

∫ τf

τ0

∫ ∞

−∞

dRl+l−

d4P
τdτdη , (0.3)

dN l+l−

d2pTdy
= πR2

T

∫
dM2

∫ τf

τ0

∫ ∞

−∞

dRl+l−

d4P
τdτdη (0.4)

dN l+l−

dy
= πR2

T

∫
dM2d2pT

∫ τf

τ0

∫ ∞

−∞

dRl+l−

d4P
τdτdη , (0.5)

Wobei dRl+l−/d4P die differenzielle Dileptonenrate und RT der transversale Radius des Kerns ist.
Die ersten beiden Ausdrücke werden dabei in der zentralen Rapiditätszone ausgewertet und die
Letzte in der nach vorne gerichteten Rapiditätszone.
Das Hauptinteresse liegt bei Impulsraumanisotropien, die sich zu Beginn der Kollision entwick-

eln. Diese Entwicklung der anfänglichen Anisotropien wird in das Gesammtmodell miteinbezogen,
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Figure 0.3.: Dileptonen Ausbeuten simuliert mit dem kollisionsintegrierten Modell bei festgehaltener
Endmultiplizität und einem Schnitt beiM ≥ 2 GeV und PT ≥ 100 MeV. Für Dileptonen
im Medium wird entweder mit γ = 2 und τiso entweder 0.088 oder 2 fm/c für LHC
Energien benutzt.

welches nun die Entwicklung der Energiedichte, des harten Impulses phard und die des Anisotropiepa-
rameters ξ beschreibt. Es werden zwei phenomenologische Modelle vorgestellt, die diese Entwick-
lung beschreiben. Zuerst wird ein Modell vorgestellt, in dem von einem, 0+1 dimensionalen frei
ströhmenden System zur Anfangszeit, hin zu einem 0+1 dimensionalen idealen hydrodynamischen
System interpoliert wird. Im zweiten Modell wird von einem sich verbreiternden 0+1 dimension-
alen System mit Kollisionen hin zu einem idealen hydrodynamischen System interpoliert. In beiden
Modellen werden drei Parameter benutzt. Der erste τ0 ist die Zeit die vergeht, bis sich die Partronen
von den Kernen abspalten. Der zweite, τiso ist die Zeitspanne, bis das System isotrop im Impul-
sraum wird. Und der dritte γ beschreibt die Weite des Übergangs von der Vor Gleichgewichtsphase
zur ideal hydrodynamischen Phase. Bei passend gewählten asymptotischen Grenzen, sind diese In-
terpolationsmodelle in der Lage, instantan ideale Hydrodynamik und ideales freies Ströhmen als
spezielle Fälle einer Expansion darzustellen. Dabei werden die Rechnungen dadurch beschränkt,
dass entweder die Anfangsbeingungen oder die Pionen Multiplizität am Ende festgehalten werden.
In Abbildung 0.1 wird die Eigenzeitabhängigkeit der Energiedichte, der harten Impulsskala und des
Anisotropieparameters für eine frei ströhmende Expansion mit festgehaltenen Anfangsbedingungen
(oben) und festgehaltener finaler Pionenmultiplizität (unten) gezeigt. Anhand der Abbildung ist
zu erkennen, dass bei festgehaltenen Anfangsbedingungen die Energiedichte immer größer ist im
Falle eines Systems, das instantan zu einem hydrodynamischen Verhalten thermalisiert. Daher ist
die Dileptonenausbeute in diesem Falle größer, als wenn die finale Pionenmultiplizität festgehalten
würde.

Aus Abbildung 0.2 ist zu entnehmen, dass die Dileptonenausbeute als eine Funktion der invarianten
Masse und des transversalen Impulses empfindlich auf die Wahl der Isotropisierungszeit τiso reagiert.
Die Abhängigkeit von der invarianten Masse ist keine geeignete Observable für Experimantalphysiker,
da die Dileptonenprduktion im Medium von gleicher Größenordnung oder sogar kleiner als andere
Dileptonenquellen sein kann. Im Falle hoher harter Impulse pT sieht die Lage vielversprechender aus.
Die beste Möglichkeit, um Informationen über τiso und den Grad der Anisotropisierung zu erhalten,
liegt darin hohe transversale Impulse in den Dileptonen Spektren am RHIC (1 < pT < 6 GeV) und
am LHC (2 < pT < 8 GeV) zu analysieren.
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Figure 0.4.: Kritischer (links) und konvergierender (rechts) Grenzfall bei k = τhydro
(
E(τ =

τhydro)
)1/4

als FUnktion der Anfangsshear, Πhydro = Π(τ = τhydro)
/
E(τ = τhydro).

Die Transportkoeffizienten in diesem Fall haben typische starke Kopplungswerte.

Die zuvor beschriebenen Interpolationsmodelle werden auf die nach vorne gerichtete Region der
Kollision ausgeweitet, indem die Rapiditätsabhängigkeit des harten Impulses einbezogen wird. In
Abbildung0.3 sind die Resultate der berechneten Dileptonen Produktion gegen die Rapidität geplot-
tet. Es zeigt sich, dass die nach vorne gerichteten Dileptonen bei einer Isotropisierungszeit von 2
fm/c um einen Faktor 3 unterdrückt sind.

Wahl der Anfangsbedingungen für viskose Hydrodynamik

Eine Haupterkenntniss, die aus der Analyse der RHIC Daten mit Hilfe eines viskosen Hdydrodynamik
Modells in 2ter Ordnung gewonnen werden kann, ist, dass ein Mangel an Methoden zur Bestimmung
der Anfangsbedingungen für eine viskose hydrodynamische Simulation besteht. Insbesondere ist
es nicht klar, wann überhaput ein Hydrodynamikmodell zur Beschreibung von ultrarelativistischen
Schwerionenkollisionen verwendet werden darf. Es wäre daher wünschenswert, eine Methode zu
finden, die die Wahl der passenden Anfangsbedingungen ermöglicht. Der zweite Teil dieser Arbeit
wird genau diesen Punkt focussieren. Zunächst seien zwei Notwendigkeiten für die Berechung von
Lösungen der viskosen Hydrodynamik zu nennen.: (1) Der longitudinale Druck muss positiv sein
(2) Die Komponenten des viscous shear tensors müssen kleiner als der hydrostatische Druck
sein. Die erste Bedingung, auch kritische Beschränkung genannt, ist die minimale Bedingung, um
überhaupt numerischen Simulationen von viskos hydrodynamischen Systemen zu trauen. Sollten
negative Werte des effektiven longitudinalen Druckes auftreten, so heißt das, dass dissipative Ko-
rrekturen größer als der Gleichgewichtsteil des Energie-Impuls tensors ist, was Hydrodynamik als
Modell unbrauchbar macht. Einen effektiven longitudinalen Druck zu kennen reicht nicht aus, um
die Gradientenentwicklung durchzuführen, die für die Hydrodynamik essentiell ist, da die viskosen
shear Korrekturen von der gleichen Größenordnung seien könnten, wie die Gleichgewichtskompo-
nenten des Energie-Impuls Tensors. In dem zu letzt genannten Fall wäre es notwendig eine stärkere
Bedingung zu fordern mit der die Gradientenentwicklung besser durchgeführt werden kann. Diese
Bedingung ergibt sich als Π wobei α eine Nummer zwischen [0,1] ist. Im Laufe der Arbeit wird
gezeigt werden, wie sich diese physikalischen Bedingungen im Kontext von Schwerionenkollisionen
auswirken werden, indem sie auf eine 0+1 dimensionale viskos hydrodynamische Rechnung in 2
Ordnung Störungstheorie angewendet werden. Dabei werden sowohl starke alsauch schwache Kop-
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Figure 0.5.: Zeitliche Entwicklung der Druckanisotropieparameters ∆ für drei verschiedene Werte
von τhydro ∈ {0.3, 1, 3} fm/c. Es wird τ0 = 0.3 fm/c und alle Anfangs Temperaturen bei
einer Partronenformationszeit phard = Thydro = 0.35 GeV benutzt. Alle Plots benutzen
das Kollosionsintegrierte Modell und die transport Koeffizienten sind umgefähr die des
schwachen Kopplungsfall (linke Seite) und des starken Kopplungsfall (rechte Seite).

plungen betrachtet. Durch die Untersuchung des Phasenraumes werdenphysikalischen nicht triviale
Beziehungen zwischen den Anfangsbedingungen der Energiedichte, des shear visccous tensor und
der Anfangszeit gefunden. Diese Untesuchung ermöglicht es, immer niedrigere Grenzen der An-
fangszeit τhydrozu finden. Die linke Seite von Abbildung zeigt die Lösungen, welche P > 0 erfüllen.
Auf der rechten Seite erfüllen die Lösungen nich nur Positivität, sondern auch die Bedingung ΠY 3.
Mit diesen Erkenntnissen ist es möglich die 0+1 dimensionale Expansion an 0+1 dimensionale

viskose Hydrodynamik, in 2 Ordnung der Störungsreihe, anzupassen, indem die Abängigkeit des
Anisotropieparameters ξ vom Anisoropiedruck ∆ untersucht wird. Damit ist es möglich, im Rah-
men der viskosen Hydrodynamik, die Anfangswerte der Energiedichte und des shear viscous ten-

sors also Funktion der Lebenszeit der Vorgleichgewichtsphase zu finden. Dabei werden zwei Fälle
Betrachtet.: Das freie Ströhmen des Systems und der Fall eines sich durch Kollisionen weitenden
Systems. Folglich werden zwei Zeitskalen verwendet.: Die Zeit die vergeht, bis die Partronen sich
ablösen τ0 und die Zeit bei der das System anfängt sich viskos hydrodynamisch zu verhalten. Die
Anfangsbedingungen hängen dabei nicht von der Art der Kopplungskonstante ab, da diese nicht in
der ersten Ordnung vorkommt. In Abbildung 0.4 ist die zeitliche Entwicklung des Anisotroiedruckes
∆ aufgetragen, wobei eine Expansion aus dem Vorgleichgewichtszustand mit kollisionsbedingter Sys-
temverbreiterung angenommen wurde. Wird dieses Modell benutzt, kann untersucht werden, wie
sich die Entropieproduktion verhält, wenn die Anfangsbedingungen verändert werden. Des Weiteren
können Grenzfälle entwickelt ∼ 0.5 werden.
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Abstract

In this work we investigate phenomenological aspects of an anisotropic quark-gluon plasma. In the
first part of this thesis, we formulate phenomenological models that take into account the momentum-
space anisotropy of the system developed during the expansion of the fireball at early-times. By
including the proper-time dependence of the parton hard momentum scale, phard(τ), and the plasma
anisotropy parameter, ξ(τ), the proposed models allow us to interpolate from 0+1 pre-equilibrated
expansion at early-times to 0+1 ideal hydrodynamics at late times. We study dilepton production
as a valuable observable to experimentally determine the isotropization time of the system as well as
the degree of anisotropy developed at early-times. We generalize our interpolating models to include
the rapidity dependence of phard and consider its impact on forward dileptons.
Next, we discuss how to constrain the onset of hydrodynamics by demanding two requirements

of the solutions to the equations of motion of viscous hydrodynamics. We show this explicitly for
0+1 dimensional 2nd-order conformal viscous hydrodynamics and find that the initial conditions
are non-trivially constrained. Finally, we demonstrate how to match the initial conditions for 0+1
dimensional viscous hydrodynamics from pre-equilibrated expansion. We analyze the dependence
of the entropy production on the pre-equilibrium phase and discuss limitations of the standard
definitions of the non-equilibrium entropy in kinetic theory.
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1. Introduction

And my story. It began.

I haven’t dreamed of flying for a while

Taichi Yamada.

1.1. Basics of Quantum Chromodynamics

Quantum Chromodynamics (QCD) is at present universally accepted as the theory of the strong
interaction. The fundamental degrees of freedom in the theory are the quarks and gluons that carry
color charges. These particles cannot be directly seen in Nature, because confinement binds them
into color-neutral bound states known as baryons and mesons. QCD has been thoroughly tested
in experiment and is known to possess the expected properties: the coupling constant weakens
as the energy increases (celebrated ‘asymptotic freedom’ [3, 4]), the quarks and gluons manifest
themselves through the production of jets, the partonic constituents of matter are seen in Deep
Inelastic Scattering and the corresponding structure functions exhibit scaling violation, etc.
QCD is formulated as a gauge theory, in analogy with QED. The structure of QED is entirely fixed

by the requirement of invariance under local gauge transformations, that is invariance with respect
to the phase rotation of the electron field Ψ(x) → eiα(x)Ψ(x), where the phase factor α depends on
the space-time coordinates. In the case of QCD, we have the constituent quarks that come in three
different colors, Nc = 3. The local gauge invariance with respect to the SU(Nc) rotations in color
space introduces N2

c − 1 = 8 gauge bosons, the gluons. Quarks are spin 1/2 particles that belong to
the fundamental representation of SU(3) whereas gluons are spin 1 particles defined in the adjoint
representation of SU(3). Quarks have three different colors say, red, green and blue, hence a quark
state vector can be expressed as a color multiplet of three components. Interactions with gluons
rotate the colors of the quarks, however the non-abelian nature of the gauge group SU(3) implies
that gluons can also interact with each other.
The QCD lagrangian reads as 1

LQCD =
∑

q

q̄(x) ( i γµD
µ −mq) q(x) −

1

4g2
tr Gµν(x)Gµν (x) (1.1)

where the sum is extended over the number of colors and flavors. q(x), q̄(x) are the quark and
antiquark fields, Dµ = ∂µ − i g Aa

µ t
a is the covariant derivative, g is the coupling constant and

Gµν(x) is the field strength tensor given in terms of the gauge field Aµ
a

Gµν
a (x) = ∂µAν

a(x) − ∂νAµ
a(x) + fabcA

µ
b (x)A

ν
c (x). (1.2)

To ensure gauge invariance of the QCD lagrangian, the quark and gauge fields transform under the
gauge group in the fundamental and adjoint representation

q(x) → U(x) q(x) , (1.3a)

Aµ(x) → U(x)Aµ(x)U †(x) +
i

g
U(x)∂µU †(x). (1.3b)

1We omit the sum over color indices explicitly.
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Figure 1.1.: The running coupling constant αs(Q
2) as a function of momentum transfer Q2 deter-

mined from a variety of processes. Figure taken from Ref. [9].

where U(x) = exp(−i φa(x)T a) is a unitary complex valued matrix and T a are the generators of
SU(3).
One of the most remarkable properties of QCD is related to the fact that at large energies the cou-

pling constant is small, i.e. perturbation theory is applicable. Because of the gluon self-interactions,
we have anti-screening [3, 4] and the constant coupling becomes small at short distances (high en-
ergies) but large at large distances (low energies). In Coulomb gauge, the anti-screening stems from
the diagram in which the exchange of a Coulomb gluon excites from the vacuum zero modes of the
transverse gluons [5, 6, 7]; for review see [8]. This diagram is purely real and leads to a Coulomb
interaction that strengthens as the distance grows. Finally, the dependence of the coupling in mo-
mentum space can be expressed as a function of the virtuality of the photon Q2. To one loop order
the scale dependence is

αs(Q
2) =

αs(Q
2
0)

1 +
αs(Q2

0)

12π (11Nc − 2Nf) log(Q2/Q2
0)
. (1.4)

In Fig. 1.1 we show the experimental verification of this prediction. Formally speaking, the fact
that the coupling constant is small at high energies is related to the negative value of the so-called
β-function. However, in spite of these successes the behavior of the theory at low energies or large
distances and the structure of its vacuum state are still poorly understood due to confinement.
Confinement means that at large distances we do not observe single quarks but instead we observe
hadrons which are colorless particles. One may hope that progress can be achieved through the
studies of thermodynamics of quarks and gluons at high temperatures and densities. Understanding
collective behavior may appear simpler than understanding the dynamics of the individual con-
stituents. At temperatures accessible experimentally, the typical distances between the quarks and
gluons in the ‘Quark-Gluon Plasma’ (QGP) can be quite large and the coupling becomes strong
during that stage. Achieving progress in the understanding of QGP thus requires methods that
apply in both the weak and strong coupling domains.

1.2. Nuclear matter at extreme conditions

After the great success of asymptotic freedom of non-abelian gauge theories and its applications
to high-energy scattering processes, a new paradigm came out and up to now it has not been
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understood completely: confinement. In scattering processes described by QED, we can have that
the initial and final states can be either photons or leptons. In QCD the situation turns out to
be a bit more complicated since at large distances the coupling constant becomes large, and hence,
quarks and gluons cannot be considered as asymptotically free particles and the hadrons observed
in nature are colorless when these are measured. To understand confinement one should deal with
non-perturbative physics and the best available tool is to examine the system on a discrete lattice
of space and time or better known as QCD lattice.
Nevertheless, one can get great physical insight by simplifying the complex structure of hadrons

by considering these as containers or bags of quarks and gluons. In this phenomenological model,
quarks are considered as massless particles inside a bag of finite dimension, and are infinitely massive
outside the bag. The gluons are also contained within the bag. Confinement in the model is the result
of the balance of the bag pressure B, which is directed inward, and the stress arising from the kinetic
energy of the quarks. The total color charge of the matter inside of the bag is zero, implying that
the only allowed hadronic bags would be baryons (qqq), antibaryons (q̄q̄q̄) and mesons (qq̄). When
the pressure of the strong matter inside the bag is increased, there will be a point when the pressure
directed outward is greater than the inward bag pressure. In this case, the bag pressure cannot be
balanced and the bag cannot contain the matter inside. Therefore, a new state of matter composed
of quarks and gluons in an unconfined state is then possible. The main condition for such state of
matter is the occurrence of a large pressure exceeding the bag pressure B. The large pressure of this
deconfined state of QCD matter arises when the temperature is large or when the baryon number
density is large. New phases of QCD matter are then expected. More refined models that take into
account another effects such as chiral symmetry have been done. In principal, the simple bag model
can predict some of the phases of QCD matter excepting color superconductivity and most recently
the quarkyonic phase [10, 11, 12]. Nevertheless, its simplicity allows us to understand qualitativately
assymptotic limits, say large temperatures or high baryon number density. The complete description
of the QCD phase diagram is an incomplete program; however, much progress have been made in
the last 30 years.

Figure 1.2.: Sketch of the contemporary view of the QCD phase diagram.

In Fig. 1.2, we show a sketch of the contemporary version of the QCD phase diagram in the
(µB, T ) plane. 2 At low temperature T and low values of the baryo-chemical potential µB the
chiral symmetry of the QCD lagrangian is broken [13] and the system is in the hadronic phase.

2Figure taken from http://www.gsi.de/fair/experiments/CBM/1intro.html.
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As one increases µB but keeping low temperatures, QCD matter enters in the phase described by
color superconductivity [14]. In the opposite limit, i.e., high temperatures but low values of µB, the
quarks and gluons are in a deconfined plasma phase (QGP) and the chiral symmetry is restored.

When we consider QCD matter in the limit of high temperatures and low baryochemical potential
µB ≈ 0, lattice QCD can help to quantify more precisely the emerging picture of deconfinement. As
a matter of fact, lattice calculations indicate that there is a transition from deconfined to confined
phase [15, 16, 17]. In Fig. 1.3 we show the energy density scaled by T 4 as a function of the temperature
predicted by lattice QCD for different types of QCD matter. This computation shows an increase of
the energy density when the temperature of the system T ≈ TC = 160-180 MeV. Indeed, the energy
density changes by up to one order of magnitude around TC . Since the energy density and the other
thermodynamical variables are proportional to the degrees of freedom of the system, this increase
of the energy density can be interpretated as a change of the degrees of freedom between a confined
and a deconfined phase. Above TC , QCD matter behaves as a plasma of quarks and gluons whereas
below TC the system is a confined system composed of hadrons.

  0
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Figure 1.3.: The energy density as a function of the temperature for different content of flavors from
lattice QCD. Figure taken from [18].

From the experimental point of view, high temperatures and low values of baryochemical poten-
tial can be studied by colliding nuclei at high energies. Due to the Lorentz contraction along the
longitudinal beam axis of the collision and large size of the nuclei along the transverse plane, a very
hot and dense system of nuclear matter can be formed in the central region [19]. The main goal
of the experiments that perform ultrarelativistic heavy-ion collisions is to produce and study the
properties of a deconfined plasma of quarks and gluons. This program has been underway for nearly
a decade at the Relativistic Heavy Ion Collider (RHIC) and in the future experiments are scheduled
at the Large Hadron Collider (LHC).
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Spectators

Y

X

b

ΨRP

Spectators

Figure 1.4.: A schematic of the transverse plane in a heavy ion event. The impact parameter is a
transverse vector b= (bx, by) pointing from the center of one nucleus to the center of the
other one. ΦRP is known as the reaction plane angle, which is the angle respect to the
lab axes as shown in the figure. Figure taken from [20].

When two nuclei collide, they usually do so at impact parameter b and oriented at an angle ΦRP

with respect to the lab axes as shown in Fig. 1.4. As a result of this, the initial profile of energy
density of the nuclear matter is azimutally anisotropic. Because of this initial configuration, there
are higher pressure gradients along the shortest overlap region than in the largest overlap region
(in-plane and out-of plane) and therefore, the emission of particles produced after the collision will
carry this information. Experimentalists quantify the flow of matter by expanding the differential
yield of particles in a Fourier series

1

pT

dN

dydpTdφ
=

1

2πpT

dN

dydpT
(1 + 2v2(pT ) cos 2(φ− ΨRP ) + . . .) , (1.5)

where v2 is second Fourier coefficient of the azimuthal distribution 〈cos(2(φ−ΨRP ))〉. This coefficient
is defined as

v2 ≡
〈p2X − p2Y
p2X + p2Y

〉
. (1.6)

Notice that in Eq. (1.5), higher harmonics such as v4, v6 and so on can also contribute to the produced
particles. The typical way to model is hydrodynamics where one should ensure that the energy-
momentum tensor of the system is not far from equilibrium. In the case of ideal hydrodynamics, the
energy-momentum tensor should be at least, isotropic in momentum-space [21]. The first results
of RHIC demonstrated that ideal hydrodynamics was able to fit the low pT dependence of the
elliptic flow v2 if the hydro simulations were initialized at early times τ0 . 1 fm/c [22, 23, 24, 25].
This lead to the initial statements concerning ‘early thermalization’ of the QGP. However, once
viscous corrections are included, the matching of hydrodynamics to data does not require a short
thermalization time. Indeed, recent analysis of RHIC data show that even thermalization times of
τ0 ∼ 2 fm/c can describe the dependence of v2 on the hadron rest mass pT [1].
From first principles calculations based on pQCD, thermalization of the QGP is achieved due

to parton-parton collisions. In the bottom-up scenario [26] where binary and 2 ↔ 3 collisions are
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included, it is estimated that the thermalization time for RHIC energies is τ0 ∼ is 2.7 fm/c [27].
Numerical simulations based on parton cascade models for 3+1 dimensions which also include binary
and 2 ↔ 3 parton interactions show that the estimated time for the thermalization of a gluonic
system is ∼ 1.5 fm/c [28, 29]. These calculations have ignored an important issue related with
non-equilibrium field theory, namely the formation of plasma instabilities [30, 31]. This mechanism
turns out to be important in the isotropization process of the QGP. At the earliest times after
the collision, the system expands almost entirely along the longitudinal beam axis. Immediately
after the collision, the partons are produced from the incoming colliding nuclei at τ = τ0, at which
time the partonic momentum distributions can be assumed to be isotropic.3 The subsequent rapid
longitudinal expansion of the matter (along the beam line) causes it to become much colder in the
longitudinal direction than in the transverse direction [26]. Longitudinal cooling occurs because
initially the longitudinal expansion rate is larger than the parton interaction rate and, as a result, a
local momentum-space anisotropy is induced with 〈p2L〉 ≪ 〈p2T 〉 in the local rest frame. If the system
is to return to an isotropic state it is necessary that at some later time the interaction rate overcomes
the expansion rate with the system finally isotropizing and remaining isotropic for τ ≥ τiso. Once
isotropy is achieved (and maintained by parton interactions) the use of hydrodynamic simulations can
be justified. The study of anisotropic plasmas has received much interest recently due to the fact that
a quark-gluon plasma which has a local momentum-space anisotropy, 2〈p2L〉 6= 〈p2T 〉, is subject to the
chromo-Weibel instability [21, 33, 34, 35, 2, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51].
The chromo-Weibel instability causes rapid growth of soft gauge fields which preferentially work to
restore the isotropy of the quark-gluon plasma on time scales much shorter than the collisional time
scale. However, most of the theoretical and numerical developments in describing the time-evolution
of a QGP subject to the chromo-Weibel instability have been restricted to asymptotic energies at
which perturbative resummations can be applied and hence the presence of the instability-driven
isotropization at RHIC and LHC energies is not yet proven. In addition, numerical studies of the
chromo-Weibel instability in an one-dimensionally expanding system show that there is a time delay
before the effects of plasma instabilities become important to the system’s dynamics [48, 51]. In this
work we study phenomenological consequences of anisotropies in momentum-space and attempt to
model the effect of collisions, instabilities, etc.

1.4. Electromagnetic probes

In general, it is difficult to have an unequivocal identification of the quark-gluon plasma phase. What
can be achieved is to have a broad set of data from different observables which, taken together, allows
us to identify the presence of the deconfined phase. Electromagnetic probes such as high-energy
photons and dileptons have been proposed as one of the most clear signals of the QGP phase [52, 53].
These particles interact only electromagnetically, thus their mean free path is larger than the typical
system size (∼ 10 fm) and as a result, they do not suffer further interaction with the medium (α ≪
αs) and carry undistorted information about the circumstances of their production to the detector
[52, 53]. Unlike hadrons, which are emitted from the freeze-out surface after undergoing intense
re-scatterings, the observed photon and dilepton spectrum are the result of the convolution of the
emissions from the entire history of the nuclear collision. To calculate the spectra of electromagnetic
probes it is necessary to know how to get their production rates from the underlying theory and a
model for the evolution of the fireball. Thermal photon yields and dilepton production have been
studied exhaustively in ultrarelativistic heavy ion collisions.4

From the experimental point of view, in the case of high-energy medium photon production it is
difficult to subtract the large backgrounds coming from π0 decays from other sources of photons,

3See Ref. [32] for an alternative view of the early times after the initial collision wherein the authors find that the
distribution may be prolate for longer than usual assumptions.

4For a more extensive discussion of electromagnetic radiation from relativistic nuclear collisions, we refer to the
reader to Refs. [54, 55].
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making it hard to measure a clean high-energy medium photon production signal. In the case of
high-energy dileptons, the experimental situation is dramatically improved.
When hydrodynamical predictions of v2 are confronted with experiments there are many theoretical

uncertainties. Due to this, it is not clear what is the initial time when the system reaches its
hydrodynamical behaviour. One possible way to remove many of these uncertainties is to find
observables which are sensitive to the earliest times after the collision and are relatively unaffected
by the later stages of plasma evolution. One obvious candidate to consider is high-energy dilepton
production. In this work we propose space-time models for the pre-equilibrium phase of the QGP
that take into account momentum-space anisotropies and study their impact on dilepton production.

1.5. Notation of this thesis

We summarize the conventions and notation we use along this thesis:

• We use natural units: ~ = c = kB = 1.

• The metric in Minkowski space gµν is

gµν = diag.(1,−1,−1,−1) . (1.7)

• The projector onto the 3-space orthogonal to the fluid velocity uµ:

∆µν = gµν − uµuν , uµ∆
µν = 0. (1.8)

• The geometric covariant derivative acting over any tensor T µ1µ2···µk
ν1ν2···νl is [56]

DσT
µ1µ2···µk

ν1ν2···νl = ∂σT
µ1µ2···µk

ν1ν2···νl

+ Γµ1

σλT
λµ2···µk

ν1ν2···νl + Γµ2

σλT
µ1λ···µk

ν1ν2···νl + · · ·
− Γλ

σν1T
µ1µ2···µk

λν2···νl − Γλ
σν2T

µ1µ2···µk
ν1λ···νl − · · · , (1.9)

where Γσ
µν is the associated Christoffel symbol

Γσ
µν =

1

2
gσρ
(
∂µgνρ + ∂νgµρ − ∂ρgµν

)
. (1.10)

As a particular example of the last expression, the action of the covariant derivative for any
vector V ν give us

DµV
ν = ∂µV

ν + Γν
µλV

λ . (1.11)

• The comoving time derivative D
D ≡ uαDα . (1.12)

• The comoving space derivative ∇µ

∇µ ≡ ∆µαDα . (1.13)

• The brackets 〈 〉 denote an operator that is symmetric, traceless, and orthogonal to the fluid
velocity:

A〈µBν〉 =

(
∆α

µ∆
β
ν +∆α

ν∆
β
µ − 2

3
∆αβ∆µν

)
AαBβ . (1.14)

• The symmetric and anti-symmetric operators:

A(µBν) =
1

2
(AµBν +AνBµ) , (1.15)

A[µBν] =
1

2
(AµBν −AνBµ) . (1.16)



8 1. Introduction

• Phase space integral: ∫
dΓ ≡

∫
d3p

(2π)3Ep

. (1.17)

1.6. Outline of this thesis

This thesis is organized as follows: in Chapter 2 we review the basic physics of anisotropic plasmas
and discuss in detail the appearance of unstable modes and its relation with isotropization of the
QGP. We also comment about recent numerical simulations of plasma instabilities in non-abelian
gauge field theories. In Chapter 7 we present the formulation of hydrodynamics from kinetic theory;
we emphasize the derivation of the 2nd-order viscous hydrodynamical equations and the recent
advances for conformal plasmas. In Chapter 4 we present the theoretical methods necessary to
calculate the differential dilepton rate. Moreover, we include a short review of dilepton production,
its sources and experimental methods to measure it.
In Chapter 5 we investigate the impact of the early-time momentum-space anisotropies on dilepton

production in the central and forward rapidity region. In the central region, we formulate two
interpolating models from early-time 0+1 dimensional expansion (free streaming or collisionally-
broadening) to late-time 0+1 ideal hydrodynamics. The models include the proper-time dependence
of the parton hard momentum scale, phard, and the plasma anisotropy parameter, ξ. We conclude
that in both cases, dilepton production is affected by pre-equilibrated emission. In the forward
region, we generalize these models by including the rapidity dependence of phard. Our calculations
allow us to conclude that dilepton production in the forward rapidity region is suppresed due to
pre-equilibrium effects.
In Chapter 6 we extend our studies of the non-equilibrium phase of the QGP by constraining the

initial conditions of viscous hydrodynamics. We present two requirements for the solutions of viscous
hydrodynamical equations: (1) by imposing positivity of the effective longitudinal pressure of the
solutions of viscous hydrodynamical equations and (2) by demanding that dissipative corrections
coming from shear viscous effects are small compared with the hydrostatic pressure. We apply these
requirements to the 0+1 dimensional 2nd-order conformal viscous hydrodynamical equations. We
find that the initial conditions for the energy density, the initial shear viscous tensor and the initial
time are non-trivially correlated. Additionally, we present a method that allows us to match pre-
equilibrium dynamics of a 0+1 dimensional quark gluon plasma to 2nd-order viscous hydrodynamical
evolution. Based on this interpolating model, we study the impact of the pre-equilibrated phase on
the entropy generation and discuss the limitations of the usual definitions of entropy from kinetic
theory. The conclusions of this work are presented in Chapter 7.
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2. Physics of the anisotropic quark-gluon
plasma

Thermalization of quark-gluon plasmas in heavy-ion collisions is a very difficult question. One
theoretical approach to understand the physics of thermalization has been to explore two extreme
cases, when the plasma is strongly coupled [57] or in a relatively simplifying limit of high-energy
collisions, say when the running coupling constant is arbitrarily small [26]. For the strongly coupled
case, the plasma has a short thermalization time τtherm. ∼ 0.5 fm/c [58]. In the opposite limit, it is
not clear how to determine the thermalization time from weakly coupled plasma, the first estimates
provided a significantly longer thermalization time with τtherm. ∼ 2.7 fm/c [26].
From pQCD, parton-parton collisions are responsible for the thermalization. The calculations

performed within the ‘bottom-up’ thermalization scenario [26], where the binary and 2 ↔ 3 processes
are taken into account, give an equilibration time of at least approximately 2.7 fm/c [27]. To
thermalize the system one needs either a few hard collisions of momentum transfer of order of the
characteristic hard parton momentum, which is denoted here as phard (which corresponds, in the
case of a equilibrium situation, to the temperature T of a thermalized system), or many collisions
of smaller transfer. For an equilibrated QGP at a given temperature T, the inverse equilibration
time is of order g4 log(1/g)T (with g being the QCD coupling constant) when the binary collisions
are responsible for the system’s thermalization [59, 60]. However, the equilibration is sped up by
instabilities generated in an anisotropic quark-gluon plasma [21, 30, 31, 36, 2], as growth of the
unstable modes is associated with the system’s isotropization. Up to now, the effect of plasma
instabilities on τtherm has not been fully quantified.
In this chapter we review the physics of the anisotropic QGP. We start by reviewing the bottom-

up scenario. Next, we discuss the effect of plasma instabilities in the thermalization of the QGP,
focusing on the so-called chromo-Weibel instability which turns out to be the most relevant one at
early times of the expansion of the fireball.

2.1. Review of bottom-up scenario

In the McLerran-Venugopalan model of the color glass condensate [61, 62, 63], small-x gluons with
transverse momentum below a certain saturation scale Qs are at their maximum density. When
applied to a nucleus-nucleus collision at impact parameter b, this scale is given by [64]

Q2
s =

8π2αNc

N2
c − 1

√
R2

A − b2 ρ xGp(x,Q
2
s) , (2.1)

and its value is Qs ∼ 1 GeV at the Relativistic Heavy Ion Collider (RHIC). Here RA is the nuclear
radius, ρ is the nuclear number density, Nc is the number of colors, α is the coupling and Gp is the
gluon distribution of a proton. In a nuclear collision these gluons have a typical momentum of Qs

and are freed at a time around 1/Qs after the initial impact.
The bottom-up scenario pointed out for first time how thermalization can be achieved from first

principles. One of the most important aspects of this calculation was to show that inelastic processes
are no less important than elastic processes for thermalization and that equilibration is driven by
these hard gluons and goes through three distinct stages [26]. The stages of the bottom up are (a)
the early times 1 < Qsτ < α−3/2, (b) the intermediate times α−3/2 < Qsτ < α−5/2 and (c) the final
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stage α−5/2 < Qsτ < α−13/5. The description of every stage is presented below. In Fig. ?? we show
a cartoon picture of how thermalization is achieved in the QGP according with bottom-up scenario.

(a) (b) (c)

thermalized

equilibrium

Figure 2.1.: Qualitative picture of the three stages of the bottom-up thermalization scenario. See
the text for the description. Figure taken from Ref. [60].

2.1.1. a) 1 < Qsτ < α−3/2

At early times hard gluons dominate and due to longitudinal expansion, the density decreases as

Nh ∼ Q3
s

α(Qsτ)
. (2.2)

In the central collision region most of the gluons have small longitudinal momentum, pz ≪ pT .
Nevertheless, the longitudinal momentum cannot be zero because of the broadening due to multiple
scattering. Indeed, pz follows a random walk in momentum space due to the random kicks by other
hard gluons so

p2z ∼ Ncolm
2
D ∼ αNh

pz
, (2.3)

where Ncol is the number of collisions a hard gluon typically has encountered at the time τ and m2
D

is the Debye mass square defined as

m2
D ∼ α

∫
d3p

fh(p)

p
∼ αNh

Qs
∼ Q2

s

Qsτ
. (2.4)

Effectively, the Debye mass acts as the minimum transfer of momentum for each kick due to frequent
small angle collisions. Solving for pz one obtains

pz ∼ (αNh)
1/3 ∼ Qs

(Qsτ)1/3
. (2.5)

Soft gluons with momentum ks are produced during these times via the Bethe-Heitler radiation [65].
The parametric form for the density of the soft gluons Ns is estimated as

Ns ∼ τ
∂Ns

∂τ
∼ Q3

s

α(Qsτ)4/3
. (2.6)
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Once produced, random scattering by other gluons increases the energy of the soft gluons so that
their momenta would be around ks ∼ pz. Therefore, the soft gluon distribution is

fs ∼
Ns

k3s
∼ 1

α(Qsτ)1/3
. (2.7)

2.1.2. b) α−3/2 < Qsτ < α−5/2

In the intermediate times hard gluons still dominate the occupation number of particles but now
fh < 1. This changes the scattering rate with the hard gluons so that

k2s ∼ Ncolm
2
D ∼ αQ2

s , (2.8)

is now approximately constant. If one assumes that the screening is mainly due to the soft gluons,
then

m2
D ∼ αNs

ks
≫ αNh

Qs
, (2.9)

and self-consistently, it is found that during this stage the the density of the soft gluons is

Ns ∼
α1/4Q3

s

(Qsτ)1/2
. (2.10)

2.1.3. c) α−5/2 < Qsτ < α−13/5

In the final stage, the system has diluted in such a way that most gluons are soft Ns ≫ Nh. Soft
gluons reach thermal equilibrium basically due to the collisions between themselves. The remaining
hard gluons will scatter with the soft gluons and lose energy via successive gluon splitting. Whereas
in the previous stages gluon production via the Bethe-Heitler radiation is unaffected by multiple
scattering, this is no longer true as the branching gluon momenta fall within the range of the
Landau-Pomeranchuk-Migdal suppression [66]. Specifically gluon emission with momentum larger
than kLPM = m2

D/Nscattσ is suppressed [67]. Nscatt is the number density of the particles that is
responsible for most of the scatterings. In this case the formation time of the branching gluon is
tf ∼ kbr/k

2
t where kt is the transverse momentum picked up by the branching gluon through the

random kicks by the soft gluons. It can be estimated similarly as the momentum broadening during
the first stage but the number of collisions is now restricted by the formation time tf and the mean
free path λ, so

k2t ∼ m2
D tf/λ . (2.11)

The rate of branching is roughly related to the formation time via 1/tbr ∼ α/tf . By identifying tbr
with τ and requiring that the soft gluon now be in a thermal bath Ns ∼ T 3, one finds the branching
momentum to be

kbr ∼ α4T 3τ2 . (2.12)

The number of kbr-gluons produced per unit time per unit volume is

dN(kbr)

dτ
∼ Nh

tbr
∼ α2N

1/2
s Nh

k
1/2
br

∼ Q2
s

ατ2
. (2.13)

Subsequently, the rate of energy flow from the hard gluons to the soft thermal bath is

kbr
dN(kbr)

dτ
∼ α3Q2

sT
3 . (2.14)

This energy flow increases the energy in the thermal bath, and thus must be proportional to d(T 4)/dτ .
Therefore one finds

T ∼ α3Q2
sτ . (2.15)
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The linear growth of T terminates when the hard gluons loose all of their energy. This happens
when kbr ∼ Qs, or τ ∼ α−13/5Q−1

s , when the temperature achieves a maximal value of order
α2/5Qs, which is larger than the initial temperature only by a factor of α−1/10. Subsequently the
temperature decreases as it is usually known in the Bjorken model, i.e., T ∼ τ−1/3 [19].

The bottom-up scenario includes binary and 2↔3 collisions to achieve thermalization. Neverthe-
less, at the first stage of this scenario, one of the assumptions of the model is not correct. It is
implicitly assumed that the behaviour of the soft gauge modes behaves the same in an anisotropic
plasma as in an isotropic one which is not true since pz ≪ pT . If one wants to be self consistent,
one should determine the collective modes for an anisotropic system and use those. This collec-
tive behavior is overlooked by the bottom-up scenario and is related to the appearance of plasma
instabilities in the analysis of the equilibration of the QGP [21, 30, 31, 36, 2].

2.2. Plasma instabilities in QCD

2.2.1. Physical origin of plasma instabilities

Consider two dense homogeneous streams of charged hard particles, one going up (say along +ẑ) and
other one going down (−ẑ). Notice that this configuration establishes that the velocity distribution
of the particles for the described system is anisotropic in momentum-space.

J

+

+

+

+

(a) (b)

Figure 2.2.: Origin of Weibel instability. Here, crosses denote magnetic fields pointing into the page,
and dots fields pointing out of the page. See description in the text. Figure is taken
from Ref. [60].

Because every stream is a highly populated system of particles, there can be fluctuations in the
distribution of the particle velocities which causes a very tiny seed magnetic field of the form B =
B cos(kz) êy, as shown in Fig. 2.2a. Due to the Lorentz force, one concludes that the magnetic
fields bend the trajectories of positively charged particles in the directions shown. This focuses the
downward and upward currents like filaments, as shown in Fig. 2.2b. Due to the Biot-Savart law, one
finds that the currents in turn create magnetic fields that add to the original seed field. With bigger
fields, the effect becomes more pronounced, and the fields continue to grow through this mechanism.
This is the Weibel instability. The instability is driven by the energy transfered from the particles
to fields.
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2.2.2. Collective modes of an anisotropic plasma

The theoretical framework to describe the physics of gauge theories at high temperatures is provided
by the Hard Thermal Loop (HTL) effective theory. If a plasma of massless particles is in thermal
equilibrium, the only scale that appears in the theory is the temperature T , corresponding to the
mean energy of particles in the plasma. The Debye screening mass is determined in turn by the scale
gT ≪ T , where g is the self-interaction coupling for plasma particles. There are no propagating
modes in plasma below the Debye scale. The term ‘hard thermal loops’ takes its origin from the
fact that Debye screening is given by loop contributions with the highest power of loop momentum.
The latter is cut off by the temperature T , i.e., these loops are hard thermal loops. If we want
to determine what happens at scales softer than gT (and time scales longer than (gT )−1), we
have to correspondingly resum propagators and vertices; this resummation gives rise to the HTL
effective field theory [68, 69]. There are other important scales in the theory where not only naive
perturbation theory, but also the resummed HTL effective QFT cease to work. One such scale is
g2T , where magnetostatic sector becomes involved, and another is g4T , the scale related to inverse
shear viscosity T 4/η. Nevertheless, HTL analysis may be sufficient if one considers dynamics of
plasma near to equilibrium.

One can also implement HTL effective field theory to study anisotropic plasmas [38]. Nevertheless,
it is simpler to do so by using semi-classical kinetic theory. Within this description partons are
described by their phase-space densities and their time evolution is given by Vlasov-type transport
equations [70]. This framework is equivalent to the HTL effective theory to leading order in the
coupling constant g [71, 72].

Here we show the linearized analysis of the Vlasov-type transport theory for abelian theories. For
non-abelian theories there is no fundamental difference within this approximation [36]. The Vlasov
equation describes the space-time evolution of the hard particle distribution function f(x, p) and the
Maxwell equations for the soft fields

pµ∂µ f(x, p) + g pµ F
µν∂(p)ν f(x, p) = 0 , (2.16a)

∂µF
µν(x) = Jµ(x) =

∫
d3p

(2π)3
vµf(x, p) , (2.16b)

where Fµν (x) = ∂µAν(x)− ∂ν Aµ(x) is the electromagnetic stress tensor and vµ = (1,v) the four-
velocity of the hard particle. In the right hand side of Eqn. (2.16b), there is an implicit sum over the
different particle species that compose the system. In the absence of external fields, the gauge field is
small and the distribution function can be approximmated to first order as f(x, p) = f0(p)+δf(x,p),
δf is a fluctuation around the homogeneous distribution function f0(p). We consider the case where
the homogeneous distribution function does not contribute to the current Jµ, i.e., f0(p) does not
carry net charge or current. By inserting this ansatz in Eqs. (2.16), we obtain

pµ∂µ δf(x, p) = −g pµ Fµν∂(p)ν f0(p) , (2.17a)

∂µF
µν(x) =

∫
d3p

(2π)3
vµδf(x, p) . (2.17b)

Next, we apply the Fourier transform to δf(x, p) and the stress tensor Fµν(x)

δf(x, p) =

∫
d4k

(2π)4
ei k·xδf(k, p) , (2.18a)

Fµν(x) = i

∫
d4k ei k·x F̃µν (k) . (2.18b)

By inserting the previous expressions into the linearized Vlasov-Maxwell equations (2.17), one solves
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for δf(k,p) and finds the induced current caused by the soft fields

Jµ
ind (k) = g2

∫
d3p

(2π)3
vµ ∂

(p)
λ fiso(p )

vα F̃
αλ(k)

v · k + iǫ
,

= g2
∫

d3p

(2π)3
vµ ∂

(p)
λ fiso(p )

(
gλν − vνkλ

v · k + iǫ

)
Aν . (2.19)

where ǫ is a small parameter that has to be sent to zero in the end. From this expression of the
induced current, the self-energy is obtained via

Πµν(k) =
δJµ

ind(k)

δAν(k)
, (2.20)

which gives us

Πµν(k) = g2
∫

d3p

(2π)3
vµ ∂

(p)
λ fiso(p )

(
gλν − vνkλ

v · k + iǫ

)
. (2.21)

Plugging the self-energy into the Fourier transform of the Maxwell’s equation

− ikµF
µν(k) = Jν

ind(k) , (2.22)

we obtain
[k2gµν − kµkν +Πµν(k)]Aν(k) = −Jν

ext(k) , (2.23)

where Jν
ext is an external current. Because the self-energy is a gauge invariant, it is possible to rewrite

in a more appropiate way in terms of a physical electric field by specifying a particular gauge. In
the temporal axial gauge defined by A0 = 0 we obtain

[(k2 − ω2)δij − kikj +Πij(k)]Ej(k) = (∆−1(k))ijEj(k) = iω J i
ext(k) . (2.24)

By solving in the last expression for the propagator, this allows us to determine the response of the
system to the external source

Ei(k) = iω∆ij(k)Jj
ext(k) . (2.25)

The dispersion relations for the collective modes can be obtained by finding the poles in the propa-
gator ∆ij(k).

Dispersion relations for an anisotropic plasma

In order to show the instability, we use the ansatz for the anisotropic distribution function which
was used for first time by Romatschke and Strickland [2]. The anisotropic distribution function is
obtained by stretching or squeezing an isotropic distribution along a certain direction in momentum-
space defined by an unit vector n̂

f(p) = fiso
(√

p2 + ξ(p · n̂)2
)
. (2.26)

This particular class of distribution functions preserves the azimuthal symmetry in momentum-space.
We show this procedure in Fig. 2.3. fiso is not necessarily a distribution function that describes a
system in thermal equilibrium. The strength of the anisotropy is measured by the parameter ξ

ξ =
〈p2T 〉
2〈p2L〉

− 1 , (2.27)

where 〈pT (L)〉 is the average transverse (longitudinal) momentum of the hard particles. When
0 < ξ < ∞ the distribution function has an oblate shape along n̂ whereas for −1 < ξ ≤ 0 has
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p

p

z

t

Figure 2.3.: Contour plot of a squeezed Fermi-Dirac distribution with anisotropy parameter ξ =
10. The anisotropy vector n̂ is taken to be along the pz direction. Figure taken from
Ref. [73].

a prolate profile along n̂. In general, for a expanding system such as the QGP, the anisotropy
parameter will have temporal dependence.
By inserting the ansatz of the anisotropic distribution Eq. (2.26) into Eqn. (2.21), one calculates

the spatial components of the retarded self-energy for an anisotropic plasma which results in

Πij(k) = m2
D

∫
dΩ

4π
vi

vl + ξ(v · n)nl

(1 + ξ(v · n)2)2
(
δjl +

vjkl

k · v + iǫ

)
(2.28)

with

m2
D ≡ − g2

2π2

∫ ∞

0

dp p2
dfiso(p

2)

dp
. (2.29)

The fact that in the presence of an anisotropic distribution function there is a prefered direction
introduces an additional complication. In this case, the self-energy cannot be decomposed into only
transverse and longitudinal components as is the case for an isotropic distribution function [74, 75].
Nevertheless, one can show that the usual isotropic dispersion relations can be obtained in the limit
when ξ → 0 [2].
In the anisotropic case, Πµν is symmetric and Π0ν is fixed by transversality kµΠ

µν = 0 which would
lead to six structure functions in general. In heavy ion collisions, the most important configuration is
when the anisotropy is directed along the beam axis n̂ = (0, 0, 1) and there is axial symmetry around
the z-axis. Assuming this as the only direction of momentum space anisotropy, one can define four
symmetric basis tensors for Πij , corresponding to 4 independent structure functions defined as [2]

Aij = δij − kikj/k2, Bij = kikj/k2, Cij = ñiñj/ñ2, Dij = kiñj + kj ñi, (2.30)

with ñi = Aijnj . With these four linearly independent structure functions, the spatial components
of the self-energy can be expressed as

Πij = αAij + βBij + γCij + δDij , (2.31)

where the coefficients α, β, γ and δ are determined, for any value of ξ, by the contractions listed
below

kiΠijkj = k2β ,

ñiΠijkj = ñ2k2δ ,

ñiΠij ñj = ñ2(α+ γ) ,

TrΠij = 2α+ β + γ . (2.32)
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Using this, one can find the gluon propagator in the temporal axial gauge [2]

∆(k) = ∆TA+ (k2 − ω2 + α+ γ)∆LB+ [(β − ω2)∆L −∆T ]C− δ∆LD , (2.33)

with

∆T (k) = [k2 − ω2 + α]−1 (2.34a)

∆L(k) = [(k2 − ω2 + α+ γ)(β − ω2)− k2ñ2δ2]−1. (2.34b)
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Weibel

Figure 2.4.: Anisotropic dispersion relations for k ‖ n̂ for a distribution function which in momentum
space is: isotropic (ξ=0), prolate (ξ=-0.5) and oblate (ξ=5). Full and dashed lines
represent poles of ∆T and ∆L, respectively. The magnetic Weibel instability corresponds
to the poles for negative ω2 and positive k2 that appear for positive ξ. Figure taken
from Ref. [76].

Let’s consider the structure function α(k) for the case that k ‖ n̂ and in the static limit where
α(ω = 0) = Πii(ω = 0)/2 = m2

m which has the interpretation of the square of the magnetostatic
screening mass. For finite values of ξ one can finds

m2
m

m2
D

∣∣∣∣∣
k‖n

=

{
1
4

[
(1 − ξ)(−ξ)−1/2atanh(−ξ)1/2 − 1

]
for ξ < 0

1
4

[
(1 − ξ)ξ−1/2arctan ξ1/2 − 1

]
for ξ > 0

(2.35)

In the limit when ξ = 0, the magnetostatic screening mass vanishes exactly as it is known in the
isotropic case. Nevertheless, once the system develops an anisotropy measured by ξ, the isotropic
result is no longer valid as one can see from Eqn. (2.35). In particular, when ξ ∈ (−1, 0), the
magnetostatic mass takes a non-vanishing value whereas for ξ ∈ (0,∞), the magnetostatic mass turns
out to be imaginary which signals the presence of the chromomagnetic Weibel instability [2]. Notice
that this is valid for the case when k ‖ n. However, one can shows that for a prolate distribution
function [ξ ∈ (0,∞)] when the wave vectors are perpendicular to the z axis, the magnetostatic mass
also has an imaginary value. The corresponding instability for this case is known as the electric
(Buneman) instability [36].

Returning to the case of an oblate distribution function [ξ ∈ (0,∞)] and restricting to the config-
uration p ‖ n, we consider the dependence of the frequency on the momentum in order to determine



2.2. Plasma instabilities in QCD 17

the dispersion relations. By defining the parameter η = ω/|k| one finds [37]

α(η) =
m2

D

4
√
ξ(1 + ξη2)2

[(
1 + η2 + ξ(−1 + (6 + ξ)η2 − (1− ξ)η4)

)
arctan

√
ξ

+
√
ξ (η2 − 1)

(
1 + ξη2 − (1 + ξ)η ln

[η + 1 + iǫ

η − 1 + iǫ

])]
, (2.36a)

β(η) = − η2m2
D

2
√
ξ(1 + ξη2)2

[
(1 + ξ)(1 − ξη2) arctan

√
ξ

+
√
ξ

(
(1 + ξη2)− (1 + ξ)η ln

η + 1 + iǫ

η − 1 + iǫ

)]
. (2.36b)

The resulting poles for the propagators ∆T and ∆L defined by Eqs. (2.34) are shown in Fig. 2.4 for
the different values of ξ = {0,−0.5, 5}.

Figure 2.5.: Growth rate Γ of the unstable modes for a Weibel instability as function of the wave
vector for different values values of anisotropy parameter ξ and for the configuration
k ‖ n̂. Figure taken from Ref. [76].

The imaginary value of the frequency gives the momentum-dependent growth rate of the unstable
magnetic modes. The resulting growth rates are shown in Fig. 2.5. From the plot, one can also
see that the growth rate Γ and the maximal value of the instability wavenumber k for the unstable
modes changes as one increases the anisotropy parameter.

Instabilities in the presence of collisions

In the above treatment of anisotropic plasmas, we considered the case where there were no collisions.
As was pointed out in the bottom-up scenario [26], collisions are needed to drive the system towards
thermal equilibrium. The equilibration due to instabilities only happens indirectly, shaping the
parton momenta distribution. One would expect that the inclusion of collisions will decrease the
instability growth rate. Schenke et. al [43] made the first quantitative calculation to estimate more
precisely how the collisions affect the dispersion relations and the growth of instabilities. Here we
follow their argument and present their main results. The details of such calculations can be found
in Ref. [43].
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The analysis of collisions is based on the Vlasov equations for QCD combined with a Bhatnagar-
Gross-Krook (BGK)-type collision term [43]

pµ∂µ f(x, p) + g pµ F
µν∂(p)ν f(x, p) = C(p,X) , (2.37)

with

C(p,X) = −ν
[
f(p,X)− N(X)

Neq
feq(|p|)

]
, (2.38)

where f(p,X) = f(p)+ δf(p,X). This term describes how collisions equilibrate the system within a
time proportional to ν−1, so one interprates ν as the collisional frecuency. Note that these collisions
are not color-rotating. The particle numbers are given by

N(X) =

∫

p

f(p,X) , Neq =

∫

p

feq(|p|) =
∫

p

f(p) . (2.39)

By studying the poles of the gluon propagator and using as an ansatz for the anisotropic distribution
function of the hard particles Eq. (2.26), one can analyze the dispersion relations in a similar manner
as we presented in Sect. 2.2.2. As a result, the structure functions which determine the poles of the
gluon propagator will not only be a function of the anisotropy parameter ξ but will also depend on
the collisional frequency ν [43].
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Figure 2.6.: Dependence of the growth rate Γ of the unstable transverse mode on the collision rate ν,
for an anisotropy parameter ξ = 1 (left panel) and ξ = 10 (right panel). Figures taken
from Ref. [43].

In Fig. 2.6, we show the momentum dependent growth rate Γ of the unstable magnetic modes
(p ‖ n) for an anisotropy parameter ξ = 1 (left panel) and ξ = 10 (right panel) and different values
of the collision rate ν. This plot confirms the physical expectations, the growth rate decreases with
an increasing collision rate as does the maximal wave number for an unstable mode.
Notice that within this approach ν is a small parameter so implicitly it is assumed that per-

turbation theory is valid. Nevertheless, this procedure is highly nontrivial due to the fact that in
non-abelian theories there are at least two collisional frequencies [77]: (a) the frequency for the
hard-hard scatterings which is parametrically estimated as νhard ∼ α2

s logα−1
s and (b) the frequency

for hard-soft scatterings which is parametrically estimated as νsoft ∼ αs logα
−1
s .

The hard-hard scatterings correspond to interactions which change the momentum of a hard
particle by O(phard) whereas the hard-soft scatterings correspond to changes in momentum which
are order O(g phard). These small angle scatterings occur frequently and it turns out that after
traversing one hard scattering mean free path, λhard ∼ ν−1

hard, the typical deflection of the particle is
also O(1). The physics of small-angle scattering by the soft-background is precisely what is captured
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by the HTL treatment. However, the form of the BGK scattering kernel (2.38) does not mix color
channels and in that sense cannot be used to describe the physics of color-rotation of the hard
particles. For this reason one is lead to the conclusion that when using the BGK kernel (2.38) the
appropriate damping rate is ν ∼ νhard ∼ α2

s logα
−1
s .

Recent real-time numerical simulations which solve the Wong-Yang-Mills equations by including
binary collisions [73, 78, 79] have shown that the instability growth is reduced when collisions are
present, but small enough for the instabilities to still play an important role in isotropization and
equilibration of the QGP.

2.3. Impact of plasma instabilities on the thermalization process

of the QGP
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Figure 2.7.: Time-evolution of the chromo-magnetic energy density in the 1+3 dimensional simula-
tion. The abelian result and that of 1+1 dimensions are also shown. Figure taken from
Ref. [40].

In the last section we have shown that the unstable modes of an anisotropic plasma play an
important role during the first stage of the bottom-up scenario. To extract information about the
degree of anisotropy of the plasma as well as the development of instabilities is a non-trivial issue.
Some phenomenological proposals to extract information about these aspects have been already
published in the scientific literature [35, 73, 80, 81, 82, 83, 84, 85, 86, 79, 78, 87]. One of the most
difficult problems associated with plasma instabilities in anisotropic plasma is to quantify precisely
their effect on the momentum broadening of a hard particle as the QGP expands. Up to now, there
is no complete answer to this question. Here we present the general arguments based on the different
attempts to solve this problem [88, 89, 90]. The main results presented here will be used when we
discuss the effect of plasma instabilities on dilepton production in Chapter 5.

In the treatment of the Vlasov-Maxwell equations in the last section, we assumed that the gauge
fields were small. Nevertheless, the perturbative treatment of plasma instabilities breaks down in
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the presence of instabilities.1 Perturbation theory can be used to study the growth of instabilities
from small seed fields. In Fig. 2.6 we show the time-evolution of the chromo-magnetic energy density
from a 1+3 dimensional simulation. From this plot one sees clearly that during certain stage, the
chromomagnetic fields increases exponentially and afterwards the growth stops and behaves almost
linear. Similar results have been found by different groups using different numerical simulation
methods [39, 40, 41, 42, 46, 47, 48, 49, 50, 51, 89, 90, 93, 94, 95, 96].
We define the density of the particles as

n =

∫
d3p

(2π)3
f0(p) , (2.40)

where f0(p) is the phase-space distribution of the particles in the plasma. We also need to define a
scale that becomes important when the soft gauge fields amplitudes are large [77]

m2
∞ ∼ g2

∫
d3p

(2π)3
f0(p)

p
. (2.41)

If phard is the momentum scale of the particle, then m∞ ∼ g phard.
The amount of anisotropy becomes a problem when ξ ≫ 0. This will be the situation of the first

stage of the bottom up scenario since pz ≪ pT ∼ Qs. We define the parameter θ as the ratio between
the average longitudinal momentum of the hard particles and the hard momentum scale

θ ≡ |pz|
phard

≈ |vz |. (2.42)

By analyzing how θ scales parametrically with the chromomagnetic field associated with the unstable
modes, it is possible to understand the impact of plasma instabilities on the broadening of the hard
particles as the QGP expands.
The perturbative analysis of the instability has shown that the typical unstable modes have wave

numbers k and growth rates γ are of order [36]

(k⊥, kz) ∼ (m∞, kmax), and γ ∼ m∞. (2.43)

where kmax is the maximum value of k for unstable modes. It is a non-trivial issue to determine its
functional behavior analytically. This topic has been studied by different authors without complete
solution [88, 89, 90]. Nevertheless, these studies have shown that kmax depends on m∞ and θ as

kmax ∼ m∞

θν
, (2.44)

where ν is some number to be determined. In the approach of Bödeker [88] and Arnold & Moore [89,
90], different values for the exponent ν have been found as listed below

ν =





0, Ref. [88];

1, Ref. [89];

2, Nielsen-Olesen limit [90].

(2.45)

Soft covariant derivatives Dz = ∂z − igAz and D⊥ = ∂⊥ − igA⊥ will become non-perturbative when

Az ∼ kz
g

∼ kmax

g
and A⊥ ∼ k⊥

g
∼ m∞

g
, (2.46)

which allow us to determine the corresponding transverse and magnetic fields

B⊥ ∼ (k⊥Az or kzA⊥) ∼
kmaxm∞

g
and Bz ∼ k⊥A⊥ ∼ m2

∞

g
. (2.47)

1There has been some recent advances to extend the perturbative approach in the presence of instabilities [91, 92].
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From the last expression, one sees that the transverse magnetic field receives a larger contribution
due to unstable modes since kmax > m∞ as ξ → ∞ and its maximum value is given by

Bmax ∼ kmaxm∞

g
∼ m2

∞

θνg
. (2.48)

By determining the maximum value of the magnetic field caused by the unstable modes, we are
able to estimate the impact on the broadening of the hard particles as the QGP expands. When a
particle crosses the spatial region where there is a chromomagnetic field associated with the unstable
modes, there will be a change in the direction of the longitudinal momentum due to the Lorentz
force. The particle will feel the bending due to the magnetic field during a time δt ∼ 1/m∞ which
is the typical size of the magnetic domains. The change of the momentum at that time along the z
direction is estimated as

δpz ∼ Fzt ∼ gBmaxl⊥ ∼ gBmax/m∞ , (2.49)

where l⊥ is the coherence length. 2

After a finite amount of time τ , the particles will follow a random walk through N ∼ τ/l⊥ such
changes, giving a total change of order

∆pz ∼ N1/2 δpz ∼ (m∞τ)
1/2 gBmax

m∞
∼ (m3

∞τ)
1/2

θν
. (2.50)

This will broaden the particle distribution to

θ ∼ ∆pz
phard

∼ (m3
∞τ)

1/2

θνQs
. (2.51)

Solving self-consistently for θ,

θ ∼
(
(m3

∞τ)
1/2

Qs

)1/(1+ν)

. (2.52)

Now we just need to know how m∞ depends on time. This was determined for the first stage of
bottom-up thermalization by very simple arguments in the original work of Baier et al. [26]. Their
result does not change in the presence of plasma instabilities. Comparing (2.40) and (2.41), one
sees that m2

∞ ∼ g2n/p ∼ g2n/Qs. Initially, at saturation, n ∼ Q3
s/g

2. In the first stage of bottom-
up, there is no significant change in the number of hard particles, and so hard particle number
density n dilutes from this initial value by the scale factor Qsτ of one-dimensional expansion, so that
n ∼ Q3

s/g
2(Qsτ). Putting everything together,

m∞ ∼ τ−1/2Q1/2
s . (2.53)

Inserting this into (2.52), we get
θ = (Qs τ)

1/(1+ν) . (2.54)

From this result one can determine the effect of broadening due to unstable modes.

2 The coherence length of the unstable magnetic fields will be of order their wavelength, so

l⊥ ∼
1

k⊥
∼

1

m∞

and lz ∼
1

kz
∼

θν

m∞
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3. Hydrodynamics and Ultrarelativistic Heavy
Ion Collisions

Mirar el ŕıo hecho de tiempo y agua

y recordar que el tiempo es otro ŕıo,

saber que nos perdemos como el ŕıo

y que los rostros pasan como el agua.

Arte Poética

Jorge Luis Borges.

The original description of the expansion of the strongly interacting matter created during high-
energy nuclear collisions based on hydrodynamics was formulated years ago by Landau [97]. Models
based on fluid hydrodynamics have been applied to describe colliding systems over a broad range
of beam energies. For the description of nuclear matter by fluid hydrodynamics to be valid, it is
necessary that the microscopic interaction time scale be much shorter than the macroscopic evolution
time scale. However, the hot and dense matter created in these experiments expands very rapidly,
causing the range of validity of hydrodynamics to be limited. The recent experimental results from
the Relativistic Heavy Ion Collider (RHIC) [98, 99, 100, 101] show, for the first time, that collective
expansion of nuclear matter is in good quantitative agreement with hydrodynamical predictions,
at least for the largest collision systems (e.g. Au+Au) at the highest collision energies (

√
s= 200

GeV per nucleon pair) near midrapidity and at small to moderate impact parameters. Because of
this, important improvements to hydrodynamics of ultrarelativistic nucleus-nucleus collisions have
been discovered during the last decade. Nevertheless, many aspects have not been totally clarified,
making relativistic fluid hydrodynamics one of the most relevant research areas nowadays.

In this chapter we will make a review of the most important technical details in the derivation
of 2nd. order relativistic fluid hydrodynamics based on kinetic theory [102]. We review the basics
of ideal hydrodynamics, Israel-Stewart (IS) theory and we briefly describe the recent approach of
2nd order conformal viscous hydrodynamics based on AdS/CFT methods [103, 104]. The equa-
tions derived from this formalism will be explicitly used in Chapter 6. Extensions of hydrodynam-
ics to non-conformal regimes [105, 106] is also briefly discussed. More details of theoretical and
phenomenological aspects of relativistic fluid hydrodynamics and applications to ultrarelativistic
heavy-ion collisions can be found in Refs. [102, 107, 108, 109, 110, 20].

3.1. Relativistic hydrodynamics

Fluid dynamics equations are derived from the basics requirements of energy and momentum conser-
vation and any conserved charges. Mathematically, the last statement is established by two equations

∂µT
µν = 0 , (3.1a)

∂µN
µ
i = 0 , i = 1, 2, . . . , k (3.1b)

where T µν is the energy-momentum tensor and Nµ
i is the i-th conserved net charge current. Any

physical theory described by hydrodynamics should satisfy the second law of thermodynamics and
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one should ensure that this condition is satisfied

∂µSµ > 0 , (3.2)

where Sµ is the entropy current. In the absence of shock discontinuities, the equations of motion of
ideal hydrodynamics exactly preserve the entropy, i.e., ∂µSµ = 0 [108]. In the presence of dissipative
corrections, the four-divergence of the entropy current should be semi-positive.

In addition to the hydrodynamical equations of motion (3.1) that describe the dynamics of the
expansion of the system, it is necessary to know the equation of state that relates the pressure
to other independent thermodynamic variables, i.e., P = P

(
E , n

)
. For the case of ultrarelativistic

heavy ion collisions, the equation of state can be infered from lattice QCD (See Refs. [111, 112] and
references therein). The information about the nature of the particles contained in the fluid and the
interaction between them is contained in the equation of state. In general, the equation of state is
chosen to be the thermodynamic one, i.e. as computed for a system in thermodynamical equilibrium.
Therefore, by closing the equations of motion of hydrodynamics, Eqs. (3.1), it is implicitly assumed
that the fluid is at least, in local thermal equilibrium. Additional knowledge of the microscopical
dynamics related with deconfinement or hadronization processes is not necessary at all until the
moment of the freeze-out. If the equation of state and appropiate initial conditions are known, it is
possible to have a good description of the evolution of the fireball created after the collisions.

3.1.1. Tensor decomposition

For simplicity and without losing generality, hereafter, we will consider just one particle species, i.e.,
k = 1. Moreover, we will neglect the effect of the bulk viscosity, so that when we refer to dissipative
corrections, these arise due just to the presence of the shear stress (see below). Fluid hydrodynamical
equations follow from the above conservation laws. To proceed, we perform a tensor decomposition
of T µν and Nµ as it follows

T µν = Euµuν − P∆µν + qµuν + qνuµ +Πµν , (3.3a)

Nµ = nuµ + νµ . (3.3b)

Before explaining the physical meaning of some of the quantities indicated on the right hand side
(RHS) of the last equations, it is necessary to define an arbitrary normalized time-like 4-vector
uµ, uµuµ=1. The projector orthogonal to this vector, denoted by ∆µν is defined as ∆µν = gµν −
uµuν . Next, we define the local rest frame (LRF) as the coordinate system where the 4-vector
uµ has vanishing spatial components, i.e. uµLRF = (1, 0, 0, 0). In this rest frame the projector
∆µν

LRF = (0,−1,−1,−1). From these definitions, it is straightforward to conclude that any Lorentz
vector/tensor projected over uµ (∆µν) will pick-up the time-(space-)like components.

With these definitions, the physical meaning of the new quantities that appears in the RHS of the
Eqs. (3.3) becomes clear. In the LRF, the decomposition of the energy-momentum tensor and the
conserved net charge current is

n = uµN
µ (net density of particles) , (3.4a)

νµ = ∆µ
νN

ν (net flow of charge) , (3.4b)

E = uµT
µνuν (energy density) , (3.4c)

P = −1

3
∆µνT

µν (hydrostatic pressure) , (3.4d)

qµ = ∆µαTαβu
β (heat flow) , (3.4e)

Πµν =

(
∆µ

α∆
ν
β +∆ν

α∆
µ
β − 2

3
∆αβ∆

µν

)
Tαβ = T 〈µν〉 (shear stress tensor) . (3.4f)
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3.1.2. Choosing the reference frame

Up to now in our discussion the 4-vector uµ has no physical meaning and it is completely arbitrary.
We identify it as the 4-velocity of the fluid in a particular reference frame. In the scientific literature,
two standard frames for uµ are used: the Landau reference frame or the Eckart reference frame. In
what follows we discuss these definitions. Other definitions for the velocity of flow uµ can also be
considered [102].

Landau reference frame

In this reference frame, the flow velocity uµ is defined as

uµL =
T µ

νu
ν

√
uαLT

β
αTβδuδL

. (3.5)

Notice that this definition is itself an equation with respect uµL. One may solve the eigenvalue problem
for a given energy-momentum tensor T µν . In the LRF, the corresponding positive eigenvalue is
precisely the energy density E . Therefore, uµL is the physical 4−velocity of the energy flow. In this
frame, qµ = 0.

Eckart reference frame

In this reference frame, the flow velocity is given by the following

uµE =
Nµ

√
NµNµ

. (3.6)

This choice means that uµE is the is the physical 4−velocity of the net charge. From this definition it
follows that in the Eckart reference frame, νµ = 0. In the LRF, Nµ = nuµ ≡ (N(0),0). For a system
with vanishing net baryon number, as is approximately the case at RHIC and LHC energies, the
Eckart frame is ill-defined [108, 113] and Landau frame is more suitable for this physical situation.
We shall use this reference frame in the main body of the text.
For more general systems that include conserved charges, the freedom of choosing a particular

definition of uµ reflects the freedom of defining the LRF as the frame where either the energy
density (Landau) or the charge density (Eckart) is at rest. The physics must be independent of the
chosen frame. It is possible to show that charge diffusion in one frame is related to heat flow in the
other one, see the Appendix of Ref. [114]. The procedure for choosing the reference frame is similar
to the case of the gauge fixing condition of gauge theories to eliminate unphysical/redundant degrees
of freedom. As in gauge theories, one chooses the most convenient ‘gauge’ for practical calculations.

3.2. Fluid dynamics from kinetic theory

Kinetic theory deals with the description of the macroscopic observables of certain system based
on microscopical interactions between its components. To do this, the system will be described
in terms of phase-space of the canonical variables of the system (x, p); sometimes one can identify
the canonical variables of the system as the position and momentum of the particle, however, it is
not the general case [115]. In principal, one can think that if one knows the Hamiltonian H that
describes the dynamics of n particles, it is possible to know completely the macroscopical properties
of the system by solving the 2n Hamilton equations. However, this task becomes complicated as the
number of particles increases. Rather, it is better to consider a phase-space distribution function
f(x,p) defined over the phase space of the canonical variables (X,P ). One defines

f(x,p) d3x d3p , (3.7)
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as the number of particles which at time t, have positions lying within a volume d3x around x and
momenta lying within a momentum-space volume d3p around p [116, 117]. Of course, it is implicitly
assumed that the volume elements d3x and d3p are finite volume elements which are large enough
to contain a very larger number of particles and yet small enough compared with the macroscopical
scales of the system so they look essentially as simple points.
The temporal evolution of fa(x, p) is dictated by the integro-differential Boltzmann equation which

in its covariant form is written as [116, 117, 102]1

pµ∂µf
a(x,p) = −C

[
f(x,p)

]
,

= −
∑

ai,bj

1

ni!nj !

∫
dΓidΓj (2π)

4 δ4
(
P −

∑
Ki +

∑
K ′

j

)

|M|2ai,bj (p,ki,k
′
j)×

(
fa(p)

∏

i,j

fai(ki)[1 ± f bj (k′
j)]

−[1± fa(p)]
∏

i,j

[1± fai(ki)]f
bj (k′

j)
)
, (3.8)

where C
[
f(x,p)

]
is the collisional kernel which is a functional of f(x,p). The LHS of 3.8 describes

the free propagation of particles; the time rate of change of the occupancy E∂tf is determined by
the particles’ momentum pi times the spatial variation of the distribution function ∂if(x,p). The
RHS describes the change in occupancy due to collisions, which are approximated as spacetime-local
(so all f ’s on the RHS are evaluated at the point x). The first product of distribution functions
represents the rate at which particles of momentum p are scattered out of that momentum state;
[1±f(k′)] is a Bose stimulation (+) or Pauli blocking (−) final state factor. The second product of
distribution functions is the rate for the reverse process, producing a particle of momentum p. In
equilibrium and in the local rest frame, [1±feq(k)] = f(k)ek/T and so the two terms cancel by energy
conservation, ensuring detailed balance, i.e., C[feq.(p)] = 0. 2 The Boltzmann equation rests on
several approximations, such as the separation of scales between the distance between collisions and
the physical extent of the particle states or deBroglie wavelengths of excitations. It is not clear how
to incorporate systematic corrections to these approximations. It is also problematic to evaluate
the collision operator to high order in the coupling and its general form depends on the kind of
interactions between particles. In QCD, the relevant terms that contribute to the leading order in
the coupling constant are presented in Ref. [77].
According with the definition (3.7), the phase-space distribution is associated with the number of

on-shell particles per unit phase space, for a system composed by particles and antiparticles with
charge q, one can interpret the number density and the energy-momentum tensor as moments of
f(x,p) 3 [102]

Nµ(x) = q

∫
dΓ pµ

(
f(x,p)− f̄(x, p)

)
, (3.9a)

T µν(x) =

∫
dΓ pµ pν

(
f(x,p) + f̄(x, p)

)
, (3.9b)

1The index a denotes internal degrees of freedom such as spin or color. In the rest of the text we won’t use it.
2We point out that by neglecting the collisional kernel in the Boltzman equation does not imply that the system is

already in global equilibrium. There are solutions to the Boltzmann equation which describe far from equilibrium
physical situations when C[f(x,p)] = 0. For example, one known solution used very often to model early-time
dynamics in relativistic heavy-ion collisions is the ‘simple’ 0+1 dimensional free streaming expansion. In this
expansion model, every particle of the system follows a straight line trajectory without any interaction (hence,
C[f(x,p)] = 0) along the beam axis. The fastest partons will leave the midrapidity region and therefore, in
every fluid cell the longitudinal momentum pL of the particle will be smaller than its transverse momentum
pT (〈p2L〉 ≪ 〈p2T 〉). The system is colder in the longitudinal direction than in the transverse one and there is no
global equilibrium. In Sect. 5.2.2 we will give more details about this particular model of expansion.

3The single particle phase-space distribution of the antiparticles is denoted by f̄ . In the presence of a non-vanishing
chemical potential µ, f̄(x, p, µ̄) = f(x, p,−µ).
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where
∫
dΓ ≡

∫
d3p/

(
(2π)3Ep

)
. In Eqs. (3.9) there is no assumption about the functional form of

the distribution function of the distribution function, i.e. f(x,p) does not correspond necessarily
with the distribution function that maximizes the entropy.
If one interprets the definition given in Eq. (3.9b) as the energy-momentum tensor of the sys-

tem, one can get the conservation laws of hydrodynamics by taking moments of the Boltzmann
equation (3.8). Consider the first two moments of the Boltzmann equation (3.8)

∫
dΓ pµ ∂µ f(x,p) = ∂µN

µ(x) =

∫
dΓ C

[
f(x,p)

]
= 0 , (3.10a)

∫
dΓ pν pµ ∂µ f(x,p) = ∂µ T

µν(x) =

∫
dΓ pν C

[
f(x,p)

]
= 0 , (3.10b)

The left hand side (LHS) of the last two equations vanishes due to conservation of the particle
number and energy-momentum conservation in microscopic collisions between particles [102, 118].

3.2.1. Ideal relativistic hydrodynamics

Ideal hydrodynamics follows from kinetic theory under the assumption of local thermal equilibrium,
i.e., the distribution function f(x,p) relaxes almost instantaneously to the local equilibrium form,
feq(x, p). The distribution feq(x, p) should be an invariant scalar under Lorentz transformations.
We introduce the ‘Jüttner’ distribution function of particle momenta pµ for a system in local thermal
equilibrium which is moving with velocity uµ [102, 118]4

feq(x,p) = feq

(
uµ(x) pµ
T (x)

)
=

1

e[u
µ(x) pµ]/T (x) + a

, (3.11)

where a = ±1 for fermions/bosons or a = 0 for a Boltzmann distribution. In the LRF, it follows
that uµ(x) pµ = Ep = p and because uµ(x) pµ is Lorentz invariant scalar, it is the same for any
reference frame. T (x) is identified with the temperature at the space-time point x. The derivation
of relativistic fluid hydrodynamics from kinetic theory will be based on the moment expansion of the
phase-space distribution function [102]. The n-th moment of the equilibrated distribution function
is defined as the n rank tensor

Iµ1µ2···µn(x) =

∫
dΓ pµ1pµ2 · · · pµn feq(x,p) . (3.12)

It is possible to show that one can expand this n rank tensor as follows [119, 120]

Iµ1µ2···µn =

(n/2)∑

k=0

ank∆
(2k un−2k) , (3.13)

where

∆(2k un−2k) =
2k! k! (n− 2k)!

n!
×

∑

permutations

∆µ1µ2 · · ·∆µ2k−1µ2k uµ2k+1 · · ·uµn , (3.14)

with ∆µν = gµν − uµuν and uµ being the flow velocity of the fluid. The coefficients ank are found
by contracting both sides of Eq. (3.13) with a tensor of the form (3.14).
With these definitions, the energy-momentum tensor of an ideal gas can be seen as the second

moment of an equilibrated particle distribution function feq(x,p) given by Eq. (3.11)

T µν
(0) =

∫
dΓ pµpν feq(x,p) = a20 u

µuν + a21∆
µν , (3.15)

4We are interested in systems with vanishing net baryon number, so µB = 0. Generalizations for systems with
µB 6= 0 are straightforward [102, 118].
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where we use explicitly the tensor decomposition (3.13) when n = 2. The coefficients a20 and a21
can be easily evaluated by contracting (3.15) with uµuν and ∆µν , respectively

a20 =

∫
dΓ (uµp

µ)2 feq(x,p) , (3.16a)

a21 =
1

3

∫
dΓ
(
pµpµ − (uµp

µ)2
)
feq(x,p) . (3.16b)

Since feq is a Lorentz scalar, the values of the integrals do not depend on the chosen rest frame, so
we evaluate them in the LRF. It is possible to show that for ultrarelativistic particles described by
a Boltzmann distribution function, the last integrals give as a result

a20 =

∫
dΓ p2 e−p/T =

3

π2
T 4 ,≡ E(T ) (3.17a)

a21 = −1

3

∫
dΓ p2 e−p/T = − 1

π2
T 4 = −a20

3
≡ −P(T ) . (3.17b)

The LHS of both expressions are the well known results of an ideal massless Boltzmann gas and
therefore, we identify a20 as the energy density E of the system and a21 as the pressure P of the
system. For particles obeying Bose-Einstein or Fermi-Dirac statistics the relation between a20(a21)
and the energy density (pressure) is also satisfied. Using these relations between the coefficients
of the expansion and the thermodynamical variables of the system, the energy-momentum tensor
T µν
(0) (3.15) is identified with the energy-momentum tensor of an ideal fluid.

The equations of motion of ideal hydrodynamics for the energy density and fluid velocity can be
obtained from conservation law (3.1a) by projecting it with uµ and ∆µν , respectively

uµ∂µT
µν
(0) = DE +

(
E + P

)
∂µu

µ = 0 , (3.18a)

∆α
µ∂µT

µν
(0) =

(
E + P

)
Duα −∇αP = 0 , (3.18b)

where D = uµ∂µ and ∇µ = ∆µα∂α. Notice that in order to completely solve the last equations we
need to specify the initial conditions and the equation of state, i.e. P = P

(
E
)
.

3.2.2. Dissipative relativistic hydrodynamics

In this section we briefly describe the derivation of dissipative relativistic hydrodynamics from kinetic
theory. Before doing this, we derive the equations of motion of the energy density and fluid velocity
in the presence of the shear viscous tensor.
For a system with vanishing net baryon number and in the Landau frame, the energy-momentum

tensor T µν is written as:
T µν = Euµuν − P∆µν +Πµν , (3.19)

where Πµν is the shear viscous tensor. The equations of motion for the energy density and flow veloc-
ity in the presence of shear viscosity can be obtained in a similar manner as in ideal hydrodynamical
Eqs. (3.18)

uµ∂µT
µν = DE +

(
E + P

)
∂µu

µ − Πµν∇(µuν) = 0 , (3.20a)

∆α
µ∂µT

µν =
(
E + P

)
Duα −∇αP +∆α

µ∂νΠ
µν = 0 , (3.20b)

where T µν is given by (3.19). Notice that in the last equations we not only need appropiate initial
conditions for E , uµ and equation of state, but it is also necessary to specify the evolution equation
for the shear viscous tensor Πµν . This implies an additional problem, to specify the initial conditions
of the different components of Πµν . As we will show in Chapter 6, an incorrect choice of the initial
conditions for the shear tensor could allow the development of unphysical behaviour of the solutions
of viscous hydrodynamics [121, 122].
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Navier-Stokes theory

The simplest way to introduce the first order corrections in the gradient expansion of the fluid
velocity is by considering the dissipative corrections to the entropy current based on the second law
of thermodynamics (3.2). In the LRF, the entropy density S = uµSµ. This variable is related with
the energy density, pressure and temperature by the fundamental relation of thermodynamics

T S = E + P , or T dS = dE . (3.21)

For the entropy current Sµ = S uµ, the second law of the thermodynamics ∂µSµ >0, gives us

∂µSµ =
DE
T

+

(
E + P

)

T
∂µu

µ =
1

T
Πµν∇〈µuν〉 > 0 . (3.22)

In the derivation of this relation we used explicitly the fundamental relation of thermodynamics (3.21)
and the viscous hydrodynamical equations (3.20). The simplest way is satisfy the last inequality is
to assume that

Πµν
NS = η∇〈µuν〉 . (3.23)

We recognize the proportionality factor η in the last expression as the shear viscosity transport
coefficient (η > 0). Eq. (3.23) is known as the relativistic generalization of the Navier-Stokes (NS)
equation for the shear viscosity tensor. From this expression, one recognizes that Πµν

NS is proportional
to first order gradients in the velocity. Therefore, one can guess that second order corrections would
be ∽ O

(
(∂µu

µ)2
)
. The set of equations (3.20), together with the NS viscous tensor (3.23), form the

complete first order viscous hydrodynamical equations.
Even though Navier-Stokes theory is simple and beautiful, it turns out that relativistic NS equa-

tions do not preserve causality [123, 124]. To cure this problem it is necessary to go up to, at least,
2nd-order in the gradient expansion of the flow velocity. We describe in the next section how to
include these corrections from kinetic theory approach.

Linearizing the Boltzmann equation: moment method

In the last section, we derived the relativistic NS equation for the shear viscosity tensor based on the
second law thermodynamics. It is possible to implement the same procedure to include the 2nd-order
corrections in the gradient expansion to the shear viscous tensor.5 However, this method doesn’t
include the coupling with the fluid vorticity, which is an important contribution at second order
in the gradient expansion of the fluid velocity. Fluid vorticity does not contribute to the entropy
production, so there is no violation of the second law of thermodynamics if one adds by hand its
contribution to the evolution equation of Πµν [128]. The main advantage of the derivation of the
equation of motion for the shear viscous tensor from kinetic theory relies on the fact that it captures
almost all of the contributions to 2nd-order in the gradient expansion of the fluid velocity. However,
the last statement is valid as far as one knows the complete form of the collisional kernel of the
Boltzmann equation to second order in the gradient expansion.
To consider dissipative corrections, we consider off-equilibrium departures from the equilibrated

distribution function feq(x,p) (3.11)

f(x,p) = feq(x,p)
(
1 + δf(x,p)

)
, (3.24)

where δf(x,p) is the fluctuation of the equilibrated phase-space distribution function and it is
assumed that the departures from equilibrium are small, i.e., |δf(x,p)| ≪ 1. An alternative ap-
proach to include viscous corrections to ideal hydrodynamics is based on the Grmela-Öttinger for-
malism [129, 129, 130] whose relativistic generalization and numerical implementation was performed
by Dusling and Teaney [131].

5An explicit derivation of the 2nd-order equation for the shear viscous tensor based on the second law of thermody-
namics is presented in Refs. [125, 109, 126, 127].
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If one replaces the distribution function given by Eq. (3.24) in the kinetic theory definition of the
energy-momentum tensor T µν (3.9b), we have

T µν =

∫
dΓ pµ pν feq(x,p)

(
1 + δf(x,p)

)
,

=

∫
dΓ pµ pν feq(x,p) +

∫
dΓ pµ pν feq(x,p) δf(x,p) ≡ T µν

(0) + δT µν . (3.25)

By demanding that the last expression correspond to the same energy-momentum tensor for a system
with vanishing net baryon number given by Eq. (3.19), we conclude that

δT µν ≡ Πµν =

∫
dΓ pµ pν feq(x,p) δf(x,p) . (3.26)

It is possible to calculate δf(x,p) by linearizing the Boltzmann equation [102]. Here we follow the
moment expansion method [102]. In this method, the momentum dependence of the fluctuating part
of the distribution function is approximated as a truncated Taylor series

δf(x,p) = ǫ(x) + ǫµ(x)p
µ + ǫµν(x)p

µpν +O(p3) . (3.27)

The coefficients ǫ(x), ǫµ(x) and ǫµν(x) are determined a posteriori. It is possible to show that for
systems where the dissipative effects come only in the presence of the shear viscous tensor, the
coefficients ǫ(x) and ǫµ(x) vanish [119, 126]. Therefore, for the case we are studying δf(x,p) =
ǫµν(x)p

µpν . Replacing this into the shear viscous tensor (3.26), we have the relation

Πµν(x) = ǫαβ(x)

∫
dΓpµpνpαpβ feq(x,p) ≡ ǫαβ(x) I

αβµν (x) , (3.28)

with Iαβµν(x) being the 4th moment of the equilibrated distribution function according with the
definition (3.12). The last expression suggests that ǫαβ(x) = c2 Παβ(x) where c2 is an unknown
function of E and P . Hence

Πµν(x) = c2 Παβ(x) I
αβµν (x) . (3.29)

The 4th moment Iαβµν(x) can be decomposed in a tensorial basis following Eq. (3.13). Doing that
we find that the previous last expression leads to

Πµν(x) = 2 c2 a42Π
µν , =⇒ c2 =

1

2 a42
. (3.30)

The coefficient a42 can be calculated in a similar manner as the coefficients a20 and a21. For a
Boltzmann gas, a42 = T 2

(
E + P

)
(see explicit calculation in Appendix A). Once we have specified

the coefficient c2, the fluctuating part of the Jüttner distribution function can be expressed as

δf(x,p) =
1

2 a42
pµpνΠµν ,

=
1

2T 2
(
E + P

) pµpνΠµν . (3.31)

The last relation strongly suggests the relation between δf(x,p) and the gradient expansion. For
example, using the NS value of Πµν (3.23), Eq. (3.31) results into δf(x,p) ∼ ∇〈µuν〉. Therefore, the
magnitude of δf is identified with the size of gradients of the hydrodynamics degrees of freedom.
Keeping in mind this equivalence, the collisional kernel can be approximated to first order in gradients
by inserting the form of the distribution function (3.24) in the Boltzmann equation (3.8). Before
doing that, we need to find an approximate form of the equations of viscous hydrodynamics for the
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energy density and fluid velocity (Eqs. (3.20)). To first order in gradients, these equations can be
approximated as

DE = −
(
E + P

)
∂µu

µ + O(Π ∂ · u ∼ δ2) , (3.32a)

Duα =
∇αP
E + P + O(Π ∂ · u ∼ δ2) . (3.32b)

For a Boltzmann distribution function, E = 3T 4/π2, hence

DE
E = 4

DT

T
. (3.33)

If one uses the ideal equation of state and the last expression in the approximated equation of motion
for the energy density (3.32a), we get the identity

DT

T
= −1

3
∂µu

µ . (3.34)

Using the ideal equation of state in the approximated equation of motion for the fluid velocity

Duµ =
∇µT

T
. (3.35)

Now, by expanding the Boltzmann equation for the distribution function (3.24) we get

C[f ] = −pµ∂µ
(
feq(x,p)

(
1 + δf(x,p)

))
,

≈ −pµ∂µfeq(x,p) + O
(
(δf)2

)
, feq(x,p) = e−uµpµ/T

≈ pµpνfeq(x,p)

(
uµ
T
Duµ − 1

T 2
uµuνDT +

∇µuν
T

− uν
T 2

∇µT

)

+ O
(
(δf)2

)
, (3.36)

where we use the identity ∂µ = uµD +∇ν . Using the relations (3.34) and (3.35) and the fact that
the tensor pµpν is symmetric, the last expression is finally written as

C[f ] =
pµpν

2T
feq(x,p)

(
∇(µuν) −∆µν∂αu

α
)
+ O

(
(δf)2

)
,

=
pµpν

2T
feq(x,p)∇〈µuν〉 + O

(
(δf)2

)
. (3.37)

For the NS theory, the collisional kernel is calculated exactly from the last expression if one uses
Eq. (3.23) giving

C[f ]NS =
pµpν

2 ηT
Πµν feq(x,p) + O

(
(δf)2

)
. (3.38)

Israel-Stewart theory

In the last section, we showed how to linearize the Boltzmann equation using the moment method to
determine the fluctuation around equilibrium δf(x,p) (Eqn. 3.31). Using this result, we determined
in the NS theory the exact form of the collisional kernel C[f ]NS. We will use these results to derive
the equation of motion of the shear viscous tensor to 2nd order in the gradient expansion from kinetic
theory. To accomplish this, we use the third moment of the Boltzmann equation for the fluctuation
around equilibrium δf(x,p) (3.31)

∫
dΓ pαpβpµ∂µ

(
e−uµpµ/T

(
1 +

1

2 a42
pδpγΠδγ

))
=

∫
dΓ pαpβ C[f ] . (3.39)
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By reorganizing the terms on the LHS of the last expression, one identifies them as the third and
fifth moment of the Boltzmann distribution function, so the last expression can be expressed as

∂µ

(
Iαβµ +

Πγδ

2 a42
Iαβµγδ

)
=

∫
dΓ pαpβ C[f ] . (3.40)

In general, the RHS of this relation doesn’t vanish. One can in principle try to perform all the
required integrals that appear in the last expression. Nevertheless, one can avoid this long and
lengthy calculation by projecting Eq. (3.40) by the operator Pµν

αβ

Pµν
αβ ∂µ

(
Iαβµ +

Πγδ

2 a42
Iαβµγδ

)
= Pµν

αβ

∫
dΓ pαpβ C[f ] , (3.41)

where Pµν
αβ is defined by

Pµν
αβ = ∆µ

α∆
ν
β +∆µ

β∆
ν
α − 2

3
∆µν∆αβ . (3.42)

Pµν
αβ has three interesting properties: uαPµν

αβ = uβPµν
αβ = 0, ∆αβPµν

αβ = 0 and ΠαβPµν
αβ = 2Πµν . From

the projection of Iαβµ, Iαβµγδ and the NS value of the collisional kernel CNS[f ] over P
µν
αβ , we obtain

Pµν
αβ ∂φI

φβµ = 2a31∇〈µuν〉 , (3.43a)

Pµν
αβ∂φ

(
Πγδ

2 a42
Iφαβγδ

)
= 2Πµν D

(
a52
a42

)

+ 2
a52
a42

(
Πµν∂φu

φ +∆µ
α∆

ν
β DΠαβ + Pµν

αβΠ
φβ∂φu

α

)
, (3.43b)

Pµν
αβ

∫
dΓ pαpβ CNS[f ] =

1

2 ηT
Pµν
αβ

∫
dΓ pαpβpγpδ Πγδ e

−uµpµ/T ,

=
1

2 ηT
Πγδ P

µν
αβ I

αβγδ ,

= 2
a42
Tη

Παβ . (3.43c)

For a Boltzmann distribution function, the calculation of these coefficients gives us (See App. B for
details)

a31 = −4
T 5

π2
, a42 = 4

T 6

π2
, a52 = 24

T 7

π2
, (3.44)

By collecting Eqs. (3.43) and (3.44) into Eq. (3.41), we get the evolution equation of Πµν

Πµν +
a52
a242

Tη

(
∆µ

α∆
ν
β DΠαβ + Pµν

αβΠ
φβ∇φu

α + Πµν∂αu
α + ΠµνD logT

)
= η∇〈µuν〉 . (3.45)

By introducing the antisymmetric tensor Ωαβ ≡ ∇[αuβ] (which we identify with the fluid vorticity),

the term Pµν
αβΠ

φβ∇φu
α is rewritten after some algebra

Pµν
αβΠ

φβ∇φu
α = Pµν

αβ∆
αγΠφβ

[
Ωφγ +

1

2
∇<φuγ> +

1

3
∆φγ∇δu

δ

]

= −2Πφ(µΩ
ν)
φ +

Πφ<µΠν>
φ

2η
+

2

3
Πµν∇δu

δ +O(δ3), (3.46)
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In the last relation, we explicitly use the NS value of Πµν in order to write ∇〈φuγ〉 to first order in
gradients. Using the truncated versions of the viscous equations for the energy density and the fluid
viscosity (3.32), one can replace the term D logT = −∇αu

α/3. By doing this, Eq. (3.45) becomes

Πµν + τπ

[
∆µ

α∆
ν
βDΠαβ +

4

3
Πµν∇αu

α − 2Πφ(µΩ
ν)
φ +

Πφ<µΠν>
φ

2η

]
= η∇<µuν> +O(δ2) , (3.47)

where we define τπ ≡ (a52/a
2
42)Tη. From this definition of τπ and after replacing the values of a52

and a42 (Eq. (3.44)), we find the well known relation for a Boltzmann gas

η

τπ
=

2T 4

3π2
=

2

3
p . (3.48)

Eq. (3.47) is an evolution equation for Πµν derived from kinetic theory using the moment method
up to 2nd order using the gradient expansion. Notice that not all the terms O((δf)2) are included in
this equation because we approximated the complete collisional kernel to its NS value. To have a self
consistent approach, one has to solve the Boltzmann equation by including all the terms O((δf)2)
in the collisional kernel. This issue indicates to us that there is a need to develop a new theory that
keeps all the 2nd-order structures in the gradient expansion in order to obtain the evolution equation
of the hydrodynamical degrees of freedom. In the next section, we review the recent developed theory
for conformal fluids [103, 104].

3.2.3. Conformal viscous hydrodynamics

As we mentioned at the end of the last section, in the derivation of the equation of motion for
the shear viscous tensor, we explicitly used the NS value of the collisional kernel CNS[f ]. By doing
that, we are neglecting unknown second order corrections of O((δf)2) which, in principal, shouldn’t
be ignored if one desires a consistent derivation. In general, there is no precise way to determine
self-consistently the collisional kernel C[f ] to all the orders of the gradient expansion for any field
theory, just a few exceptions can be calculated. Therefore, a better theory that includes completely
all the 2nd order structures of the gradient expansion should be developed. Based on AdS/CFT
methods, Baier et. al [103] and the Tata group [104] completed this task for conformal fluids up to
2nd order. The main idea of this approach is to clasify all the possible 2nd order structures in the
gradient expansion that are invariant under conformal transformations. By conformal symmetry, we
mean, a symmetry that allows the system to be invariant under dilation (scale invariance) and under
special conformal transformations. When we say that some theory is conformal, it means that its
action S(φ, gµν), as a functional of the metric gµν is invariant under the Weyl rescaling

gµν → ḡµν = e−2w(x)gµν , (3.49)

where w(x) is an arbitrary function of the space-time point x. If the theory is said to be conformal,
the trace of the energy-momentum tensor of the system vanishes exactly, i.e. T µ

µ=0. As a consequence
of the Weyl transformation of the metric, the energy-momentum tensor transforms as

T µν → T̄ µν = e6w(x)T µν . (3.50)

For the energy-momentum tensor of a system with vanishing net baryon number given by Eq. (3.19),
the last expression implies that under Weyl transformations the shear viscous tensor transforms as
[103]

Πµν → Π̄µν = e6w(x)Πµν (3.51)

This scaling of Πµν imposes a constraint on the possible terms that contribute at all orders to its
evolution equation if one demands that the theory is conformal. The NS value of Πµν = η∇〈µuν〉
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satisfies this contraint since under the transformation (3.49) the shear viscosity η and the velocity
tensor ∇〈µuν〉 transform like [103]

η → η̄ = e3w(x)η , ∇〈µuν〉 → ∇〈µuν〉 = e3w(x)∇〈µuν〉 . (3.52)

Additionally, all the mathematical structures of the gradient expansion should satisfy uµΠ
µν=0=Πµ

ν .
At 2nd order it is found that for a general curved space-time, there are only 8 structures that satisfy
the last two conditions [103, 104]6

D<µ ln E Dν> ln E , D<µDν> ln E ∇<µuν> (∇αu
α) , Pµν

αβ ∇<αuγ>gγδ∇<δuβ>

Pµν
αβ ∇<αuγ>gγδΩ

βδ, Pµν
αβ ΩαγgγδΩ

βδ, uγR
γ<µν>δuδ, R<µν> , (3.53)

where E is the energy density, Rαµνβ and Rµν are the Riemman and Ricci tensor respectively. But
only 5 combinations of the above terms satisfy the Weyl invariance. By regrouping in a proper way,
the 2nd-order evolution equation for the shear tensor is [103, 104]

Πµν = η∇〈µuν〉 − τπ

[
∆µ

α∆
ν
βDΠαβ +

4

3
Πµν(∇αu

α)

]

+
κ

2

[
R<µν> + 2uαR

α<µν>βuβ
]

− λ1
2η2

Π<µ
λΠ

ν>λ − λ2
2η

Π<µ
λΩ

ν>λ − λ3
2
Ω<µ

λΩ
ν>λ , (3.54)

Comparing with the equation derived from kinetic theory discussed in the last section, we have not
only η and τπ but also there are four new transport coefficients κ, λ1, λ2 and λ3. The conformal
symmetry constraint (3.51) doesn’t tell us how to obtain the values of these transport coefficients.
Such calculations have been performed explicitly for two distinct theories, N=4 SYM at strong
coupling and weakly coupled QCD at finite temperature. In the N=4 SYM theory, one should make
use of the AdS/CFT correspondence [132] to determine the correspondent Green functions. For
N=4 SYM, the values of the transport coefficients in the large Nc limit are listed below

η

S =
1

4π
, τπ =

2− ln 2

2πT
,

κ =
η

πT
, λ1 =

η

2πT
, λ2 = − ln 2

η

πT
, λ3 = 0 (3.55)

Based on weakly coupled QCD [133, 134, 77, 135, 136, 137], York and Moore [138] found that for
weakly coupled QCD theory, these transport coefficients also emerged once the collisional kernel is
taken into account properly up to 2nd order in the gradient expansion. Their results are given by

τπ =
5.0 . . . 5.9

T

η

S , λ1 =
4.1 . . . 5.2

T

η2

S , λ2 = −2ητπ, λ3 = 0, κ =
5 S
8π2T

. (3.56)

Parametrically, η/S ∼ 1/(g4 log g−1) where g is the coupling constant of the field theory and the
proportionality factor depends on the content of matter [135, 136].
When one applies this formalism to ultrarelativistic heavy ion collisions, it is assummed that the

created matter after collision is approximately conformal, which can be a reasonable assumption at
high energies. Nevertheless, lattice gauge theory calculations have suggested that the bulk viscosity
plays an important role around the critical temperature TC when the QGP transforms into a hadron
gas [139, 140], so a theory for non-conformal fluids is required to describe this stage of the dynamical
evolution of the fireball. This program has been already started by Betz et. al. [105]. Based on
consistent expansions to second order in Knudsen number, these authors deduce the complete IS

6For a Minkowski space there are just 6 of these structures.
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equations for the Boltzmann equation for the bulk pressure Π, shear viscous tensor Πµν and the heat
flow qµ via 14’s Grads method [102]. An alternative approach to the same problem has been recently
proposed by Romatschke [106]; in this work the author classified the possible 2nd-order terms that
contribute to the entropy production for conformal and non-conformal fluids.
In Chapter 6, our calculations are based on conformal viscous hydrodynamics formalism. This is

due to the fact that we are interested in the early stages of the collision where bulk viscosity/heat
flow effects can be neglected and the fluid is almost conformal.
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4. Dileptons in ultrarelativistic heavy ion
collisions

Dilepton yields are one of the key observables to study the dynamics of ultrarelativistic heavy ion
collisions. Dileptons are indicators of every stage of heavy ion collisions, so their experimental and
theoretical analysis helps to elucidate the properties of the evolving medium created in collisions
between heavy nuclei. One of the main advantages of dileptons is the fact that they possess finite
pair mass and therefore, there are two kinematic variables that characterize dilepton spectra, the
invariant mass M and transverse momentum pT . These two parameters can be varied to investigate
the different stages of the collisions.
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ee
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J/Ψ
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Figure 4.1.: A schematic view of dilepton production as a function of the invariant mass in ultrarel-
ativistic heavy ion collisions. Figure taken from Ref. [141].

In Fig. 4.1 we show a schematic view of characteristic dilepton sources in ultrarelativistic heavy ion
collisions as a function of the invariant mass of the dilepton pair. From this figure, we can roughly
distinguish three kinematic regions that characterize dilepton spectra:

1. Low mass region (LMR): is the region below and around the φ meson, i.e., M . Mφ = 1.024
GeV. This region is governed by the light quark sector of u, d and s quarks. The spectrum is
dominated by π0 and η decays and there are two additional peaks due to the vector meson decay
of ρ, ω and φ. Many studies indicate that low mass region of medium dilepton production gives
signals of chiral symmetry restoration which can be infered in terms of medium modification
of light hadrons.1 Dileptons with lower invariant mass are produced at the late-times of the
collision.

1It is known that in the limit of vanishing current quark masses, the order parameter of the QCD phase transition
associated with chiral symmetry restoration, (i.e., the chiral condensate) is most likely of first order for three
flavors.
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2. Intermediate mass region (IMR): this region is located between Mφ < M < MJ/Ψ = 3.1 GeV.
This has been one of the most studied regions since continuum radiation coming from QGP
dominates the dilepton mass spectrum. In the QGP phase at leading order, dilepton pairs
arise from the annhilation process between quarks, q + q̄ → γ∗ → l+ + l− for large invariant
masses. However, most of the background in this regime arise from decays of open-charms,
i.e., pairwise produced from DD̄ mesons followed by semileptonic decays which may obscure
signals from QGP. This also holds true for the lower-mass tail of Drell-Yan production.

3. High mass region (HMR): this kinematic region lies aboveM >MJ/Ψ. Drell-Yan production is
one of the most prominent sources of dilepton pairs. Primordial emission and heavy quarkonia
like J/Ψ and Υ suppression are the most important phenomenon to study medium effects.

As can be seen from the above discussion, high-energy dileptons are sensitive to early-time dy-
namics of the collision. Therefore, one can expects that information about emission of dileptons
from an anisotropic QGP can be obtained from the intermediate and high mass region. In this
work we explore pre-equilibrium production of high-energy dileptons as a function of the transverse
momentum and invariant mass in the range 1 .M,pT . 10 GeV.

4.1. Medium dilepton production rate from finite temperature
field theory

To access physical properties of thermal systems is not an easy task in many experimental situations.
Instead, one can assume that the system is composed of some particles that behave like a thermal
reservoir, i.e., particles that interact so strongly as to remain in thermal equilibrium, while other
particles interact weakly with the thermal system and cannot follow thermal equilibrium. One can
imagine that these particles can escape the region either explicitly (they leave a thermal system of
finite size) or in the abstract sense (they remain in the thermal reservoir but the interaction is so small
that they behave as free particles). Familiar examples of these systems have been observed in nature,
for example in the decoupling of weakly interacting dark matter particles in cosmology [142], the
electromagnetic radiation from the QCD plasma generated in heavy ion collisions and the neutrino
emissitivity of neutron stars. These are all examples of thermal particle production. In this section,
we briefly discuss the basics of thermal particle production for the case of dileptons. More general
details of thermal particle production can be found in Refs. [74, 75].
It can be shown that at leading order in the electromagnetic coupling constant O(α2) and all

orders of the strong coupling constant, the differential dilepton rate can be expressed in terms of the
correlation function of the hadronic electromagnetic current [143, 144, 145]. Here, we will show the
results of the differential dilepton rate to O(α2) without including HTL resummation of the bare
propagators.2At high temperatures, the dominant medium contribution comes from the annihilation
process q + q̄ → γ∗ → l+ + l−.
The differential dilepton rate is defined as 3

dN l+l−

d4x d3p1d3p2

= lim
t,V→∞

1

V t

∑

f,i

e−βEi

Zsys
|Tfi|2 , (4.1)

2Details of a calculation that includes such corrections to the bare propagators can be found in Ref. [146].
3Notice that in principle one can make use of a more formal definition:

dN l+l−

d4xd3p1d3p2

=
d

dt

(

Tr.
[ dN̂ l+l−

dx d3p1d3p2

ρ̂I (t)
]

)

,

where dN̂l+l−

d3x d3p
= 1

V
â†pâp is the number operator of particles per space and momentum volume and ρ̂I(t) is the

density matrix of the system in the interaction picture. The result obtained from this definition is the same as the
one presented in the main text.
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where t is the observation time, V is the volume of the system, Zsys is the partition function of the
system and Tfi is the scattering amplitude which indicates the transition i→ f + l+ + l−, i.e., from
some initial hadronic state to some final hadronic state plus a dilepton pair of momenta p1 and p2.
Notice that the last definition involves a statistical average and this is why we sum over every initial

state weighed with the Boltzmann factor e−Ei/T /Zsys, Zsys =
∑

j e
−βĤj .4

���� ��
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q
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Figure 4.2.: Feynman diagram for the process q + q̄ → γ∗ → l+ + l− to leading order O(α). The

figure also shows the quark current Ĵq
µ(x) and leptonic current Ĵ l

µ(x) =
ˆ̄l(x)γµ l̂(x).

In the interaction picture, the hamiltonian that describes the local interactions between the cou-
pling of the photon field Aµ(x) and the electromagnetic currents of the quark fields Ĵq

µ(x) and the

lepton fields Ĵ l
µ(x) =

ˆ̄l(x)γµ l̂(x) (see Fig. 4.2) is

Ĥ =

∫
d3x
(
eẽÂµ(x)Ĵq

µ(x) + eÂµ(x)
ˆ̄l(x)γµ l̂(x)

)
, (4.2)

where e is the electric charge, ẽ = eq/e is the proportional value of the quark electric charge and

l̂(x) is the lepton field which, expressed in terms of the annihilation and creation operators, is [147]

ˆ̄l(x) =

∫
d3p1√

(2π)3 2Ep1

∑

s1=±1

(
â† (s1)p1

ū(p1, s1) e
i p1·x + b̂(s1)p1

v̄(p1, s1) e
−i p1·x

)
, (4.3a)

l̂(x) =

∫
d3p2√

(2π)3 2Ep2

∑

s2=±1

(
â(s2)p2

u(p2, s2) e
−i p2·x + b̂† (s2)p2

v(p2, s2) e
i p2·x

)
(4.3b)

where u(pi, si), ū(pi, si), v(pi, si) and v̄(pi, si) are the usual plane wave solutions to the Dirac equa-
tion [147] which satisfy the relations

∑

s=±1

u(p, s)ū(p, s) = p/ +m,
∑

s=±1

v(p, s)v̄(p, s) = p/ −m. (4.4)

Because we are assuming that the system is composed of a thermal reservoir and an ensamble of
weakly interacting particles, one can assume that the initial state |I 〉 and the final state |F 〉 are

|I 〉 ≡ |i 〉 ⊗ |0〉 ⊗ |0 〉 , (4.5a)

|F 〉 ≡ |f 〉 ⊗ |l(p1, s1)〉 ⊗ |l̄(p2, s2)〉 , (4.5b)

4We are not considering non-vanishing chemical potential but this definition can be extended to that case.
4Strictly speaking, this factorization of the final and initial states is based on the fact that the Hilbert space for this

quantum system is the direct product of the Hilbert space of the thermal reservoir times the Hilbert space of the
weakly interacting particles, i.e., H = Htherm.res. ⊗Hweak part..
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where |l(p1, s1)〉 = â
† (s1)
p1 |0〉 and |l̄(p1, s1)〉 = b̂

† (s2)
p2 |0〉. The leading order contribution to the

scattering amplitude Tfi comes from the ‘cross term’ at O(e2) and is

Tfi = 〈F |
∫
dt ĤI(t)|I〉 ,

= 〈F |
∫
d4y eQÂµ(y)J

µ
q (y)

∫
d4x eÂµ(x)

ˆ̄l(x)γµ l̂(x)|I〉 ,

= e2 ẽ

∫
d4x

ei (p1+p2)·x

√
(2π)3 2Ep1

(2π)3 2Ep2

ū(p1, s1) γ
µ v(p2, s2) ,

×
∫
d4y

∫
d4R

(2π)4
ei R·(x−y)

R2
〈f |Ĵq

µ(y)|i〉

= e2 ẽ
ū(p1, s1) γ

µ v(p2, s2)√
(2π)3 2Ep1

(2π)3 2Ep2

∫
d4y

ei (p1+p2)·y

(p1 + p2)2
〈f |Ĵq

µ(y)|i〉 . (4.6)

In the last expression, we explicitly use the propagator of the gauge field Aµ(x) given by

〈0|T {Aµ(x)Aν (y)} |0〉 =
∫

d4R

(2π)4
ei R·(x−y) (−i)

R2
gµν ,

where T is the time-ordering symbol. Using Eq. (4.6), it is straightforward to calculate |Tfi|2

|Tfi|2 = e4 ẽ2
1

(2π)3 2Ep1
(2π)3 2Ep2

ū(p1, s1) γ
µ v(p2, s2) v̄(p2, s2) γ

ν u(p1, s1)

×
∫
d4x

∫
d4y

ei (p1+p2)·(y−x)

(p1 + p2)4
〈f |Ĵq

µ(y)|i〉 〈i|Ĵq
ν (x)|f〉 ,

= e4 ẽ2
1

(2π)3 2Ep1
(2π)3 2Ep2

ū(p1, s1) γ
µ v(p2, s2) v̄(p2, s2) γ

ν u(p1, s1)

V t

∫
d4y

ei y·(p1+p2)

(p1 + p2)4
〈f |Ĵq

µ(0)|i〉 〈i|Ĵq
ν (y)|f〉 . (4.7)

By inserting the last expression into the definition of the differential dilepton rate (4.1) and summing
over lepton spins s1 and s2, we have 5

dN l+l−

d4x d3p1d3p2

=
4 e4 ẽ2

(2π)3 2Ep1
(2π)3 2Ep2

1

(p1 + p2)4
[
pµ1p

ν
2 + pν1p

µ
2 − gµν(p1 · p2 +m2)

]

×
∫
d4y ei y·(p1+p2)

(
∑

i,f

1

Zsys.
e−β Ei〈f |Ĵq

µ(0)|i〉 〈i|Ĵq
ν (y)|f〉

)
,

=
4 e4 ẽ2

(2π)3 2Ep1
(2π)3 2Ep2

1

(p1 + p2)4
[
pµ1p

ν
2 + pν1p

µ
2 − gµν(p1 · p2 +m2)

]

×
∫
d4y ei y·(p1+p2)

〈
Ĵq
µ(0)Ĵ

q
ν (y)

〉
,

=
4 e4 ẽ2

(2π)3 2Ep1
(2π)3 2Ep2

1

(p1 + p2)4

×
[
pµ1p

ν
2 + pν1p

µ
2 − gµν(p1 · p2 +m2)

]
C̃<

µν(p1 + p2) , (4.8)

5To get this result, we use this property
∑

s1,s2

ū(p1, s1) γ
µ v(p2, s2) v̄(p2, s2) γ

ν u(p1, s1) = Tr
[

(p/1 +m)γµ(p/2 −m)γν
]

= 4
[

pµ1p
ν
2 + pν1p

µ
2 − gµν(p1 · p2 +m2)

]

.
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where we identify the retarded current-current correlation function

C̃<
µν(p1 + p2) ≡

∫
d4y ei y·(p1+p2)

〈
Ĵq
µ(0)Ĵ

q
ν (y)

〉

=

∫
d4y ei y·(p1+p2)

(
∑

i,f

1

Zsys.
e−β Ei〈f |Ĵq

µ(0)|i〉 〈i|Ĵq
ν (y)|f〉

)
. (4.9)

We will need to know the dependence of the differential dilepton rate on the total momentum of the
lepton pairs, P = p1+p2. To do that, we insert in the right side of Eq. (4.8) 1 =

∫
d4P δ(P −p1−p2)

and integrate over p1 and p2. By doing this procedure the final result for the differential dilepton
rate is (α = e2/(4π))

dN l+l−

d4x d4P
=

4α2 ẽ2

3(2π)3
Θ(P 2 − 4m2)

P 4

(
1 +

2m2

P 2

)(
1− 4m2

P 2

)1/2(
PµP ν − P 2gµν

)
C̃<

µν(P )

=
4α2 ẽ2

3(2π)3
Lµν(P )C̃<

µν(P ) (4.10)

where Lµν(P ) is defined as

Lµν(P ) = Θ(P 2 − 4m2)

(
1 +

2m2

P 2

)(
1− 4m2

P 2

)1/2(
PµP ν − P 2gµν

)
. (4.11)

To obtain a more useful expression for the dilepton rate at leading order in O(α2), it is necessary to
obtain the current-current correlation C̃<

µν(P ) from thermal field theory. In App. C.3 a more detailed

calculation of C̃<
µν(P ) based on the imaginary time formalism is presented. The final result of the

differential dilepton rate at leading order, after calculating the retarded current-current correlator
C̃<

µν(P ), is

dN l+l−

d4xd4P
=

4α2

3(2π)3
NC ẽ

2

(
1− 4m2

P 2

)1/2(
1 +

2m2

P 2

)(
1 +

2M2

P 2

)

×
∫

d3q

(2π)3 2Eq

d3q̄

(2π)3 2Eq̄

(2π)4δ(4)(P −Q− Q̄)nF (Eq)nF (Eq̄) . (4.12)

In the next section we show that at leading order this expression coincides with the result obtained
using kinetic theory.

4.2. Medium dilepton production rate from kinetic theory

To compute corrections associated with the collective dynamics of the medium to observables one
should make use of HTL effective theory [148, 69, 68]. Nowadays the connection between hard
thermal loops and classical kinetic theory is well known [71, 72]. This connection basically establishes
that at leading order in the coupling constant, the effective action obtained from hard thermal loops
is exactly the same one calculated from classical kinetic theory. In practical terms, this equivalence
indicates that medium corrections to observables computed by either hard thermal loop techniques
or classical kinetic theory are the same. In App. C.3, we present the equivalence between the two
treatments when there are no corrections to the internal lines of the propagators. A more complete
and detailed calculation where this equivalence is proven for the case of dilepton production including
HTL corrections to the internal lines of the propagators can be found in Ref. [146]. In this work
dilepton yields are calculated based on the kinetic theory approach.
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For simplicity we are going to consider a highly dense plasma with non-vanishing baryon number.
Under this assumption, the content of quarks (antiquarks) in the system is described by a distribution
function fq(q̄)(x, p). We assume that the distribution function of the quarks is the same as the
antiquarks.6 In the kinetic theory language, the dilepton production rate is roughly the square of
the density of quarks times the cross section times the relative velocity. From this approach, the
dilepton emission rate is given by

dN l+l−

d4x d4P
=

∫
d3q

(2π)3 2Eq

d3q̄

(2π)3 2Eq̄

d3pl+

(2π)3 2Ep
l+

d3pl−

(2π)3 2Ep
l−

nF (Eq)nF (Eq̄)

×|M|2qq̄→l+l− (2π)4δ(4)(q + q̄ − pl+ − pl−)δ
(4)(P −Q− Q̄) , (4.13)

where nF (Ep) = (eβEp + 1)−1 is the occupation probability for fermions. The Pauli blocking factor
of the dilepton pair has been neglected in the above equation, this is because we are interested at
high energies where the quantum nature of the outgoing lepton pair is not important. The cross
section of the quark annihilation process q + q̄ → γ∗ → l+ + l− can be expressed in terms of the
scattering amplitude M [147]

σl+l−

qq̄ =
1

vqq̄

∫
d3pl+

(2π)3 2Ep
l+

d3pl−

(2π)3 2Ep
l−

|M|2qq̄→l+l− (2π)4δ(4)(q + q̄ − pl+ − pl−) , (4.14)

where vqq̄ is the relative velocity of the dilepton pair defined as

vqq̄ =
((q · q̄)2 −m4

q)
1/2

EqEq

. (4.15)

This allows us to rewrite Eq. (4.13) as

dN l+l−

d4x d4P
=

∫
d3q

(2π)3 2Eq

d3q̄

(2π)3 2Eq̄

nF (Eq)nF (Eq̄) vqq̄ σ
l+l−

qq̄ δ(4)(P −Q− Q̄) . (4.16)

To observe the equivalence of this expression with the dilepton rate obtained from thermal field
theory (Eq. (4.12)) one should replace the leading order value of σl+l−

qq̄ and evaluate vqq̄ in the center
of mass frame where the total momentum of the dilepton pair vanishes p = 0.

4.3. Sources of high-energy dileptons

To disentangle a QGP signal from total experimental dilepton production is a non-trivial issue.
Lepton pairs are also produced in the high pT ,M region from the Drell-Yan process, jet conversion
and heavy flavour decay.

4.3.1. Drell-Yan dileptons

In the region of large invariant mass dilepton yields have a significant contribution coming from
the Drell-Yan process A + A → l+l− + X and thus form one of principal background sources to
dileptons emitted from QGP. The Drell-Yan process consists of the annhilation of a quark from one
of the incoming nucleus A and an antiquark from the other incoming nucleus, this produces a virtual
photon which subsequently decays into a lepton pair. The differential yield of such lepton pairs
produced in A+A collisions is obtained by an incoherent sum of the contributions from independent
nucleon-nucleon collisions. The total Drell-Yan yield is the sum of the direct (which is the Compton

6This is an assumption based on chemical equilibrium between quarks and antiquarks which we consider valid in
our work. However, it is possible to have situations where the distribution functions of quarks and antiquarks is
unequal and this issue plays an important role in the description of the physics. See Sect. 18.2 of Ref. [149].
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and annihilation process of two incoming partons) and the Bremsstrahlung contributions, σDY =
σdirect + σfrag [146, 150, 151]. The final yield from Drell-Yan is given by [146]

dNDY

dM2dyd
=

2〈Ncoll〉
σin

∞∫

pTcut

dpT pT

[
Kdir

dσdirect
dM2dyd dp2T

+Kfrag
dσfrag

dM2dyd dp2T

]

×P (|ye± | ≤ ycut, pT ) . (4.17)

where dσdirect

dM2dyd dp2
T

is the direct contribution of two nuclei and
dσfrag

dM2dyd dp2
T

is the fragmentation con-

tribution. Their explicit functional forms are given in Ref. [146]. Kdir and Kfrag are phenomeno-
logical factors introduced with the goal to take into account higher order corrections. The function
P (|ye± | ≤ ycut, pT ) accounts for the probability for a virtual photon with momentum pT at midra-
pidity to emit two leptons with rapidities |ye± | ≤ ycut; in practical terms, this probability helps
to constrain the phase space distribution of the dilepton pairs in accordance with the experimental
arrangement.

4.3.2. Heavy flavour decays

One of the most difficult significant background sources that obscures medium dilepton production
from the QGP is the decay of open charm and bottom mesons. During the initial hard scattering
cc̄(bb̄) pairs are produced which fragment into D(B) and D̄(B̄) mesons. In phenomenological studies,
only correlated decay is considered, which occurs when a positron coming from the semileptonic decay
of a D(B) is measured together with the electron from the semileptonic decay of a D̄(B̄), i.e., one
calculates the rate for the reactionDD̄ → e+e−+νν̄+X . Details of how to perform such calculations
from perturbative QCD are found in Ref. [152].

4.3.3. Jet conversion

One of the great discoveries at RHIC is the large production of high energy quark and gluon jets which
lose energy due to the interactions with the QGP. This is the celebrated phenomenon of jet-quenching.
Quark jets can be formed over a scale of time which is even smaller than the QGP formation time for
large values of transverse momentum. This quark (antiquark) jet has the probability to annhilate
with other thermal antiquark (quark) while is passing the medium or undergo a Compton scattering
with a thermal gluon and lead to a production of a high energy virtual photon which decays into
a lepton pair. This calculation involves the evolution of the thermal distribution of the jets, which
can be calculated using the perturbative formalism of Arnold, Moore and Yaffe [134, 137, 153].
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5. Dilepton production from an anisotropic
quark-gluon plasma

Many of us were worried about how difficult it seemed to

make progress in the state that physics was in then. Some

people thought that the path to understanding the strong

interactions led through the study of the analytic structure of

scattering amplitudes as functions of several kinematic

variables. That approach really depressed me because I knew

that I could never understand the theory of more than one

complex variable. So I was pretty worried about how I could

do research working in this mess. So the moral of my tale is

not to despair at the formidable difficulties that you face in

getting started in today’s research... You’ll have a hard time,

but you’ll do OK.

To the Postdocs, Physics Today 60: 58, 2007.

Steven Weinberg.

In this chapter we calculate leading-order dilepton yields from a quark-gluon plasma which has a
time-dependent anisotropy in momentum space in the central and forward rapidity region. In the
central region (y = 0), two phenomenological models are constructed for the proper time dependence
of the parton hard momentum scale, phard, and the plasma anisotropy parameter, ξ. The models
describe the transition of the plasma from its initial non-equilibrium state to an isotropic thermalized
state. We find for both cases that by fixing either the initial conditions or final pion multiplicity,
high-energy dilepton production is modified by pre-equilibrium emission. For the later case, the
dependence of the resulting spectra on the assumed plasma isotropization time is reduced.
We extend the calculation of the dilepton yields to the forward rapidity region (y 6= 0). In addition

to the temporal evolution of the plasma anisotropy parameter, ξ, and the hard momentum scale,
phard, we include the rapidity dependence of phard. The model interpolates between 0+1 dimensional
collisionally-broadened expansion at early times and 0+1 dimensional ideal hydrodynamic expansion
at late times. Using this model, we find that at LHC energies, forward high-energy medium dilepton
production would be suppressed by up to a factor of 3 if one assumes an isotropization/thermalization
time of 2 fm/c.
Given sufficiently precise experimental data, it may be possible to use dilepton yields in the for-

ward and central rapidity region to experimentally determine the time of onset of locally isotropic
hydrodynamic expansion of the quark-gluon plasma as produced in ultrarelativistic heavy-ion colli-
sions.
The results presented in this chapter are based on the publications:

1. Mauricio Martinez and Michael Strickland, Measuring QGP thermalization time with dileptons,
Phys. Rev. Lett. 100: 102301, 2008 [82].

2. Mauricio Martinez and Michael Strickland, Pre-equilibrium dilepton production from an ani-
sotropic quark-gluon plasma, Phys. Rev. C 78: 034917, 2008 [83].
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5.1. Differential dilepton rate

From relativistic kinetic theory, the differential dilepton rate dN l+l−/d4Xd4P ≡ dRl+l−/d4P (i.e.
the number of dileptons produced per space-time volume and four dimensional momentum-space
volume) at leading order in the electromagnetic coupling, α, is given by [154, 155, 156]

dRl+l−

d4P
=

∫
d3p1

(2π)3
d3p2

(2π)3
fq(p1) fq̄(p2) vqq̄ σ

l+l−

qq̄ δ(4 )(P − p1 − p2 ) , (5.1)

where fq,q̄ is the phase space distribution function of the medium quarks (anti-quarks), vqq̄ is the

relative velocity between quark and anti-quark and σl+l−

qq̄ is the total cross section

σl+l−

qq̄ =
4π

3

α2

M2

(
1 +

2m2
l

M2

)(
1− 4m2

l

M2

)1/2

, (5.2)

with ml and M being the lepton mass and the center-of-mass energy respectively. Since we will be
considering high-energy dilepton pairs with center-of-mass energies much greater than the dilepton
mass we can safely ignore the finite dilepton mass corrections and use simply σl+l−

qq̄ = 4πα2/3M2. In
addition, to very good approximation, we can assume that the distribution function of quarks and
anti-quarks is the same, fq̄ = fq.
In this work we will assume azimuthal symmetry of the matter in momentum-space so that the

anisotropic quark/anti-quark phase distributions can be obtained from an arbitrary isotropic phase
space distribution by squeezing (ξ > 0) or stretching (ξ < 0) along one direction in the momentum
space using the ansatz

fq,q̄(p, ξ, phard) = f iso
q,q̄ (

√
p2 + ξ(p · n̂)2, phard) , (5.3)

where phard is the hard momentum scale, n̂ is the direction of the anisotropy and ξ > −1 is a
parameter that reflects the strength and type of anisotropy. In general, phard is related to the
average momentum in the partonic distribution function. In isotropic equilibrium, where ξ=0, phard
can be identified with the plasma temperature T . To give another specific example, in the case of
0+1 dimensional free-streaming discussed in Sec. 5.2.2 phard is given by the initial “temperature”
T0.
For general ξ we split the delta function in Eq. (5.1) such that we can perform the p2 integration

dRl+l−

d4P
=

5α2

72π5

∫
d3p1

Ep1

d3p2

Ep2

fq(p1, phard, ξ) fq̄(p2, phard, ξ) δ
(4)(P − p1 − p2) ,

=
5α2

72π5

∫
d3p1

Ep1
Ep2

fq(p1, phard, ξ) fq̄(P− p1, phard, ξ) δ(E − Ep1
− Ep2

)

∣∣∣∣∣
p2=P−p1

.(5.4)

Choosing spherical coordinates with the anisotropy vector n̂ defining the z axis, we can write

p1 = p1(sin θp1
cosφp1

, sin θp1
sinφp1

, cos θp1
) ,

P = P (sin θP cosφP , sin θP sinφP , cos θP ) . (5.5)

It is then possible to reexpress the remaining delta function as

δ(E − Ep1
− Ep2

) = 2 (E − p1)χ
−1/2 Θ(χ)

2∑

i

δ(φi − φp1
) , (5.6)

with χ ≡ 4P 2 p21 sin2 θP sin2 θp1
− (2p1(E − P cos θP cos θp1

)−M2)2. The angles φi are defined as
the solutions to the following transcendental equation
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cos (φi − φp1
) =

2 p1 (E − P cos θP cos θp1
)−M2

2P p1 sin θP sin θp1

. (5.7)

We point out that there are two solutions to Eq. (5.7) when χ > 0. After these substitutions and
expanding out the phase space integrals, we obtain

dRl+l−

d4P
=

5α2

18π5

∫ 1

−1

d(cos θp1
)

∫ a−

a+

dp1√
χ
p1 fq

(√
p2
1(1+ ξ cos2 θp1

), phard

)

×fq̄
(√

(E− p1)2 + ξ(p1 cos θp1
−P cos θP)2, phard

)
, (5.8)

with

a± =
M2

2(E − P cos(θP ± θp1
))
. (5.9)

Note that when ξ = 0, the limit of isotropic dilepton production is recovered trivially. Also note that
as ξ increases we expect the differential dilepton rate to decrease since for fixed phard the increasing
oblateness of the parton distribution functions causes the effective parton density to decrease

n(ξ, phard) =

∫
d3p

(2π)3
fq (
√
p2 + ξ (p · n̂)2 , phard) ,

=
n(ξ = 0, phard)√

1 + ξ
∝ p3hard√

1 + ξ
. (5.10)

In order to evaluate the anisotropic dilepton rate it is necessary to perform the remaining two
integrations in Eq. (5.8) numerically. In Fig. 5.1 we plot the resulting differential dilepton rate as a
function of transverse momentum and invariant mass for ξ ∈ {0, 1, 10, 100}. One can see the effect
of increasing ξ for fixed phard, namely that the dilepton production rate decreases due, primarily, to
the density effect mentioned above.

5.2. Dilepton yields from the pre-equilibriated stage: central
rapidity region

In this section we calculate high-energy dilepton yields in the central rapidity region as a function
of the invariant mass and transverse momentum from an anisotropic QGP. Knowing the differential
dilepton rate (5.8) is not enough to make a phenomenological prediction for the expected dilepton
yields, it is still required to model the space-time evolution of phard and ξ. Once this is done, one
can obtain the dileptons yields integrating Eq. (5.8) over the space-time volume.
The dilepton production as a function of the invariant mass and transverse momentum is given

by, respectively

dN l+l−

dM2dy
= πR2

T

∫
d2pT

∫ τf

τ0

∫ ∞

−∞

dRl+l−

d4P
τdτdη , (5.11a)

dN l+l−

d2pTdy
= πR2

T

∫
dM2

∫ τf

τ0

∫ ∞

−∞

dRl+l−

d4P
τdτdη , (5.11b)

where RT = 1.2A1/3 fm is the radius of the nucleus in the transverse plane. These expressions are
evaluated in the center-of-mass (CM) frame while the differential dilepton rate is calculated in the
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Figure 5.1.: The differential dilepton rate as a function of transverse momentum (left) and invariant
mass (right). For the invariant mass dependence (left) we fixed pT= 3 GeV and for the
transverse momentum dependence (right) we fixed M=3 GeV. In both cases phard=1
GeV and rapidity y=0.
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local rest frame (LR) of the emitting region. Taking this into account, the dilepton pair energy has to
be understood asELR = pT cosh (y−η) in the differential dilepton rate dR/d4P . Additionally, in Eqs.
(5.11) we have assumed that there is only longitudinal expansion of the system. Since at early times
the transverse expansion is small compared to the longitudinal expansion, one can ignore it. Some
studies have suggested that the influence of the transverse expansion on the space-time evolution
becomes phenomenologically important around 2.7 fm/c [157], therefore, our approximation is valid
for describing the early-time behaviour we are interested in. Substituting Eq. (5.8) into Eqs. (5.11)
we obtain the dilepton spectrum including the effect of a time-dependent momentum anisotropy.

Note that we have not included the next-to-leading order (NLO) corrections to the dilepton rate
due to the complexity of these contributions for finite ξ. These affect dilepton production for isotropic
systems for E/T . 1 [158, 137, 159, 146]. In the regions of phase space where there are large NLO
corrections, we will apply K-factors to our results as indicated. These K-factors are determined by
taking the ratio between NLO and LO calculation for an isotropic plasma, therefore, in this work
we are implicitly assuming that the K-factor will be the same for an anisotropic plasma.

5.2.1. Space-Time Models

In this section we present two new models for 0+1 dimensional non-equilibrium time-evolution of the
QGP and review the cases of 0+1 dimensional free-streaming and 0+1 dimensional hydrodynamic
expansion. In all cases considered below the number density will obey n(τ) ∝ (τ0/τ) in its asymptotic
regions.1 This results in all cases from the assumption that the total particle number is fixed while
the size of the box containing the plasma is expanding at the speed of light in the longitudinal
direction (1d expansion).

In each case below we will be required to specify a proper time dependence of the hard-momentum
scale, phard, and anisotropy parameter, ξ, which is consistent with this scaling for τ ≪ τiso and
τ ≫ τiso. Before proceeding, however, it is useful to note some general relations. Firstly we remind
the reader that the plasma anisotropy parameter is related to the average longitudinal and transverse
momentum of the plasma partons via the relation

ξ =
〈p2T 〉
2〈p2L〉

− 1 . (5.12)

Therefore, we can immediately see that for an isotropic plasma that ξ = 0, and for an oblate plasma
which has 〈p2T 〉 > 2〈p2L〉 that ξ > 0.

Secondly we note that given any anisotropic phase space distribution of the form specified in
Eq. (6.26) the local energy density can be factorized via a change of variables to give

E(phard, ξ) =
∫

d3p

(2π)3
p fiso(

√
p2 + ξ(p · n̂2), phard) , (5.13)

= E0(phard)R(ξ) ,

where E0 is the initial local energy density deposited in the medium at τ0 and

R(ξ) ≡ 1

2

(
1

1 + ξ
+

arctan
√
ξ√

ξ

)
. (5.14)

We note that limξ→0 R(ξ) = 1 and limξ→∞ R(ξ) = 1/
√
ξ.

1The interpolating models will only obey this relation outside of a region of order γ−1τiso around τiso where the
transition between different types of expansion takes place. In the transition region n will increase due to non-
equilibrium effects as we discuss later in the text.



50 5. Dilepton production from an anisotropic quark-gluon plasma

5.2.2. Asymptotic Limits of the Anisotropic Phase Space Distribution

Before presenting our proposed interpolating models we review previous calculations for the free
streaming and hydrodynamic expansion cases [154, 160, 161] and show how to determine our
anisotropic phase space distribution function parameters, phard and ξ, in these two cases.

0+1 Dimensional Ideal Hydrodynamical Expansion Limit

We first consider the limiting case that τiso = τ0 so that the plasma is assumed to be “instan-
taneously” thermal and isotropic and undergoes ideal 0+1 dimensional hydrodynamical expansion
throughout its evolution. In ideal hydrodynamical evolution using the boost-invariant 0+1 Bjorken
model [19] we can identify phard with the temperature and the anisotropy parameter vanishes by as-
sumption, ξ = 0. Due to the fact that ξ = 0 the distribution function for highly relativistic particles
will depend only on the ratio between the energy and temperature, fhydro(p, x) = f(E/T (τ)) with
E = (p2T + p2L)

1/2. In this case the number density, hard scale (temperature), energy density, and
anisotropy parameter obey the following

n(τ) = n0

(τ0
τ

)
, (5.15a)

phard(τ) = T (τ) = T0

(τ0
τ

) 1
3

, (5.15b)

E(τ) = E0
(τ0
τ

) 4
3

, (5.15c)

ξ(τ) = 0 . (5.15d)

In order to obtain an analytic result for the differential dilepton rate which is applicable at high
energies one can approximate the quark and anti-quark Fermi-Dirac distributions by Boltzmann
distributions and integrate Eq. (5.8) analytically. In this case it is also possible to perform the
necessary integration of the rate over the plasma space-time evolution analytically [154, 161] to
obtain

dN l+l−

hydro

dydM2
=

5α2

6π2

1

M4
R2

T T
6
0 τ

2
0

[
H

(
M

T0

)
−H

(
M

Tc

)]
, (5.16a)

dN l+l−

hydro

dM2d2pTdy
=

5α2

24π3
R2

T τ
2
0

(
T0
mT

)6[
G

(
mT

T0

)
−G

(
mT

Tc

)]
, (5.16b)

where H(z) = z2 (8+ z2)K0(z)+ 4 zK1(z) (4+ z2), G(z) = z3 (8+ z2)K3(z) and mT =
√
M2 + p2T .

As a check of our numerics we have verified that numerical integration of our dilepton rate given in
Eq. (5.8) over space-time via Eqs. (5.11) reproduces this analytic result in the limit τiso → τ0 and
ξ = 0.

0+1 Dimensional Free Streaming Limit

As another limiting case we can assume instead that our 0+1 dimensional expanding plasma is non-
interacting. If this were true then the system would simply undergo 0+1 dimensional free-streaming
expansion [154, 160]. Since, in this case, the system would never become truly thermal or isotropic
this corresponds to taking the opposite limit from the one we took in the previous subsection, namely
we will now take the limit τiso → ∞.
In the free streaming case, the distribution function is a solution of the collisionless Boltzmann

equation

p · ∂x ff.s.(p, x) = 0 , (5.17)
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where the subscript f.s. indicates that this is the free-steaming solution. In this work we will also
assume that the distribution function is isotropic at the formation time, τ = τ0

ff.s.(p, x)

∣∣∣∣∣
τ=τ0

= f

(√
p2T + p2L
phard

)
, (5.18)

where pT is the transverse momentum, pL is the longitudinal momentum and phard is the hard
momentum scale at τ0. The typical hard momentum scale of particles undergoing 0+1 dimensional
free streaming expansion is constant in time. In the case of indefinite free-streaming expansion the
system never reaches thermal equilibrium and so the system strictly cannot have a temperature
associated with it; however, since our assumed distribution function is isotropic at τ = τ0, we can
identify the initial “temperature” of the system, T0, with the hard momentum scale phard when
comparing hydrodynamic and free streaming expansion.
Eq. (5.17) has a family of solutions which are boost invariant along the z (beam) axis

ff.s.(p, x) = f ( pT , pL t − E z ) . (5.19)

Therefore, the functional dependence of the distribution function for the free streaming case is of
the form

ff.s.(p, x) = f

(√
p2T + (pLt− Ez)2/τ20

T0

)
. (5.20)

This distribution function can be simplified if we change to co-moving coordinates

pL = pT sinh y , E = pT cosh y , (5.21a)

z = τ sinh η , t = τ cosh η , (5.21b)

where, as usual, y is the momentum-space rapidity, τ is the proper time, and η is the space-time
rapidity. In terms of these variables one obtains

ff.s.(p, x) = f

(
pT
T0

√
1 +

τ2

τ20
sinh2 (y − η)

)
. (5.22)

Note that in the case of indefinite free-streaming at late times the quark and anti-quark longitudinal
momentum are highly red-shifted reducing late time emission of high-energy dilepton pairs.
As written in Eq. (6.27) the anisotropy parameter is related with the average transverse and

longitudinal momenta of the partons. The average momentum-squared values appearing there are
defined in the standard way

< p2T,L >≡
∫
d3p p2T,L f(p, x)∫
d3p f(p, x)

. (5.23)

Using the 0+1 dimensional free streaming distribution given in Eq. (5.22) and transforming to co-
moving coordinates defined in (5.21) so that d3p → p2T cosh y dpT dy we obtain

〈p2T 〉f.s. ∝ 2T 2
0 , (5.24a)

〈p2L〉f.s. ∝ T 2
0

τ20
τ2

. (5.24b)

Inserting these expressions into the general expression for ξ given in Eq. (6.27) one obtains ξf.s.(τ) =
τ2/τ20 −1. With this in hand we can also determine proper time dependence of the energy density in
the free-streaming case by substituting this expression for ξ into Eq. (5.13), Ef.s.(τ) = E0 R(ξf.s.(τ)).
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At early times one must use the full expression given by Eq. (5.13); however, at late times one can
expand this result to obtain Ef.s.(τ) ∝ τ0/τ as expected for a 0+1 free streaming plasma [162].

Summarizing, one finds in the 0+1 free streaming case that in the limit τ ≫ τ0

n(τ) = n0

(τ0
τ

)
, (5.25a)

phard(τ) = phard(τ = 0) = T0 , (5.25b)

E(τ) = E0
(τ0
τ

)
, (5.25c)

ξ(τ) =
τ2

τ20
− 1 . (5.25d)

With the distribution function given by Eq. (5.22), the dilepton spectrum can be calculated. As
a function of the invariant mass M , one obtains [83]

dN l+l−

f.s.

dydM2
=

5α2

72π3
R2

T M
2 τ20

∫
x1 x2 dx1 dx2 dy1 dy2 d(τ/τ0)

2

× [(x1x2)
2 − (x1x2 cosh (y1 − y2)− 1/2)2 ]−1/2

× f q
f.s.

(
M

T0
x1

√
1 +

( τ
τ0

)2
sinh2 y1

)
f q̄
f.s.

(
M

T0
x2

√
1 +

( τ
τ0

)2
sinh2 y2

)
. (5.26)

In the last expression, the integration is over all xi from 0 to +∞ and over all yi from −∞ to ∞
subject to the constraint

1

cosh(y1 − y2) + 1
6 2x1x2 6

1

cosh(y1 − y2)− 1
.

As a function of the transverse momentum, pT , the dilepton production using free streaming case
we obtain2

dN l+l−

f.s.

dM2d2pTdy
=

5α2

36π4
R2

T τ
2
0

∫ x−

x+

x dx dy1 dy2 d(τ/τ0)
2 f q

f.s.

(
x M

T0

√
1 +

( τ
τ0

)2
sinh2 y1

)

×f q̄
f.s.

(
M

T0

((mT

M

)2
+ x2 − 2

mT

M
x cosh(y1 − y2) +

( τ
τ0

)2(mT

M
sinh y2 − x sinh y1

)2)1/2
)

×
{(pT

M
x
)2

−
(mT

M
x cosh(y1 − y2)−

1

2

)2}−1/2

, (5.27)

with

x± =
M

2 (mT cosh (y1 − y2) ± pT )
. (5.28)

We have verified that using the expressions listed in Eq. (5.25) our direct numerical integration of
the rate given in Eq. (5.8) over space-time via Eqs. (5.11) reproduces this analytic result in the
free-streaming limit.

We note in closing that as a solution of the collisionless (non-interacting) Boltzmann equation,
the free-streaming case can be taken as an upper bound on the magnitude of the plasma anisotropy
parameter since for fixed 〈p2T 〉 (no transverse expansion/contraction) ξ cannot be larger than the
free-streaming value by causality.

2In the original article by Kapusta et. al [154], the calculation of dN l+l−/dydM2d2pT was not presented.
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5.2.3. Momentum-space Broadening in an Expanding Plasma

In the previous two subsections we presented details of the limiting cases for 0+1 dimensional plasma
evolution: 0+1 ideal hydrodynamic expansion and 0+1 dimensional free streaming, with the former
arising if there is rapid thermalization of the plasma and the latter arising if the plasma has no
interactions. We would now like to extend these models to include the possibility of momentum-
space broadening of the plasma partons due to interactions (hard and soft). This can be accomplished
mathematically by generalizing our expression for ξ(τ) to

ξ(τ, δ) =

(
τ

τ0

)δ

− 1 . (5.29)

In the limit δ → 0, ξ → 0 and one recovers the 0+1 hydrodynamical expansion limit and in the
limit δ → 2 one recovers the 0+1 dimensional free streaming limit, ξ → ξf.s. For general δ between
these limits one obtains the proper time dependence of the energy density and temperature by
substituting (5.29) into the general expression for the factorized energy density (5.13) to obtain
E(τ, δ) = E0 R(ξ(τ, δ)). In the limit τ ≫ τ0 this gives the following scaling relations for the number
density, energy density, and hard momentum scale

n(τ) = n0

(τ0
τ

)
, (5.30a)

phard(τ) = T0

(τ0
τ

)(1−δ/2)/3

, (5.30b)

E(τ) = E0
(τ0
τ

)4(1−δ/8)/3

. (5.30c)

Different values of δ arise dynamically from the different processes contributing to parton isotropiza-
tion. Below we list the values of δ resulting from processes which are relevant during the earliest
times after the initial nuclear impact.

Collisional Broadening via Elastic 2↔2 collisions

In the original version of the bottom up scenario [26], it was shown that, even at early times
after the nuclear impact, elastic collisions between the liberated partons will cause a broadening of
the longitudinal momentum of the particles compared to the non-interacting, free-streaming case.

During the first stage of the bottom-up scenario, when 1 ≪ Qsτ ≪ α
3/2
s , the initial hard gluons

have typical momentum of order Qs and occupation number of order 1/αs. Due to the fact that the
system is expanding at the speed of light in the longitudinal direction Ng ∼ Q3

s/(αsQsτ). If there
were no interactions this expansion would be equivalent to 0+1 free streaming and the longitudinal
momentum pL would scale like 1/τ . However, when elastic 2 ↔ 2 collisions of hard gluons are
taken into account [26], the ratio between the longitudinal momentum pL and the typical transverse
momentum of a hard particle pT decreases as

〈p2L〉
〈p2T 〉

∝ (Qsτ)
−2/3 . (5.31)

Assuming, as before, isotropy at the formation time, τ0 = Q−1
s , this implies that for a collisionally-

broadened plasma δ = 2/3. Note that, as obtained in Ref. [26], the derivation of this result makes
an implicit assumption that the elastic cross-section is screened at long distances by an isotropic
real-valued Debye mass. This is not guaranteed in an anisotropic plasma as the Debye mass can be
become complex due to the chromo-Weibel instability [2]. However, at times short compared to the
time scale where plasma instabilities become important, we expect the isotropic result to hold to
good approximation.
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Effect of Plasma Instabilities

Plasma instabilities affect the first stage of bottom-up scenario [36]. These instabilities are charac-
terized by the growing of chromo-electric and -magnetic fields Ea and Ba. These fields bend the
particles and how much bending occurs will depend on the amplitude and domain size of the induced
chromofields. Currently, the precise parametric relations between the amount of plasma anisotropy
and amplitude and domain size of the chromofields are not known from first principles. There are
three possibilities for how the chromo-Weibel instability will affect isotropization of a QGP proposed
in the literature [88, 89, 90]

〈p2L〉
〈p2T 〉

∼ (Qsτ)
− 1

2

(
1

1+ν

)
, (5.32)

where

ν =






0 Ref.[88] ,

1 Ref.[89] ,

2 Nielsen-Olesen limit, Ref.[90] .

(5.33)

These results correspond to δ = 1/2, δ = 1/4, and δ = 1/6, respectively.

Summary and Discussion

Summarizing, the coefficient δ takes on the following values

δ =






2 Free streaming expansion ,

2/3 Collisional-Broadening, Ref.[26] ,

1/2 Ref.[88] ,

1/4 Ref.[89] ,

1/6 Nielsen-Olesen limit, Ref.[90] ,

0 Hydrodynamic expansion .

(5.34)

The exponents in Eq. (5.34) are a direct consequence of the relation between the anisotropy parameter
ξ and the longitudinal and transverse momentum given in Eq. (6.27). The exponent δ indicates
which kind of broadening we are considering. Notice that δ=2 (0) reproduces the behaviour of free
streaming (hydrodynamic) expansion.

In Fig. 5.2 we sketch the time-dependence of the plasma anisotropy parameter indicating the
time scales at which the various processes become important. At times shorter than the mean
time between successive elastic scatterings, τMFP, the system will undergo 0+1 dimensional free
streaming with δ = 2. For times long compared to τMFP but short compared to τInstability the
plasma anisotropy will grow with the collisionally-broadened exponent of δ = 2/3. Here τInstability is
the time at which instability-induced soft gauge fields begin to influence the hard particles’ motion.
When τInstability < τ < τiso the plasma anisotropy grows with the slower exponent of δ = 1/6 . . .1/2
due to the bending of particle trajectories in the induced soft-field background. At times large
compared to τInstability inelastic processes are expected to drive the system back to isotropy [26]. We
note here that for small ξ and realistic couplings it has been shown [43] that one cannot ignore the
effect of collisional-broadening of the distribution functions and that this may completely eliminate
unstable modes from the spectrum.

Based on such a sketch one could try to construct a detailed model which includes all of the various
time scales and study the dependence of the process under consideration on each. However, due to the
current theoretical uncertainties in each of these time scales and their dependences on experimental
conditions we choose to use a simpler approach in which we will construct two phenomenological
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Figure 5.2.: Sketch of the time dependence the plasma anisotropy indicating the various time-scales
and processes taking place. Here τMFP is the time between elastic collisions (mean-free
time) and τInstability is the time at which plasma-instability induced soft modes have
grown large enough to affect hard particle dynamics.

models which smoothly interpolate the coefficient δ

Free streaming interpolating model : 2 ≥ δ ≥ 0 ,

Collisionally-broadened interpolating model :
2

3
≥ δ ≥ 0 .

In both models we introduce a transition width, γ−1, which governs the smoothness of the transition
from the initial value of δ ∈ {2, 2/3} to δ = 0 at τ ∼ τiso. The free streaming interpolating model will
serve as an upper-bound on the possible effect of early time momentum-space anisotropies while the
collisionally-broadened interpolating model should provide a more realistic estimate of the effect due
to the lower anisotropies generated. This will help us gauge our theoretical uncertainties. Note that
by using such a smooth interpolation one can achieve a reasonable phenomenological description
of the transition from non-equilibrium to equilibrium dynamics which should hopefully capture the
essence of the physics. In the next section we will give mathematical definitions for these two models.

5.2.4. Space-Time Interpolating Models with Fixed Initial Conditions

In order to construct our interpolating models, the parameter δ should be a function of proper time.
To accomplish this, we introduce a smeared step function

λ(τ, τiso, γ) ≡
1

2

(
tanh

[
γ(τ − τiso)

τiso

]
+ 1

)
, (5.35)

where γ−1 sets the width of the transition between non-equilibrium and hydrodynamical evolution
in units of τiso. In the limit when τ ≪ τiso, we have λ→ 0 and when τ ≫ τiso we have λ→ 1.

Physically, the energy density E should be continuous as we change from the initial non-equilibrium
value of δ to the final isotropic δ = 0 value appropriate for ideal hydrodynamic expansion. Once the
energy density is specified this immediately gives us the time dependence of the hard momentum
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Figure 5.3.: Temporal evolution using our fixed initial condition free-streaming interpolating model
(δ = 2) for the energy density (left column), hard momentum scale (middle column),
and anisotropy parameter (right column) for four different isotropization times τiso ∈
{1, 4, 6, 18} τ0. The transition width is taken to be (top row) γ = 2 and (bottom row)
γ = 0.5. To convert to physical scales use τ0 ∼ 0.3 fm/c for RHIC and τ0 ∼ 0.1 fm/c for
LHC.

scale. We find that for general δ this can be accomplished with the following model

ξ(τ, δ) = (τ/τ0)
δ(1−λ(τ)) − 1 , (5.36a)

E(τ) = E0 R (ξ) Ū4/3(τ) , (5.36b)

phard(τ) = T0 Ū1/3(τ) , (5.36c)

with R(ξ) defined in Eq. (5.14) and for fixed initial conditions

U(τ) ≡
[
R
(
(τiso/τ0)

δ − 1
)]3λ(τ)/4 (τiso

τ

)1−δ(1−λ(τ))/2

, (5.37a)

Ū(τ) ≡ U(τ) /U(τ0) . (5.37b)

The power of R in U keeps the energy density continuous at τ = τiso for all γ. In the following
subsections we will briefly discuss the two interpolating models we consider in this work.

Free streaming interpolating model

Using Eqs. (5.36) and (5.37) we can obtain a model which interpolates between early-time 0+1 di-
mensional longitudinal free streaming and late-time 0+1 dimensional ideal hydrodynamic expansion
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Figure 5.4.: Temporal evolution using our fixed initial condition collisionally-broadened interpolating
model (δ = 2/3) for the energy density (left column), hard momentum scale (middle
column), and anisotropy parameter (right column) for four different isotropization times
τiso ∈ {1, 4, 6, 18} τ0. The transition width is taken to be (top row) γ = 2 and (bottom
row) γ = 0.5. To convert to physical scales use τ0 ∼ 0.3 fm/c for RHIC and τ0 ∼ 0.1
fm/c for LHC.

by choosing δ = 2. With this choice and in the limit τ ≪ τiso, we have λ → 0 and the system
undergoes 0+1 dimensional free streaming. When τ ≫ τiso then λ→ 1 and the system is expanding
hydrodynamically. In the limit γ → ∞, λ → Θ(τ − τiso), the system makes a theta function tran-
sition from free streaming to hydrodynamical evolution with the energy density being continuous
during this transition by construction. In Fig. 5.3 we plot the time-dependence of E , phard, and ξ
assuming (top) γ = 2 and (bottom) γ = 0.5 for different values of τiso. As can be seen from this
figure for fixed initial conditions during the period of free-streaming evolution the system always has
a higher effective temperature (phard) than would be obtained by a system which undergoes only
hydrodynamic expansion from the formation time. As we will show in the results section, for fixed
initial conditions, this results in a sizable enhancement in high-energy dilepton production.

Collisionally-broadened interpolating model

Similarly using Eqs. (5.36) and (5.37) we can obtain a model which interpolates between early-time
0+1 dimensional collisionally-broadened expansion and late-time 0+1 dimensional ideal hydrody-
namic expansion by choosing δ = 2/3. In Fig. 5.4 we plot the time-dependence of E , phard, and ξ
assuming (top) γ = 2 and (bottom) γ = 0.5 for different values of τiso. As in the free-streaming in-
terpolating model for fixed initial conditions at early times a collisionally-broadened system always
has a higher effective temperature (phard) than would be obtained by a system which undergoes
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Figure 5.5.: Percentage entropy generation using fixed initial condition interpolating models (5.36)
and (5.37) with δ = 2 and δ = 2/3. Horizontal lines show 10% and 20% entropy
generation bounds.

Model RHIC – 10% RHIC – 20% LHC – 10% LHC – 20%

δ = 2 τiso ≤ 0.8 fm/c τiso ≤ 1.2 fm/c τiso ≤ 0.26 fm/c τiso ≤ 0.4 fm/c
δ = 2/3 τiso ≤ 5 fm/c τiso ≤ 18 fm/c τiso ≤ 1.6 fm/c τiso ≤ 6.2 fm/c

Table 5.1.: Bounds on τiso imposed by requiring either a 10% or 20% bound on percentage entropy
(particle number) generation from our fixed initial condition interpolating models. To
convert to physical scales we have used τ0 = 0.3 fm/c for RHIC and τ0 = 0.1 fm/c for
LHC.

only hydrodynamic expansion from the formation time. As we will show in the results section, for
fixed initial conditions, this results in an enhancement in high-energy dilepton production; however,
compared to the free-streaming case the effect is reduced due to the lower effective temperatures ob-
tained by the collisionally-broadened plasma. We also note that in the case of collisionally-broadened
expansion the magnitude of ξ is significantly reduced as compared to the free-streaming case. As
can be seen from the rightmost panel of Fig. 5.4, even if one assumes a large isotropization time,
τiso = 18 τ0, the amount of momentum space anisotropy generated is small with ξmax ∼ 2.5 for γ = 2
and ξmax ∼ 1.5 for γ = 0.5.

5.2.5. Space-Time Interpolating Models with Fixed Final Multiplicity

In the previous subsection we constructed models which allow one to interpolate between an initially
non-equilibrium plasma to an isotropic equilibrium one assuming that the initial conditions are held
fixed. One problem with this procedure is that given fixed initial conditions these interpolating
models will result in generation of particle number during the transition from δ ∈ {2, 2/3} to zero.
One can derive an expression for the amount by which the number density is increased by starting
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from the general expression for the particle number density n(τ)/n0 = (phard/T0)
3
(1 + ξ(τ))−1/2

and using the expression for phard derived in the previous section (5.36c) to obtain

n(τ)

n0
=

Ū(τ)√
1 + ξ(τ)

. (5.38)

Taking the limit τ ≫ τiso we obtain

lim
τ≫τiso

n(τ)

n0
=
τiso
τ

(
τiso
τ0

)δ/2−1 [
R
(
(τiso/τ0)

δ − 1
)]3/4

. (5.39)

Translating this into a statement about the entropy generation using S(τ) = τn(τ) gives

lim
τ≫τiso

S(τ)

S0
=

(
τiso
τ0

)δ/2 [
R
(
(τiso/τ0)

δ − 1
)]3/4

. (5.40)

When either δ → 0 or τiso → τ0, ∆S ≡ (Sfinal − S0)/S0 goes to zero and there is no entropy
generation; however, entropy generation increases monotonically with δ. In the limit of large τiso/τ0
we find

lim
τiso→∞

∆S

S0
=

(
τiso
τ0

) δ
8

− 1 . (5.41)

Again we see that in the limit that either δ → 0 or τiso → τ0 then there is no entropy generation.
The requirement of bounded entropy generation can be used to constrain non-equilibrium models

of the QGP [163]. In Fig. 5.5 we plot the entropy generation (particle number generation) resulting
from our models using Eq. (5.40) for δ ∈ {2, 2/3} along with bounds at 10% and 20%. In the free-
streaming interpolating model (δ = 2) with fixed initial conditions, requiring that the percentage
entropy generation be less than each of these bounds requires τiso ≤ 2.6 τ0 for the 10% bound and
τiso ≤ 4 τ0 for the 20% bound. In the collisionally-broadened interpolating model (δ = 2/3) with
fixed initial conditions we obtain similarly τiso ≤ 17 τ0 for the 10% bound and τiso ≤ 62 τ0 for the
20% bound. We summarize our results in Table 5.1. As can be seen from Table 5.1, requiring the
listed bounds on entropy generation the values of τiso allowed in our free-streaming interpolating
model become highly constrained. However, in the case of the collisionally-broadened interpolating
model the upper-bounds imposed on τiso are much larger due to the much lower entropy generation
required to transition from collisionally-broadened evolution to hydrodynamic evolution.
One problem with our fixed initial condition family of models is that due to the fact that they

generate additional particles the multiplicity of final particles is not independent of the assumed
value of τiso. Because most of the experimental results for dilepton spectra are binned with respect
to a fixed final multiplicity this means that we should also construct models which always result in
a fixed final number density. In the following subsection we will show how this can be accomplished.

Enforcing Fixed Final Multiplicity

We will now construct interpolating models which have a fixed final entropy (multiplicity). In order
to accomplish this, the initial conditions will have to vary as a function of the assumed isotropization
time. We will show that, as a result, for finite τiso one must lower the initial “temperature” in both
the free-streaming and collisionally-broadened interpolating models. To accomplish this requires
only a small modification to the definition of Ū in Eq. (5.37)

Ū(τ) ≡ U(τ) /U(τ+iso) , (5.42a)

U(τ+iso) ≡ lim
τ→τ+

iso

U(τ) =
[
R
(
(τiso/τ0)

δ − 1
)]3/4 (τiso

τ0

)
. (5.42b)
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Figure 5.6.: Temporal evolution using our fixed final multiplicity interpolating models for the energy
density (left column), hard momentum scale (middle column), and anisotropy parameter
(right column) for four different isotropization times τiso ∈ {1, 4, 6, 18} τ0. Top row is
the free-streaming interpolation model (δ = 2) and bottom row is the collisionally-
broadening interpolation model (δ = 2/3). To convert to physical scales use τ0 ∼ 0.3
fm/c for RHIC and τ0 ∼ 0.1 fm/c for LHC.

As a consequence of this modification, the initial energy density and hence initial “temperature” will
depend on the assumed value for τiso. There is no modification required for the temporal evolution
of ξ. We demonstrate this in Fig. 5.6 where we plot the time-dependence of E , phard, and ξ for γ = 2
and (top) δ = 2 and (bottom) δ = 2/3.
In the remainder of this work we present our final results for dilepton yields using both approaches,

i.e. fixed initial conditions using Eqs. (5.36) with (5.37) or fixed final multiplicity through Eq. (5.36)
with (5.42). We mention that in both cases, dilepton production is affected in the presence of
anisotropies in momentum-space, however, one anticipates that the effect will be larger when the
initial conditions are held fixed due to the larger particle number generation. We will come back to
this issue in the conclusions and discussion.

5.2.6. Results of high energy dileptons in the central rapidity region

In this section we will present the expected e+e− yields resulting from a central Au-Au collision at
RHIC full beam energy,

√
s=200 GeV and from a Pb-Pb collision at LHC full beam energy,

√
s=5.5

TeV. In all figures in this section we will present the prediction for RHIC energies in the left panel
and LHC energies in the right panel.
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Before presenting our results we first explain the setup, numerical techniques used, and parameters
chosen for our calculations. Because the differential dilepton rate dRl+l−/d4P given in Eq. (5.8)
is independent of the assumed space-time model, we first evaluated it numerically using double-
exponential integration with a target precision of 10−9. The result for the rate was then tabulated
on a uniformly-spaced 4-dimensional grid in M , pT , y, and log10 ξ : M/phard, pT /phard ∈ {0.1, 25},
y ∈ {−3, 3}, log10 ξ ∈ {−6, 4}. This table was then used to build a four-dimensional interpolating
function which was valid at continuous values of these four variables. We then boosted this rate
from the local reference frame to center-of-mass frame and evaluated the remaining integrations over
space-time (τ and η) and transverse momentum or invariant mass appearing in Eqs. (5.11) using
quasi-Monte Carlo integration with τ ∈ {τ0, τf}, η ∈ {−2.5, 2.5} and, depending on the case, restrict
the integration to any cuts specified in M or pT . Our final integration time, τf , was set by solving
numerically for the point in time at which the temperature in our interpolating model is equal to
the critical temperature, i.e. phard(τf ) = TC . We will assume that when the system reaches TC ,
all medium emission stops. We are not taking into account the emission from the mixed/hadronic
phase at late times since the kinematic regime we study (high M and pT ) is dominated by early-time
high-energy dilepton emission [156, 82].
For RHIC energies we take an initial temperature T0= 370 MeV, at a formation time of τ0= 0.26

fm/c, and use RT= 6.98 fm. For LHC energies, we use τ0= 0.088 fm/c, T0= 845 MeV and RT= 7.1
fm. In both cases, the critical temperature TC is taken as 160 MeV and the spectra are calculated at
central rapidity region y = 0. Any cuts in transverse momentum or invariant mass will be indicated
along with results. Note that the precise numerical value of the parameters above were chosen solely
in order to facilitate straightforward comparisons with previous works [146] from which we have
obtained predictions for Drell Yan, heavy quark, jet-fragmentation, and jet-thermal dilepton yields.
Finally we note that below we will use K-factors to adjust for next-to-leading order corrections

to the dilepton rate. These K-factors are determined by computing the ratio of the next-to-leading
order prediction of [137, 146] with our leading order prediction in the case of ideal-hydrodynamic
expansion. We therefore assume that the K-factors are independent of the assumed thermalization
time. This is an approximation which, in the future, one would like to relax by computing the full
next-to-leading order dilepton rate in the presence of momentum-space anisotropies.

5.2.7. Dilepton production with fixed initial conditions

We now present the results of dilepton production assuming the time dependence of the energy
density, the hard momentum scale and the anisotropy parameter are given by Eqs. (5.36) and (5.37)
with δ ∈ {2, 2/3}.

Free streaming interpolating model

In Fig. 5.7, we show our predicted dilepton mass spectrum for RHIC and LHC energies assuming
the time dependence of the energy density, the hard momentum scale and the anisotropy parameter
are given by Eqs. (5.36) and (5.37) with δ = 2. This corresponds to our free-streaming interpo-
lating model. This model will serve as an upper-bound on the possible effect of momentum-space
anisotropies on dilepton yields. From Fig. 5.7 we see that for both RHIC or LHC energies, there
is a significant enhancement of up to one order of magnitude in the medium dilepton yield when
we vary the isotropization time from τ0 to 2 fm/c. This enhancement is due to the fact that in
0+1 dimensional free streaming, the system preserves more transverse momentum as can be seen
from Fig. 5.3. For fixed initial conditions this results in a larger effective temperature than would
be obtained if the system underwent locally-isotropic (hydrodynamical) expansion throughout its
evolution.
Nevertheless, as Fig. 5.7 shows, as a function of invariant mass, the other contributions to high-

energy dilepton yields (Drell-Yan, jet-thermal, and jet-fragmentation) are all of the same order
of magnitude as the medium contribution. This, coupled with the large background coming from
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Figure 5.7.: Free-streaming interpolating model dilepton yields as a function of invariant mass in
central Au+Au collisions at RHIC (top) and Pb+Pb at the LHC (bottom), with a cut
pT ≥ 4 (8) GeV and rapidity y=0. For medium dileptons we use γ=2 and τiso is taken
to be either 0.26 (0.088) fm/c or 2 fm/c for RHIC (LHC) energies with fixed initial
conditions. A K-factor of 1.5 was applied to account for NLO corrections. Dilepton
yields from Drell Yan, Heavy Quarks, Jet-Thermal and Jet-Fragmentation were obtained
from Ref. [146].
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Figure 5.8.: Free-streaming interpolating model dilepton yields as a function of transverse momentum
in central Au+Au collisions at RHIC (top) and Pb+Pb at the LHC (bottom), with a
cut 0.5 ≤ M ≤ 1 GeV and rapidity y=0. For medium dileptons we use γ=2 and τiso is
taken to be either 0.26 (0.088) fm/c or 2 fm/c for RHIC (LHC) energies with fixed initial
conditions. A K-factor of 6 was applied to account for NLO corrections. Dilepton yields
from Drell Yan, Jet-Thermal and Jet-Fragmentation were obtained from Ref. [146].
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semileptonic heavy quarks decays, would make it extremely difficult for experimentalists to extract a
clean medium dilepton signal from the invariant mass spectrum. For this reason it does not look very
promising to determine plasma initial conditions from the dilepton invariant mass spectrum. For
this reason we will not present our predictions for the invariant mass spectrum for the intermediate
models detailed below and only return to the invariant mass spectrum at the end of this section for
completeness.
The good news is, however, that as a function of transverse momentum, see Fig. 5.8, the production

of medium dileptons is expected to dominate other production mechanisms for pT . 4 (6) GeV in
the case of RHIC (LHC). In addition to this, we see that for the free-streaming interpolating model
that there is a significant enhancement of medium dileptons for both RHIC and LHC energies.
In order to quantify the effect of time-dependent pre-equilibrium emissions we define the “dilepton

enhancement”, φ(τiso), as the ratio of the dilepton yield obtained with an isotropization time of τiso
to that obtained from an instantaneously thermalized plasma undergoing only 0+1 hydrodynamical
expansion, ie. τiso = τ0.

φ(τiso) ≡
(
dNe+e−(τiso)

dydp2T

)/(
dNe+e−(τiso = τ0)

dydp2T

)
(5.43)

Using this criterion we find for the free streaming interpolating model with fixed initial conditions
the dilepton enhancement at τiso = 2 fm/c can be as large as 10. However, as mentioned above we
expect that the actual enhancement will be lower due to the fact that parton interactions such as
collisional-broadening will modify the free-streaming ξ = τ2/τ20 − 1 to something growing slower in
proper time, bringing the system closer to equilibrited expansion. In addition, as we will discuss
below when using fixed initial conditions and δ = 2 there is significant entropy generation which,
when properly normalized to fixed final multiplicity, results in reduced φ. Therefore, we expect
φ ∼ 10 obtained from the free streaming interpolation model with fixed initial conditions to be an
upper-bound on the effect of pre-equilibrium emissions. Some of our results fixing initial conditions
are related with recent work on dilepton production from a viscous QGP [164].

Collisionally-broadened interpolating model

In Fig. 5.9, we show our predicted dilepton transverse momentum spectrum for RHIC and LHC
energies assuming the time dependence of the energy density, the hard momentum scale and the
anisotropy parameter are given by Eqs. (5.36) and (5.37) with δ = 2/3. This corresponds to our
collisionally-broadened interpolating model with fixed initial conditions. From Fig. 5.9 we see
that for both RHIC or LHC energies, there is dilepton enhancement in the kinematic range shown;
however, compared to the free streaming case the enhancement is reduced. This is due to the fact
that the collisionally-broadened interpolating model is always closer to locally-isotropic expansion
than the free-streaming (δ = 2) model, see Figs. 5.3 and 5.4.
In Fig. 5.10 we show the dilepton enhancement, φ, as function of transverse momentum for τiso = 2

fm/c at (top) RHIC energies (bottom) LHC energies. The invariant mass cut is the same as in Fig. 5.9
(0.5 ≤ M ≤ 1 GeV). As can be seen from Fig. 5.10 using fixed initial conditions there is a rapid
increase in φ between 1 and 3 GeV at RHIC energies and 1 and 4 GeV at LHC energies. The
precise value of the enhancement depends on the assumed width γ−1 and in Fig. 5.10 we show φ
for γ−1 ∈ {0.1, 0.5, 2}. As can be seen from this figure both sharp and smooth transitions from
early-time collisionally-broadened expansion to ideal hydrodynamic expansion result in a 40-70%
enhancement of medium dilepton yields at RHIC energies and 60-100% at LHC energies. We will
return to this in the results summary at the end of this section.
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Figure 5.9.: Collisionally-broadened interpolating model dilepton yields including collisional broad-
ening as a function of transverse momentum in central Au+Au collisions at RHIC (top)
and Pb+Pb at the LHC (bottom), with a cut 0.5 ≤ M ≤ 1 GeV and rapidity y=0.
For medium dileptons we use γ=2 and τiso is taken to be either 0.26 (0.088) fm/c or
2 fm/c for RHIC (LHC) energies with fixed initial conditions. A K-factor of 6 was
applied to account for NLO corrections. Dilepton yields from Drell Yan, Jet-Thermal
and Jet-Fragmentation were obtained from Ref. [146].
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Figure 5.10.: Dilepton enhancement, φ, as defined in Eq. (5.43) resulting from our collisionally-
broadened interpolating model (δ = 2/3) with fixed initial conditions and τiso = 2 fm/c.
The result shown here are for RHIC energies (top) and for LHC energies (bottom).
The invariant mass cut used was 0.5 ≤ M ≤ 1 GeV and rapidity y=0. Lines show
expected pre-equilibrium dilepton enhancements for different values of the transition
width γ corresponding to sharp or smooth transitions between pre-equilibrium and
equilibrium behavior.
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5.2.8. Dilepton production with fixed final multiplicity

We now present the results of the dilepton production assuming the time dependence of the energy
density, the hard momentum scale and the anisotropy parameter are given by Eqs. (5.36) and (5.42)
with δ ∈ {2, 2/3}.

Free streaming interpolating model

In Fig. 5.11, we show our predicted dilepton transverse momentum spectrum for RHIC and LHC
energies assuming the time dependence of the energy density, the hard momentum scale and the
anisotropy parameter are given by Eqs. (5.36) and (5.42) with δ = 2. This corresponds to our
free-streaming interpolating model with fixed final multiplicity. From Fig. 5.11 we see that for both
RHIC or LHC energies, there is dilepton enhancement in the kinematic range shown; however, when
fixing on final multiplicity the effect of a free-streaming pre-equilibrium phase is reduced. In fact,
for small and large pT the free-streaming interpolating model with fixed final multiplicities predicts
a suppression of dileptons. This is due to the fact that in order to maintain fixed final multiplicity
for τiso = 2 fm/c the free-streaming model initial energy density has to be reduced by ∼ 50% (see
top row of Fig. 5.6).

Collisionally-broadened interpolating model

In Figs. 5.12 and 5.13, we show our predicted dilepton invariant mass and transverse momentum
spectrum for RHIC and LHC energies assuming the time dependence of the energy density, the hard
momentum scale and the anisotropy parameter are given by Eqs. (5.36) and (5.42) with δ = 2/3.
This corresponds to our collisionally-broadened interpolating model with fixed final multiplicity. In
Fig. 5.14 we show the dilepton enhancement, φ, as function of transverse momentum for τiso = 2
fm/c at (top) RHIC energies (bottom) LHC energies. The invariant mass cut is the same as in
Fig. 5.13 (0.5 ≤ M ≤ 1 GeV). As can be seen from Fig. 5.14 similar to the case of fixed initial
conditions there is a rapid increase in φ between 1 and 3 GeV at RHIC energies and 1 and 4 GeV
at LHC energies. However, compared to the case of the collisionally-broadened interpolating model
with fixed initial condition (Fig. 5.10) the maximum enhancement is reduced slightly and we see a
more pronounced peak in φ as a function of transverse momentum appearing. As can be seen from
this figure both sharp and smooth transitions from early-time collisionally-broadened expansion to
ideal hydrodynamic expansion result in a 20-40% enhancement of medium dilepton yields at RHIC
energies, and 30-50% at LHC energies.
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Figure 5.11.: Free streaming interpolating model dilepton yields as a function of transverse momen-
tum in central Au+Au collisions at RHIC (top) and Pb+Pb at the LHC (bottom),
with a cut 0.5 ≤ M ≤ 1 GeV and rapidity y=0. For medium dileptons we use γ=2
and τiso is taken to be either 0.26 (0.088) fm/c or 2 fm/c for RHIC (LHC) energies and
fixed final multiplicity. A K-factor of 6 was applied to account for NLO corrections
and rapidity y=0. Dilepton yields from Drell Yan, Jet-Thermal and Jet-Fragmentation
were obtained from Ref. [146].
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Figure 5.12.: Collisionally-broadened interpolating model dilepton yields as a function of invariant
mass in central Au+Au collisions at RHIC (left) and Pb+Pb at the LHC (right), with
a cut pT ≥ 4 (8) GeV and and rapidity y=0. For medium dileptons we use γ=2 and
τiso is taken to be either 0.26 (0.088) fm/c or 2 fm/c for RHIC (LHC) energies and
fixed final multiplicity. A K-factor of 1.5 was applied to account for NLO corrections.
Dilepton yields from Drell Yan, Heavy Quarks, Jet-Thermal and Jet-Fragmentation
were obtained from Ref. [146].
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Figure 5.13.: Collisionally-broadened interpolating model dilepton yields as a function of transverse
momentum in central Au+Au collisions at RHIC (left) and Pb+Pb at the LHC (right),
with a cut 0.5 ≤ M ≤ 1 GeV and rapidity y=0. For medium dileptons we use γ=2
and τiso is taken to be either 0.26 (0.088) fm/c or 2 fm/c for RHIC (LHC) energies and
fixed final multiplicity. A K-factor of 6 was applied to account for NLO corrections.
Dilepton yields from Drell Yan, Jet-Thermal and Jet-Fragmentation were obtained
from Ref. [146].
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5.2.9. Summary of Results

Based on the figures presented in the previous sections we see that the best opportunity for measuring
information about plasma initial conditions is from the M < 2 GeV dilepton transverse momentum
spectra between 1 < pT < 6 GeV at RHIC and 2 < pT < 8 GeV at LHC. This is due to the fact
that medium dilepton yields dominate other mechanisms in that kinematic range and hence give
the cleanest possible information about plasma initial conditions. In all cases shown above dilepton
production is enhanced by pre-equilibrium emissions with the largest enhancements occurring when
assuming fixed initial conditions and the free-streaming interpolating model. As we have mentioned
above, this model sets the upper-bound for the expected dilepton enhancement. Our most physically
realistic model is the collisionally-broadened interpolating model with fixed final multiplicity so we
will use it for our final predictions of expected dilepton enhancement. For this model, as can be seen
from Fig. 5.14, assuming τiso = 2 fm/c we find a 20-40% enhancement in dilepton yields at RHIC
and 30-50% at LHC.
In addition we have calculated the dilepton enhancement for different assumed values for τiso.

This is shown for RHIC energies (left) and LHC energies (right) in Fig. 5.15 where we have fixed
γ = 2 and varied τiso to see the effect of varying the assumed isotropization time. As can be seen
from this figure the effect of reducing τiso is to shift the peak in φ to larger pT while at the same
time reducing the overall amplitude of the peak. This feature seems generic at both RHIC and LHC
energies. Therefore, in order to see the difference between an instantaneously thermalized QGP with
τiso = τ0 and one with a later thermalization time requires determining the medium dilepton spectra
between 1 < pT < 6 GeV at RHIC and 2 < pT < 8 GeV at LHC with high precision so that one
could measure the less than 50% variation resulting from pre-equilibrium emissions.
Finally, we point out that in Fig. 5.15 we have chosen an invariant mass cut of 0.5 < M < 1 GeV.

Since our model predicts the full yields versus M and pT it is possible to take other cuts (invariant
mass and/or transverse momentum). This could be coupled with fits to experimental data, allowing
one to fix τiso and γ via a “multiresolution” analysis. To demonstrate the dependence of φ on the
mass cut in Fig. 5.16 we show the dilepton enhancement, φ, using a mass cut of 1 < M < 2 GeV.
As can be seen from this Figure the qualitative features of our model’s predictions are similar to
the lower mass cut presented in Fig. 5.15; however, for this mass cut we see that there is a stronger
suppression of dilepton production at low and high invariant masses if there is late thermalization,
τiso & 2 fm/c. Such features can be used to constrain the model further when confronted with
experimental data.
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Figure 5.14.: Dilepton enhancement, φ, as defined in Eq. (5.43) resulting from our collisionally-
broadened interpolating model (δ = 2/3) with fixed final multiplicity and τiso = 2 fm/c.
Here we show the results for RHIC energies (top) and for LHC energies (bottom). The
invariant mass cut used was 0.5 ≤ M ≤ 1 GeV and and rapidity y=0. Lines show
expected pre-equilibrium dilepton enhancements for different values of the transition
width γ corresponding to sharp or smooth transitions between pre-equilibrium and
equilibrium behavior.
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Figure 5.15.: Dilepton enhancement, φ, as defined in Eq. (5.43) resulting from our collisionally-
broadened interpolating model (δ = 2/3) with fixed final multiplicity and γ = 2. Here
we show the results for RHIC energies (top) and for LHC energies (bottom). The
invariant mass cut used was 0.5 ≤ M ≤ 1 GeV and and rapidity y=0. Lines show
expected pre-equilibrium dilepton enhancements for different values of the assumed
plasma isotropization time, τiso.
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Figure 5.16.: Dilepton enhancement, φ, as defined in Eq. (5.43) resulting from our collisionally-
broadened interpolating model (δ = 2/3) with fixed final multiplicity and γ = 2. Here
we show the results for RHIC energies (top) and for LHC energies (bottom). The
invariant mass cut used was 1 ≤ M ≤ 2 GeV and and rapidity y=0. Lines show
expected pre-equilibrium dilepton enhancements for different values of the assumed
plasma isotropization time, τiso.
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5.3. Dilepton yields from the pre-equilibriated stage: forward
rapidity region

Our previous calculations considered high-energy dileptons in the central rapidity region. In this
section, we extend our approach by considering the impact of the momentum-space anisotropies
on the full rapidity dependence of medium dilepton production. We find that at LHC energies,
dilepton yields are suppressed by a factor of 3 around y ∼ 9 if one chooses τiso = 2 fm/c. Dilepton
production in the forward rapidity region has been studied before in relativistic heavy ion collisions
[165, 166, 167, 168, 169, 170] 3. Here we propose to use forward dileptons to experimentally determine
the time of the onset of locally isotropic hydrodynamic expansion and the degree of the anisotropy
created at early-times in high-energy nucleus-nucleus collisions.
We consider the space-time dependence of phard and ξ. In Sect. 5.2 the expansion of the plasma

was limited to be boost invariant. The inclusion of rapidity dependence breaks down this condition,
and in a realistic non-boost-invariant system phard will depend of the rapidity on the quark and
anti-quark and hence the differential dilepton rate (5.8) will depend not only on the difference of
y− η but also on η itself. Here we improve the proposed models presented in Sect. 5.2 including the
rapidity dependence of phard (see Sect. 5.3.1).
Once the space-time dependence of phard and ξ is modeled, the final rapidity spectra of high-energy

dileptons are obtained as follows

dN l+l−

dy
= πR2

T

∫
dM2d2pT

∫ τf

τ0

∫ ∞

−∞

dRl+l−

d4P
τdτdη , (5.44)

where RT = 1.2A1/3 fm is the radius of the nucleus in the transverse plane. Similar to the case
of the central rapidity region, this expression is evaluated in the center-of-mass (CM) frame while
the differential dilepton rate is calculated in the local rest frame (LR) of the emitting region. Then,
the dilepton pair energy has to be understood as ELR = pT cosh (y − η) in the differential dilepton

rate dRl+l−/d4P . Substituting the differential dilepton rate Eq. (5.8) into Eq. (5.44), we obtain the
dilepton spectrum as a function of the rapidity including the effect of a time-dependent momentum
anisotropy.
One can be worried if either transverse expansion or mixed/hadronic phases in Eq. (5.44) will

affect the production of high-energy dileptons presented here. Fortunately, in the kinematic region
studied here this is not the case and these effects turn out to be negligible (1-2% effect) compared
with the longitudinal expansion [82].

5.3.1. Space-time interpolating models with the rapidity dependence

We model the space-time evolution of the energy density (phard) by assuming that its functional form
is the product of two functions: one indicates the temporal evolution and the other one is associated
with the rapidity dependence. To take into account the temporal dependence that interpolates
from ealy-time pre-equilibrated plasma to late-time ideal hydrodynamical expansion, we use the
interpolating model for fixed final multiplicity introduced already in Sect. 5.2.8 [83]. For the rapidity
dependence we use the prescription described in [171] (see explanation below). The space-time
evolution of the energy density, the hard momentum scale and the anisotropy parameter for general
δ is given by

ξ(τ, δ) = (τ/τ0)
δ(1−λ(τ)) − 1 , (5.45a)

E(τ, η) = E0 R (ξ) Ū4/3(τ) F 4(η) , (5.45b)

phard(τ, η) = T0 Ū1/3(τ) F (η) , (5.45c)

3The author thanks to Prof.Dr. Mihai Petrovici for pointing out many of these references.
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with R(ξ) defined in Eq. (5.14). For fixed final multiplicity, we have

U(τ) ≡
[
R
(
(τiso/τ0)

δ − 1
)]3λ(τ)/4 (τiso

τ

)1−δ(1−λ(τ))/2

,

Ū(τ) ≡ U(τ) /U(τ+iso) , (5.46a)

U(τ+iso) ≡ lim
τ→τ+

iso

U(τ) =
[
R
(
(τiso/τ0)

δ − 1
)]3/4(τiso

τ0

)
. (5.46b)

δ = 2 (2/3) for the case of 1d free streaming (collisionally broadened) expansion interpolating to 1d
ideal hydrodynamic expansion. In Eq. 5.45, λ(τ, τiso, γ) is the smeared step function introduced in
Sect. 5.2.1 (Eq. 5.35)

λ(τ, τiso, γ) ≡
1

2

(
tanh

[
γ(τ − τiso)

τiso

]
+ 1

)
.

where γ−1 sets the width of the transition between non-equilibrium and hydrodynamical evolution
in units of τiso.

Compared with the interpolating model described in Sect. 5.2.1, our main goal with the modifi-
cation of the energy density phard is to explore the phenomenological consequences in the forward
rapidity region where the effect of early-time anisotropies is expected to be maximal. We are not
attempting to describe the physics of the forward rapidity region from first principles,4 instead, we
implement a Gaussian fit profile for the rapidity dependence which successfully describes experimen-
tally observed pion rapidity spectra from AGS to RHIC energies [176, 177, 178, 179, 171] and use
this to extrapolate to high energies

F (η) = exp

(
− η2

2σ2
η

)
, (5.47)

with

σ2
η =

8

3

c2s
(1− c4s)

ln (
√
sNN/2mp) , (5.48)

where cs is the sound velocity and mp is the proton mass.

Note that once the rapidity dependence in the parton momentum distribution functions is im-
plemented, boost invariance along the longitudinal axis breaks down. This procedure leads to a
violation of the conservation laws expressed by hydrodynamics unless a finite baryon chemical po-
tential is introduced [180]. It is possible to demonstrate that for a longitudinal scaling expansion,
∂P(T, µ)/∂η=0, where P is the pressure and T is the temperature. This condition is equivalent
to [110] 5

S ∂T
∂η

+ n
∂µ

∂η
= 0 , (5.49)

where S and n denote the entropy density and particle number density, respectively. In the present
context we don’t have to worry about the presence of finite chemical potentials since we are con-
sidering high-energy dilepton production and E/T ≫ µ/T is satisfied. Therefore, in the differential
dilepton rate dR/d4P , Eq.(5.8), the product of the distribution functions fq(pq,+µ) fq̄(pq̄,−µ) ≈
fq(pq) fq̄(pq̄).

In Fig. 5.17, the temporal evolution of the anisotropy parameter ξ(τ) is plotted using Eq. (5.45a).
In Fig. 5.18, we show the time and rapidity dependence of phard(τ, η) (right and left panel, respec-
tively) using Eq. (5.45c).
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Figure 5.17.: Temporal evolution of the plasma anisotropy parameter using our collisionally-
broadened interpolating model for four different isotropization times τiso ∈
{1, 4, 6, 18} τ0. The transition width is taken to be γ = 2. To convert to physical
scales use τ0 ∼ 0.1 fm/c for LHC energies.

5.3.2. Results of high-energy dileptons in the forward rapidity region

In this section, we will present our predicted dilepton yields as a function of the rapidity from a
Pb-Pb collision at LHC full beam energy,

√
sNN= 5.5 TeV. At this center-of-mass energy we use τ0=

0.088 fm/c, T0= 845 MeV, RT= 7.1 fm and the critical temperature Tc=160 MeV. The kinematic
cuts in the transverse momentum and invariant mass of the dilepton yields are indicated in the
corresponding results. Also, we use c2s = 1/3 and mp = 0.938 GeV in Eq. (5.48).
Before presenting our results we first explain the numerical procedure used for our calculations.

Because the differential dilepton rate dRl+l−/d4P given in Eq. (5.8) is independent of the assumed
space-time model, we first evaluate it numerically using double-exponential integration with a target
precision of 10−9. The result for the rate was then tabulated on a uniformly-spaced 4-dimensional
grid in M , pT , y, and ξ: M/phard, pT /phard ∈ {0.1, 20}, y ∈ {−10, 10} and ξ ∈ {0, 5}. This table was
then used to build a four-dimensional interpolating function which was valid at continuous values
of these four variables. We then boosted this rate from the local reference frame to center-of-mass
frame and evaluated the remaining integrations over space-time (τ and η), transverse momentum
and invariant mass appearing in Eq. (5.44) using quasi-Monte Carlo integration with τ ∈ {τ0, τf},
4Some proposals have been mentioned in the literature, see Ref. [172, 173, 174, 175]
5Partial derivatives with respect to η are performed at constant τ .
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Figure 5.18.: Temporal evolution (left panel) and rapidity dependence (right panel) of the hard
momentum scale, phard using our fixed final multiplicity collisionally-broadened inter-
polating model for the hard momentum scale for four different isotropization times
τiso ∈ {1, 4, 8, 16} τ0. The transition width is taken to be γ = 2. To convert to physical
units use τ0 ∼ 0.1 fm/c for LHC energies. For the rapidity dependence of phard (right
panel) we used a constant value of τ ∼ 0.1 fm/c and the width σ2

η ∼ 8.

η ∈ {−10, 10} and, depending on the case, restricted the integration to any cuts specified in M or
pT .

Our final integration time, τf , was set by solving numerically for the point in time at which the
temperature in our interpolating model is equal to the critical temperature, i.e. phard(τf , η) = TC .
We will assume that when the system reaches TC , all medium emission stops. Note that due to
the fact that phard depends on the parton rapidity, the plasma lifetime now depends on which
rapidity slice you are in, with higher rapidities having a shorter lifetime due to their lower initial
“temperature”. We are not taking into account the emission from the mixed/hadronic phase at late
times since the kinematic regime we study (high M and pT ) is dominated by early-time high-energy
dilepton emission [82, 156].

We show our predicted dilepton spectrum as a function of the pair rapidity, y, for LHC energies
using our model described by Eqs. (5.45) in Fig. 5.19. From this, we see that for LHC energies
there is a suppression when we vary the isotropization time from τ0 to 2 fm/c. This suppression
can be explained qualitatively by two mechanisms. The first one, the anisotropic nature of the
distribution function as a consequence of the rapid expansion implies that dileptons with larger values
of longitudinal momentum are reduced compared with the case of an isotropic distribution function.
The suppression will depend on the maximum amount of momentum-space anisotropy achieved at
early times and also on the time dependence of the anisotropy parameter ξ. Here we consider a
realistic scenario for a collisionally-broadened plasma. The other source of rapidity dependence of
the final dilepton spectra is related to the fact that the hard momentum scale (“temperature”)
depends explicitly on the rapidity η, even in the case of instantaneous thermalization. To generate
Fig. 5.19 we have applied a cut M ≥ 2 GeV and PT ≥ 100 MeV. As can be seen from this figure
an isotropization time of τiso = 2 fm/c results in fewer dileptons as compared to “instantaneous”
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Figure 5.19.: Fixed final multiplicity condition collisionally-broadened interpolating model dilepton
yields as a function of rapidity in Pb-Pb collisions at LHC, with a cut M ≥ 2 GeV and
PT ≥ 100 MeV. For medium dileptons we use γ = 2 and τiso to be either 0.088 or 2
fm/c for LHC energies.

isotropization τiso = 0.088 fm/c. This suppression is enhanced at forward rapidities.
In order to quantify the effect of the pre-equilibrium emission we define the “dilepton modification”

factor as the ratio of the dilepton yield obtained with an isotropization time of τiso to that obtained
from an instantaneously thermalized plasma undergoing only 0+1 hydrodynamical expansion, ie.
τiso = τ0

Φ(τiso) ≡
(
dNe+e−(τiso)

dy

)/(
dNe+e−(τiso = τ0)

dy

)
. (5.50)

This ratio measures how large the effect of early-time momentum anisotropies are on medium
dilepton production. In the case of instantaneous isotropization, Φ(τiso) is unity, and for τiso > τ0 any
deviation from unity indicates a modification of medium dilepton production due to pre-equilibrium
emissions.
In Fig. 5.20 we show our prediction for the rapidity dependence of the high-energy dilepton mod-

ification factor, Φ(τiso), for three different assumed plasma isotropization times, τiso ∈ { 0.1,1,2}
fm/c. To generate this figure we have applied a cut M ≥ 2 GeV and PT ≥ 100 MeV. As can be
seen from this figure a isotropization time of τiso = 2 fm/c results in fewer dileptons as compared to
“instantaneous” isotropization τiso = 0.088 fm/c. This suppression is enhanced at forward rapidities
and reaches a maximum suppression of a factor of 3 at extremely forward rapidities.
Using the dilepton modification factor as our criterion we find that for our collisionally-broadened

interpolating model with fixed final multiplicity, the dilepton yields as a function of the rapidity at
τiso = 2 fm/c can be suppressed up to ∼ 20% for 0< y . 4. The suppression of dilepton yields
is more dramatic at rapidity values around y ∼ 9 and can be as large as a factor of 3. With



80 5. Dilepton production from an anisotropic quark-gluon plasma

0 1 2 3 4 5 6 7 8 9 10
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
D

ile
pt

on
 m

od
ifi

ca
tio

n 
, Φ

(τ
is

o 
)

τ
iso

 = 0.088 fm/c

τ
iso

 = 1 fm/c

τ
iso

 = 2 fm/c

Figure 5.20.: Predicted dilepton modification factor, Φ(τiso), for three different assumed plasma
isotropization times, τiso ∈ { 0.1,1,2} fm/c. Cuts are the same as in Fig. 5.19.

sufficiently accurate experimental results this could give an experimental method for determining
the isotropization time of a quark gluon plasma as formed in an ultrarelativistic nuclear collision.

5.4. Conclusions

In this chapter we show that dilepton yields are a sensitive observable for determining early-time
momentum space anisotropies. We proposed two models that take into account the evolution of
the space-time momentum anisotropy of the parton distribution functions. Our phenomenological
models interpolate from 0+1 pre-equilibrium expansion (free streaming and collisionally broadening)
at early times to 0+1 ideal hydrodynamics. To do that, we included the proper-time dependence of
the parton hard momentum scale, phard, and the anisotropy parameter of the QGP plasma, ξ. We
generalized our models by including the rapidity dependence of phard.
In the central region, dilepton production as a function of the transverse momentum is a promising

observable to obtain information about τiso at RHIC and LHC energies. High pT dileptons are
sensitive to the assumed value τiso. Our calculations indicate that high pT dileptons are enhanced
at RHIC energies in the kinematic range 1 < pT < 6 GeV and at LHC energies, 2 < pT < 8 GeV.
Additionally, it may be possible to estimate the maximum amount of momentum-space anisotropy
achieved during the lifetime of the QGP using the phenomenological model presented here. The
effect of varying τiso is also large in the dilepton spectra vs invariant mass but Drell-Yan and jet
conversion production can be on the same order (or even larger) than medium dilepton production,
thus making it difficult to measure a clean medium dilepton signal. In the forward rapidity region
we find that forward dilepton production is suppressed; for 0 < y . 4, forward dileptons can be
20% suppressed compared with an ‘instantaneous’ equilibrated QGP plasma whereas for y ∼ 9 the
suppression factor can be up to a factor of 3.
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Future work on dilepton production will incorporate the possibility of late-time persistent anisotropies
(finite viscosity), NLO order corrections and finite chemical potentials. In addition, the proposed
interpolating models can be used to assess the impact of momentum-space anisotropies on other ob-
servables such as jet-medium-induced electromagnetic radiation, photon production and heavy-quark
transport.
In the next chapter we will construct a method for matching early-time pre-equilibrium dynamics

to 2nd order viscous hydrodynamics and discuss constraints which can be placed on the matching
time and matched values.
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6. Constraining the onset of relativistic
viscous hydrodynamics

But he also recognized that knowledge never stayed still, and

that today’s certainties might become tomorrow’s

superstitions. Therefore the intelectual duty to continue

looking never ceased.

Arthur & George

Julian Barnes.

Historically, in order to make phenomenological predictions for experimental observables, fluid
hydrodynamics has been used to model the space-time evolution and non-equilibrium properties of
the expanding matter. The validity of hydrodynamics relies on the assumption that the mean free
path is small compared with the size of the system. However, the hot and dense matter created in
the collisions between heavy ions expands at almost the speed of light, thus casting doubt on the
applicability of fluid hydrodynamics to ultrarelativistic heavy ion collisions.
After the first results of RHIC, it was somewhat of a surprise that ideal hydrodynamics could

reproduce the hadron transverse momentum spectra in central and semi-peripheral collisions. Ideal
hydrodynamical models were fairly successful in describing the dependence of v2 on the hadron rest
mass for transverse momenta up to about 1.5-2 GeV/c [22, 23, 24, 25]. This observation led to the
conclusion that the QGP formed at RHIC could have a short thermalization time (τhydro . 1 fm/c)
and a low shear viscosity. 1 As a result, it was posited that the matter created in the experiment
behaves like a nearly perfect fluid starting at very early times after the collision. However, recent
results from viscous hydrodynamical simulations which include all 2nd-order transport coefficients
consistent with conformal symmetry [1] have shown that estimates of the thermalization time are
rather uncertain due to poor knowledge of the proper initial conditions, details of plasma hadroniza-
tion, subsequent hadronic cascade, etc. As a result, it now seems that thermalization times of up to
τhydro ∼ 2 fm/c are not completely ruled out by RHIC data.
One of the key ingredients necessary to perform any numerical simulation using fluid hydrody-

namics is the proper choice of initial conditions at the initially simulated time (τhydro). These initial
conditions include the initial fluid energy density ǫ, the initial components of the fluid velocity uµ

and the initial shear tensor Πµν . Once the set of initial conditions is known, it is “simple” to follow
the subsequent dynamics of the fluid equations in simulations. At the moment there is no first
principles calculation that allows one to determine the initial conditions necessary. Two different
approaches are currently used for numerical simulations of fluids in heavy-ion collisions: Glauber
type [181] or Color Glass Condensate (CGC) initial conditions [182]. The selection of either of these
models as the initial state of hydrodynamics introduces theoretical uncertainties. For example, in
the analysis of charged hadron elliptic flow data from the STAR experiment based on conformal
viscous hydrodynamical model, Luzum and Romatschke [1] found an allowed range 0 < η/S < 0.1
for Glauber and 0.08 < η/S < 0.2 for CGC initial conditions. The difference of the extracted val-
ues of η/S between both models is a consequence of the initial values of the eccentricity, with the

1In Chapter 5, we introduced τiso as the time when the system is almost completely isotropic in momentum-space
and therefore, ideal hydrodynamical behavior is an appropriate model to describe it. τiso should not be confused
with τhydro. Here τhydro is the time when one considers that the matter is close to local equilibrium, and viscous
hydrodynamics can be used as a tool to model the dynamics of the expansion of the fireball.
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CGC model allowing approximately ∼ 30% larger initial eccentricities than the Glauber Model [183].
Moreover, the values of the components of the shear tensor Πµν at τhydro are also affected by the
choice of either CGC or Glauber initial conditions (see discusion in Sect. 4 of Ref. [184]). In the
case of Glauber initial conditions the shear tensor is completely unconstrained. In the case of CGC
initial conditions there is a prescription for calculating the initial shear; however, with CGC initial
conditions the longitudinal pressure is zero due to the assumption of exact boost invariance and the
subsequent thermalization of the system could completely change the initial shear obtained in the
CGC approximation. Therefore, in both cases it would seem that the initial shear is completely
unconstrained. Given these uncertainties it would be useful to have a method which can help to
constrain the allowed initial conditions used in hydrodynamical simulations. In this chapter we focus
on this issue.
Firstly, we present two criteria that impose lower bounds on the initial time τhydro. By requiring

that during all the simulated times, the solutions of viscous hydrodynamics satisfy: (1) positivity
of the effective longitudinal pressure PL ≥ 0, and (2) the size of all the components of the shear
viscous tensor Πµν to be small compared with the isotropic pressure P, e.g., |Πµν | ≤ αP , where α
is an arbitrary but not large number, i.e., 0 ≤ α ≤ 1. We find that by imposing these requirements
over the solutions of the viscous hydrodynamical behavior, the allowed τhydro is non-trivially related
with the initial condition of the shear tensor Πhydro and the initial energy density Ehydro . We show
this by solving 0+1 dimensional 2nd-order conformal viscous hydrodynamics [125, 103].
In the last part of this chapter, we demonstrate how to match pre-equilibrium dynamics of a 0+1 di-

mensional quark gluon plasma to 2nd-order viscous hydrodynamical evolution. The matching allows
us to specify the initial values of the energy density and shear tensor at the initial time of hydrody-
namical evolution as a function of the lifetime of the pre-equilibrium period. We compare two models
for the pre-equilibrium quark-gluon plasma, longitudinal free streaming and collisionally-broadened
longitudinal expansion, and present analytic formulas which can be used to fix the necessary com-
ponents of the energy-momentum tensor. The resulting dynamical models can be used to assess the
effect of pre-equilibrium dynamics on quark-gluon plasma observables. Additionally, we investigate
the dependence of entropy production on pre-equilibrium dynamics and discuss the limitations of
the standard definitions of the non-equilibrium entropy.
This chapter is based on the following publications:

1. Mauricio Martinez and Michael Strickland, Constraining relativistic viscous hydrodynamical
evolution, Phys. Rev. C 79: 044903, 2009 [121].

2. Mauricio Martinez and Michael Strickland, Matching pre-equilibrium dynamics and viscous
hydrodynamics, arXiv:0909.0264 [hep-ph] [122], accepted for publication in PRC.

6.1. 0+1 Dimensional Conformal 2nd-Order Viscous
Hydrodynamics

From the conservation of the energy momentum tensor, ∂µT
µν = 0, and the formalism of 2nd-order

conformal viscous hydrodynamics explained in Section 3.2.3, the equations of motion for the energy
density, flow velocity and shear viscous tensor are respectively,

DE +
(
E + P

)
∂µu

µ −Πµν∇(µuν) = 0 , (6.1a)
(
E + P

)
Duα −∇αP +∆α

µ∂νΠ
µν = 0 , (6.1b)

Πµν = η∇〈µuν〉 − τπ

[
∆µ

α∆
ν
βDΠαβ +

4

3
Πµν(∇αu

α)

]
+
κ

2

[
R<µν> + 2uαR

α<µν>βuβ
]

− λ1
2η2

Π<µ
λΠ

ν>λ − λ2
2η

Π<µ
λΩ

ν>λ − λ3
2
Ω<µ

λΩ
ν>λ . (6.1c)
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Due to the different couplings of the hydrodynamical degrees of freedom, this set of coupled par-
tial differential equations are highly nonlinear and solving them analytically is not an appropriate
approach, so the best method for obtaining solutions of these equations is to perform numerical
simulations. For 2+1 dimensions, such calculations have been already studied and applied to RHIC
results at

√
s=200 GeV [1] and predictions of the integrated elliptic flow coefficient v2 in

√
s=5.5

TeV Pb-Pb and
√
s=14 TeV proton-proton collisions at the LHC [185].

We solve Eqs. (6.1) for 0+1 dimensional case by considering a system expanding in a boost in-
variant manner along the longitudinal (beamline) direction with a uniform energy density along the
transverse plane. For this simplest heavy-ion collision model, it is enough to consider expansion in a
flat space. Because of these assumptions, there is no fluid vorticity and the energy density and the
shear viscous tensor only depend on proper time τ . For this 0+1 dimensional model the 2nd-order
viscous hydrodynamic equations (6.1) are rather simple in the Milne coordinates, τ =

√
t2 − z2, and

space-time rapidity, ζ = arctanh(z/t), which are expressed in terms of the (t, z) [125, 103]

∂τE = −E + P
τ

+
Π

τ
, (6.2a)

∂τΠ = − Π

τπ
+

4η

3 τπτ
− 4

3 τ
Π− λ1

2 τπ η2
Π2 , (6.2b)

where E is the fluid energy density, P is the fluid pressure, Π ≡ Πζ
ζ is the ζζ component of the fluid

shear tensor, η is the fluid shear viscosity, τπ is the shear relaxation time, and λ1 is a coefficient
which arises in complete 2nd-order viscous hydrodynamical equations either in the strong [103, 104]
or weakly coupled limit [135, 136, 125, 138, 105]. The Navier-Stokes limit is recovered upon taking
τπ → 0 and λ1 → 0 in which case one obtains ΠNS = 4η/(3τ).
These coupled differential equations are completed by a specification of the equation of state

which relates the energy density and the pressure through P = P(E) and initial conditions. For
0+1 dimensional dynamics one must specify the energy density and Π at the initial time, Ehydro ≡
E(τhydro) and Πhydro ≡ Π(τhydro), where τhydro is the proper-time at which one begins to solve the
differential equations.

6.1.1. Specification of equation of state and dimensionless variables

In the following analysis we will assume an ideal equation of state, in which case we have

P =
Ndof π

2

90
T 4 , (6.3)

where for quantum chromodynamics with Nc colors and Nf quark flavors, Ndof = 2(N2
c − 1) +

7NcNf/2 which for Nc = 3 and Nf = 2 is Ndof = 37. The general method used below, however, can
easily be extended to a more realistic equation of state.
In the conformal limit the trace of the four-dimensional stress tensor vanishes requiring E = 3P

which, using Eq. (6.3), allows us to write compactly

E = (T/γ)4, with γ ≡
(

30

π2Ndof

)1/4

. (6.4)

Likewise we can simplify the expression for the equilibrium entropy density, S, using the thermody-
namic relation TS = E + P to obtain S = 4E/3T or equivalently

S =
4

3γ
E3/4 . (6.5)

Note that for a system out of equilibrium the full non-equilibrium entropy is modified compared
to (6.5). Using kinetic theory it is possible to show that the entropy current receives corrections
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Transport coefficient Weakly-coupled QCD Strongly-coupled N = 4 SYM

η̄ ≡ η/S ∼ 1/(g4 log g−1) 1/(4π)

τπ 6η̄/T 2
(
2− log 2

)
η̄/T

λ1 (4.1 → 5.2) η̄2S/T 2 η̄2S/T

Table 6.1.: Typical values of the transport coefficients for a weakly-coupled QGP [138, 135, 136] and
a strongly coupled N = 4 SYM plasma [103, 104].

at second order in gradients [102]. In the original approach of Israel and Stewart [126, 119], the
non-equilibrium entropy is expanded in a series in deviations from equilibrium and higher order
corrections are neglected. The Israel-Stewart (IS) ansatz for the non-equilibrium entropy is

SIS
noneq = S − β2

2T
ΠµνΠ

µν , (6.6)

where β2 is an a priori unknown function which determines the importance of second-order modifi-
cations to the entropy current. The IS ansatz satisfies the second law of thermodynamics ∂µSIS

µ ≥ 0
and for massless particles described by a Boltzmann distribution function one finds β2 = τπ/(2η).
Recent analyses have shown that, including all relevant structures in the gradient expansion, the
non-equilibrium entropy contains additional terms not present in the simple IS definition of the
non-equilibrium entropy [106, 186, 187, 188, 189, 190].
When solving Eqs. (6.2a) and (6.2b) it is important to recognize that the transport coefficients

depend on the temperature of the plasma and hence on proper-time. We summarize in Table 6.1 the
values of the transport coefficients in the strong [103, 104] and weak coupling limits [138, 135, 136].
We point out that in both cases the transport coefficients do not satisfy universal relations and
therefore, their values can only be taken as estimates. In the weakly coupled case the QCD transport
coefficients depend on the renormalization scale. In addition, higher order corrections to some
transport coefficients from finite-temperature perturbation theory show poor convergence [191, 192].
At strong coupling, it has been shown recently that there are corrections for finite t’Hooft coupling
[193, 194, 195, 196, 197]. We take the above estimates in both coupling limits in order to get a
qualitative understanding of what to expect in each regime.
From Table 6.1, the reader should note that in the strong and weak coupling limit the coefficients

τπ and λ1 are proportional to τπ ∝ η̄/T and λ1 ∝ η̄2S/T , respectively. This fact suggests that we
can parametrize both coefficients as

τπ =
cπ η̄

T
, (6.7a)

λ1 = cλ1
η̄2
(S
T

)
, (6.7b)

where we have introduced the scaled shear viscosity

η̄ ≡ η/S . (6.8)

In our analysis we assume that η̄ is independent of time.
The dimensionless numbers η̄, cπ and cλ1

carry all of the information about the particular cou-
pling limit we are considering. Using the ideal gas equation of state (Eqs. (6.4) and (6.5)), the
parametrization (6.7) of τπ and λ1 can be rewritten in terms of the energy density E

τπ =
cπ η̄

γ E1/4
, (6.9a)

λ1 =
4

3γ2
cλ1

η̄2 E1/2 . (6.9b)
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To remove the dimensionful scales and rewrite the fluid equations in a more explicit form we define
the following dimensionless variables

Ē ≡ E/Ehydro , (6.10a)

Π ≡ Π/Ehydro , (6.10b)

τ̄ ≡ τ/τhydro , (6.10c)

After replacing the dimensionless variables (6.10) in the parametrization (6.9) and Eqs. (6.2a) and
(6.2b), we rewrite the fluid equations

τ̄ ∂τ̄ Ē +
4

3
Ē −Π = 0 , (6.11a)

Π +
cπ η̄

γ k Ē1/4

[
∂τ̄Π+

4

3

Π

τ̄

]
− 16 η̄

9 γ k

Ē3/4

τ̄
+

3 cλ1

8

Π
2

Ē = 0 , (6.11b)

where k ≡ τhydroE1/4
hydro. Note that in terms of (6.10) the initial conditions are specified at τ̄ = 1

where Ē(τ̄ = 1) = 1 and Π(τ̄ = 1) = Πhydro which is a free parameter. When the hydrodynamical
equations are written in the form given above [Eq. (6.11)] all information about the initial proper-
time and energy density is encoded in the parameter k and all information about the equation of
state is encoded in the parameter γ.

6.1.2. Strong coupling estimates of the transport coefficients

Motivated and guided by the AdS/CFT correspondence[132], Baier et. al [103] and the Tata group
[104] have recently shown that new transport coefficients arise in a complete theory of second order
relativistic viscous hydrodynamics. They also estimate their values at infinite t’Hooft coupling for
N = 4 SYM theory at finite temperature. Different calculations for a finite t’Hooft coupling within
the same theory have been carried out [198, 199, 200, 201, 202, 203]. A remarkable aspect is that,
while at first the strong t’Hooft coupling limit of the transport coefficients was expected to be
universal [204, 205], there is now evidence that these coefficients receive higher order contributions
[193, 194, 195, 196, 197]. Faced with this complication one is forced to make a choice as to which
dual theory to consider. Here we will consider the values obtained in N = 4 SYM at infinite t’Hooft
coupling as used in [103, 104] as our typical strong coupling values. One can expect that these
coefficients change in strongly-coupled QCD compared to N = 4 SYM theory in the infinite t’Hooft
coupling limit. Nevertheless, we take these values over from strongly-coupled N = 4 SYM in order
to get a feeling for what to expect in this regime.
Expressed in terms of the dimensionless transport coefficients defined above (6.9), typical values

of the strongly coupled transport coefficients are

η̄ =
1

4π
, cπ = 2 (2 − log 2) , cλ1

= 2 . (6.12)

6.1.3. Weak coupling estimates of the transport coefficients

Contrary to the case of N = 4 SYM at infinite coupling, in the case of QCD, where there is a running
coupling and inherent scale dependence, the various transport coefficients are not fixed numbers
but instead depend on the renormalization scale. In this limit the transport coefficients necessary
have been calculated completely to leading order [135, 136, 138]. Higher order corrections to some
transport coefficients from finite-temperature perturbation theory show poor convergence [192, 191]
which is similar to the case for the thermodynamical potential; however, resummation techniques
can dramatically extend the range of convergence of finite-temperature perturbation theory in the
case of static quantities and can, in the future, also be applied to dynamical quantities2. Until

2See Ref. [206, 207] and references therein.
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such resummation schemes are carried out for dynamical quantities, the values of the leading-order
weak-coupling transport coefficients in Table 6.1 can only be considered as rough guides to the values
expected phenomenologically. Using this rough guide the value of η̄ from finite-temperature QCD
calculations [135, 136] is η/s ∼ 0.5 → 1 at realistic couplings (g ∼ 2 → 3). In this work we will
assume a typical value of η̄ = 10/(4π) in the weakly-coupled limit in order to compare with the
results obtained in the strong coupling limit. In our analysis for the weak coupling limit, we will use

η̄ =
10

4π
, cπ = 6 , cλ1

=
9

2
. (6.13)

6.1.4. Momentum space anisotropy

We introduce the dimensionless parameter, ∆, which measures the pressure anisotropy of the fluid
as follows

∆ ≡ PT

PL
− 1 , (6.14)

where PT = (T xx + T yy)/2 and PL = T zz = −T ζ
ζ are the effective transverse and longitudinal

pressures, respectively. If ∆ = 0, the system is locally isotropic. If −1 < ∆ < 0 the system has a
local prolate anisotropy in momentum space and if ∆ > 0 the system has a local oblate anisotropy
in momentum space. In the 0+1 dimensional model of viscous hydrodynamics one can express the
effective transverse pressure as PT = P+Π/2 and the effective longitudinal pressure as PL = P−Π.
Using these definitions for PT and PL and the ideal equation of state, Eq. (6.14) can be rewritten
in terms of our dimensionless variables

∆(τ) =
9

2

(
Π(τ)

E(τ) − 3Π(τ)

)
,

=
9

2

(
Π

Ē − 3Π

)
. (6.15)

The last expression has different limits

lim
Π≪E

∆(τ) ≈ 9

2

Π(τ)

E(τ) =
9

2

Π

Ē , (6.16a)

lim
Π→−2E/3

∆(τ) ≈ −1 , (6.16b)

lim
Π→E/3

∆(τ) ≈ ∞. (6.16c)

At the initial time, ∆hydro ≡ ∆(τ = τhydro) can be expressed in terms of the dimensionless variables
as

∆hydro =
9

2

(
Πhydro

Ehydro − 3Πhydro

)
,

=
9

2

(
Πhydro

1− 3Πhydro

)
. (6.17)

Positivity of the longitudinal pressure requires ∆ 6= ∞ at any time during the evolution of the
plasma. Note that requiring positivity is a weak constraint on the magnitude of ∆ since the formal
justification for applying viscous hydrodynamical approximations neglecting large gradients and
higher-order nonlinear terms. This requires that Π be small compared to the pressure, P , i.e.
|Π| ≪ P . This can be turned into a quantitative statement by requiring that −αP < Π < αP ,
where α is a positive phenomenological constant which is less than or equal to 1, i.e. 0 ≤ α ≤ 1. The
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limit α → 1 gives the weak constraint of −3/4 ≤ ∆ < ∞ and for general α requires ∆− ≤ ∆ ≤ ∆+

where

∆± ≡ ±3

2

(
α

1∓ α

)
. (6.18)

For example, requiring α = 1/3 we would find the constraint −3/8 ≤ ∆α ≤ 3/4.
In Sec. 6.3.1, we show how the ∆ parameter defined above is related with the microscopic anisotropy

parameter ξ which quantifies the degree of local plasma isotropy.

6.1.5. Approximate Analytic Solution of 0+1 Conformal Hydrodynamics

In this section we present an approximate analytic solution to the 0+1 dimensional conformal 2nd-
order hydrodynamical evolution equations. The approximation used will be to first exactly integrate
the differential equation for the energy density (6.11a), thereby expressing the energy density as an
integral of the shear. We then insert this integral relation into the equation of motion for shear itself
(6.11b) and expand in η̄. Explicitly, the solution obtained from the first step is

Ē(τ̄ ) = τ̄−4/3

[
1 +

∫ τ̄

1

dτ̄ ′(τ ′)1/3Π(τ̄ ′)

]
. (6.19)

We then solve the second differential equation for Π approximately by dropping the second term in
Eq. (6.19) and inserting this into the second equation of (6.11) to obtain

27 cλ1
γ k τ̄10/3 Π

2
+ 72 cπ τ̄

7/3 ∂τ̄Π+ (72 γ k τ̄2 + 96 cπ τ̄
4/3)Π = 128 η̄ . (6.20)

This differential equation has a solution of the form

Π =

(
4

3cλ1
τ̄4/3

)

×
C
[
2 1F1

(
1−b
2

∣∣∣− a τ̄2/3
)
+ a (b − 1) τ̄2/3 1F1

(
2−b
3

∣∣∣− a τ̄2/3
)]

+ 2G2,0
1,2

(
a τ̄2/3

∣∣∣ b
0,0

)

a C τ̄2/3 1F1

(
1−b
2

∣∣∣− a τ̄2/3
)
−G2,0

1,2

(
a τ̄2/3

∣∣∣ b+1
0,1

) ,

(6.21)

where 1F1 is a confluent hypergeometric function, G is the Meijer G function, a = 3γk/(2cπ),
b = cλ1

η̄/cπ, and C is an integration constant which is fixed by the initial condition for Π at τ̄ = 1.
Requiring Π(τ̄ = 1) = Πhydro fixes C to be

C =
8G2,0

1,2

(
a
∣∣∣ b
0,0

)
+ 3 cλ1

ΠhydroG
2,0
1,2

(
a
∣∣∣ b+1
0,1

)

[
3 a cλ1

Πhydro − 8
]
1F1

(
1−b
2

∣∣∣− a
)
− 4 a (b− 1) 1F1

(
2−b
3

∣∣∣− a
) . (6.22)

To obtain the proper-time evolution of the energy density one must integrate (6.19) using (6.21).
This is possible to do analytically but the answer is rather unwieldy and hence not very useful to list
explicitly. Below we will use this approximate analytic solution as a cross check for our numerics.
In the limit η̄ → 0 this solution becomes an increasingly better approximation and hence represents
the leading correction to ideal hydrodynamical evolution in that limit.
Note that in the limit cλ1

→ 0 and cπ → 0 the differential equation above (6.20) reduces to an
algebraic equation

ΠNS =
16η̄

9γkτ̄2
, (6.23)

which, when converted back to dimensionful variables, corresponds to the Navier-Stokes (NS) solution
under the assumption that Ē = τ̄−4/3. Finally we note that in the large time limit Eq. (6.21) simplifies
to

lim
τ̄→∞

Π = ΠNS +O
(
e−aτ̄−2/3

)
. (6.24)
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6.2. Lower bounds on the initial time from the viscous
hydrodynamical equations

In this section we present our results of numerical integration of Eq. (6.11) and present consistency
checks obtained by comparing these results with the approximate analytic solution presented in the
previous section.

6.2.1. Time Evolution of ∆

Below we present numerical results for the time evolution of the plasma anisotropy parameter ∆. For
purpose of illustration we will hold the initial temperature fixed at Thydro = 350 MeV and vary the

starting time τhydro. This will allow us to probe different values of k = τhydroE1/4
hydro = τhydroThydro/γ

in a transparent manner. Note that, by doing this, each curve corresponds to a different initial
entropy density; however, this is irrelevant for the immediate discussion since we are concerned
only with the general mathematical properties of the system of differential equations as one varies
the fundamental parameters. Phenomenomenological studies of entropy generation during the non-
equilibrated phase of the QGP are presented in Sect. 6.5. In Secs. 6.2.3 and 6.2.4 we will present
the general results as a function of the dimensionless parameter k.

Strong Coupling
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Figure 6.1.: Result for the proper-time evolution of ∆ obtained by numerical integration of Eq. (6.11).
Long-dashed, solid, and short-dashed lines correspond τhydro = {0.4, 1, 2} fm/c, respec-
tively. Transport coefficients were the typical strong coupling values given in Eq. (6.12).
The initial temperature, Thydro, is held fixed at Thydro = 350 MeV and it is assumed
that ∆hydro = 0 for this example.

In Fig. 6.1 we show our result for the proper-time evolution of the pressure anisotropy parameter,
∆, obtained by numerical integration of Eq. (6.11). The transport coefficients in this case are the
typical strong coupling values given in Eq. (6.12). For purpose of illustration we have chosen the
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initial temperature, Thydro, to be held fixed at Thydro = 350 MeV and assumed that the initial
pressure anisotropy, ∆hydro, vanishes, i.e. ∆hydro = 0.

As can be seen from this figure, when the initial value of the pressure anisotropy is taken to be zero
it does not remain so. A finite oblate pressure anisotropy is rapidly established due to the intrinsic
longitudinal expansion of the fluid. Depending on the initial time at which the hydrodynamic
evolution is initialized, ∆ peaks in the range 0.2 . ∆ . 1.

Weak Coupling
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Figure 6.2.: Result for the proper-time evolution of ∆ obtained by numerical integration of Eq. (6.11).
Long-dashed, solid, and short-dashed lines correspond τhydro = {0.4, 1, 2} fm/c, respec-
tively. Transport coefficients in this case are the typical weak coupling values given in
Eq. (6.13). The initial temperature, Thydro, is held fixed at Thydro = 350 MeV and it is
assumed that ∆hydro = 0 for this example.

In Fig. 6.2 we show our result for the proper-time evolution of the pressure anisotropy parameter,
∆, obtained by numerical integration of Eq. (6.11). The transport coefficients in this case are the
typical weak coupling values given in Eq. (6.13). For purpose of illustration we have chosen the initial
temperature, Thydro, to be held fixed at Thydro = 350 MeV and assumed that the initial pressure
anisotropy, ∆hydro, vanishes, i.e. ∆hydro = 0.

As can be seen from this figure, as in the strongly coupled case, a finite oblate pressure anisotropy
is rapidly established due to the intrinsic longitudinal expansion of the fluid. In the case of weak
coupling transport coefficients a larger pressure anisotropy develops. Depending on the initial time
at which the hydrodynamic evolution is initialized, ∆ peaks in the range 1 . ∆ . 9.

As can be seen from the τhydro = 0.4 fm/c result, if the initial simulation time is assumed to
be small, then very large pressure anisotropy can develop. In that case, in dimensionful units, the
peak of the ∆ evolution occurs at a time of τ ∼ 2.3 fm/c. Such large pressure anisotropies would
cast doubt on the applicability of the 2nd-order conformal viscous hydrodynamical equations, since
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nonconformal 2nd-order terms and higher-order non-linear terms corresponding to 3rd- or higher-
order expansions could become important [105, 186]. If, in the weakly coupled case, the initial
simulation time τhydro is taken to be 0.2 fm/c one would find that ∆ would become infinite during
the simulation. This divergence is due to the fact that the longitudinal pressure goes to zero and
then becomes negative during some period of the time evolution.

Comparison with analytic approximation
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hydro
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Numerical Integration
Analytic Approximation

Figure 6.3.: Comparison of result for ∆ as a function of proper time using numerical integration of
Eq. (6.11) and the approximate analytic solution given via Eqs. (6.21) and (6.19). Trans-
port coefficients in this case are the typical strong coupling values given in Eq. (6.12).
The initial temperature, Thydro, is taken to be Thydro = 350 MeV, the initial time, τhydro,
is taken to be τhydro = 1 fm/c and it is assumed that ∆hydro = 0 for this example.

As a cross check of our numerical method, in Fig. 6.3 we compare the result for ∆ obtained via
direct numerical integration of Eq. (6.11) and the approximate analytic solution given via Eqs. (6.21)
and (6.19). As can be seen from the figure the analytic solution provides a reasonable approximation
to the true time-evolution of the plasma anisotropy. The parameter ∆ is a particularly sensitive
quantity to compare. If one compares the analytic and numerical solutions for the energy density,
for example, in the strongly-coupled case there is at most a 1% deviation between the analytic
approximation and our exact numerical integration during the entire 10 fm/c of simulation time.
Of course, for larger viscosity the analytic approximation becomes more suspect but for the weakly-
coupled case we find that there is at most a 8% deviation between the energy densities obtained
using our analytic approximation and the exact numerical result. In the limit that η̄ goes to zero,
the analytic treatment and our numerical integration agree to arbitrarily better precision. Based
on the agreement between the two approaches we are confident in our numerical integration of the
coupled differential equations.
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Figure 6.4.: Result for the proper-time evolution of the ratio of the longitudinal pressure over the
pressure, PL/P , obtained by numerical integration of Eq. (6.11). Solid, long-dashed,
and short-dashed lines correspond ∆hydro = {0,−0.5, 10}, respectively. Transport co-
efficients in this case are the typical weak coupling values given in Eq. (6.13). The
initial temperature, Thydro, is held fixed at Thydro = 350 MeV and it is assumed that
τhydro = 0.2 fm/c for this example. The dotted grey line indicates PL = 0 in order to
more easily identify the point in time where the longitudinal pressure becomes negative.

6.2.2. Negativity of Longitudinal Pressure

In order to explicitly demonstrate the possibility that ∆ diverges, in Fig. 6.4 we have plotted the
evolution the longitudinal pressure over the isotropic pressure (P = E/3), PL/P , obtained by nu-
merical integration of Eq. (6.11) for different assumed initial pressure anisotropies. The transport
coefficients in this case are the typical weak coupling values given in Eq. (6.13). The initial tempe-
rature, Thydro, is held fixed at Thydro = 350 MeV and it is assumed that τhydro = 0.2 fm/c for this
example.

As this figure shows, if the initial simulation time is too early, the longitudinal pressure of the
system can become negative. The exact point in time at which it becomes negative depends on the
assumed initial pressure anisotropy. As the initial pressure anisotropy becomes more prolate, the time
over which the longitudinal pressure remains positive is increased. For initially extremely prolate
distributions the longitudinal pressure can remain positive during the entire simulation time. In
the opposite limit of extremely oblate distributions, the longitudinal pressure can become negative
very rapidly and remain so throughout the entire lifetime of the plasma. We note that in the
Navier-Stokes limit the initial shear would be

(
Πhydro

)
Navier Stokes

= 16η̄/(9τhydroThydro) which,
using the initial conditions indicated in Fig. 6.4, gives PL,0/P = −11.1. This means that if one
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were to use Navier-Stokes initial conditions the system would start with an extremely large negative
longitudinal pressure. Using τhydro = 1 fm/c and Thydro =350 MeV improves the situation somewhat;
however, even in that case the initial Navier-Stokes longitudinal pressure remains negative with
PL,0/P = −1.4.

What does a negative longitudinal pressure indicate? From a transport theory point of view it
indicates that something is unphysical about the simulation since in transport theory the pressure
components are obtained from moments of the momentum-squared over the energy, e.g. for the
longitudinal pressure

PL =

∫
d3p

(2π)3
p2z
p0
f(p) , (6.25)

where f(p) is the one-particle phase-space distribution function. Therefore, in transport theory all
components of the pressure are positive definite. It is possible to generate negative longitudinal
pressure in the case coherent fields as in the case of the early-time evolution of the quark-gluon
plasma [48, 208, 209, 51]; however, such coherent fields are beyond the scope of hydrodynamical
simulations which describe the time evolution of a locally color- and charge-neutral fluid.

This fundamental issue aside, the negativity of the longitudinal pressure indicates that the ex-
pansion which was used to derive the hydrodynamical equations themselves is breaking down. This
expansion implicitly relies on the perturbation described by Π being small compared to the isotropic
pressure P . The point at which the longitudinal pressure goes to zero is the point at which the
perturbation, Π, is equal in magnitude to the background around which one is expanding. This
means that the perturbation is no longer a small correction to the system’s evolution and that
higher order corrections could become important. Therefore negative longitudinal pressure signals
regions of parameter space where one cannot trust 2nd-order viscous hydrodynamical solutions. In
the following two subsections we will make this statement quantitative and extract constraints on
the initial conditions which allow for 2nd-order viscous hydrodynamical simulation.

6.2.3. Determining the critical line in initial condition space

For a fixed set of transport coefficients given by {η̄, cπ, cλ1
} the only remaining freedom in the hydro-

dynamical evolution equations (6.11) comes from the coefficient γ (using the assumed ideal equation

of state) and from the initial conditions through the dimensionless coefficient k = τhydroE1/4
hydro and

the initial shear Πhydro. In the next section we will vary these two parameters and determine for
which values one obtains a solution that, at any point during the evolution, has a negative longitu-
dinal pressure. For a given Πhydro we find that for k below a certain value, the system exhibits a
negative longitudinal pressure. We will define this point in k as the “critical” value of k. Above the
critical value of k the longitudinal pressure is positive definite at all times.

Strong Coupling

In Fig. 6.5 we plot the critical boundary in k (kcritical) as a function of the initial value of the shear,
Πhydro. Since k is proportional to the assumed initial simulation time τhydro increasing k with fixed
initial energy density corresponds to increasing τhydro. Assuming fixed initial temperature, for an
initially prolate distribution, one can start the simulation at earlier times. For an initially oblate
distribution, one must start the simulation at later times in order to remain above the critical value

of k. In general, k = τhydroE1/4
hydro and our result can be used to set a bound on this product.

In the case of typical strong coupling transport coefficients, the critical value of k at Πhydro = 0 is
kcritical(Πhydro = 0) = 0.26. In the case of an ideal QCD equation of state and assuming Πhydro = 0,
the constraint is that τhydro Thydro > γ kcritical, which is numerically τhydro Thydro > 0.14. Assuming
an initial temperature of Thydro = 0.35 GeV this implies that τhydro > 0.08 fm/c. For other initial
values of Πhydro one can use Fig. 6.5 to determine the constraint [121].
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Figure 6.5.: Critical boundary in k (kcritical) as a function of the initial shear, Πhydro. Above this line
solutions have positive longitudinal pressure at all times. Below this line solutions have
negative longitudinal pressure at some point during the evolution. Transport coefficients
in this case are the typical strong coupling values given in Eq. (6.12). Left limit of plot
region corresponds to ∆hydro = −1 and right to ∆hydro = ∞.

Weak Coupling

In Fig. 6.6 we plot the critical boundary in k (kcritical) as a function of the initial value of the shear,
Πhydro. Since k is proportional to the assumed initial simulation time τhydro increasing k with fixed
initial energy density corresponds to increasing τhydro. As in the case of strong coupling, for an
initially prolate distribution, one can start the simulation at earlier times. For an initially oblate
distribution, one must start the simulation at later times in order to remain above the critical value
of k.

In the case of typical weak coupling transport coefficients the critical value of k at Πhydro = 0 is
kcritical(Πhydro = 0) = 0.74. In the case of an ideal QCD equation of state and assuming Πhydro = 0,
the constraint is that τhydro Thydro > γ kcritical, which is numerically, τhydro Thydro > 0.40. Assuming
an initial temperature of Thydro = 0.35 GeV this implies that τhydro > 0.23 fm/c. For other initial
values of Πhydro one can use Fig. 6.6 to determine the constraint [121].

6.2.4. Determining the convergence line in initial condition space

As mentioned in Sec. 6.1.4 the requirement that the longitudinal pressure is positive during the sim-
ulated time only gives a weak constraint in the sense that it merely requires that |Π| < P . A stronger
constraint can be obtained by requiring instead −αP ≤ Π ≤ αP and then using this to constrain
the possible initial time and energy density which can be used in hydrodynamical simulations. In
the following subsections we will fix α = 1/3 as our definition of what is a “large” correction. For
this value of α the initial values of Πhydro are constrained to be between −1/9 ≤ Πhydro ≤ 1/9. For
a given Πhydro in this range we find that for k below a certain value we cannot satisfy the stronger
constraint at all simulated times. We will define this point in k as the “convergence” value of k or
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Figure 6.6.: Critical boundary in k (kcritical) as a function of the initial shear, Πhydro. Above this line
solutions have positive longitudinal pressure at all times. Below this line solutions have
negative longitudinal pressure at some point during the evolution. Transport coefficients
in this case are the typical weak coupling values given in Eq. (6.13). Left limit of plot
region corresponds to ∆hydro = −1 and right to ∆hydro = ∞.

kconvergence. Above this value of k = kconvergence the shear satisfies the constraint −P/3 ≤ Π ≤ P/3
at all simulated times and therefore represents a “reasonable” simulation.

Strong Coupling

In Fig. 6.7 we plot the “convergence boundary” in k (kconvergence) as a function of the initial shear,
Πhydro. In the case of typical strong coupling transport coefficients the convergence value of k at
Πhydro = 0 is kconvergence(Πhydro = 0) = 1.58. In the case of an ideal QCD equation of state
and assuming Πhydro = 0, the constraint is that τhydro Thydro > γ kconvergence, which is numerically
τhydro Thydro > 0.85. Assuming an initial temperatures of Thydro = 0.35 GeV this implies that τhydro >
0.49 fm/c. For other initial values of Πhydro one can use Fig. 6.7 to determine the constraint [121].

Weak Coupling

In Fig. 6.8 we plot the “convergence boundary” in k (kconvergence) as a function of the initial shear,
Πhydro. In the case of typical weak coupling transport coefficients the convergence value of k at
Πhydro = 0 is kconvergence(Πhydro = 0) = 10.9. In the case of an ideal QCD equation of state
and assuming Πhydro = 0, the constraint is that τhydro Thydro > γ kconvergence, which is numerically
τhydro Thydro > 5.9. Assuming an initial temperature of Thydro = 0.35 GeV this implies that τhydro >
3.37 fm/c. For other initial values of Πhydro one can use Fig. 6.8 to determine the constraint.
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Figure 6.7.: Convergence boundary in k (kconvergence) as a function of the initial shear, Πhydro. Above
this line solutions satisfy the convergence constraint. Transport coefficients in this case
are the typical strong coupling values given in Eq. (6.12).

6.2.5. Implications for higher dimensional hydrodynamical simulations

If one proceeds to more realistic simulations in higher dimensional boost invariant treatments, e.g.
1+1 and 2+1, the spatial variation of the initial conditions and time evolution in the transverse
plane have to be taken into account. In addition, new freedoms such as the initial fluid flow field
and additional transport coefficients arise; however, to first approximation one can treat these higher
dimensional systems as a collection of 0+1 dimensional systems with different initial conditions at
each point in the transverse plane. Within this approximation one would quickly find that there are
problems with the hydrodynamic treatment at the transverse edges of the simulated region.
This happens because as one goes away from the center of the hot and dense matter, the e-

nergy density (temperature) drops and, assuming a fixed initial simulation time τhydro, one would
find that at a finite distance from the center the condition k > kcritical would be violated by the
initial conditions. In these regions of space, hydrodynamics would then predict an infinitely large
anisotropy parameter, ∆, casting doubt on the reliability of the hydrodynamic assumptions. Even
worse is that at a smaller distance from the center one would cross the “convergence boundary”
in k, kconvergence, and therefore not fully trust the analytic approximations used in deriving the
hydrodynamic equations (conformality, truncation at 2nd order, etc.).
Of course, an approximation by uncoupled 0+1 systems with different initial conditions would

not generate any radial or elliptic flow; however, we find empirically that the picture above holds
true in higher-dimensional simulations, justifying the basic logic. For example, using strongly-
coupled transport coefficients and assuming an initially isotropic plasma (Πhydro = 0), we found in
Sec. 6.2.3 that kcritical = 0.26. In terms of the initial temperature this predicts that when starting a
simulation with Thydro = 0.35 GeV, one will generate negative longitudinal pressures for any initial
time τhydro . 0.08 MeV.
We will now compare this prediction with results for the longitudinal pressure extracted from the

2+1 dimensional code of Luzum and Romatschke [1, 185]. In Fig. 6.9 we show fixed τ snapshots of



98 6. Constraining the onset of relativistic viscous hydrodynamics

-0.1 -0.05 0 0.05 0.1

Π
hydro

10

15

20

k co
nv

er
ge

nc
e

Figure 6.8.: Convergence boundary in k (kconvergence) as a function of the initial shear, Πhydro. Above
this line solutions satisfy the convergence constraint. Transport coefficients in this case
are the typical weak coupling values given in Eq. (6.13).

the longitudinal pressure. The runs shown in Fig. 6.9 were performed on a 692 transverse lattice with
a lattice spacing of 2 GeV−1 using Glauber initial conditions starting at τhydro=1 fm/c, an initial
central temperature of Thydro = 350 MeV, zero initial shear and zero impact parameter. For these
runs we have used the realistic QCD equation of state used in Ref. [1]. In the top panel of Fig. 6.9 the
transport coefficients were set to the typical strong coupling values given in Eq. (6.12), except with
cλ1

= 0 due to the fact that the code used did not include this term in the hydrodynamic equations.
Based on the initial transverse temperature profile and our estimated critical initial temperature,
in the strong-coupling case we expect negative longitudinal pressures to be generated at transverse
radius r & 10 fm. As can be seen from the left panel of Fig. 6.9, at the edge of the simulated region
the longitudinal pressure becomes negative starting already at very early times. The transverse radii
at which this occurs is in good agreement with our estimate based on the 0+1 dimensional critical
value detailed above.

Based on our convergence criterium detailed in Sec. 6.2.4 we found, in the strong-coupling case,
that kconvergence(Πhydro = 0) = 1.58. Assuming τhydro = 1 fm/c this translates into a minimum
initial temperature of 167 MeV. Based on the transverse temperature profile used in the run shown
in the left panel of Fig. 6.9 this results in a maximum transverse radius r ∼ 6.8 fm. At radii larger
than this value it is possible that higher order corrections are large and therefore the applicability of
2nd-order viscous hydrodynamics becomes questionable. Since this temperature is greater than the
typical freeze-out temperature used, Tf ∼ 150 MeV, this means that in the strong coupling limit it
is relatively safe to use hydrodynamical simulations. However, one should be extremely careful with
the transverse edges.

The situation, however, is not as promising in the weak-coupling case. To see this explicitly, in the
bottom panel of Fig. 6.9 we show the longitudinal pressure resulting from a run with weak coupling
transport coefficients (6.13). Based on the initial transverse temperature profile and our estimated
critical initial temperature, in the weak-coupling case we expect negative longitudinal pressures to
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Figure 6.9.: Evolution of the longitudinal pressure in proper-time obtained from the 2+1 dimensional
viscous hydrodynamics code of Ref. [1, 185]. Horizontal axis is the distance from the
center of the simulated region. In the top panel we show the result obtained using the
typical strong coupling values given in Eq. (6.12) but with cλ1

= 0. In the bottom panel
we show the result obtained using the typical weak coupling values given in Eq. (6.13)
but with cλ1

= 0. The runs shown used Glauber initial conditions with an initial central
temperature of Thydro = 350 MeV, initial time τhydro = 1 fm/c and Πν

µ(τhydro) = 0.
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be generated at transverse radius r & 8 fm. Comparing this prediction to the results shown in the
right panel of Fig. 6.9 we see that the situation is even worse than expected. By the final time of 4.5
fm/c the entire central region has very low or negative longitudinal pressure. We note that at that
time the radius at which the temperature has dropped below the freeze-out temperature is around
7.3 fm so the region where the longitudinal pressure is negative (or almost negative) is still in the
QGP phase.

In terms of convergence, we remind the reader that based on our convergence criterium detailed
in Sec. 6.2.4 we found that in the weakly-coupled case kconvergence(Πhydro = 0) = 10.9. Assuming
τhydro = 1 fm/c we found that the initial central temperature should be greater than 1.16 GeV. As
can be seen in Fig. 6.9 the corrections to ideal hydrodynamics are sizable so this again points to
the possibility that there are large corrections to the 2nd-order hydrodynamic equations. Based on
this, it would be questionable to ever apply 2nd-order viscous hydrodynamics to a weakly-coupled
quark-gluon plasma generated in relativistic heavy-ion collisions. At the very least one would need to
include nonconformal 2nd-order terms and 3rd-order terms in order to assess their impact [105, 186].

6.3. Matching pre-equilibrium dynamics and viscous

hydrodynamics

In the previous sections we derived two general criteria that can be used to constrain the initial
time of onset of 2nd-order conformal viscous hydrodynamics in relativistic heavy-ion collisions. We
imposed those requirements explicitly over the solutions of 0+1 dimensional viscous hydrodynamics
and discussed how to extend the constraint to higher dimensions. When we integrate the viscous
hydrodynamical equations 6.2, we fix by ‘hand’ the initial values of the energy density, shear viscous
tensor and initial time. In the rest of the chapter we demonstrate how to determine the initial energy
density E and shear Π in a 0+1 dimensional model by introducing a pre-equilibrium period, in which
the system develops a local momentum-space anisotropy due to the longitudinal expansion of the
matter. After this period we evolve the system using 2nd-order viscous hydrodynamics with initial
conditions consistent with the pre-equilibrium evolution of the matter. To frame the discussion
we introduce two proper time scales: (1) the parton formation time, τ0, which is the time after
which coherence effects in the nuclear wave function for the hadrons can be ignored and partons
can be thought of as liberated; and (2) the time at which one starts modeling the system using
viscous hydrodynamics, τhydro. During the pre-equilibrium stage, τ0 < τ < τhydro, the longitudinal
expansion of the matter along the beam axis makes the system colder along the longitudinal direction
than in the transverse direction, 〈p2L〉 < 〈p2T 〉 [26] corresponding to a non-vanishing plasma shear Π.

This approach can be seen as an extension of the pre-equilibrium interpolating models presented
in Chapter 5. We used such models to calculate the dependence of high energy dilepton on the
plasma isotropization time [82, 83, 84]. In these previous analyses the pre-equilibrium stage was
matched at late times to isotropic ideal hydrodynamical expansion. Here we show how to determine
the shear Π and energy density E at a proper-time τhydro given a model for the evolution of the
microscopic anisotropy of the plasma, ξ = 1

2 〈p2T 〉/〈p2L〉 − 1, where pT and pL are the transverse and
longitudinal momenta of the particles in the plasma, respectively. This is done by matching to the
corresponding pressure anisotropy ∆ ≡ PT /PL − 1 (Eq. 6.14), and energy density, E . Once this
matching is performed one can solve the 2nd-order viscous hydrodynamical differential equations to
determine the further time evolution of the system.

In Fig. 6.10 we show the time evolution of the pressure anisotropy and energy density assuming
τhydro = 1 fm/c resulting from the models described herein. As can be seen from Fig. 6.10 (left) the
magnitude of ∆ is larger in the weakly-coupled case starting from the same initial pressure anisotropy
at τ = 1 fm/c. In Fig. 6.10 (right) we show the typical time evolution of the energy density using our
matching. As can be seen from this figure in the weakly-coupled case the 0+1 dimensional plasma
lifetime is increased due to the larger shear viscosity. In the body of the text we show how such
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Figure 6.10.: Time evolution of the pressure anisotropy ∆ (left) and energy density (right) for the
case of collisionally broadened pre-equilibrium dynamics. In this plot we have fixed
τhydro = 1 fm/c. The red dashed line is the case of weakly-coupled transport coefficients
and the solid blue line is the case of strongly-coupled transport coefficients.

models are derived and how, specifically, the matching at τhydro is performed. The resulting models
can be used as input to predict the effect of the pre-equilibrium period on QGP observables such as
dilepton and photon production, heavy quark screening, etc.

6.3.1. 0+1 dimensional model for a pre-equilibrium QGP

In this section we present two models for 0+1 dimensional nonequilibrium time evolution of the
QGP: 0+1 dimensional free-streaming and 0+1 dimensional collisionally-broadening expansion. In
each case below we will be required to specify a proper time dependence of the hard-momentum
scale, phard, and the microscopic anisotropy parameter, ξ, introduced in Ref. [2]. Before proceeding,
however, it is useful to note some general relations. A similar approach was implemented in Chapter 5
to model the evolution of the fireball in the presence of anisotropies in the momentum-space. We
will assume that during the pre-equilibrated evolution, the system is described by the anisotropic
distribution function with the following parameterization

faniso(p, ξ, phard) = fiso(
√
p2 + ξ(p · n̂)2, phard) , (6.26)

where phard is the hard momentum scale, n̂ is the direction of the anisotropy3 and −1 < ξ <∞ is a
parameter that reflects the strength and type of anisotropy. In general, phard is related to the average
momentum in the partonic distribution function. The microscopic plasma anisotropy parameter ξ is
related to the average longitudinal and transverse momentum of the plasma partons via the relation
[82, 83, 84, 210]

ξ =
〈p2T 〉
2〈p2L〉

− 1 . (6.27)

From this expression, one can see that for an oblate plasma 〈p2T 〉 > 2〈p2L〉 then ξ > 0. In an isotropic
plasma one has ξ = 0 and, in this case, phard can be identified with the plasma temperature T .

We now show how to derive a general formula for the time evolution of the microscopic plasma
anisotropy ξ which allows for a non-vanishing anisotropy of the plasma at the formation time followed

3Hereafter, we will use n̂ = êz , where êz is a unit vector along the beamline direction.
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by subsequent dynamical evolution. This is a straightforward extension of the treatment presented
in Chapter 5 where it was assumed that the plasma was isotropic at the formation time [83].
In most phenomenological approaches to QGP dynamics it is assumed that the distribution func-

tion at τ ∼ τ0 is isotropic, i.e. ξ(τ = τ0)=0. There is no clear justification for this assumption. In
fact, in the simplest form of the Color Glass Condensate (CGC) model [62] the longitudinal mo-
mentum would initially be zero. This configuration corresponds to an extreme anisotropy with ξ
(or ∆) being infinite in the initial state. In the CGC framework in order to generate a non-zero
longitudinal pressure it is necessary to include the next-to-leading-order corrections to gluon pro-
duction taking into account the effect of rapidity fluctuations and full three-dimensional gauge field
dynamics. There has been progress towards the solution of this problem; however, it is still an open
question (for recent advances in this area see Ref. [182, 51] and references therein). We also note
that, taking into account the finite longitudinal width of the nuclei, studies have shown that it may
even be possible for the initial plasma anisotropy to be prolate at the formation time [32].
Here we will assume, quite generally, that the microscopic anisotropy parameter, ξ, at the formation

time takes on an arbitrary value between -1 and ∞ given by ξ0. The initial anisotropy ξ0 can be
evaluated using Eq. (6.27) giving

ξ0 =
1

2

〈p2T 〉0
〈p2L〉0

− 1 . (6.28)

Writing the longitudinal momentum as

〈p2L〉 = 〈p2L〉0 + 〈δp2L〉 , (6.29)

and using the fact that, in the case of 0+1 dynamics, the average transverse momentum is constant

〈p2T 〉 = 〈p2T 〉0 , (6.30)

we can rewrite the general expression for ξ given in Eq. (6.27) as

ξ =
ξ0 + 1

1 +
〈δp2

L〉

〈p2
L〉0

− 1. (6.31)

Finally we can parametrize the time-dependence of the average longitudinal momentum squared of
the plasma as

〈p2L〉 ∼ 〈p2L〉0
(τ0
τ

)δ
.

Comparing with (6.29), we obtain

〈δp2L〉
〈p2L〉0

=

(
τ0
τ

)δ

− 1 (6.32)

Inserting this into (6.31), we have

ξ(ξ0, τ, τ0) = (ξ0 + 1)

(
τ

τ0

)δ

− 1 (6.33)

This expression holds for any of the 0+1 dimensional pre-equilibrium scenarios studied in this work.
In this chapter we just consider two particular models of pre-equilibrated expansion, longitudinal
free streaming where δ = 2 and in collisional broadening we have δ = 2/3. 4 As it was pointed out in
Chapter 5, there are other possibilities for the values of this exponent associated with the bending
caused by growth of the chromoelectric and chromomagnetic fields at early times of the collision [83].

4Due to the assumption of no dynamics in the transverse plane, collisional broadening can only increase the longitu-
dinal momentum in 0+1 dimensions.
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In a comoving frame, the energy density and pressure components can be determined by evaluating
the components of the stress-energy tensor

T µν =

∫
d3p

(2π)3
pµpν

p0
f(p, phard) . (6.34)

Using the ansatz (6.26) for the anisotropic distribution function and making an appropiate change of
variables, one can show that the local energy density E and the transverse and longitudinal pressures,
PT and PL, are

E(phard, ξ) = T 00 =
1

2

(
1

1 + ξ
+

arctan
√
ξ√

ξ

)
Eiso(phard) , (6.35a)

= R(ξ) Eiso(phard) ,

PT (phard, ξ) =
1

2
(T xx + T yy) , (6.35b)

=
3

2ξ

(
1 + (ξ2 − 1)R(ξ)

ξ + 1

)
P iso
T (phard) ,

PL(phard, ξ) = T zz , (6.35c)

=
3

ξ

(
(ξ + 1)R(ξ)− 1

ξ + 1

)
P iso
L (phard) ,

where P iso
T (phard) and P iso

L (phard) are the isotropic transverse and longitudinal pressures and Eiso(phard)
is the isotropic energy density. 5 The function R(ξ) is given by

R(ξ) =
1

2

[
1

1 + ξ
+

arctan
√
ξ√

ξ

]
, (6.36)

and in (6.35) it is understood that phard = phard(ξ0, τ, τ0, δ) and ξ = ξ(ξ0, τ, τ0, δ).
Note that for a conformal system the tracelessness of the stress-energy tensor T µ

µ=0 implies E =
2PT + PL. This condition is satisfied by Eqs. (6.35) for any anisotropic distribution function (6.26)
since for an isotropic conformal state P iso

T,L = Eiso/3.
The temporal evolution of ξ, phard and E for the case of 0+1 pre-equilibrated expansion is [122]

ξ(τ) = (1 + ξ0)
(
τ/τ0

)δ − 1 , (6.37a)

phard(τ) = (phard)0
(
τ0/τ

)(1−δ/2)/3
, (6.37b)

E(τ) = R(ξ)

(
phard
γ

)4

, (6.37c)

where δ = {2, 2/3} for free streaming and collisionally broadening expansion respectively.

Relation between ∆ and ξ

In this section, we derive the relation between the pressure anisotropy parameter, ∆, introduced in
Sec. 6.1.4 and the microscopic anisotropy parameter, ξ. Combining Eqs. (6.35b) and (6.35c) and
using P iso

T = P iso
L = Eiso/3, we obtain the following expression for ∆

∆(ξ) =
PT (ξ)

PL(ξ)
− 1 ,

=
1

2
(ξ − 3) + ξ

(
(1 + ξ)

atan
√
ξ√

ξ
− 1

)−1

. (6.38)

5We point out that in general, one cannot identify P iso
T (phard), P

iso
L (phard) and Eiso(phard) with their equilibrium

counterparts, unless one implements the Landau matching conditions.
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The evolution of ∆ during the pre-equilibrium stage will depend on the kind of model for that stage,
i.e. either free streaming or collisionally-broadened expansion. For small and large values of ξ

lim
ξ→0

∆ =
4

5
ξ +O(ξ2) , (6.39a)

lim
ξ→∞

∆ =
1

2
ξ +O(

√
ξ) . (6.39b)

If one uses Eq. (6.16a) together with Eq. (6.39a), ξ can be related with the shear viscous tensor
during the viscous regime as

ξ =
45

8

Π

E +O(Π2) . (6.40)

Note that if one uses the Navier-Stokes value of the shear tensor ΠNS = 4η/(3τ) in the last relation,
the anisotropy parameter can be expressed as [211]

ξNS =
10

Tτ

η

S +O(Π2
NS) . (6.41)

Matching the initial conditions

We will now match the general evolution of ξ from Eq. (6.33) at an intermediate τhydro and use this
to fix the initial shear tensor which should be used in the viscous evolution. From Eq. (6.33), the
anisotropy parameter takes a non-vanishing value at τ = τhydro,

ξhydro ≡ ξ(τ = τhydro) = (1 + ξ0)

(
τhydro
τ0

)δ

− 1 . (6.42)

Once ξhydro is known, the initial pressure anisotropy ∆hydro and initial energy density Ehydro can
be determined using Eqs. (6.38) and (6.35a) respectively. It is then straightforward to determine
Πhydro ≡ Π(τ = τhydro) due to the relation (6.17), i.e.

Πhydro ≡ Π(τ = τhydro) =
2

3

(
∆hydro

3 + 2∆hydro

)
Ehydro . (6.43)

This expression together with Ehydro gives the full set of initial conditions necessary to solve the
0+1 dimensional viscous hydrodynamics equations (6.2). Notice that by construction, the initial
conditions do not depend on the particular coupling regime we are interested in. This is due to the
fact that at leading order the coupling constant cancels out in the case of a collisionally-broadened
expansion and in the case of free-streaming it is assumed that there is only free expansion. As a
result Πhydro and Ehydro only depend on the type of pre-equilibrium scenario considered through the
exponent δ.

6.3.2. Temporal evolution including pre-equilibrium dynamics

In Fig. 6.11, we show the complete temporal evolution of the pressure anisotropy ∆(τ), starting from
a pre-equilibrium period and matching at τhydro to viscous hydrodynamical evolution. In the plot we
show three different assumed values of τhydro. The initial conditions for the strong and weak coupling
cases are assumed to be the same in both panels. During the pre-equilibrium case τ0 ≤ τ < τhydro,
∆(τ) is determined via its relation to ξ(τ) specified in Eq. (6.38). In this figure we have shown the
case that ξ evolves in the collisionally broadened scenario, i.e. δ = 2/3. The matching from pre-
equilibrium dynamics to viscous evolution occurs at τhydro, where, due to the longitudinal expansion
of the plasma, a non-vanishing value of ξ is generated. Using Eqs. (6.35a), (6.38), and (6.43) we
use the value of ξ(τhydro) to determine the initial values of the energy density and shear necessary
for the integration of the viscous hydrodynamical differential equations. From τhydro ≤ τ ≤ τfo, ∆
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Figure 6.11.: Temporal evolution of the pressure anisotropy parameter ∆ for three different values
of τhydro ∈ {0.3, 1, 3} fm/c. We use τ0 = 0.3 fm/c and the initial temperature at the
parton formation time phard = Thydro = 0.35 GeV. All the plots assume the collisionally-
broadened scenario and the transport coefficients during the viscous period correspond
to weak coupling (top panel) and strong coupling (bottom panel) regime.

is determined using Eq. (6.15). It should be understood that during this period of the evolution
the energy density and shear are the solutions of the viscous hydrodynamical differential equations,
Eqs. (6.2). In both the weak and strong coupling cases the late time evolution of ∆ is given by the



106 6. Constraining the onset of relativistic viscous hydrodynamics

Navier-Stokes solution with ΠNS = 4η/(3τ). Also note that if the pre-equilibrium evolution results
in an anisotropy which is different than ∆NS(τhydro), then the system relaxes to the Navier-Stokes
solution within a time on the order of τπ.

As can be seen in Fig. 6.11 the initial value of ∆ depends on the assumed matching time. As
τhydro increases, ∆hydro and Πhydro increase. If the assumed value of τhydro is too large, then one
sees an unreasonably fast relaxation to the Navier-Stokes solution. This is true in the collisionally
broadened scenario depicted in Fig. 6.11 and also in the free-streaming scenario, δ = 2, which we
do not explicitly plot. In the free-streaming scenario the longitudinal momentum space anisotropies
generated during the pre-equilibrium period are even larger.

Another issue which arises is that if the initial shear generated by the pre-equilibrium evolution
becomes too large, it can become comparable to the equilibrium pressure P . If this is the case, then
it is suspect to apply viscous hydrodynamical evolution. However, this is not the only possible way
to generate unreasonably large shear. Once the hydrodynamical evolution begins it is possible to
generate large shear during the integration of the hydrodynamical differential equations. This effect
is larger in the weakly-coupling case since the values of η̄ and τπ are approximately 10 and 30 times
larger than in the strong coupling case, respectively. This is why in Fig. 6.11 we do not see large
values of ∆ generated in the case of strong coupling, whereas we do in the weak-coupling case. One
other possibility which arises is that the initial value of the shear computed from ξ will result in
the initial condition being “critical”, meaning that, when the differential equations are integrated,
unphysical behavior such as negative longitudinal pressures are generated [121, 212]. In our results,
we check to see if the generated initial conditions are critical and indicate if this happens in the
corresponding results tables.

The evolution shown in Fig. 6.11 is typical of the time evolution of ∆ in our model. Of course, one
can vary the assumed value of ξ at the formation time and also consider the free-streaming case. For
the sake of brevity we will not present plots showing these possibilities since the analytic formulas
required, Eqs. (6.33), (6.35a), (6.38), and (6.43), are simple enough for the reader to implement on
their own. These four equations can be used to generate the time evolution of the plasma anisotropy
for use in phenomenological applications. In Sect. 6.4, we will demonstrate how to use the resulting
model and calculate entropy generation using it.

Landau matching conditions

To determine the isotropic equilibrium energy density Eeq(T ) from a non-equilibrium single particle
distribution function, it is necessary to implement the Landau matching conditions

E(T ) = uµT
µν
(0)uν , (6.44a)

uµδN
µ = 0 , (6.44b)

uµδT
µνuν = 0 , (6.44c)

where T µν
(0) is the energy-momentum tensor computed with the equilibrium distribution function

feq(x, p) and δT
µν involves non-equilibrium corrections to the energy-momentum tensor. In the 14

Grad’s method this constraint is immediately satisfied by construction. In the case of the anisotropic
Boltzmann distribution, the first constraint (6.44a) requires

∫
d3p

(2π)3p0
(u · p)2 exp

[
−
√
p2 + ξ p2z / phard

]
=

∫
d3p

(2π)3p0
(u · p)2 exp

[
−p/T

]
. (6.45)

Performing the integrals on both sides, we find that

phard =
(
R(ξ)

)−1/4
T . (6.46)
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Now, we expand the anisotropic distribution function to second order in ξ and making use of the
last expression, we have 6

faniso(p, ξ, T ) = exp
[
−
√
p2 + ξ p2z / phard

]
(6.47)

= exp

[
− p

T

(
R(ξ)

)1/4√
1 + ξ cos θ

]

≈ e−p/T
(
1 + ξf(1) + ξ2f(2)

)
,

where we use explicitly pz = p cos θ. The functions f(1) and f(2) are given by

f(1) =
p

6T
(1− 3 cos2 θ) (6.48a)

f(2) =
p

360T 2

[
5p− 39T + 30(T − p) cos2 θ + 45(T + p) cos4 θ

]
. (6.48b)

Replacing the expansion of the anisotropic distribution until O(ξ) in the Landau condition (6.44b)

uµδN
µ = ξ

∫
d3p

(2π)3
e−p/T f(1) (6.49)

=
1

(2π)2
1

6T

∫ ∞

0

∫ π

0

dp d(cos θ) p3 e−p/T (1− 3 cos2 θ)

= 0 .

To O(ξ), the Landau condition (6.44b) is satisfied. Notice that this condition is not expected to
hold at all orders because the particle number density is proportional to the entropy density. The
only way to hold both the energy density and particle number density is by introducing a chemical
potential.
When one expands the anisotropic distribution to O(ξ2) in the Landau condition (6.44c), we have

uµδT
µνuν =

∫
d3p

(2π)3
p e−p/T (ξf(1) + ξ2f(2)) , (6.50)

where f(1) and f(2) are given by Eqs. (6.48). Explicitly, we have

ξ

∫
d3p

(2π)3
p e−p/Tf(1) =

ξ

(2π)36T

∫
d3p p2 e−p/T

(
1− 3 cos2 θ

)
(6.51)

=
ξ

(2π)26T

∫
dp p4 e−p/T

∫
d(cos θ)

(
1− 3 cos2 θ

)
(6.52)

= 0 ,

ξ2
∫

d3p

(2π)3
p e−p/T f(2) =

ξ2

(2π)3 360T 2

∫
d3p p2 e−p/T

(
5p− 39T (6.53)

+ 30(T − p) cos2 θ + 45(p+ T ) cos4 θ
)

=
ξ2

(2π)2 360T 2

(
8

∫ ∞

0

dp p5 e−p/T − 40T

∫ ∞

0

dp p4 e−p/T

)

= 0 .

Therefore, up to second order in ξ, the anisotropic distribution function with phard given by Eq. (6.46)
satisfies the Landau condition (6.44c).

6For practical purposes we expand until second order in ξ since we are considering viscous hydrodynamics until
second order in gradient expansion.
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6.4. Entropy and kinetic theory

In transport theory, the entropy current is defined as [102]

Sµ(x) = −
∫

d3p

(2π)3
pµ

p0
f(x,p)

{
log
[
f(x,p)

]
− 1
}
. (6.54)

Contracting the entropy current Sµ with the velocity fluid uµ, we obtain the entropy density S ≡
uµSµ. Non-equilibrium corrections are usually computed by expanding the distribution function
around the equilibrium [102]. For the anisotropic distribution function (6.26), the entropy density
can be calculated analytically in the local fluid rest frame using a change of variables giving

S(phard , ξ) =
Siso(phard)√

1 + ξ
, (6.55)

which, unlike typical expressions for the non-equilibirum entropy, is accurate to all orders in ξ. We
note, importantly, that our ansatz (6.26) does not fall into the class of distribution functions describ-
able using the 14 Grad’s ansatz since, when expanded around equilibrium, (6.26) has momentum-
dependent coefficients. Therefore, the entropy production from our anisotropic distribution will
differ from the 14 Grad’s method and IS ansatz as we show below.

6.4.1. Entropy from 14th Grad’s Method

We can evaluate the entropy from the kinetic theory definition using the 14th Grad’s approximmation
for the non-equilibrium distribution function

f(x, p) = feq(1 + δf), (6.56)

The dependence of δf is assumed to be a function of the hydrodynamic degrees of freedom E ,P , uµ, gµν
and πµν expanded in a Taylor series

δf(xµ, pµ) = ǫ0 + ǫµp
µ + ǫµνp

µpν +O(p3). (6.57)

By demanding that δf vanishes in equilibrium, one finds that in the Landau frame and assuming
massless Boltzmann particles, δf is given by [126]

δf(xµ, pµ) =
1

2T 2 (E(T ) + P(T ))
πµνp

µpν +O(p3) . (6.58)

Expanding the expression of the entropy

S = −
∫

d3p

(2π3)
feq(1 + δf)

[
log(feq(1 + δf))− 1

]
, (6.59)

≈ S(0) + S(1) + S(2).

where

S(0) = −
∫

d3p

(2π3)
feq
[
log(feq)− 1

]
, (6.60a)

S(1) = −
∫

d3p

(2π3)
feq δf log

(
feq
)
, (6.60b)

S(2) = −1

2

∫
d3p

(2π3)
feq (δf)

2 . (6.60c)

After replacing the 14 Grad’s ansatz in the last expressions, these integrals can be calculated
analitically if one rewrites them as moments of the equilibrium distribution function. Here, we
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demonstrate this for a Boltzmann distribution feq(x
µ, pµ) = e−p/ T . After a lengthy calculation, we

find:

S(0) =
1

T

(
3T 4

π2
+
T 4

π2

)
≡ 1

T

(
E(T ) + P(T )

)
, (6.61a)

S(1) = 0 , (6.61b)

S(2) = −3

8

πµνπ
µν

T P(T )
. (6.61c)

Using the ideal equation of state, the non-equilibrium entropy is

Snoneq =
4

3T
E(T )− 3

8

πµνπ
µν

T P(T )
. (6.62)

Comparing this expression with the IS ansatz for the non-equilibrium entropy, Eq. (6.6), we find a
well-known result for a Boltzmann gas

β2 =
3

4P(T )
. (6.63)

For 0+1 dimensional case, where πµν = diag (0,Π/2,Π/2,−Π), the non-equilibrium entropy (6.62)
is

Snoneq =
4

3T
E(T )− 3

4

β2
T
Π2 . (6.64)

6.4.2. Entropy from the anisotropic distribution ansatz

Using the kinetic theory framework, we can calculate the entropy from the anisotropic distribution
ansatz (6.26) by expanding in a Taylor series in terms of the anisotropy parameter ξ (Eqs. 6.48). Since
the Landau matching conditions are satisfied by the anisotropic distribution function if Eq. (6.46) is
imposed, one can write the shear tensor to first order in ξ as

Πµν =

∫
d3p

(2π)3p0
pµpνfeqδf , (6.65)

=
ξ

6T

∫
d3p

(2π)3
pµpν e−p/T (1− 3 cos2 θ) ,

where we use explicitly the first order correction to the anisotropic distribution function (6.48a). We
are interested in the 0+1 dimensional case, where there is just one independent component of the
shear tensor Πzz = −Π. Calculating the zz component from the last expression, we have

πzz ≡ −Π =
ξ

6T

∫
d3p

(2π)3
p2z e

−p/T (1− 3 cos2 θ) , (6.66)

=
ξ

(2π)2 6T

∫ π

0

d(cos θ) cos2 θ (1− 3 cos2 θ)

∫ ∞

0

dp p4 e−p/T ,

= − 8

15

T 4

π2
ξ ,

= − 8

45
E(T ) ξ .

This expression coincides with Eq. (6.40).
Expanding the entropy to second order in ξ

Snoneq = −
∫

d3p

(2π)3
feq
[
1 + ξf(1) + ξ2f(2)

][
log
[
feq
(
1 + ξf(1) + ξ2f(2)

)]
− 1
]
, (6.67)

≈ S(0) + S(1) + S(2).
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where

S(0) = −
∫

d3p

(2π)3
feq
[
log feq − 1

]
, (6.68)

S(1) = −ξ
∫

d3p

(2π)3
f(1)feq log feq , (6.69)

S(2) = −ξ2
∫

d3p

(2π)3
feq

(
(f(1))

2

2
+ f(2) log feq

)
. (6.70)

After replacing f(1) and f(2) (Eqs. (6.48)) in the last expressions and feq = e−p/T , we have

S(0) =
1

T

(
3T 4

π2
+
T 4

π2

)
≡ 1

T

(
E(T ) + P(T )

)
(6.71)

S(1) = 0 (6.72)

S(2) = − 2

15T

T 4

π2
ξ2 (6.73)

= − 2

45

E(T )
T

ξ2 .

Using the ideal equation of state, the non-equilibrium entropy can be written as

Snoneq =
4

3

E(T )
T

− 2

45

E(T )
T

ξ2 (6.74)

=
4

3

E(T )
T

(
1− ξ2

30

)

=
4

3

E(T )
T

(
1− 135

128

(
Π

E(T )

)2)
.

If one compares this result with the IS ansatz for the non-equilibrium entropy in the 0+1 dimensional
case, Eq. (6.64), the term β2 for the anisotropic distribution ansatz can be fixed as

β2 =
5

8

1

P(T )
(6.75)

Notice that the difference of the values between Eqs. (6.63) and the last expression comes from
the fact that the anisotropic distribution is incompatible with the 14 Grad’s ansatz. This is due
to the fact that at small ξ the linear term coming from the ansatz (6.26) cannot be expressed in
the form a42 pµΠ

µνpν , with a42 being a momentum-independent quantity. In the case of (6.26) the
corresponding coefficient of pµΠ

µνpν is momentum dependent and hence (6.26) does not fall in the
class of distribution functions describable using the 14 Grad’s ansatz.

6.5. Entropy generation

In both the pre-equilibrium and viscous hydrodynamical periods we use (6.55) to calculate the
percentage entropy generation ∆S/S0. We define

∆S

S0
=
τfo S(τfo)− τ0 S(τ0)

τ0 S(τ0)
≡ Sf − S0

S0
(6.76)

where Sf and S0 are the entropy per unit rapidity evaluated at τ = τfo and τ = τ0, respectively.
Note that the two models for pre-equilibrium evolution, free-streaming and collisionally-broadened

expansions, generate no entropy during the pre-equilbrium period. In the case of free-streaming it
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is obvious that there can be no entropy generation. In the case of collisionally broadened expansion
there is an implicit assumption that there are no inelastic processes. Therefore, in both cases there is
no entropy generation. This can be checked analytically by using Eq. (6.37) and computing either the
entropy density or the number density, in which case one finds that both drop like τ−1 [83, 26].7 Of
course, these models are an idealization and one expects inelastic processes to contribute to entropy
production during the pre-equilbrium period in a more realistic model; however, this is beyond the
scope of the current work.
The entropy produced during the expansion can be used to constrain nonequilibrium models of

the QGP [163]. The produced entropy depends on the values of the transport coefficients and is
sensitive to the assumed value of η/S. Based on the fact that our pre-equilibrium models do not
generate entropy, one naively expects that if the viscous hydrodynamical period starts later, then
less entropy is produced. However, this is only true if during the viscous period we have control over
the gradient expansion, i.e. |Π/P| ≪ 1. Additionally, for fixed phard, the factor of

√
1 + ξ in (6.55)

causes the entropy to monotonically decrease as ξ → ∞. The competing effects of phard and ξ can
cause the naive expectation described above to be violated, as we will discuss below.
In all of the calculations shown below, the parton formation time, τ0, is chosen to be 0.2 fm/c and

the initial temperature, Thydro, at that time is taken as 0.35 GeV. We use a freeze-out temperature
of Tfo = 0.16 GeV. The values of the transport coefficients are summarized in Eqs. (6.12) and (6.13).
In what follows, we show the results for entropy production when one fixes the initial conditions at
the formation time.

6.5.1. Free streaming model

In Fig. 6.12, we show the entropy percentage as a function of τhydro in the strong (bottom panel) and
weak (top panel) coupling limits when one uses free streaming as the pre-equilibrium scenario. In
both figures after a certain time, which we will call τc, there is no entropy generation in our model.
This is due to the fact that for τhydro > τc the system freezes out while still in the pre-equilibrium
period of evolution. For the free streaming model this time is approximately τc = 3.6 fm/c.
From Fig. 6.12, we see that the entropy production depends on the values of the transport coef-

ficients. In the strong coupling case, we see that ∆S/S0 increases between 0.5 . τhydro . 3 fm/c
and it goes to zero after τc. The increase in entropy production is due to the rapidly increasing
value of Πhydro in the free-streaming case. In the weak coupling case, there is a similar behaviour
but the effect is less pronounced. Again the increase in entropy production can be understood if one
considers the values of the initial conditions Πhydro and Ehydro obtained from the pre-equilibrium
free streaming expansion. For the free-streaming model, for example, the anisotropy parameter ξ in-
creases as τ2. As a consequence, one can obtain large initial values for the shear. In fact, one should
take care since the size of Πhydro/Phydro can be of O(1) making the use of a viscous hydrodynamical
description after τhydro suspect. Therefore, it is necessary to check the relative size of Π and P at
the matching time to assess the trustworthiness of the hydrodynamical evolution. The constraint on
τhydro is stronger if one requires instead a more stringent convergence criterium, |Π| 6 P/3, during
the hydrodynamical evolution [121]. Here we do not apply this stronger condition but mention this
in order to make the reader aware of this caveat.

6.5.2. Collisionally broadened model

In Fig. 6.13, we show the entropy percentage ∆S/S0 in the strong (bottom panel) or weak coupling
(top panel) cases as a function of τhydro. In the collisionally-broadened case we find τc = 2.2 fm/c
which is shorter than the corresponding time in the case of free streaming. This is due to the fact

7Only if you use the exact expression given by Eq. (6.55) does one find this result. If you use the Israel-Stewart or
14 Grad’s expression for the non-equilibrium entropy you will find that, even assuming a free-streaming plasma,
entropy is generated during the pre-equilibrium evolution. This is obviously incorrect so we use Eq. (6.55) in all
cases.
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Figure 6.12.: Entropy percentage as a function of τhydro for a free streaming pre-equilibrium scenario
in the weak (top panel) and strong coupling (bottom panel) regime. We use τ0 = 0.2
fm/c and the initial temperature at the parton formation time Thydro = 0.35 GeV.

than in the collisionally broadened case, the energy density decreases more quickly (Ec.b ∼ τ−11/9)
compared with the free streaming case (Ef.s. ∼ τ−1).
In Fig. 6.13, we see that, contrary to the case of free streaming, the entropy percentage as τhydro

is now a monotonically decreasing function of τhydro. This is due to the fact that the anisotropies
developed during the pre-equilibrium period are smaller for the collisionally-broadened case than the
free-streaming case [83]. We note that we also observe that the entropy percentage as a function
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Figure 6.13.: Entropy percentage as a function of τhydro for a collisionally broadening pre-equilibrium
scenario in the weak (top panel) and strong coupling (bottom panel) regime. We use
τ0 = 0.2 fm/c and the initial temperature at the parton formation time Thydro = 0.35
GeV.

of τhydro drops more quickly in the weak coupling regime compared with the strong coupling case.
This is a consequence of Eq. (6.55) which shows that for fixed phard as ξ increases, less entropy is
produced. As we pointed out in Sect. 6.3.2, the value of the anisotropy in momentum-space is larger
in the weak-coupling case than in the strong-coupling case during the viscous period (see comparison
in Fig. 6.11).
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6.5.3. Including initial anisotropies at the formation time
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Figure 6.14.: Entropy percentage as a function of τhydro for a collisionally broadening pre-equilibrium
scenario and ξ0=-0.1, in the strong (bottom panel) and weak coupling (top panel)
regime. We use τ0 = 0.2 fm/c and the initial temperature at the parton formation time
Thydro = 0.35 GeV.

In the previous subsections we showed results for the case that at the formation time there was
no momentum-space anisotropy, i.e. ξ0 = 0. In this subsection we will relax this assumption. In
Fig. 6.14, we show the result for entropy production for a prolate initial distribution with ξ0 = −0.1 in
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∆S/S0 ≤ 10%

ξ0 Weak coupling Strong coupling

-0.5 τhydro ≥ 0.65 fm/c τhydro ≥ 0.75 fm/c
0 τhydro ≥ 0.45 fm/c τhydro ≥ 0.9 fm/c
10 Non determined τhydro ≥ 0.75 fm/c

∆S/S0 ≤ 20%

ξ0 Weak coupling Strong coupling

-0.5 Non determined Non determined
0 τhydro ≥ 0.3 fm/c τhydro ≥ 0.35 fm/c
10 Non determined τhydro ≥ 0.65 fm/c

Table 6.2.: Bounds on τhydro imposed by requiring either a 10% (left panel) or 20% (right panel)
bound on percentage entropy when one considers different values of ξ0 and transport
coefficients. We fix the initial conditions through 0+1 collisionally broadening expansion.
τ0 = 0.2 fm/c and T= 350 MeV.

the collisionally-broadened scenario. In both coupling cases, ∆S/S0 is decreasing as τhydro increases.
Since the initial value of the anisotropy is close to zero, generally speaking, the behaviour of the
entropy percentage is similar to the case we have an isotropic initial state (ξ0 = 0).
For larger values of ξ0, the situation becomes more complicated because we do not have control of

the size of Π/P and the system can become “critical”. Therefore, for extreme initial anisotropies,
it is not possible to determine τhydro based on entropy constraints. In Table 6.2, we summarize the
bounds on τhydro obtained by varying ξ0 in the strong and weak coupling regime when one fixes the
initial conditions using collisionally broadened expansion. The cases which have “Non determined”
are cases in which the initial anisotropies were so extreme as to cause the system to begin generating
negative longitudinal pressure. In those cases viscous hydrodynamics is unreliable. The striking
conclusion from this table is that, in all cases, we find that the lower bound on τhydro due solely to
entropy considerations is larger in weak-coupling case than in the strong coupling case. This is due
to a competing effect between increasing anisotropy and dropping temperature in Eq. (6.55) and can
be seen already in the fact that the entropy production decreases more rapidly in the weak-coupling
panels of Figs. 6.13 and 6.14. We point out that these estimates are lower bounds on the minimum
τhydro since our models have no entropy generation during the pre-equilibrium period. In a more
realistic scenario there would also be entropy generation during the pre-equilbrium period which
would add to all curves presented in this section.
In closing we emphasize that the bounds in Table 6.2 do not factor in the constraint that the shear

should be small compared to the isotropic pressure. As shown in Ref. [83] requiring Π/P < 1/3 as
a convergence criteria for viscous hydrodynamics and assuming an initially isotropic plasma (i.e.,
Πhydro = 0) results in a constraint τhydro > 5.9T−1

hydro in the case of a weakly-coupled plasma and

τhydro > 0.85T−1
hydro in the case of a strongly-coupled plasma. Assuming an initial temperature of 350

MeV this gives τhydro > 3.3 fm/c in the case of a weakly-coupled plasma and τhydro > 0.6 fm/c in the
case of a strongly-coupled plasma. Therefore, assuming an initially isotropic plasma, the convergence
constraint can be a stronger constraint than the constraint implied by entropy production. In general
one must compare both constraints to determine which results in a stronger condition.

6.6. Summary of results

The validity of viscous hydrodynamics at early-times is not totally reliable since at early times the
dissipative corrections can be large. In this chapter we studied how to constrain viscous hydrody-
namics at early-times of the evolution of the collision.
We present two criteria that impose lower bounds on τhydro by requiring that during all the simu-

lated times, the solutions of viscous hydrodynamics satisfy: (1) positivity of the effective longitudinal
pressure PL, and (2) that the shear tensor Π to be small compared with the isotropic pressure P ,
e.g., |Π| 6 P/3. As a result, the allowed τhydro is non-trivially related with the initial condition of the
shear tensor Πhydro and the initial energy density Ehydro. We show this by solving 0+1 dimensional
2nd-order conformal viscous hydrodynamics and studying if, for a given set of initial conditions
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{Ehydro, Πhydro, τhydro}, the solution satisfies the required criteria [121].
We find that for certain values of Πhydro, the system exhibits negative values of PL, which indicates

that one cannot trust on the validity of viscous hydrodynamics in certain kinematic regions. By
requiring positivity of the longitudinal pressure, we find that if Thydro=0.35 GeV and the system
is isotropic at τ = τhydro, (i.e., Πhydro=0), for strong coupling τhydro > 0.08 fm/c while in weak
coupling τhydro > 0.23 fm/c [121]. The last constraint is considered ‘weak’ in the sense that, the
value of the shear viscous tensor can be on the same order as the isotropic pressure and therefore,
the assumption of small departures from equilibrium is not completely satisfied. By imposing on the
solution the stronger convergence criteria |Π| 6 P/3, Thydro=0.35 GeV and Π0=0, we find that for
strong coupling τhydro > 0.49 fm/c whereas for weak coupling τhydro > 3.37 fm/c [121].
We presented a model that allows us to match 0+1 pre-equilibrium dynamics and 0+1 2nd-order

conformal viscous hydrodynamics at a specified proper-time τhydro. The pre-equilibrium evolution
is modeled by either free-streaming or collisionally-broadening expansion. We derived a relation
between the microscopic anisotropy parameter ξ and the pressure anisotropy of the fluid ∆. This
relation allowed us to determine the initial conditions for the shear Π and energy density E at the
assumed matching time. The initial values of E and Π depend on the kind of pre-equilibrium model
considered and also on the interval of time over which pre-equilibrium dynamics is assumed to take
place. As a particular application here we studied entropy generation as a function of τhydro. We
derived an exact expression for the non-equilibrium entropy and then used this to determine the
percentage entropy generation. We showed that due to the reduction of the entropy by a factor of√
1 + ξ compared to the isotropic case that it is possible to have more entropy generation in the

strongly-coupled case. We summarized our results for entropy generation by presenting bounds on
τhydro which result from requiring the percentage entropy generation to be less than 10% or 20%
in Table 6.2. We also mention that these results can be generalized to higher dimensions and in
order to match all components of the energy momentum tensor and fluid four-velocity. However, it
is necessary to better quantify the effect of transverse expansion during the pre-equilibrium period
and its impact on the anisotropy developed at early times. One way to approach this problem is to
make use of 3d parton cascade models [28, 29, 213] or 3d Boltzmann-Vlasov-Yang-Mills simulations
[50]. Short of this, one can investigate simple analytic models such as 3d free-streaming or 3d
collisionally-broadened expansion and develop analytic models which can be used to determine the
necessary initial conditions self-consistently.
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7. Conclusions and outlook

Fue entonces cuando comprendio que una historia no tiene

dueño, que no es de uno hasta que se la conoce en su perfecta

totalidad, hasta que se adivina el perfil con los ojos cerrados

de una habitación a oscuras.

Historia argentina

Rodrigo Fresán.

In this work we studied phenomenological consequences of an anisotropic QGP. Due to the different
expansion rates along the longitudinal and transverse direction of the collision, the hot and dense
matter is anisotropic in momentum-space. We investigated the impact of momentum-anisotropies
in ultrarelativistic heavy ion collisions.

We have presented models which allow one to smoothly interpolate between early-time non-
equilibrium 0+1 dimensional expansion to late-time isotropic equilibrium 0+1 dimensional hydro-
dynamic expansion. To accomplish this we introduced two parameters: τiso, which is the time at
which the system begins to expand hydrodynamically and γ which sets the width of the transition.
Using these models we integrated the leading order rate for dilepton production in an anisotropic
plasma over our modeled space-time evolution.

Based on our numerical results for the variation of dilepton yields with the assumed values of τiso we
find that the best opportunity to determine information about the plasma isotropization time in the
central rapidity region is by analyzing the high transverse momentum (1 < pT < 6 GeV at RHIC and
2 < pT < 8 GeV at LHC) dilepton spectra using relatively low pair invariant mass cuts (M . 2 GeV).
Based on these pT spectra we introduced the “dilepton enhancement” factor φ(τiso) which measures
the ratio of yields obtained from a plasma which isotropizes at τiso to one which isotropizes at the
formation time, τ0. We showed that for our most extreme model, the free-streaming interpolating
model (δ = 2) with fixed initial conditions, that the resulting enhancement φ can be as large as
10; however, this extreme model probably overestimates the amount of anisotropy in the plasma.
Additionally, this model results in a large amount of entropy generation during the transition from
the free-streaming τ−1 asymptotic behavior to hydro τ−4/3 asymptotic behavior. As we discussed
this greatly constrains the maximum isotropization times τiso which are consistent with experimental
indications of low (10-20%) entropy generation. In order to construct a more realistic model we then
included collisional-broadening of the initial pre-equilibrium parton distribution functions (δ = 2/3).
In this more realistic model there is much less entropy generation and the system is always closer
to ideal 0+1 hydrodynamic expansion than in the free-streaming interpolating model. As a result
the dilepton enhancement due to pre-equilibrium emissions is lower than the free-streaming case.
We find that when fixing final multiplicity at RHIC energies there is a 20-40% enhancement in
the high-transverse momentum dileptons and at LHC energies it is 30-50% when one assumes an
isotropization time of τiso = 2 fm/c. The amplitude of the enhancement and position of the peak in
the enhancement function, φ, varies with the assumed value of τiso which, given sufficiently precise
data, would provide a way to determine the plasma isotropization time experimentally. We presented
our predictions for the dilepton enhancement, φ, as a function of τiso for two different invariant mass
cuts, demonstrating that our model can be constrained by a multiresolution analysis which should
give higher statistics and further constrain the two model parameters at our disposal.

To study the dilepton production rapidity dependence, we have parametrized the rapidity depen-
dence of phard using a Gaussian profile which is consistent with experimental observations of final
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pion spectra from AGS through RHIC energies. We have applied the proposed model to study high-
energy dilepton yields as a function of the pair rapidity and find that this observable is sensitive to
the chosen value of τiso. This suppression can be explained as a consequence of the combined effect
of the anisotropy in momentum-space achieved at early-times due to expansion and the rapidity
dependence of the hard momentum scale which explicitly breaks longitudinal boost invariance. We
find that with the resulting dilepton modification factor, Φ(τiso=2 fm/c), shows suppressed dilepton
yields in the forward rapidity region which can be up to 20% for 0 < y . 4 and up to a factor of 3
at y ∼ 9. The amplitude of the suppression of Φ(τiso) could help us to experimentally constrain τiso
given sufficiently precise data in the forthcoming LHC experiments. In this way forward dileptons
would provide a way to determine the plasma isotropization time experimentally.
One shortcoming of our approach is that we have not included NLO corrections to dilepton pro-

duction from an anisotropic QGP. At low invariant mass these corrections would become important.
As a next step one must undertake a calculation of the rate for dilepton pair production at NLO in
an anisotropic plasma. This is complicated by the presence of plasma instabilities that render some
expressions like 〈AA〉 correlators formally divergent and hence analytically meaningless. However,
when combined with numerical solution of the long-time behavior of a plasma subject to the chromo-
Weibel instability it may be possible to extract finite correlators. This is a daunting but doable task.
Absent such a calculation, phenomenologically speaking it is probably a very good approximation to
simply take existing NLO calculations and apply the enhancement function φ as calculated at LO.
We leave this for future work. Another uncertainty comes from our implicit assumption of chemical
equilibrium. If the system is not in chemical equilibrium (too many gluons and/or too few quarks)
early time quark chemical potentials, or fugacities, will affect the production of lepton pairs.
Next, we have studied momentum-anisotropies in the context of viscous hydrodynamics. Under

the presence of the shear viscous tensor, the effective transverse and longitudinal pressures differ
from each other as the system expands. We have derived two general criteria that can be used
to assess the applicability of 2nd-order conformal viscous hydrodynamics to relativistic heavy-ion
collisions. We did this by simplifying to a 0+1 dimensional system undergoing boost invariant
expansion and then (a) requiring the longitudinal pressure to be positive during the simulated time
or (b) requiring a convergence criterium that |Π| < P/3 during the simulated time. We showed that
these requirements lead to a non-trivial relation between the different values of the energy density,
shear viscous tensor and initial time when one starts to run numerical simulations. In particular,
we found lower bounds on the initial time after imposing these requirements on the solutions of
0+1 2nd-order conformal viscous hydrodynamical equations. The constraints derived here were then
shown to provide guidance for where one might expect 2nd-order viscous hydrodynamics to be a
good approximation in higher-dimensional cases.
Finally, we presented a model that allows us to match 0+1 pre-equilibrium dynamics and 0+1 2nd-

order conformal viscous hydrodynamics for a given initialization time. We find that the anisotropy
parameter ξ can be related with the pressure anisotropy of the fluid ∆. Using this relation we can find
the values of the initial energy density and shear viscous tensor as a function of the initialization time.
We derived a relation between the microscopic anisotropy parameter ξ and the pressure anisotropy
of the fluid ∆. This relation allowed us to determine the initial conditions for the shear tensor and
energy density at the assumed matching time. The initial conditions for 0+1 viscous hydrodynamics
depend on the kind of pre-equilibrium model considered and also on the interval of time over which
pre-equilibrium dynamics is assumed to take place. As a particular application here we studied
entropy generation as a function of the initial time. We derived an exact expression for the non-
equilibrium entropy and then used this to determine the percentage entropy generation. We also
discussed the limitations of the definitions of the non-equilibrium entropy and we concluded that
these studies can be extended to higher dimensions in order to match all components of the energy
momentum tensor and fluid four-velocity. To do this it is necessary to specify information about
the transverse expansion during the pre-equilibrium period and how this impacts the anisotropy at
early times. Short of this, one can investigate simple analytic models such as 3d free-streaming or
3d collisionally-broadened expansion and develop analytic models which can be used to determine
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the necessary initial conditions self consistently.
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A. Useful relations of the moments of the
Boltzmann distribution function

In this appendix we derive some of coefficients of the moments of the Boltzmann distribution function.
The n-th moment of the equilibrated distribution function is defined as the n rank tensor

Iµ1µ2···µn(x) =

∫
dΓ pµ1pµ2 · · · pµn feq(x, p) . (A.1)

This n rank tensor can be decomposed in a tensorial basis as [119, 120]

Iµ1µ2···µn =

(n/2)∑

k=0

ank∆
(2k un−2k) , (A.2)

where

∆(2k un−2k) =
2k! k! (n− 2k)!

n!
×

∑

permutations

∆µ1µ2 · · ·∆µ2k−1µ2k uµ2k+1 · · ·uµn , (A.3)

where ∆µν = gµν − uµuν and uµ is the flow velocity of the fluid. The coefficients ank are found by
contracting both sides of Eq. (A.2) with a tensor of the form (A.3).
For Boltzmann distribution function e−uµp

µ/T , notice that one correlates its (n + 1)-th moment
with the n-th moment through the iterative relation

d

dT
Iµ1µ2···µn =

d

dT

(∫
dΓ pµ1pµ2 · · · pµn e−uµp

µ/T

)

=
uδ
T 2

(∫
dΓ pµ1pµ2 · · · pµnpδ e−uµp

µ/T

)

≡ 1

T 2
uµn+1

Iµ1µ2···µn+1 . (A.4)

Using Eq. (A.2), the 2nd moment of the Boltzmann distribution function can be written as

Iµν =

∫
dΓ pµpν feq(x, p) ≡ a20 u

µuν + a21∆
µν . (A.5)

For a Boltzmann distribution function, the coefficients a20 and a21 can be calculated after contracting
with uµuν and ∆µν , respectively

a20 =

∫
dΓ p2 e−p/T =

3

π2
T 4 , (A.6a)

a21 = −1

3

∫
dΓ p2 e−p/T = − 1

π2
T 4 = −a20

3
, (A.6b)

Using the Eq. (A.2) for n = 3, the 3rd moment of the Boltzmann distribution function can be
decomposed as

Iαβγ = a30 u
αuβuγ + a31

[
∆αβuγ +∆αγuβ +∆γβuα

]
. (A.7)
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We need to calculate a31. By contracting the last expression with uα∆βγ we obtain

a31 =
1

3
uα∆βγI

αβγ . (A.8)

Using Eq. (A.4) for n = 2, we conclude that:

a31 = T 2 d

dT

(
1

3
∆αβI

αβ

)
,

= T 2 d

dT
a21 ,

= − 4

π2
T 5 ,

= −T
(
E + P

)
, (A.9)

where we explicitly use the tensor decomposition (A.5) for Iαβ and the fact that ∆αβI
αβ = 9a21.

According to Eq. (A.2) for n = 4, the fourth moment of the Jünter distribution function is
decomposed in a tensorial basis as follows

Iµναβ = a40 u
µuνuαuβ + a41

(
uµuν∆αβ + permutations

)

+ a42
(
∆µν∆αβ +∆µα∆νβ +∆µβ∆να

)
. (A.10)

The coefficient a42 is obtained by contracting the last expression with ∆µν∆αβ

a42 =
1

15
∆µν∆αβI

µναβ . (A.11)

Contracting the definition of Iµναβ for n = 4 in Eq. (A.1) with ∆µν∆αβ

∆µν∆αβI
µναβ = ∆µν∆αβ

∫
dΓ pµpνpαpβ e−uµp

µ/T ,

= ∆µν

∫
dΓ pµpν

(
pδpδ − (u · p)2

)
e−uµp

µ/T ,

= −∆µνuαuβ

∫
dΓ pµpνpαpβ e−uµp

µ/T ,

= −uα
(
∆µνuβI

µναβ
)
,

= −T 2 d

dT

(
uγ∆αβ I

αβγ
)
,

= −3T 2 d

dT
a31 . (A.12)

In the fifth line we contract the iterative relation (A.4) for n = 3 with ∆µν∆αβ and in the sixth
line we use explicitly Eq. (A.8). By comparing Eqs. (A.11) with (A.12) and using Eqn. (A.9) we
conclude

a42 = −1

5
T 2 d

dT
a31 ,

=
4

π2
T 6 ,

= T 2
(
E + P

)
. (A.13)

Consider the tensor decomposition of Iµναβρ based on Eq. (A.2) for n = 5

Iµναβρ = a50 u
µuνuαuβuρ + a51

(
uµuνuρ∆αβ + permutations

)

+ a52
(
∆αβ∆µνuρ + permutations

)
. (A.14)
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By contracting the last expression with ∆αβ∆µνuρ, the coefficient a52 is

a52 =
1

15
∆αβ∆µνuρ I

µναβρ ,

=
1

15
T 2∆αβ∆µν

d

dT
Iµναβ (A.15)

where we use explicitly in the second line the Eq. (A.4) for n = 4. Using Eq. (A.11) in the last
expression, we find

a52 = T 2 d

dT
a42 ,

=
24

π2
T 7 ,

= 6T 3
(
E + P

)
, (A.16)

where we have used relation (A.13).
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B. 2nd order conformal relativistic
hydrodynamics for a 0+1 dimensional
expansion

B.1. 0+1 viscous hydrodynamical equations

The equations of motion of 2nd order conformal viscous hydrodynamics for the energy density E ,
the fluid velocity uµ and the shear tensor Πµν are given by [103, 104]

(E + P)Duµ = ∇µP −∆µ
αDβΠ

αβ , (B.1a)

DE = −(E + P)∇µu
µ +

1

2
Πµν∇〈νuµ〉 , (B.1b)

Πµν = η∇〈µuν〉 − τπ

[
∆µ

α∆
ν
βDΠαβ +

4

3
Πµν(∇αu

α)

]

+
κ

2

[
R<µν> + 2uαR

α<µν>βuβ
]

− λ1
2η2

Π<µ
λΠ

ν>λ +
λ2
2η

Π<µ
λω

ν>λ − λ3
2
ω<µ

λω
ν>λ , (B.1c)

where Dµ is the geometric covariant derivative, D ≡ uαDα is the comoving time derivative in the
fluid rest frame, ∇µ ≡ ∆µαDα is the spatial derivative in the fluid rest frame, ωµν = −∇[µuν] is an

antisymmetric operator that represents the fluid vorticity and Rαµνβ and Rµν are the Riemann and
Ricci tensors, respectively. The coefficients τπ, κ, λ1, λ2 and λ3 are the transport coefficients required
by conformal symmetry [103, 104].

We consider a 3+1 dimensional system where there is no dependence on the transverse coordinates
xT = (x, y) and the expansion along the beam line is boost invariant [19]. It is therefore convenient
to work in a comoving frame described by the Milne coordinates, proper time τ =

√
t2 − z2 and

spatial rapidity ζ = arctan(z/t). In the Milne coordinates the metric gµν = diag(1,−1,−1,−τ2) and
the fluid velocity uµ = (1, 0, 0, 0).

Requiring boost invariance allows some simplifications: E , uµ,Πµν are then independent of spatial
rapidity ζ and Πµν is diagonal. For 0+1 dimensional viscous hydrodynamics, the orthogonality to
the fluid velocity and tracelessness of Πµν imply

Πτν = 0 , (B.2a)

Πx
x +Πy

y +Πζ
ζ = 0 , (B.2b)

=⇒ Πx
x = Πy

y = −1

2
Πζ

ζ .

Because of the rotational symmetry in the transverse plane, in the second line of Eq. (B.2b), Πx
x =

Πy
y. From the last expressions, it is straightforward to conclude that in 0+1 dimensional viscous

hydrodynamics there is just one independent component of the shear viscous tensor, say Πζ
ζ .

With these simplifications, the stress energy tensor in the presence of shear viscous corrections
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takes the form [1, 121, 212, 214, 215, 125, 103, 216, 217]

T µν =




ε 0 0 0

0 p+ 1
2Π

ζ
ζ 0 0

0 0 p+ 1
2Π

ζ
ζ 0

0 0 0 p−Πζ
ζ


 . (B.3)

In the Milne coordinates there are just three non-vanishing Christoffel symbols

Γζ
ζτ = Γζ

τζ =
1

τ
, Γτ

ζζ = τ . (B.4)

Using these expressions, we can now derive the second order conformal viscous hydrodynamical
equations for a 0+1 dimensional expansion from the general expressions given by Eqs. (B.1). Consider
the term Πµν∇〈νuµ〉 in Eq. (B.1b):

Πµν∇〈νuµ〉 = −Πx
x∇〈xux〉 −Πy

y∇〈yuy〉 −
1

τ2
Πζ

ζ∇〈ζuζ〉 ,

= −2Πx
x

3 τ
− 2Πy

y

3 τ
+

4Πζ
ζ

3 τ
,

=
2

τ
Πζ

ζ , (B.5)

where we use explicitly Eq. (B.2b). Replacing the last expression in the equation of motion for the
energy density (B.1b), we obtain

∂τE = −E + P
τ

+
Πζ

ζ

τ
. (B.6)

This is precisely the evolution equation for the energy density (6.2a) introduced in Chapter 6. Since
we are working in flat space and we are interested in 0+1 dimensional boost invariant expansion,
the Ricci scalar and the Ricci tensor vanish exactly and there is no vorticity, ωµν = 0. Therefore,

we can rewrite Eq. (B.1c) for the only independent component of the shear tensor Πζ
ζ as

Πζ
ζ + τπ

[
∆ζ

α ∆β
ζ DΠα

β +
4

3
Πζ

ζ ∇αu
α
]
+

λ1
2 η2

Πβ
〈ζΠζ〉

β = 0 . (B.7)

Now, we need to evaluate three terms, ∆ζ
α ∆β

ζ DΠα
β , ∇αu

α and Πβ
〈ζΠζ〉

β . Evaluating the first term

∆ζ
α ∆β

ζ DΠα
β

∆ζ
α ∆β

ζ DΠα
β = ∆ζ

α ∆β
ζ u

γ
(
∂γΠ

α
β + Γα

γδΠ
δ
β − Γδ

γβΠ
α
δ

)
,

= ∂τΠ
ζ
ζ + Γζ

τζΠ
ζ
ζ − Γζ

τζΠ
ζ
ζ ,

= ∂τΠ
ζ
ζ . (B.8)

Calculating the term ∇αu
α we get

∇µu
µ = ∆µαD

αuµ ,

= ∂µu
µ + Γµ

µλu
λ − uµu

α∂αu
µ − uµu

αΓµ
αλu

λ ,

= Γζ
ζτu

τ .

=
1

τ
(B.9)
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For the term Πβ
〈ζΠζ〉

β we obtain

Πβ
〈ζΠζ〉

β =

(
2∆ζ

α∆ζβ − 2

3
∆ζ

ζ∆αβ

)
ΠλαΠβ

λ ,

= 2(Πζ
ζ)

2 − 2

3

(
(Πx

x)
2 + (Πy

y)
2 + (Πζ

ζ)
2
)
,

= (Πζ
ζ)

2 . (B.10)

Using the Eqs. (B.8),(B.9) and (B.10) in Eq. (B.7), we get the equation of motion for the shear

component Πζ
ζ

Πζ
ζ + τπ

(
∂τΠ

ζ
ζ +

4

3 τ
Πζ

ζ

)
+

λ1
2 η2

(
Πζ

ζ

)2
=

4 η

3 τ
. (B.11)

This is the equation of motion for Πζ
ζ (6.2b) introduced in Chapter 6.
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C. Useful relations in thermal field theory

C.1. Relation between thermal Green functions

In thermal field theory one can consider the temporal evolution of an operator Â(t) in the real-time
and imaginary-time formalism as

Â(t) = ei ĤtÂ(0)e−i Ĥt , “real time” , (C.1a)

Â(τ) = eĤτ Â(0)e−Ĥτ , “imaginary time” . (C.1b)

Then we define the correlators of two arbitrary bosonic operators Â and B̂ defined over the Hilbert
space as 1

C̃>(p
0) ≡

∫ ∞

−∞

dt ei p
0t 〈Â(t)B̂(0)〉 “Advanced propagator” , (C.2a)

C̃<(p
0) ≡

∫ ∞

−∞

dt ei p
0t 〈B̂(0)Â(t)〉 , “Retarded propagator” , (C.2b)

ρ(p0) ≡
∫ ∞

−∞

〈1
2

[
Â(t), B̂(0)

]
〉 , “Spectral function” , (C.2c)

ĈE(w
b
n) ≡

∫ β

0

dτei w
b
nτ 〈Â(τ)B̂(0)〉 ,

with wb
n = 2πTn (bosonic Matsubara frecuencies). (C.2d)

As we show below, the following relations can be established from last definitions

C̃<(p
0) =

2

eβ p0 − 1
ρ(p0) = 2nB(p

0) ρ(p0) , (C.3a)

C̃>(p
0) =

2

1− e−β p0 ρ(p
0) = 2 eβ p0

nB(p
0) ρ(p0) , (C.3b)

ρ(p0) =
1

2i

{
ĈE(−i[p0 + i 0+])− ĈE(−i[p0 − i 0+])

}
, (C.3c)

where

〈· · · 〉 ≡ Tr
{
(· · · )ρ̂sys.

}
=

1

Zsys.
Tr

{
(· · · )e−β Ĥsys.

}
.

The retarded and advanced propagators are related. To show this, first we rewrite the retarded
propagator from its definition (C.2b)

C̃<(p
0) =

∫ ∞

−∞

dt ei p
0t 1

Z
Tr
[
B̂(0)ei ĤtÂ(0)e−i Ĥte−β Ĥ

]
,

=

∫ ∞

−∞

dt ei p
0t 1

Z

∑

n,m

e−(it+β)Em eitEn〈n|Â(o)|m〉〈m|B̂(0)|n〉 ,

=
1

Z

∑

n,m

e−β Em (2π)δ(p0 + Em − En) 〈n|Â(o)|m〉〈m|B̂(0)|n〉 . (C.4)

1These definitions are just for the bosonic fields and can be extended to the fermionic case. See details in Refs. [74, 75].
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Now, using the definion of the advanced propagator (C.2a)

C̃>(p
0) =

∫ ∞

−∞

dt ei p
0t 1

Z
Tr
[
ei ĤtÂ(0)e−i ĤtB̂(0)e−β Ĥ

]
,

=

∫ ∞

−∞

dt ei p
0t 1

Z

∑

n,m

e−(−it+β)En e−itEm〈n|Â(o)|m〉〈m|B̂(0)|n〉 ,

=
1

Z

∑

n,m

e−β En (2π)δ(p0 + En − Em) 〈n|Â(o)|m〉〈m|B̂(0)|n〉 ,

= eβ p0

C̃<(p
0) . (C.5)

The last relation is known as the Kubo-Martin-Schwinger (KMS) relation. Next, using the definition
of the spectral function (C.2c)

ρ(p0) =
1

2

[
C̃>(p

0)− C̃<(p
0)
]
,

and the KMS relation (C.5) in the last expression, we can get (C.3a) and (C.3b) respectively

ρ(p0) =
1

2
(eβ p0 − 1) C̃<(p

0) =⇒ C̃<(p
0) =

2

eβ p0 − 1
ρ(p0) = 2nB(p

0) ρ(p0) , (C.6a)

ρ(p0) =
1

2
(1 − e−β p0

) C̃>(p
0) =⇒ C̃>(p

0) =
2

1− e−β p0 ρ(p
0) = 2 eβ p0

nB(p
0) ρ(p0) . (C.6b)

From the definition of C̃E we have

C̃E(w
b
n) =

∫ β

0

dτ ei w
b
nτ 〈Â(τ)B̂(0)〉 ,

=

∫ ∞

−∞

dq0

(2π)

∫ β

0

dτ ei w
b
nτ e−i q0tC̃>(q0)

∣∣∣∣∣
it→τ

,

=

∫ ∞

−∞

dq0

(2π)

∫ β

0

dτ e(iw
b
n−q0)τ 2

1− e−β p0 ρ(q
0) ,

=

∫ ∞

−∞

dq0

π

1

1− e−β p0 ρ(q
0)

1

iwb
n − q0

e(iw
b
n−q0)τ

∣∣∣∣∣

β

0

,

=

∫ ∞

−∞

dq0

π

ρ(q0)

1− e−β p0

1

iwb
n − q0

(e−β p0 − 1) ,

=

∫ ∞

−∞

dq0

π

ρ(q0)

q0 − iwb
n

, (C.7)

where in the second line we use the Fourier transform of the advanced propagator Ĉ>(q
0). Now, we

need to invert the last expression and in order to accomplish this, we use a well known result from
complex variable theory

1

∆± i0+
= P

(
1

∆

)
∓ iπδ(∆) (C.8)

⇒ 1

2i

(
1

q0 − p0 − i0+
− 1

q0 − p0 + i0+

)
= πδ(q0 − p0) , (C.9)
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where P represents the principal part. Finally we obtain the relation (C.3c) after using in Eq. (C.7)

C̃E(w
b
n) =

∫ ∞

−∞

dq0

π

ρ(q0)

q0 − iwb
n

,

⇒ 1

2i

[
C̃E(−i[p0 + i0+])− C̃E(−i(p0 − i0+))

]
= ρ(p0) . (C.10)

C.2. Fermionic summation formula

Let

GF = T
∑

qfn

ei q
f
nτ

(qfn)2 + E2

qfn = 2πT (n+
1

2
) ; n ∈ Z . (C.11)

qfn is the fermionic Matsubara frecuency. Now consider the function

nF (i q
0) =

1

ei q0β + 1
. (C.12)

This function has poles when q0β = 2π(n + 1
2 ), i.e., when q0 = qfn. The residue at any pole is

calculated directly

nF (i[q
f
n + z]) =

1

1− ei zβ
≈ − 1

zβ
= i T (C.13)

Re (q  )0

Figure C.1.: Implemented contour to perform the integral given in Eq. (C.14).

Let f(q0) be a function which is regular on the real axis. Then,
∫

C

dq0 f(q0)nF (i q
0) = 2πi (iT )

∑

qfn

f(qfn) (C.14)

where C is the contour depicted in Fig. C.1. If one chooses the function f(q0) to be

f(q0) =
ei q

0τ

(q0)2 + E2
; 0 < τ < β , (C.15)

the relation (C.14) implies that the function GF can be written as

GF (τ) = − 1

2π

∫

C

dq0
ei q

0τ

(q0)2 + E2
nF (q

0) . (C.16)

For 0 < τ < β, the function ei q
0τ nF (q

0) vanishes exponentially at infinity. This allows us to close
the contour as shown in Fig. C.2 and pick up the poles at q0 = ±iE

GF (τ) = − 1

2π
(2π i)

[
e−Eτ

2i E
nF (−E) +

eEτ

−2i E
nF (E)

]

=
1

2E
nF (E)

[
e(β−τ)E − eβτ

]
. (C.17)
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0

0Im (q  )

Re (q  )

Figure C.2.: Closed contour to perform the integral C.16

C.3. Evaluation of C̃µν(P ) using imaginary time formalism

In general, to compute observables, it is enough to compute the imaginary Green function C̃E

and carry out an analytic continuation afterwards. One can show that the advanced and retarded
propagator together with the spectral function are related with C̃E . Here we show how to calculate
the Green function C̃<

µν(P ) using the imaginary time formalism.
The lowest order Feynman diagram which contributes to the production of lepton pairs is shown

in Fig. C.3. Therefore, the electromagnetic current-current function C̃<
µν(P ) can be simply expressed

as Jq
µ(x) = ψ̄(x)γµψ(x). In thermal field theory, the free Feynman propagator in the imaginary time

formalism is given by

〈0|T {ψ(x)ψ̄(y)}|0〉 = T
∑

qn

∫
d3q

(2π)3
eiQ̃f ·(x̃−ỹ)

−i Q̃/f +M

Q̃2
f +M2

(C.18)

where Q̃2
f = (qfn)

2 + q2 and qfn = 2πT (n+ 1/2) being the fermionic Matsubara frequencies.

���� ��
��
��
��

q

q
_

J

γ*

l+

l−

J
q
µ µ

l

Figure C.3.: Feynman diagram for the process q + q̄ → γ∗ → l+ + l−. At leading order O(α), the

quark current is Ĵq
µ(x) =

ˆ̄ψ(x)γµψ̂(x) and leptonic current Ĵ l
µ(x) =

ˆ̄l(x)γµ l̂(x).

Therefore, the imaginary current-current correlation function is

C̃E
µν(P̃ ) =

∫ β

0

dτ

∫
d3x ei P̃ ·x̃ 〈ψ̄(x̃)γµψ(x̃)ψ̄(0)γνψ(0)〉 ,

= −NC T
2

∫ β

0

dτ

∫
d3x ei P̃ ·x̃

∑

wn,wm

∫
d3r d3q ei x̃·(Q̃−R̃)

×Tr

[
γ̃µ

−i Q̃/f +M

Q̃2
f +M2

γ̃ν
−i R̃/f +M

R̃2
f +M2

]
, (C.19)
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where P̃ = (wb
n = 2πnT,p), x̃ = (τ,x), R̃f = (rfn, r) and Q̃f = (qfm,q). Performing the trace of the

Dirac matrices in Euclidean space, we have 2

Tr
[
γ̃µ(−i Q̃/f +M)γ̃ν(−i R̃/f +M)

]
= 4

{
M2δµν − Q̃αR̃β(δµαδνβ − δµνδαβ

+δµβδµα)
}

(C.20)

so in Eq. (C.19) we need just to evaluate δµνC̃
E
µν(P̃ ) since as it can be shown that p̃µp̃νC̃

E
µν(P̃ ) = 0

(see demonstration in App. C.4). Using Eq. (C.20) together with Eq. (C.19) plus the transversality
of C̃E

µν we get

δµνC̃
E
µν(P̃ ) = −4NC T

2
∑

Q̃f ,R̃f

∫ β

0

dτ

∫
d3x

∫
d3r d3q ei τ(wm+qfn−rfn)−ix·(p+q−r)

× 4M2 + 2Q̃f · R̃f

(Q̃2
f +M2)(R̃2

f +M2)
,

= −4NC T
2

∫ β

0

dτ
∑

qfn,r
f
n

ei(wn+qfn−rfn)τ

∫
d3q

(2π)3
4M2 + 2qfnr

f
n + 2p · q+ 2q2

[
(qfn)2 + E2

q

][
(rfn)2 + E2

q+p

] ,

= −4NC
d3q

(2π)3

∫ β

0

dτ eiwnτ

(
∑

qfn

ei q
f
nτ

)(
∑

rfn

ei r
f
nτ

)

×2qfnr
f
n + E2

q + E2
q+p + 2M2 − p2

[
(qfn)2 + E2

q

][
(rfn)2 + E2

q+p

] , (C.21)

where Eq =
√
q2 +M2. Next, we need to make use of the fermionic summation formula for

0 < τ < β (see App. C.2) [74, 75]

T
∑

qfn

e±i qfnτ

(qfn)2 + E2
=
nF (E)

2E

(
e(β−τ)E − eτE

)
; nF (E) =

1

eβE + 1
, (C.22a)

T
∑

qfn

±i qfn e±i qfnτ

(qfn)2 + E2
= −nF (E)

2E

(
e(β−τ)E + eτE

)
. (C.22b)

Thereby we arrive at

δµνC̃
E
µν(P̃ ) = −NC

d3q

(2π)3

∫ β

0

dτ eiwnτ nF (Eq)nF (Eq+p)

×
{
e(β−τ)(Eq+Eq+p)

[
2 +

E2
q+p + E2

q + 2M2 − p2

Eq+pEq

]

+e(β−τ)Eq+τEq+p

[
2− E2

q+p + E2
q + 2M2 − p2

Eq+pEq

]

eτEq+(β−τ)Eq+p

[
2−

E2
q+p + E2

q + 2M2 − p2

Eq+pEq

]

eτ(Eq+Eq+p)

[
2 +

E2
q+p + E2

q + 2M2 − p2

Eq+pEq

]}
. (C.23)

2In Euclidean space the Dirac matrices satisfy these properties

γ̃0 = γ0 ; γ̃†
µ = γ̃µ ; {γ̃µ, γ̃ν} = 2δµν .
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The final integral is of the form

∫ β

0

dτ ei wnτeτγ1+(β−τ)γ2 = eβγ2
1

i wn + γ1 − γ2
eiwnτ+τγ1−τγ2

∣∣∣∣∣

β

0

; wn = 2πnT ,

=
1

i wn + γ1 − γ2

(
eβγ1 − eβγ2

)
. (C.24)

Finally, the analytic continuation yields

ρ(P ) =
δµν
2i

[
C̃E

µν(−i[p0 + i0+],p)− C̃E
µν(−i[p0 − i0+],p)

]

= −πδ(p0 + γ1 − γ2)
(
eβγ1 − eβγ2

)
, (C.25)

where we made use of the relation
(
x± i0+

)−1
= P (x−1)∓ iπδ(x). After performing some algebra,

we obtain the final expression for the spectral function

ρ(P ) = πNC

∫
d3q

(2π)3
nF (Eq)nF (Eq+p)

×
{
δ(p0 − Eq − Eq+p)

(
1− eβ(Eq+Eq+p)

)
[
2− E2

q+p + E2
q + 2M2 − p2

Eq+pEq

]

+ δ(p0 − Eq + Eq+p)
(
eβEq+p − eβEq

)
[
2− E2

q+p + E2
q + 2M2 − p2

Eq+pEq

]

+ δ(p0 + Eq − Eq+p)
(
eβEq − eβEq+p

)
[
2− E2

q+p + E2
q + 2M2 − p2

Eq+pEq

]

+ δ(p0 + Eq + Eq+p)
(
eβ(Eq+Eq+p) − 1

)
×
[
2−

E2
q+p + E2

q + 2M2 − p2

Eq+pEq

]}
.

(C.26)

C.3.1. Reinterpretation of C̃<(p0) in terms of kinetic theory

In the last section we derived the spectral function using imaginary time formalism of thermal field
theory (Eq. (C.26)). Here we simplify this expression into a physically more suggestive form.

Many of the factors of Eq. (C.26) look quite complicated but can be rearranged. First, let us

factor out nB(p
0) ≡ (eβp

0 − 1)−1 in some terms as follows

δ(p0 − Eq − Eq+p)nF (Eq)nF (Eq+p)
(
1− eβ(Eq+Eq+p)

)
= −n−1

B (p0)δ(p0 − Eq − Eq+p)

× nF (Eq)nF (Eq+p) , (C.27a)

δ(p0 − Eq + Eq+p)nF (Eq)nF (Eq+p)
(
eβEq+p − eβEq

)
= −n−1

B (p0) δ(p0 − Eq + Eq+p)

× nF (Eq)
[
1− nF (Eq+p)

]
, (C.27b)

δ(p0 + Eq − Eq+p)nF (Eq)nF (Eq+p)
(
eβEq+p − eβEq

)
= −n−1

B (p0) δ(p0 + Eq − Eq+p)

× nF (Eq+p)
[
1− nF (Eq)

]
, (C.27c)

δ(p0 + Eq + Eq+p)nF (Eq)nF (Eq+p)
(
eβ(Eq+Eq+p) − 1

)
= −n−1

B (p0) δ(p0 + Eq + Eq+p)

×
[
1− nF (Eq)

] [
1− nF (Eq+p)

]
. (C.27d)

Next, note that the integral in Eq. (C.26) is a function of q and q+ p only. This allows us to rewrite
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it as
∫

d3q

(2π)3
f(q, q + p) =

∫
d3q

(2π)3
d3r

(2π)3
(2π)3δ(3)(p+ q− r) f(q, r) , (C.28a)

=

∫
d3q

(2π)3
d3r

(2π)3
(2π)3δ(3)(p+ q+ r) f(q, r) , (C.28b)

∫
d3q

(2π)3
f(q, p− q) =

∫
d3q

(2π)3
d3r

(2π)3
(2π)3δ(3)(p− q− r) f(q, r) , (C.28c)

=

∫
d3q

(2π)3
d3r

(2π)3
(2π)3δ(3)(p− q+ r) f(q, r) . (C.28d)

Thereby, this trick will allow us to introduce Lorentz invariant Dirac delta functions in Eq. (C.26).
Now, the ‘amplitudes’ [2± · · · ] in Eq. (C.26) can be also rewritten

δ(4)(P −Q+R)

EqEr

{
2EqEr + E2

q + E2
r + 2M2 − p2

}
=
δ(4)(P −Q−R)

EqEr

{
P 2 + 2M2

}
(C.29a)

δ(4)(P −Q−R)

EqEr

{
2EqEr − E2

q − E2
r − 2M2 + p2

}
=
δ(4)(P −Q−R)

EqEr

{
−P 2 − 2M2

}
(C.29b)

Putting all of this together, the spectral function is rewritten as

ρ = −πNC

∫
d3q

(2π)3 2Eq

d3r

(2π)3 2Er

1

nB(P )

{
(2π)4δ(4)(P −Q− R)nF (Eq)nF (Er)︸ ︷︷ ︸

(a)

− (2π)4δ(4)(P −Q+R)nF (Eq)
[
1− nF (Er)

]
︸ ︷︷ ︸

(b)

− (2π)4δ(4)(P +Q−R)nF (Er)
[
1− nF (Eq)

]
︸ ︷︷ ︸

(c)

+(2π)4δ(4)(P +Q+R)
[
1− nF (Eq)

][
1− nF (Er)

]
︸ ︷︷ ︸

(d)

}
(C.30)

In terms of Feynman diagrams, the spectral function can be expressed as

ρ = −πNC

∫
d3q

(2π)3 2Eq

d3r

(2π)3 2Er

1

nB(P )

. (C.31)

The subindex below every diagram refers to its respective integral form in Eq. (C.30). For the case of
dileptons, every diagram corresponds to a different production channel. But three of these channels
do not contribute to dilepton production. To understand this better, let us evaluate the Dirac delta
function in the local rest frame where the momentum of the lepton pairs l+l− vanishes, i.e. p=0. In
this frame

δ(4)(P −Q+R) = δ(p0 − Eq + Er)δ
(3)(−q+ r) = δ(p0)δ3(−q+ r) , (C.32)

δ(4)(P +Q−R) similar to δ(4)(P −Q+R) , (C.33)

δ(4)(P +Q+R) = δ(p0 + Eq + Er)δ
(3)(q+ r) = δ(p0 + 2Eq)δ

3(q + r) . (C.34)
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Because p=0 ⇒ p0 = El+ + El− > 0 and since any of the last expressions satisfy this constraint, so
their contribution to the spectral function (and hence the dilepton production rate) vanishes. The
only channel that contributes to the spectral function is the diagram (a).
The retarded current-current correlation function is found using the relation C̃<(p0) = 2nB(p

0) ρ(p0).
This completes our calculation of the retarded current-current correlation function and connects
thermal field theory with kinetic theory approach.

C.4. Transversality of the free current-current correlator

In the last section, we calculated the current-current correlator in the imaginary time formalism.
Here, we complement the calculation by showing the transversality of the current-current correlator.
From the definition of the current-current correlator at leading order C̃E

µν(P̃ ) (Eq. (C.19))

P̃µP̃νC̃
E
µν(P̃ ) = −4NCP̃µP̃ν

∑

qfn,r
f
n

∫
d3q

(2π)3
d3r

(2π)3
(2π)4δ(P̃ − Q̃f − R̃f )

{
M2δµν − Q̃αR̃β(δµαδνβ − δµνδαβ + δµβδµα)

}
,

= −4NC

∑

qfn,rfn

∫
d3q

(2π)3
d3r

(2π)3
(2π)4δ(P̃ − Q̃f − R̃f )

×M
2P̃ 2 − 2 Q̃f · P̃ R̃f · P̃ + Q̃f · R̃ P̃ 2

(Q̃2
f +M2)(R̃2

f +M2)
,

= −4NC

∑

qfn

∫
d3q

(2π)3
M2P̃ 2 − 2 Q̃f · P̃ (P̃f + Q̃f) · P̃ + Q̃f · (P̃ + Q̃f ) P̃

2

(Q̃2
f +M2)

[
(P̃ + Q̃f )2 +M2

] ,

= −4NC

∑

qfn

∫
d3q

(2π)3

{
P̃ 2

(P̃ + Q̃f )2 +M2
− P̃ 2

2

(P̃ + Q̃f )
2 − P̃ 2 − Q̃2

f

(Q̃2
f +M2)

[
(P̃ + Q̃f)2 +M2

]

−P̃ · Q̃ +
(P̃ + Q̃f)

2 − P̃ 2 − Q̃2
f

(Q̃2
f +M2)

[
(P̃ + Q̃f )2 +M2

]
}
,

= −4NC

∑

qfn

∫
d3q

(2π)3

{
P̃ 2

(P̃ + Q̃f )2 +M2
+
P̃ 2

2

1

(P̃ + Q̃f )2 +M2
− P̃ 2

2

1

Q̃2
f +M2

+
P̃ 4

2

1

(Q̃2
f +M2)

[
(P̃ + Q̃f )2 +M2

] − P̃ · Q̃
Q̃2

f +M2
+

P̃ · Q̃
(P̃ + Q̃f)2 +M2

+
P̃ 2

2

(P̃ + Q̃f)
2 − P̃ 2 − Q̃2

f

(Q̃2
f +M2)

[
(P̃ + Q̃f )2 +M2

]
}
,

= −4NC

∑

qfn

∫
d3q

(2π)3

{
P̃ 2

(P̃ + Q̃f )2 +M2
− P̃ · Q̃f

Q̃2
f +M2

+
P̃ · Q̃f

(P̃ + Q̃f)2 +M2

}
,

= −4NC

∑

qfn

∫
d3q

(2π)3

{
P̃ 2

(P̃ + Q̃f )2 +M2
− P̃ 2

Q̃2
f +M2

}
. (C.35)

The expressions in the last line vanish exactly after changing the integration variable in the first
integral Q̃f → −P̃ − Q̃f . This proves the validity of neglecting the term P̃µP̃νC̃

E
µν(P ) in Eq. (C.21).

More generally, the transversality follows from a Ward identity expressing vector current conserva-
tion [74, 75].
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T. Koide, H. Petersen, B. Betz, I. Sagert and S. Vogel. All of them helped me to improve my research
work with different ideas and suggestions. I cannot avoid to thank the organizers of the conferences
which I attended during my PhD, they helped me with finantial and logistic support in order to
participate in important scientific events.
To Nadia and Fernando, the mexican side of my life. To the folks from Colombia for their friendship
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