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Abstract

Binary neutron star mergers represent unique observational phenomena because all
four fundamental interactions play an important role at various stages of their evolu-
tion by leaving imprints in astronomical observables. This makes their accurate numer-
ical modeling a challenging multiphysics problem that promises to increase our under-
standing of the high-energy astrophysics at play, thereby providing constraints for the
underlying fundamental theories such as the gravitational interaction or the strong
interaction of dense matter. For example, the first and so far only multi-messenger ob-
servation of the binary neutron star merger GW170817 resulted in numerous bounds
on the parameters of isolated non-rotating neutron stars, e.g., their maximum mass or
their distribution in radii, which can be directly used to constrain the equation of state
of cold nuclear matter. While many of these results stem from the observation of the
inspiral gravitational-wave signal, the postmerger phase of binary neutron star merg-
ers encodes even more details about the extreme physics of hot and dense neutron star
matter. In this Thesis we focus on the exploration of dissipative and shearing effects in
binary neutron star mergers in order to identify novel approaches to constrain hot and
dense neutron star matter.

The first effect is the well-motivated dissipation of energy due to the bulk viscos-
ity which arises from violations of weak chemical equilibrium. We start by exploring
the impact of bulk viscosity on black-hole accretion. This simplified problem gives us
the opportunity to develop a test case for future codes taking into account the effects
of dissipation in a fully general-relativistic setup and build intuition in the physics of
relativistic dissipation. Next, we move on to isolated neutron stars and binary neutron
star mergers by developing a robust implementation of bulk-viscous dissipation for nu-
merical relativity simulations. We test our implementation by calculating the damping
of eigenmodes of isolated neutron stars and the violent migration scenario. Finally, we
present the first results on the impact of bulk viscosity on binary neutron star mergers.
We identify a number of ways how bulk viscosity impacts the postmerger phase, out
of which the suppression of gravitational-wave emission and dynamical mass ejection
are the most notable ones.

In the last part of this Thesis we investigate how the shearing dynamics at the begin-
ning of the merger affects the amplification of different initial magnetic-field topolo-
gies. We explore the hypothesis that magnetic fields which are located only in a small
region near the stellar surface prior to merger lead to a weaker magnetic-field ampli-
fication. We show first evidence which confirms this hypothesis and discuss possible
implications for constraining the physics of superconduction in cold neutron stars.
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Zusammenfassung

Die Multimessenger-Ära [188] in der Astrophysik von Neutronensternen begann im
Jahr 2017 durch das bis dato einmalige Ereignis der Kollision eines binären Neutro-
nensternsystems (BNS), was zu zahlreichen Beobachtungen und Erkenntnissen geführt
hat. Zum Beispiel wurde dieses Ereignis, auch genannt GW170817, durch die funda-
mentale Wechselwirkung der Gravitation, d.h. durch Gravitationswellen, und durch
Licht beobachtet [1, 101, 81]. Besonders interessant ist dabei, dass ein sogenannter
kurzer Gammablitz, GRB 170817A, sowie eine Kilonova, AT2017gfo, beobachtet wur-
den.

Damit wurde starke empirische Evidenz für die langstehende Hypothese gefunden,
dass Kollisionen von BNS zu der Produktion eines solchen energiereichen Gamma-
blitzes, GRB 170817A war ca. 1047 erg s−1 hell, d.h. ca. 1013 Mal heller als die Sonne,
führen können. Damit gehört GRB 170817A tatsächlich noch zu den “dunklen” kurzen
Gammablitzen und es gibt viele Modelle, die darauf hindeuten, dass GRB 170817A
nicht direkt sondern mit einem geometrischen Beobachtungswinkel beobachtet wurde.
Neue Berechnungen zeigen, dass ein Beobachtungswinkel von ca. 35◦ [208] realistisch
sein kann.

Eine Kilonova ist ein kurzzeitiges, helles, thermisches Lichtsignal, welches in den
Wellenlängen der UV-Strahlung über das sichtbare Lichtspektrum bis hin zu den Wellen-
längen der Infrarotstrahlung sichtbar ist [187]. Die Energie des Signals stammt aus
dem radioaktiven Zerfall schwerer Elemente, welche aus dem ursprünglichen, sehr
neutronenreichen Neutronensternmaterial synthetisiert werden. Die Beobachtung der
Kilonova AT2017gfo konnte viele dieser Annahmen bestätigen, wobei sogar das schwere
Element Strontium nachgewiesen wurde [312].

Zweifellos bieten Kollisionen von BNS ein ideales kosmisches Labor, um die ex-
tremalsten Bereiche unseres Verständnisses der fundamentalen Physik zu testen. Diese
reichen von Fragen über die Synthese schwerer Elemente in unserem Universum [225]
bis hin zum Verständnis der Quantenchromodynamik, die fundamentale Kraft, welche
die Eigenschaften von Protonen und Neutronen bestimmt. Vorallem bieten Beobach-
tungen von Kollisionen von BNS einen komplementären Zugang zu Experimenten auf
der Erde, welche die gleichen Fragestellungen in Angriff nehmen.

Diese Dissertation widmet sich der Fragestellung, welche neuen “Kanäle” oder
physikalischen Mechanismen in Kollisionen von BNS existieren, die neue Erkennt-
nisse über den Zustand der Materie von Neutronensternen liefern können. Dabei liegt
der Fokus insbesondere auf dissipativen Dynamiken, d.h. Prozessen, welche in der
Regel kinetische Energie in Wärme umwandeln und dabei die Entropie des Systems
erhöhen, und scherenden Dynamiken, d.h. Prozessen, die auf transversalen Gradien-
ten im Geschwindigkeitsprofil basieren. Die konkreten Prozesse, welche hier unter-
sucht werden, sind zum einen der Einfluss der Volumenviskosität auf eine Kollision
von einem BNS und zum anderen der Einfluss der Scherung in der Dynamik von Kol-
lisionen von BNS auf die Verstärkung von Magnetfeldern.

Kapitel 1 dieser Dissertation führt einige grundlegende Informationen zu Neutro-
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nensternen sowie BNS ein und Kapitel 2 ist eine Einführung in die theoretischen,
mathematischen und numerischen Grundlagen. Damit wird ein konsistenter Rah-
men geschaffen, um die Methoden zu verstehen, welche die Grundlage der Resultate
dieser Dissertation sind. Die Kapitel 3, 4 und 5 präsentieren die Ergebnisse, welche
während der Arbeit an dieser Dissertation erarbeitet wurden. Zuletzt bietet Kapitel 6
den Schluss dieser Dissertationen, wo wir die Resultate zu einem übergreifenden Rah-
men in Bezug setzen und einen möglichen Ausblick formulieren. Die folgenden drei
Unterkapitel fassen die Resultate der Kapitel 3, 4 und 5 zusammen.

Viskose Akkretion von Schwarzen Löchern

In Kapitel 3 wird der Einfluss einer Volumenviskosität auf den Akkretionsfluss eines
Schwarzen Loches untersucht, welches durch die Schwarzschild Metrik beschrieben
wird. Der sphärisch symmetrische Akkretionsfluss auf ein Schwarzes Loch wurde
bereits in den Arbeiten von Bondi [51] und Michel [190] für ein “perfektes” Fluid
untersucht, die oft auch als Testszenarien für numerische Codes verwendet werden,
welche die Gleichungen der allgemein relativistischen Hydrodynamik und Magne-
tohydrodynamik lösen. Der Einbau einer relativistischen Viskosität hat später auch
stattgefunden [307]. Der grundlegende Unterschied zu der Untersuchung in dieser
Dissertation ist dadurch gekennzeichnet, dass hier eine Viskositätsbeschreibung ver-
wendet wird, welche konsistent mit dem physikalischen Prinzip der Kausalität for-
muliert ist. Bei den Berechnungen von [307] ist dieses Prinzip verletzt, führt jedoch
zu keinen Instabilitäten, was ein bekannter Nebeneffekt von akausalen Beschreibun-
gen einer relativistischen Viskosität ist [149, 126]. Die Beschreibung der Volumen-
viskosität (hier wird die Scherungsviskosität sowie die Wärmeleitung vernachlässigt)
erfolgt durch die sogannte Müller-Israel-Stewart (MIS) [204, 157, 158] Theorie, welche
Korrekturen der zweiten Ordnung in Nichtgleichgewichtsbeiträgen berücksichtigt. Die
entscheidende Gleichung hat folgende Form:

τ
Π
Π̇ = −ζΘ −Π , (1)

wobei τ
Π

die Relaxationszeit, Π̇ die mitbewegte Zeitableitung der isotropen, viskosen
Druckkorrektur Π, ζ die Volumenviskosität und Θ die Expansionsrate ist.

Da eines der übergreifenden Ziele dieser Dissertation die Untersuchung der Volu-
menviskosität in Kollisionen von BNS ist, bietet dieses Akkretionsproblem die Möglich-
keit, eine erste Intuition für die Gleichungen der relativistischen Volumenviskosität im
allgemein relativistischen Kontext aufzubauen, sowie ein Testszenario zu entwickeln,
welches für Codetests zukünftiger numerischer Lösungsverfahren ebendieser Gleichun-
gen verwendet werden kann.

Wir benutzen die Zustandsgleichung eines idealen Gases aus Wasserstoffionen, wel-
che im thermodynamischen Gleichgewicht mit Photonen sind. Für die Volumenviskosi-
tät verwenden wir eine Formel basierend auf einem Zwei-Fluid Modell [315, 273].
Jedoch verwenden wir für die Relaxationszeit eine Formel die kubisch mit dem Ra-
dius ist, d.h. der Entfernung zum Schwarzen Loch, um das Wachstum von Nicht-
gleichgewichtsbeiträgen zu unterdrücken. Zudem können die entsprechenden Glei-
chungen in gewöhnliche Differentialgleichungen mit einer hebbaren Singularität über-
führt werden, deren Lösung mit einer analytischen Rechnung bei der hebbaren Singu-
larität und einer darauf folgenden numerischen Integration erzielt werden kann.

Die Lösung des Problems zeigt, dass für Transportkoeffizienten, welche im Ein-
klang mit der Kausalität der Gleichungen stehen, nur geringe Abweichungen von der
nicht viskosen Lösung möglich sind. Zum Beispiel kann die Temperatur in der di-
rekten Umgebung des Ereignishorizontes um bis zu ∼ 19% von der Lösung des per-
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fekten Fluids abweichen. Wie erwartet, nimmt die Temperatur für die viskosen Lö-
sungen in der Nähe des Schwarzen Loches zu, was durch den dissipativen Transfer von
Bewegungs- zu Wärmeenergie zu erklären ist. Weiterhin nimmt die Schallgeschwindigkeit
um ca. 18% in der Nähe des Schwarzen Loches zu, wodurch Werte von ca. 1/2 Mal der
Lichtgeschwindigkeit erreicht werden. Interessant ist auch das Verhalten des Nicht-
gleichgewichtsdrucks Π. Dieser skaliert monoton mit der Magnitude der Volumen-
viskosität ζ, was zu erwarten ist. In der Nähe des Schwarzen Loches, wo der Betrag der
Fluidexpansion Θ ansteigt, haben somit Fluide mit einer höheren Volumenviskosität
auch eine höhere Korrektur zum Gleichgewichtsdruck p. Die Relaxationszeit τ hinge-
gen bestimmt, auf welcher Zeitskala der Nichtgleichgewichtsdruck sich dem Wert −ζΘ
annähert. Kleine Werte für τ führen dazu, dass Π ≈ −ζΘ, wobei für zu große Werte von
τ , Π signifikant von −ζΘ abweichen kann. Wir zeigen ebenfalls, dass die hier erarbeit-
ete Lösung für den Test von Codes geeignet ist, die die Gleichung (1) ohne Annahmen
über die Stationarität numerisch lösen.

Volumenviskosität und Kollisionen von binären Neutronensternsystemen

Nachdem wir Gleichung (1) in einem vereinfachten Szenario untersucht haben, ist es
in Kapitel 4 an der Zeit, diese Gleichung in einen Code zu implementieren, welcher
selbstkonsistent Einsteins Feldgleichungen sowie die Gleichungen der relativistischen
Hydrodynamik löst. Dies ist der einzige Weg, die Kollision von BNS zu simulieren, da
die Emission von Gravitationswellen bis zu ∼ 0.65 Sonnenmassen betragen kann und
somit bei einem System von ca. 3 Sonnenmassen nicht zu vernachlässigen ist.

Wir implementieren diese Gleichung in den Code FIL [195], welcher numerische
Methoden höherer Ordnung sowie robuste Inversionsmethoden für die Primitivvaria-
blen verwendet. FIL ist Teil der Einstein Toolkit Infrastruktur [178], welche durch
den Carpet Code [277] adaptive Gitter implementiert.

Besonders erwähnenswert sind die Änderungen, welche durch die Implementierung
von Gleichung (1) notwendig sind. Zunächst muss die Inversion für die Primitiv-
variablen geändert werden, weil die Inklusion des Nichtgleichgewichtsdrucks berück-
sichtigt werden muss. Wir verwenden eine kleine Änderung der Algorithmen in [124].
Wir können mathematisch zeigen, dass die Existenz und Eindeutigkeit einer Lösung
im Prozess der Inversion auch mit der Berücksichtigung der Viskosität Gültigkeit be-
sitzt. Somit besitzt der neue Algorithmus eine ähnliche Robustheit wie der alte. Weiter-
hin werden zwei Bedingungen implementiert, die sicher stellen, dass sich die Lösung
der Inversion in einem physikalischen Bereich befindet. Zunächst gibt es jeweils eine
Grenze für den maximalen und minimalen Wert den der Nichtgleichgewichtsdruck
annehmen darf. Beide Grenzen stammen von der grundlegenden Annahme, dass der
Nichtgleichgewichtsdruck nur eine perturbative Korrektur zum Gleichgewichtsdruck
darstellt und deshalb in den ungefähren Bereich −1 . Π/(e + p) . 1 fallen muss, siehe
auch [71, 63]. Hierbei ist e die lokale Energiedichte. Die zweite Bedingung erhöht die
Relaxationszeit dynamisch während der Simulation, sodass das Prinzip der Kausalität
nicht verletzt wird, d.h. Schallwellen dürfen nicht schneller als Licht propagieren.

Ein letzte Modifikation bezieht sich auf den Abfall der Volumenviskosität ζ im
Niedrigdichtebereich. In der Regel wird in diesen Bereichen eine geringe Viskosität
erwartet, sodass wir eine kubische Abhängigkeit von der Massendichte ρ implemen-
tieren, welche zu einem rapiden Abfall in ζ und einem fehlerfreien Übergang zwischen
viskoser und nicht viskoser Materie führt.

Um die Implementierung zu testen, simulieren wir zunächst zwei bekannte Test-
szenarien: Die Dämpfung von perturbativen Oszillationen eines isolierten Neutronen-
sterns [70] sowie die Migration eines instabilen Neutronensterns zu einer stabilen Kon-
figuration [117]. Der erste Test überprüft die Gleichungen im linearen Bereich und der
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zweite Test im nicht linearen.
Die Oszillationen des Neutronensterns werden durch eine Perturbation in der Form

der radialen Eigenmoden des Sterns ausgelöst. Untersucht werden Simulationen mit
verschiedenen Viskositäten und unter Verwendung verschiedener Auflösungen. Durch
das in [70] präsentierte Verfahren kann daraufhin die numerische sowie physikalische
Viskosität bestimmt werden. Zunächst lässt sich beobachten, dass mit höherer Auflö-
sung die gemessene Viskosität zu einem Wert nahe der gebrauchten, physikalischen
Viskosität konvergiert. Im Rahmen der Unsicherheiten des Messverfahrens folgern
wir, dass die Implementierung erfolgreich funktioniert.

Weiterhin lässt sich mit diesem Messverfahren die numerische Viskosität unseres
Codes bestimmen. Wir beobachten Werte im Bereich . 1026 g cm−1 s−1, was eine sehr
optimistische Aussicht für die Simulation physikalischer Viskositäten darstellt, weil
diese auf & 1027 g cm−1 s−1 geschätzt werden [276, 17].

Bei der Simulation des “Migrationstests” beobachten wir, dass, wie erwartet, die
nicht linearen Dichteoszillationen mit höherer Viskosität auch stärker gedämpft wer-
den. Zudem beobachten wir einen leichten Abfall in der zentralen Dichte, was sich
durch die zusätzliche dissipative Wärme erklären lässt, welche die viskosen Simu-
lationen erzeugen. Diese zusätzliche Wärme erhöht den Druckgradienten im Inneren
des Sterns, wodurch ein weniger kompakter Stern mit gleicher Masse entsteht. Die
selbskonsistente Implementierung einer Volumenviskosität erlaubt es uns zusätzlich,
die sogenannte inverse Reynolds Zahl zu berechnen

R−1 :=
Π

e+ p
, (2)

welche die relative Stärke des Nichtgleichgewichtsdrucks zur Enthalpiedichte misst.
Dies ist ein Maß für die relative Stärke von Nichtgleichgewichtsbeiträgen. Wir messen
maximale absolute inverse Reynolds Zahlen in einer Höhe von ∼ 1%. Es ist bemerkens-
wert, dass bereits eine geringe inverse Reynolds Zahl dieser Größenordnung zu einer
starken Dämpfung der Dichteoszillationen führen kann, siehe z.B. auch [200] für eine
zusätzliche Abschätzung. Zudem bestätigen wir in diesen Migrationstests, dass starke
Viskositäten die Entwicklung von starken Schockwellen erfolgreich dämpfen. Der
größte für die Volumenviskosität verwendete Wert beträgt hierbei 1030 g cm−1 s−1.

Motiviert durch die Möglichkeit, den Einfluss der Volumenviskosität auf die Emis-
sion von Gravitationswellen zu studieren, untersuchen wir im zweiten Teil dieses Pro-
jekts Simulationen von Kollisionen von BNS. Dafür führen wir allgemein relativis-
tische hydrodynamische Simulationen unter Einbezug von Gleichung (1) durch. Um
den maximalen Einfluss abzuschätzen, den eine realistische Volumenviskosität haben
kann, gehen wir davon aus, dass die Viskosität die Werte ζ ∈ [ζ0,ζ0/2,ζ0/5,0] mit
ζ0 = 1030 g cm−1 s−1 annimmt. Ebenfalls führen wir mehrere Simulationen mit un-
terschiedlichen Auflösungen durch, um die Auswirkungen der Diskretisierungsfehler
abzuschätzen. Wir beobachten qualitativ konsistentes Verhalten, sodass wir nur über
die Ergebnisse der hochauflösenden Simulationen berichten.

Wir beginnen mit einer Zusammenfassung der Ergebnisse zur Gravitationswellen-
emission von Kollisionen von viskosen BNS. Wir stellen fest, dass hohe Volumen-
viskositäten zu einer Dämpfung und einer Frequenzzunahme in der Emission von
Gravitationswellen führen. Beide Effekte hängen mit der Reduktion von quadrupo-
laren Dichteverformungen zusammen, siehe auch [245], welche durch eine starke Vol-
umenviskosität beeinflusst werden. Große Volumenviskositäten dämpfen effizient die
starken Kollisionen der beiden Neutronensternkerne während der ersten Millisekun-
den nach dem Beginn der Kollision [296, 260]. Dies ist die Ursache der verringerten
quadrupolaren Deformationen in der Massendichte. Die Abnahme der Dichteverfor-
mungen führt zu einer schwächeren Emission von Gravitationswellen [35, 33, 34],
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wodurch jedoch auch weniger Drehimpuls verloren gehen kann. Als Konsequenz führen
hohe Volumenviskositäten zu schneller rotierenden hypermassiven Neutronensternen
nach der Kollision. Wir beobachten einen Frequenanstieg, welcher für die größte
Viskosität bis zu 280 Hz in der dominanten Mode f2 betragen kann. Weiterhin wird die
Gravitationswellenemission für die stärkste Viskosität auf einer Zeitskala von ca. 15 ms
effizient gedämpft.

Darüber hinaus stimmt der dynamische Massenauswurf [250, 195, 77, 170] aus
Kollisionen von viskosen BNS mit den Ergebnissen zur Gravitationswellenemission
überein. Wir stellen fest, dass die dynamisch ausgeworfene Masse in unseren Simu-
lationen im Extremalfall um den Faktor fünf im Vergleich zum nicht viskosen Fall
unterdrückt werden kann. Auch dies ist das Ergebnis einer effizienten Dämpfung
der anfänglichen Dichteoszillationen und vergleichbar mit den Beobachtungen im Mi-
grationstest. Die geringere kinetische Energie im viskosen Fall macht es schwieriger,
Masse zu lösen. Interessanterweise beobachten wir auch, dass die Verteilung der aus-
geworfenen Materie entlang der Azimutrichtung zunehmend weniger gleichmäßig ist,
wenn die Viskosität erhöht wird. Wir führen dieses Verhalten darauf zurück, dass
bei hohen Viskositäten der größte Teil des ungebundenen Materials aus dem ersten
Kollisions- und Expansionszyklus der beiden Sterne stammt. Somit wird Materie in
eine bevorzugte Richtung ausgeschleudert.

Unsere Ergebnisse deuten darauf hin, dass Viskositäten in der Größenordnung von
ζ ≥ 5 × 1029 g cm−1 s−1 signifikant sein können. Im Vergleich zu den beobachteten
Werten in [200] entsteht ein vielversprechendes Bild für die Untersuchung der Volu-
menviskosität von stark wechselwirkender Kernmaterie durch Kollisionen von BNS.
Allerdings werden in [202] effektive Viskositäten in der Größenordnung von ζ . 1028

g cm−1 s−1 beobachtet. Bei Werten dieser Größenordnung kann die Volumenviskosität
höchstwahrscheinlich die Gravitationswellenemission nicht beeinflussen. Zusätzlich
bleibt beim Ziehen von Schlussfolgerungen aus unseren Simulationen ein Vorbehalt
bestehen: Aufgrund des Resonanzverhaltens der Volumenviskosität und ihrer starken
Temperaturabhängigkeit [17, 10, 16], wird eine realistische Volumenviskositätsvertei-
lung in der Materie des hypermassiven Neutronensterns sehr inhomogen aussehen. In
den hier präsentierten Simulationen wurde jedoch die Annahme getroffen, dass die
Viskosität im Sterninneren konstant ist. Daher sind die Schlussfolgerungen aus un-
seren Simulationen optimistische Sichtweisen zu der Fragestellung, ob die Auswirkun-
gen einer realistischen Volumenviskosität tatsächlich beobachtbar sind.

Oberflächen-Magnetfelder in Kollisionen von binären Neutronensternsys-
temen

Motiviert durch die Modellannahme von Magnetfeldern, welche sich nur an der Ober-
fläche von Neutronensternen befinden, sogenannten “Oberflächen-Magnetfeldern”, wird
in Kapitel 5 der Einfluss dieser Magnetfeldtopologie in Kollisionen von BNS unter-
sucht. Solche Magnetfeldkonfigurationen finden Anwendung in der Langzeitentwick-
lung isolierter Neutronensterne [237, 238, 311], wobei angenommen wird, dass supralei-
tende Protonen einen Typ-I Supraleiter im Kern des Neutronensterns bilden. Dadurch
entwickeln sich die Magnetfelder im Kern auf kurzen Zeitskalen im Vergleich zu der
charakteristischen Entwicklungszeit des Neutronensterns und können effizient aus dem
Kern verdrängt werden. Die Abschätzungen dieser Zeitskalen unterliegen jedoch großen
Schwankungen [233, 232, 138], wodurch sich die Fragestellung ergibt, ob Simulationen
von Kollisionen von BNS zur Lösung dieses Problems beitragen können. Insbeson-
dere wird untersucht, ob Magnetfelder, welche sich vor der Kollision ausschließlich
nahe der Oberfläche der beiden Sterne befinden, einen Einfluss auf die gesamte Ma-
gnetfeldverstärkung bei der Kollision des BNS haben können. Hierfür verwenden wir
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globale, hochauflösende Simulationen der allgemein relativistischen Magnetohydrody-
namik von BNS mit Methoden höherer Ordnung unter Verwendung des zuvor erwäh-
nten FIL Codes [277, 178, 195].

Unsere Studie umfasst Simulationen von vier Konfigurationen, bei denen wir zwi-
schen zwei verschiedenen Topologien variieren, nämlich der sogenannte “Oberflächenkon-
figuration” und der sogenannte “Vollkonfiguration”. In der Oberflächenkonfigura-
tion sind nur Oberflächen-Magnetfelder in den Neutronensternen vor der Kollision
präsent. Im Gegensatz dazu sind in der Vollkonfiguration auch Magnetfelder im Kern
der beiden Sterne vorhanden. Darüber hinaus haben beide Konfigurationen die glei-
che anfängliche magnetische Gesamtenergie. Diese beiden Konfigurationen werden
mit zwei verschiedenen Auflösungen simuliert, um den Einfluss von Diskretisierungs-
fehlern abzuschätzen. Wir finden jedoch qualitativ konsistentes Verhalten, sodass wir
die Diskussion auf die Simulationen mit höherer Auflösung beschränken.

Zunächst beobachten wir vier verschiedene Stadien in der Entwicklung der Ma-
gnetfelder für beide Konfigurationen. Diese sind in aufeinanderfolgender Reihenfolge:
die “Kelvin-Helmholtz Instabilitätsetappe” (KHI-Etappe) [168, 221], die “Abstiegs-
etappe”, die “Etappe der turbulenten Verstärkung” und zuletzt die “Windungsetappe”
[75, 283, 78]. Die Benennung dieser Stadien erfolgt in Übereinstimmung mit der
Physik, welche am relevantesten für die Entwicklung der magnetischen Energie im
jeweiligen Zeitabschnitt ist.

Weiterhin beobachten wir, dass obwohl in der Oberflächenkonfiguration die KHI-
Etappe effizienter die Verstärkung von Magnetfeldern bewirkt, die endgültige ma-
gnetische Energie der Vollkonfiguration um mehr als eine Größenordnung im Ver-
gleich zur Oberflächenkonfiguration größer ist. Wir führen dieses Verhalten auf die
verfrühte Beendigung der KHI-Etappe in der Oberflächenkonfiguration zurück, was
das Ergebnis zweier Effekte ist.

Erstens, der Mangel an magnetisiertem Material im Inneren der Neutronensterne
führt dazu, dass turbulente Strömungen, welche sich von “Außen” nach “Innen” be-
wegen, keine Möglichkeit haben, die Magnetfeldverstärkung aufrechtzuerhalten, weil
sie nicht auf magnetisiertes Material treffen. Und zweitens, zusätzliche Verluste von
magnetisiertem Material an der Sternoberfläche führen zu einer ähnlichen Dynamik,
bei der wertvolles magnetisiertes Material aus dem Bereich entfernt wird, in dem tur-
bulente Strömungen zu einer Magnetfeldverstärkung führen können. Der erste Effekt
kann in der Vollkonfiguration nicht stattfinden, weil der Kern magnetisiert ist. Der
zweite Effekt ist in der Vollkonfiguration weniger ausgeprägt, weil der relative Anteil
der magnetischen Energie, welcher sich in der Nähe der Oberfläche befindet, d.h. in
dem Bereich, welcher aufgrund von dynamischem Massenausstoß am stärksten von
Verlusten betroffen ist [250, 195, 77, 170], geringer ist.

Zuletzt beobachten wir, dass durch die geringeren Magnetfeldstärken in der Ober-
flächenkonfiguration das entsprechende Gravitationswellensignal ca. doppelt so stark
wie in der Vollkonfiguration ist. Diese Beobachtung ist das Resultat einer größeren
Ausprägung der Achsensymmetrie in der Vollkonfiguration, welche durch starke Ma-
gnetfelder begünstigt wird.

Auch wenn die Auflösungen, die wir in dieser Arbeit verwenden, sehr hoch und
rechenaufwändig sind, sind sie immer noch nicht hoch genug, um konvergentes Ver-
halten während der KHI-Etappe zu erreichen [166]. Um diesem Mangel Rechnung
zu tragen, benutzen wir zwei verschiedene Auflösungen und schätzen die Auswirkung
der Diskretisierungsfehler ab. Wir beobachten, dass das in dieser Arbeit dargestellte
Verhalten nur quantitativ durch die Veränderung der Auflösung beeinflusst wird. Wir
kommen daher zu dem Schluss, dass unsere Ergebnisse im Rahmen der Unsicherheiten
genaue Modelle für die Magnetfeldverstärkung in Kollisionen von BNS darstellen,

xii



welche realistische Oberflächen-Magnetfelder besitzen.
Darüber hinaus haben unsere Erkenntnisse die wichtige Implikation, dass alle as-

trophysikalischen Prozesse, welche auf starke und geordnete Magnetfelder nach der
Kollision von BNS angewiesen sind, verzögert ablaufen könnten. Da sich hinreichend
starke Magnetfelder nicht direkt in den ersten Millisekunden nach der Kollision in der
Oberflächenkonfiguration aufbauen können, sind auch starke magnetisch dominierte
Massenausstöße [231, 268, 203, 75, 58, 78, 199, 82], welche die Kilonova beeinflussen
könnten, deutlich unwahrscheinlicher als in der Vollkonfiguration.

Fazit

Mit der Idee, dissipative und scherende Dynamiken in Kollisionen von BNS zu un-
tersuchen, wurde in dieser Dissertation das Ziel verfolgt, neue Effekte zu studieren,
welche neue Erkenntnisse über Neutronensternmaterie liefern können. Zum einen
wurde der Effekt der Volumenviskosität und zum anderen von Oberflächen-Magnetfeldern
untersucht. In beiden Fällen stellen die Untersuchungen in dieser Dissertation vielver-
sprechende aber vorläufige Ergebnisse dar, sodass weitere Studien notwendig sind, um
endgültige Aussagen zu treffen. Basierend auf der Grundlage, dass sich gegenwärtige
Anstregungen in der Modellierung von Kollsionen von BNS hauptsächlich mit der Zu-
standsgleichung und der Implementierung von Neutrinophysik befassen, bieten die
Resultate dieser Dissertation komplementäre Versuche, die Mikrophysik in Kollisio-
nen von BNS zu untersuchen.
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Chapter 1

Introduction

The advent of the multimessenger era [188], which is landmarked by the unprece-
dented detection of the binary neutron star (BNS) merger GW170817 through grav-
ity and light, has provided new possibilities to understand the fundamental build-
ing blocks of nature [263]. The coincident detection of the gravitational-wave (GW)
signal GW170817, the short gamma-ray burst (sGRB) GRB 170817 and the kilonova
AT2017gfo [1, 101, 81] is strong evidence for the rich variety of observables BNS merg-
ers provide such that they can be easily considered to be Einstein’s richest laboratories
[23].

This conclusion is supported by the fact that the physics of neutron stars ranges
from nuclear and subnuclear physics as well as quantum chromodynamics (QCD)
to general relativity (GR) and high-energy astrophysics. While for some of these ar-
eas neutron stars provide complementary data to terrestrial laboratories, e.g., hot and
dense QCD, other areas such as the strong-field regime of GR or the origin of heavy
elements in the universe must be explored through neutron stars or black holes (BHs)
[263].

Considering the evidently wide field of research encompassing neutron star physics
in a crude attempt of simplification we can consider it to be a spectrum between fun-
damental theoretical calculations based on first principles and observational science
providing new data on how nature is “actually” behaving. In this sense, this Thesis is
a contribution to the middle part of this spectrum where both fundamental theoretical
calculations and BNS merger observations meet. By performing numerical simulations
of BNS mergers self-consistently and based on first principles we are able to predict
BNS merger observables and build a direct link to the assumptions we make in the
first place.

Hence, in this Thesis our main goal is to investigate novel processes in the dynamics
of BNS mergers which have the potential to offer a window to some of the fundamental
areas of physics mentioned above. Specifically, we focus on the dissipative and shear-
ing dynamics of BNS mergers because exactly these dynamical mechanisms have the
greatest potential to influence some of the most important observables of BNS mergers,
namely the GW emission and the electromagnetic (EM) counterpart.

1.1 Neutron stars

We start by providing a very brief introduction to neutron stars which are covered more
extensively in many textbooks, e.g., see [132, 279, 263, 274]. Neutron stars are the
collapsed iron or oxygen-neon-magnesium cores of massive stars whose mass exceeds
∼ 8 M�. It is believed that if the mass of the progenitor star exceeds ∼ 15−20 M� a BH
will be formed [279]. Before collapse the core is stabilized by the electron degeneracy
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1 Introduction

pressure which balances the inward directed gravitational pull.

However, as soon as the core surpasses its “effective” Chandrasekhar mass limit
[317, 67], the self-gravity of the core cannot be balanced anymore and the core starts to
collapse on a timescale of several 100 ms [263]. The collapse stops only when nuclear
densities on the order of ∼ 2 × 1014 g cm−3 are reached at which point repulsive nu-
clear forces are the dominant contribution to the pressure and prevent further collapse.
This event marks the formation of nuclear matter and the so-called proto-neutron star
(PNS).

The rapid “stiffening” of the equation of state (EOS) at nuclear densities, i.e., matter
becomes less compressible, causes infalling matter to form a shock wave which propa-
gates outwards. However, the shock is not able to propagate through the iron core as it
looses energy because infalling nuclei photo-dissociate into free nucleons. Eventually,
the shocks stalls at ∼ 100 km [279, 263]. Simultaneously, the PNS is growing in mass
and size reaching radii of ∼ 30 km.

Interestingly, during the collapse a large amount of binding energy

Ebind ∼
GM2

PNS

RPNS
∼ 1053

(
MPNS

1 M�

)2 (30 km
RPNS

)
erg , (1.1)

is released through the conversion of the kinetic energy of infalling material to heat.
This thermal energy is stored below the surface of the PNS which cannot cool down
rapidly because maximum temperatures of ∼ 10 MeV prevent neutrinos from trans-
porting heat efficiently. At this time the PNS is in thermal and β-equilibrium with
neutrinos [279, 263]. Nevertheless, thermal neutrinos and antineutrinos can “diffuse”
on timescales of ∼ 10 s and cool down the PNS. If the right conditions are met, the out-
ward diffusing neutrinos can deposit a small amount of their energy, ∼ 1051 erg, behind
the stalled shock and lead to a successful supernova explosion [263]. This mechanism
is referred to as the delayed neutrino-heating mechanism [44]. Failed explosions lead
to substantial amounts of matter which the PNS will accrete until it collapses to a BH
eventually.

After a successful explosion the hot PNS cools down on a timescale of ∼ 106 years
[263] through neutrinos. Eventually, the PNS becomes a regular “cold” and β-equilibrated
neutron star which is smaller in size and has constituents whose thermal energy is
much smaller than their respective Fermi energy [279]. As the name suggests, a neu-
tron star consists primarily of neutrons. The reason for this composition is the high
Fermi energy of electrons (∼ 100 MeV) which easily surpasses the mass difference be-
tween neutrons and protons (∼ 1.3 MeV) leading to the production of neutrons via
inverse β-decay [279].

Currently known neutron stars lie broadly in the mass range between ∼ 0.77 [100]
and 2.35 M� [266] with a median of ∼ 1.4 M� [217]. Due to the difficulty in measuring
neutron star radii accurately through observations and the uncertainties in the nuclear
EOS at high densities, neutron star radii are difficult to determine. Recent observations
from the Neutron Star Interior Composite Explorer (NICER) place the radius of the
neutron star PSR J0030+0451 with a mass of ∼ 1.44 M� between ∼ 11.96 km and ∼
14.26 km in the 68% credible region [191] while the ∼ 2.08 M� heavy neutron star,
PSR J040+6620, is estimated to have a radius between ∼ 12.2 km and ∼ 16.3 km in
the 68% credible region [192]. Overall, recent studies which constrain the neutron star
radius lead to a broad distribution of possible radii between ∼ 11 km and ∼ 14 km [19,
32, 184, 247, 259, 269, 196, 287, 20, 96, 161].
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1.2 Binary neutron stars

1.2 Binary neutron stars

Neutron stars can appear in a variety of different systems, e.g., in isolation or in a
binary system with a white-dwarf companion [298]. However, the systems most im-
portant for this Thesis are binary systems composed of two neutron stars. Such sys-
tems have been observed due to the pulsar emission from either one or both compan-
ions [153] as well as most recently through GWs [1, 2]. It is quite interesting that
the mass distribution of their individual components is very tightly peaked between
∼ 1.1 M� and ∼ 1.5 M� with a median of 1.33 M� [217]. Nevertheless, their forma-
tion mechanisms are not fully understood yet, where it is believed that two massive
main-sequence stars need to go through the sequence of a first supernova explosion, a
“common envelope” evolution and a second supernova explosion in order to create a
BNS system, see e.g., [23] for further references.

After formation, the evolution of their orbit is governed by the emission of GWs
which remove angular momentum from the system, thereby leading to a coalescence
eventually. Using Keplerian equations of motion (EOM) together with the gravitational-
radiation reaction based on the quadrupole formula, estimates for the lifetime of ob-
served BNSs can be worked out. Their lifetimes are in the range between ∼ 108 and
∼ 3×109 yrs which is smaller than the age of the universe ≈ 13.8×109 yrs [279]. There-
fore, BNSs are expected to merge within a Hubble time. The frequency of the emitted
GWs can be approximated using Newtonian gravity as [279]

f =
1
π

√
M

a3 = 10.5
(

M
2.8 M�

)1/2 ( a
700 km

)−3/2
Hz , (1.2)

where M and a are the total mass and the orbital separation of the binary. For a typical
binary of mass 2.8 M� the frequency close to merger at a separation of 50 km is ≈
550 Hz.

Overviews over the different stages and timescales of BNS mergers can be found
in various reviews, see e.g., [23, 285, 252, 95, 272]. Here, we will focus on the overall
evolution outlined in [252] incorporating information from [23] about the total mass
of the binary. In general, the total mass of the system dictates at which time in the
postmerger, if at all, the merger remnant collapses to a BH. If the total mass of the
binary exceeds a certain threshold mass limit [29, 171, 303, 163], the remnant will
collapse promptly to a BH already in the very first few milliseconds after merger.

Otherwise, a stable or metastable remnant will be formed. In all cases, the remnant
will enter a very violent postmerger phase where the two former neutron stars evolve
through a series of collision-and-bounce cycles, see e.g., [296], leading to strong GW
emission in a frequency band between 2 and 5 kHz on a timescale of ∼ 20 ms. During
this phase GWs carry away binding energy and angular momentum leading to an ap-
proximately axisymmetric differentially rotating remnant. If the mass is below the max-
imally supported mass of a uniformly rotating neutron star, which is ≈ 1.2 MTOV [56],
where MTOV is the maximally supported mass of spherically symmetric non-rotating
neutron star [302, 216], the remnant is called a supramassive neutron star (SMNS). Oth-
erwise, if the remnant exceeds ≈ 1.2 MTOV, the object is called a hypermassive neutron
star (HMNS) which must be supported through differential rotation in order avoid col-
lapse to a BH. It is possible that a HMNS is formed after merger which collapses during
the first 20 ms post merger implying that the total mass was higher than the maximally
supported mass of an approximately axisymmetric differentially rotating HMNS but
lower than the threshold mass to prompt collapse, see e.g., [313] for an estimate of the
maximum mass of differentially rotating stars.

If the remnant SMNS or HMNS survives the first ∼ 20 ms it enters the “viscous”
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1 Introduction

phase which proceeds on a timescale of ∼ 0.1− 1 s. Its evolution is determined by the
subtle interplay between magnetic braking, viscous momentum transport and neutrino
cooling [120, 115, 123, 170, 121]. In particular, it is believed that the majority of the
ejected mass from BNS mergers, which do not collapse promtly, is generated on this
timescale [285] such that this “secular ejecta” has a large impact on the kilonova signal
[187]. HMNSs are typically short-lived, i.e., they collapse on a timescale of . 1 s to a
BH, as it is expected that their differential rotation will be removed on this timescale
due to an effective turbulent viscosity [104, 244, 286, 280] or magnetic braking [278,
79, 106]. On the other hand, SMNSs are typically long-lived, i.e., they do not collapse
on a timescale of . 1 s to a BH, because their mass is low enough such that the removal
of differential rotation does not immediately lead to an unstable configuration.

Then, after a timescale of ∼ 1 s the remnant is either a BH or a SMNS surrounded by
a massive torus. In the case of the BH, the torus will be partially accreted and partially
ejected as a result of magneto-turbulence [115]. In the case of the SMNS, the spin-
down proceeds on a large timescale due to magnetic-dipole radiation [38]. Eventually,
also the SMNS will collapse to a BH. Only if the total mass of the binary is lower than
MTOV, a stable neutron star remnant can be produced.

1.3 Author contributions and overview of the Thesis

This Thesis is divided into five main parts which discuss different aspects of “dissi-
pative and shearing dynamics” in astrophysical compact objects. Many, but not all,
results presented in this Thesis are published in the following peer-reviewed articles,
which we present together with the author’s contributions:

Paper A,

Michail Chabanov, Luciano Rezzolla, and Dirk H. Rischke. “General-relativistic hy-
drodynamics of non-perfect fluids: 3+1 conservative formulation and application to
viscous black hole accretion”. In: Monthly Notices of the Royal Astronomical Society
505.4 (Aug. 2021), pp. 5910–5940. doi: 10.1093/mnras/stab1384. arXiv: 2102.10419
[gr-qc],

LR formulated the overall idea of this work while MC initiated the investigation of
the impact of bulk viscosity on the accretion onto BHs; MC carried out all analytical
derivations and calculations, implemented the code in BHAC, performed the simula-
tions and the post-process analysis; MC, LR and DHR wrote the manuscript together;
LR provided useful guidance through all stages of this project;

and Paper B,

Michail Chabanov, Samuel D. Tootle, Elias R. Most, and Luciano Rezzolla. “Crustal
Magnetic Fields Do Not Lead to Large Magnetic-field Amplifications in Binary Neu-
tron Star Mergers”. In: Astrophys. J. Lett. 945.1, L14 (Mar. 2023), p. L14. doi: 10.

3847/2041-8213/acbbc5. arXiv: 2211.13661 [astro-ph.HE],

MC formulated and proposed the idea of this work, implemented the code to initialize
crustal magnetic fields and calculate the analysis quantities, performed the simula-
tions and the post-process analysis; MC and LR wrote the manuscript together; the
simulations make use of the FUKA codes developed and maintained by SDT, as well as
the FIL, Antelope and Margherita codes developed and maintained by ERM; LR pro-

4

https://doi.org/10.1093/mnras/stab1384
https://arxiv.org/abs/2102.10419
https://arxiv.org/abs/2102.10419
https://doi.org/10.3847/2041-8213/acbbc5
https://doi.org/10.3847/2041-8213/acbbc5
https://arxiv.org/abs/2211.13661


1.3 Author contributions and overview of the Thesis

vided useful guidance through all stages of this project.

The following is a list of the forthcoming five chapters together with short summaries
giving a brief overview of each chapter. Additionally, we provide information about
the connections between the articles listed above, i.e., Paper A and Paper B, and the
results presented in this Thesis. A full publication list of the author can be found in
the CV which is appended at the end of this Thesis.

Chapter 2

This chapter serves as an introductory chapter to the theoretical and numerical foun-
dations of this Thesis. Specifically, we introduce the equations, which will be solved
later in this Thesis, discuss their foundations as well as numerical techniques, that can
be employed for the solution. Large portions of this chapter are based on textbooks
about the corresponding subjects and Paper A.

Chapter 3

This chapter discusses the impact of bulk viscosity on the accretion onto BHs. As part
of the effort to build more realistic models of BNS mergers mentioned later in this
Thesis, the results in this chapter mark the first steps towards the inclusion of bulk
viscosity in a fully general-relativistic setup. This chapter is based on Paper A.

Chapter 4

In this chapter we continue our effort to study the effects of bulk viscosity in models
of BNS mergers. We show how to implement bulk viscosity in fully general-relativistic
simulations of neutron stars, how to test our code by measuring the numerical dissipa-
tion of neutron star oscillations and get first insights about the effects of bulk viscosity
by simulating the violent migration of neutron stars. Then, we move on to full BNS
mergers and study the impact of a large but realistic bulk viscosity on their dynamics.
The results presented in this chapter are unpublished at the time of submission of this
Thesis.

Chapter 5

As will be explained later, BNS mergers are well-known sites of strong magnetic-
field amplification which is in agreement with a plethora EM signals associated with
them. In this chapter, we challenge the hypothesis that BNS mergers produce strong
magnetic-field amplifications by investigating the impact of purely crustal magnetic
fields. We also comment on the potential impact of our results on astrophysical ob-
servables. This chapter is based on Paper B.

Chapter 6

This is the last chapter and concludes this Thesis by briefly summarizing the main re-
sults and contrasting these with current efforts to investigate BNS mergers.

An appendix as well as the bibliography can be found at the end of this Thesis.
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1.4 Copyright information

This work includes the reuse of figures and data from Paper A and Paper B.

For articles published by IOP (The Astrophysical Journal Letters), this author has ad-
hered to the guidance provided in IOP’s published Authors Rights Policy (see bullet 5).

The publications in Monthly Notices of the Royal Astronomical Society under Oxford Uni-
versity Press (OUP) allow the original authors to reuse content in future publications
and for academic purposes such as dissertations and course material as listed under
OUP’s Publication Rights.

1.5 Units, conventions and abbreviations

Unless stated explicitly, we employ units where the speed of light is set to one, i.e., c =
1, and the gravitational constant is set to one, i.e., G = 1. Moreover, we work in Gaus-
sian units where the vacuum magnetic permeability µ0 takes the value µ0 = 4πc−2 and
magnetic fields have the same dimension as electric fields. The flat spacetime metric,
i.e., the Minkowski metric, is denoted by ηµν = diag[−1,1,1,1]. Greek indices run over
the set {0,1,2,3} while Roman indices run over the subset {1,2,3}. Also, we make use
of Einstein’s summation convention. The symbols δµν = δµν = δ

µ
ν = diag[1,1,1,1] and

δij = δij = δij = diag[1,1,1] represent the 4D and 3D Kronecker delta symbol, respec-
tively. Furthermore, we introduce the Levi-Civita tensor

εµνλδ :=
√−g ηµνλδ , (1.3)

εµνλδ := − 1
√−g

ηµνλδ , (1.4)

where we define the Levi-Civita symbol through

ηµνλδ = ηµνλδ :=


+1 if [µνλδ] is an even permutation of 0123 ,
−1 if [µνλδ] is an odd permutation of 0123 ,

0 else ,
(1.5)

and g denotes the determinant of the four-dimensional spacetime metric gµν . We also
introduce the definitions

T(µν) :=
1
2

(
Tµν + Tνµ

)
, (1.6)

and

T[µν] :=
1
2

(
Tµν − Tνµ

)
. (1.7)

Finally, for later reference, a list of frequently employed abbreviations in this Thesis
is provided in Table 1.1.
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1.5 Units, conventions and abbreviations

ADM Arnowitt-Deser-Misner
BBH Binary black hole

BDNK Bemfica-Disconzi-Noronha-Kovtun
BHAC Black-hole accretion code
BHNS Black-hole neutron-star binary

BNS Binary neutron star
BSSNOK Baumgarte-Shapiro-Shibata-Nakamura-Ohara-Kojima

CFL Courant-Friedrichs-Lewy
CT Constrained transport
EM Electromagnetic

EOM Equations of motion
EOS Equation of state
FIL Frankfurt/IllinoisGRMHD

FUKA Frankfurt University/KADATH initial data code
GR General relativity

GRDHD General-relativistic dissipative hydrodynamics
GRHD General-relativistic hydrodynamics

GRMHD General-relativistic magnetohydrodynamics
GW Gravitational wave
HIC Heavy-ion collision

HLLE Harten-Lax-Van Leer-Einfeldt
HMNS Hypermassive neutron star
HRSC High-resolution shock-capturing
IMEX Implicit-explicit

KHI Kelvin-Helmholtz instability
LES Large-eddy simulation
LHS Left-hand side
MIS Müller-Israel-Stewart
MRI Magneto-rotational instability

MHD Magnetohydrodynamics
NICER Neutron Star Interior Composite Explorer

NR Numerical relativity
NS Navier-Stokes

ODE Ordinary differential equation
PDE Partial differential equation
PNS Proto-neutron star

QCD Quantum chromodynamics
QGP Quark-gluon plasma
RHS Right-hand side

sGRB short gamma-ray burst
SMNS Supramassive neutron star

TOV Tolman-Oppenheimer-Volkoff
WRT With respect to

Table 1.1: List of frequently employed abbreviations
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Chapter 2

Theoretical and numerical
foundations

2.1 Numerical relativity

Einstein’s theory of relativity is imperative to describe neutron stars and high-energy
astrophysical phenomena associated with them. An illustrative example of the impact
of their high compactness and surface gravity not captured by a purely Newtonian
description is the occurance of gravitational lensing which allows an observer to see
parts of the star’s surface which is oriented in the opposite direction and would be not
visible otherwise. In particular, this effect is leveraged by the NASA mission NICER
in order to obtain measurements of several neutron star properties, e.g., the shape and
location of hot spots, the compactness and the radius [192].

Another and perhaps the most significant illustration of the importance of Ein-
stein’s gravity theory for neutron star related phenomena is the emission of GWs by
BNS systems. As famously honored by the Nobel Prize in 1993 for the discovery of
the Hulse-Taylor pulsar [153], BNS systems lose energy and angular momentum to
GWs leading to a decaying orbit which makes a catastrophic coalescence or merger
inevitable. The first direct detection of GWs from a BNS system was, however, not pos-
sible until decades later. The detection of the BNS merger GW170817 in 2017 was able
to provide upper limits on the difference between the speed of gravity and the speed
of light [1, 3].

A large portion of this section is dedicated to a brief introduction of the partial
differential equations (PDEs) able to describe non-stationary spacetimes. These PDEs
need to be solved in order to model isolated and BNS systems dynamically. The numer-
ical solution of these equations belongs to the branch of GR called numerical relativity
(NR). A more comprehensive account of the foundations of NR can be found in the
books [7, 28, 135, 261, 279].

However, we start by giving a brief introduction to GWs as a particular solution of
Einstein’s field equations

Gµν := Rµν −
1
2
Rgµν = 8πTµν , (2.1)

where G is the Einstein tensor, R is the Ricci tensor obtained through contractions
of the Riemann tensor R and R denotes the Ricci scalar which is derived through
contractions of R

Rµν :=Rαβγδg
γ

α , (2.2)

R := Rµνg
µν . (2.3)

9



2 Theoretical and numerical foundations

The rank-two tensor Tµν represents the energy-momentum tensor. Equation (2.1) is a
system of ten second-order, nonlinear PDEs in the metric components gµν only six of
which are, however, independent due to the relation ∇µGµν = 0 [261]. This reduction
of degrees of freedom reflects precisely the freedom to choose four arbitrary coordi-
nate functions in order to describe the dynamics and is commonly denoted as gauge
freedom.

2.1.1 Gravitational waves

Following [279] Einstein’s equations, i.e., Eq. (2.1), allow us to obtain wave solutions
in the limit of weak gravitational fields through linearization. We consider the metric
to be a superposition of the flat Minkowski metric ηµν and a perturbation εhµν whose
magnitude is denoted by the small parameter ε

gµν = ηµν + εhµν . (2.4)

Then, the Einstein tensor can be written as

Gµν =
ε
2

(
−�ψ′µν +∂α∂µψ

′α
ν +∂α∂νψ

′α
µ − ηµν∂α∂βψ′αβ

)
, (2.5)

where we introduced the trace-free perturbation

ψ′µν := hµν −
1
2
ηµνη

αβhαβ , (2.6)

and the standard flat-space wave operator � := −∂2
t +∆ := −∂2

t +
∑3
i=1∂

2
i . We can now

make use of the previously mentioned gauge freedom and choose suitable coordinates
which simplify Eq. (2.5) even further. Specifically, we want to eliminate all mixed
derivatives which spoil the wave-like nature of Eq. (2.5). This can be done by intro-
ducing an infinitessimal coordinate variation εξµ on the order of the small parameter
ε, i.e., xµ→ xµ − εξµ, and demanding

ηαβ∂αψβµ = 0 , (2.7)

where we have introduced the transformed trace-free metric perturbation

ψµν := ψ′µν +∂µξν +∂νξµ − ηµν∂αξα . (2.8)

This coordinate system is often referred to as Lorenz gauge where each component of
ξµ reflects one of the four degrees of gauge freedom. Then, assuming that the energy-
momentum tensor is of order ε as well, we obtain the linearized Einstein’s equations in
Lorenz gauge

�ψµν = −16πε−1Tµν , (2.9)

which have the form of inhomogeneous wave equations for the components of ψµν
in flat spacetime. Additionally, note that the condition in Eq. (2.7) together with the
transformation in Eq. (2.8) imply that all coordinate transformations which fulfill the
Lorenz gauge condition in Eq. (2.7) at a given time and follow the wave equation

�ξµ = 0 , (2.10)

will fulfill Eq. (2.7) at all times.
This leads us to the insight that for vacuum, i.e., Tµν = 0, only two of the ten dif-

ferent components of ψµν are independent which reflect the two dynamical degrees of
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2.1 Numerical relativity

freedom of GR [261]. This can be understood if we write down the following solutions
of Eqs. (2.9) and (2.10) in vacuum

ψµν(xλ) = Aµν exp[−iκαxα] , (2.11)

ξµ(xλ) = Cµ exp[−iκαxα] , (2.12)

respectively, where Aµν , Cµ and κα are constant and denote the amplitude of ψµν , the
amplitude of ξµ as well as the wave four-vector of ψµν and ξµ, respectively. Using
Eq. (2.8) we obtain the following relation

Aµν = A′µν − iκµCν − iκνCµ + iηµνκαC
α , (2.13)

which illustrates that the choices made for the vector Cµ can reduce the degrees of
freedom of ψµν by four. Together with Eq. (2.7) only two independent degrees of free-
dom remain which are determined by the linearized Einstein’s equations in Eq. (2.9).
The most convenient gauge for the analysis of GWs represents the transverse-traceless
(TT) gauge [261] which enforces the conditions Aµνκν = 0, A0µ = 0 and A

µ
µ = 0. As an

example, if the waves propagate in the z-direction, i.e., κµ = (κt ,0,0,κz)T , we obtain

ψµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 , (2.14)

where h+ and h× denote the “plus” and “cross” polarisation amplitudes of the GW,
respectively.

In NR simulations the polarisation amplitudes are typically obtained through the
Newman-Penrose formalism [211] which connects h+ and h× to components of the
Weyl tensor Cαβγδ, the trace-free part of the Riemann tensor [261]. In particular, at
null infinity the curvature scalar ψ4 is related to the amplitudes through the relation
[299]

ḧ+ − iḧ× = Ψ4 , (2.15)

where the curvature scalar is defined by

Ψ4 := −Cαβγδnαmβnγmδ . (2.16)

The set of basis vectors {l,n,m,m}, where the bar denotes the complex conjugate, de-
fines an orthonormal null frame which is constructed from polar orthonormal basis
vectors [261]. In numerical simulations with a finite domain Ψ4 is typically extracted
at a finite radius R. Common techniques to extrapolate the signal to null infinity in-
clude a fit to a polynomial in 1/R, propagating the signal by using an analytic formula
based on perturbation theory or performing a characteristic evolution [257, 236, 54,
181, 182]. Additionally, the two time integrals, which need to be solved in order to ob-
tain the amplitudes from Eq. (2.15), are typically calculated by using the so-called fixed
frequency integration (FFI), which removes unphysical secular drifts in the amplitudes
[258].

The quantity Ψ4 is typically decomposed into projections onto s = −2 spin-weighted
spherical harmonics −2Ylm [279]

Ψ4 :=
∑
l,m

Ψ lm
4 −2Ylm , (2.17)
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2 Theoretical and numerical foundations

with the inverse relation

Ψ lm
4 =

∮
dΩΨ4 −2Y lm , (2.18)

in order to gain insight about the symmetries of the GW emission and thus the symmtries
of the emitting source.

Further below in this Thesis, when examining GWs from BNS mergers, we will
make use of the Fourier transform of the effective strain [294, 296, 260] defined by

h̃(f ) :=

√∣∣∣h̃+(f )
∣∣∣2 +

∣∣∣h̃×(f )
∣∣∣2

2
, (2.19)

where h̃+(f ) and h̃×(f ) denote the Fourier transforms of the two polarisation ampli-
tudes, respectively.

2.1.2 3+1 decomposition of spacetime

At the basis of the 3+1 decomposition lies the reintroduction of the notions of space
and time. The concept of their unification in a single spacetime achieved by Einstein’s
theory of special relativity is a milestone in the history of physics but also represents
an impractical point of view when for the purpose of obtaining numerical solutions of
dynamical systems a Cauchy problem needs to be specified.

The decomposition is achieved by introducing a set of non-intersecting spacelike
hypersurfaces whose union defines spacetime and therefore foliates it. Then, a unit
timelike four-vector field n can be defined which is always normal to its corresponding
hypersurface. As n is a unit vector, i.e., nµnµ = −1, its integral curves can be viewed
as the worldlines of "normal" or "Eulerian" observers. Now, it is possible to decompose
physical quantities with respect to the normal observer and obtain projections onto
spatial hypersurfaces. In particular, the generic line-element in 3+1 decomposition is
given by

ds2 = −(α2 − βiβi)dt2 + 2βidx
idt +γijdx

idxj , (2.20)

where α is the so-called lapse function, the purely spatial vector β, i.e., βµ = (0,βi)T , is
the shift vector, and γij denotes the components of the purely spatial metric γ , defined
as

γµν := gµν +nµnν , (2.21)

where g is the usual four-metric, and acting as the projection operator onto spatial
hypersurfaces. Also, the following identities can be shown: βi := γijβ

j ,
√−g = α

√
γ ,

where g := det
(
gµν

)
and γ := det

(
γij

)
. The components of n read

nµ =
1
α

(1,−βi)T , nµ = (−α,0,0,0) . (2.22)

We can now use the timelike unit normal n in order to decompose tensors of various
ranks. A rank-one tensor field u, i.e., a vector field, can be expressed as

uµ = (−nνuν)nµ +γµνu
ν =W (nµ + vµ) , (2.23)

where the expression behind the second equality is commonly used to the define the
Lorentz factor W := (1 − vivi)−1/2 and vµ := (0,vi)T , a three-velocity measured by the
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2.1 Numerical relativity

normal observer, if u is a four-velocity field. Analogously, a symmetric rank-two tensor
field T can be written as

T µν = Enµnν + Sµnν + Sνnν + Sµν , (2.24)

where

E := nµnνT
µν , (2.25)

Sµ := −nνγµαT
αν , (2.26)

Sµν := γµαγ
ν
βT

αβ . (2.27)

Additionally, we introduce the extrinsic curvature K which plays an important role in
the formulations of Einstein’s equations in NR

Kµν := −1
2
Lnγµν = −γµλ∇λnν , (2.28)

where Ln represents the Lie derivative along n and ∇ the covariant derivative with
respect to the four-metric g. It is also convenient to introduce the definition of the
acceleration of the normal observer

âµ := nν∇νnµ = γµν∂ν ln(α) . (2.29)

Finally, we introduce the covariant derivative D with respect to the three-metric γ
such that D is the fully spatial part of the covariant derivative ∇, i.e., Djvi := ∂jv

i +
(3)Γ i jkv

k , where (3)Γ i jk represent the Christoffel symbols related to the three-metric γ
[135]

(3)Γ i jk := 1
2γ

il
(
∂jγlk +∂jγlk −∂lγjk

)
. (2.30)

2.1.3 ADM equations

A full 3+1 decomposition analogous to the decomposition of tensors in the previ-
ous section can now be carried out for the system of PDEs in Eq. (2.1). This is, of
course, much more involved because of the occurance of first- and second-order differ-
ential operators. Nevertheless, the final result is widely known as the Arnowitt-Deser-
Misner (ADM) formulation which represents a system of twelve first-order PDEs sup-
plemented with four additional elliptic PDEs [318, 21, 261]. The evolution equations
of the gravitational fields read:

∂tγij =− 2αKij +Diβj +Djβi , (2.31)

∂tKij =−DiDjα + βk∂kKij +Kik∂jβ
k +Kkj∂iβ

k

+α
(

(3)Rij +KKij − 2KikK
k
j

)
+ 4πα

[
γij(S −E)− 2Sij

]
, (2.32)

where (3)Rij is the Ricci tensor with respect to γ , K is the trace of the extrinsic curvature
K, S := S

µ
µ is the projection of the energy-momentum tensor according to Eq. (2.27)

and E is the projection of the energy-momentum tensor corresponding to Eq. (2.25).
There are two remarks that are important to make at this point. The first one con-

cerns the prescriptions for the lapse function and the shift vector, the gauge functions,
as these are not provided by the ADM formulation but appear at various places in the
equations. The previously mentioned freedom of choosing a particular coordinate sys-
tem defined by four coordinate functions reappears at this point such that it is possible
to choose prescriptions that are most suitable. The second remark is about the type of

13



2 Theoretical and numerical foundations

hyperbolicity of the evolution equations. In particular, the ADM formulation is weakly
hyperbolic and therefore not necessarily well-posed which means that the solution is
not bound to grow at most exponentially [261]. This is linked to the growth of instabil-
ities during the numerical solution of these equations which yields unphysical results.
Hence, alternative formulations have been developed which restore the hyperbolicity
of the ADM formulation by removing those parts of the equations responsible for their
weak hyperbolicity. Next, we report the four elliptic PDEs.

The first elliptic equation is at the same time the definition of the Hamiltonian
constraint H , i.e.,

H := (3)R+K2 −KjiK ij − 16πE = 0 , (2.33)

where (3)R is the Ricci scalar with respect to γ . The magnitude of H is often used to
judge to quality of a NR simulation because numerical errors prohibit the solution to
have H = 0 and therefore be an exact solution of Einstein’s equations. The other three
elliptic equations define the momentum contraints M i , i.e.,

M i :=Dj(K
ij −γ ijK)− 8πS i = 0 , (2.34)

where S i is the projection of the energy-momentum tensor corresponding to Eq. (2.26).

2.1.4 Conformal traceless formulations

In this subsection we will introduce the famous Baumgarte-Shapiro-Shibata-Nakamura-
Ohara-Kojima (BSSNOK) formulation and the Z4c formulation. We will start with the
BSSNOK equations.

By having a closer look at the Eqs. (2.31) and (2.32) it is possible to observe that if we
substitute Eq. (2.31) for the left-hand side (LHS) of Eq. (2.32) and consider only second-
order temporal and spatial derivatives (no mixed temporal and spatial derivatives) of
the spatial metric γ we arrive at the following relation

∂2
t γij ∝ (3)Rij . (2.35)

At this point it is useful to introduce two expressions for the Ricci tensor which can be
found in [28]:

(3)Rij =
1
2
γkl

(
∂i∂lγkj +∂k∂jγil −∂i∂jγkl − ∂k∂lγij

)
+γkl

(
(3)Γmil

(3)Γmkj − (3)Γmij
(3)Γmkl

)
, (2.36)

=− 1
2
γcd∂c∂dγij + gc(i∂j)

(3)Γ c + (3)Γ c(3)Γ(ij)c

+ 2ged (3)Γ ce(i
(3)Γj)cd +γcd (3)Γ eid

(3)Γecj , (2.37)
(3)Γ i :=γ jk (3)Γ ijk . (2.38)

where Eq. (2.36) shows that the Ricci tensor contains four terms with second-order
spatial derivatives only one of which has the form of a Laplace operator, i.e., γkl∂k∂l .
Equation (2.37) shows that all mixed second-order spatial derivatives, i.e., the second-
order spatial derivatives not resembling the Laplace operator, can be absorbed in the
derivative of the connection functions (3)Γ i defined in Eq. (2.38). Equations (2.36) and
(2.37) together with Eq. (2.35) indicate that the wave-nature of the ADM equations
(2.31) and (2.32) is spoiled by mixed second-order spatial derivatives which impact
the principal part of the equations, thereby preventing it from being hyperbolic.
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2.1 Numerical relativity

To overcome this problem the BSSNOK formulation makes use of a conformal and
traceless reformulation of the ADM equations together with an introduction of confor-
mal connection functions similar to the ones presented in Eqs. (2.37) and (2.38)

φ :=γ−1/6 , (2.39)

γ̃ij :=φ2γij , (2.40)

Ãij :=φ2
(
Kij −

1
3
γijK

)
, (2.41)

Γ̃ i :=γ̃ jk Γ̃ ijk , (2.42)

where φ denotes the conformal factor and Ãij denotes the conformal and trace-free
extrinsic curvature. The conformal connection functions, Γ̃ i , are then promoted to
new and independent evolution variables such that the new system becomes strongly
hyperbolic [207, 282, 27]. The final result reads [261]:

∂tγ̃ij =− 2αÃij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k + βk∂kγ̃ij , (2.43)

∂tÃij =φ2
[
−DiDjα +α

(
(3)Rij − 8πSij

)]TF
+ βk∂kÃij + 2Ãk(i∂j)β

k

+α
(
ÃijK − 2ÃikÃ

k
j

)
− 2

3
Ãij∂kβ

k , (2.44)

∂tφ =
1
3
φαK − 1

3
φ∂iβ

i + βk∂kφ, (2.45)

∂tK =−DiD iα +α
[
ÃijÃ

ij +
1
3
K2 + 4π(E + S)

]
+ βi∂iK , (2.46)

∂t Γ̃
i =γ̃ jk∂j∂kβ

i +
1
3
γ̃ ik∂k∂jβ

j +
2
3
Γ̃ i∂jβ

j − Γ̃ j∂jβi − 2Ãij∂jα + βj∂j Γ̃
i

+ 2α
(
Γ̃ ijkÃ

jk − 3Ãij∂j ln φ −
2
3
γ̃ ij∂jK

)
− 16παγ̃ ijSj . (2.47)

The superscript TF indicates that the trace-free part of the bracketed expression is
used.

Despite the huge success of the BSSNOK formulation in the modeling of both mat-
ter and vacuum spacetimes one desirable feature remains which the equations (2.43)-
(2.47) fail achieve. Namely, the BSSNOK equations fail to propagate and damp con-
straint violations which appear inevitably due to discretization errors in unconstrained
evolutions. This can lead to large Hamiltonian constraint violations which can accumu-
late over time. This behaviour is related to the properties of the PDEs whose constraint
subsystem has a zero speed characteristic for the Hamiltonian constraint [42]. A solu-
tion to this problem makes use of a covariant extension of Einstein’s field equations,
namely the Z4 system [49, 50]:

Rµν + 2∇(µZν) = 8π
(
Tµν −

1
2
T gµν

)
, (2.48)

where the evolution equations for the four-vector Zµ = Θnµ +Zµ explicitly include the
constraints (2.33) and (2.34). It is easy to realize that solutions with Zµ = 0 satisfy
the Einstein’s equations (2.1). By using the conservation of energy and momentum,
i.e., ∇µT µν = 0, and the Bianchi identities we arrive at a wave-like equation for Zµ

�gZµ +RµνZν = 0 . (2.49)

Equation (2.49) ensures that deviations from Einstein’s field equations (2.1) propa-
gate along light cones [261, 49]. However, Eq. (2.48) can be further extended. It
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2 Theoretical and numerical foundations

would be even more desirable, if constraint violations would not only propagate but
also be damped as the simulation progresses. This would ensure that the simulation
approaches a true solution of Einstein’s equations even if constraint violations were
present initially. In other words, it would be desirable if the solutions of Einstein’s
equations (2.1) become an attractor of the full extended system. This can be achieved
by adding suitable damping terms to Eq. (2.48) and leads us to the damped-Z4 formu-
lation which is based on the following extension of Einstein’s equations [137]:

Rµν + 2∇(µZν) −κ1

[
2n(µZν) − (1 +κ2)gµνnαZα

]
= 8π

(
Tµν −

1
2
T gµν

)
, (2.50)

where the constant coefficients κ1 and κ2 control the exponential damping time of the
constraint violations if κ1 > 0 and κ2 > −1. Again, we obtain a wave-like equation for
Zµ [261]:

�gZµ +RµνZν = −κ1∇ν
[
2n(µZν) +κ2gµνnαZα

]
, (2.51)

which now, however, incorporates a right-hand side (RHS) responsible for damping.
The formulation used in all simulations presented in this Thesis is introduced in

[42, 270] and is called the Z4c formulation. Its main goals consist of developing
a formulation which is as close as possible to the strongly hyperbolic BSSNOK sys-
tem (2.43)-(2.47) while at the same time incorporating the constraint propagating and
damping behaviour of the damped-Z4 formulation (2.50)-(2.51). Because of the former
requirement specific problematic non-principal terms are neglected in the constraint
addition leading to a system which is not covariant. Therefore, the Z4c system is not
equivalent to the damped-Z4 system [147]. However, the Z4c formulation still benefits
from constraint propagation and damping. The evolution equations are

∂tγ̃ij =− 2αÃij + 2γ̃k(i∂j)β
k − 2

3
γ̃ij∂kβ

k + βk∂kγ̃ij , (2.52)

∂tÃij =φ2
[
−DiDjα +α

(
(3)Rij − 8πSij

)]TF
+ βk∂kÃij + 2Ãk(i∂j)β

k

+α
[
Ãij(K̂ + 2Θ)− 2ÃikÃ

k
j

]
− 2

3
Ãij∂kβ

k , (2.53)

∂tφ =
1
3
φα(K̂ + 2Θ)− 1

3
φ∂iβ

i + βk∂kφ, (2.54)

∂tK̂ =−DiD iα +α
[
ÃijÃ

ij +
1
3

(K̂ + 2Θ)2 +κ1(1−κ2)Θ + 4π(E + S)
]

+ βi∂iK̂ , (2.55)

∂t Γ̂
i =γ̃ jk∂j∂kβ

i +
1
3
γ̃ ik∂k∂jβ

j +
2
3
Γ̃ i∂jβ

j − Γ̃ j∂jβi − 2Ãij∂jα + βj∂j Γ̂
i − 2ακ1

(
Γ̂ i − Γ̃ i

)
+ 2α

[
Γ̃ ijkÃ

jk − 3Ãij∂j ln φ −
1
3
γ̃ ij∂j

(
2K̂ +Θ

)
− 8πγ̃ ijSj

]
, (2.56)

∂tΘ =
1
2
α
[

(3)R− ÃijÃij +
2
3

(K̂ + 2Θ)2 − 16πE
]
−ακ1(2 +κ2)Θ + βi∂iΘ , (2.57)

where we have defined the trace of the extrinsic curvature up to constraint addition,
K̂ , and the new conformal connection functions, Γ̂ i ,

K̂ :=K − 2Θ , (2.58)

Γ̂ i :=Γ̃ i + 2γ̃ ijZj . (2.59)

In addition, the system is constrained by the following relations in order to satisfy
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2.2 Numerical relativity

Einstein’s equations [147]:

Θ =0 , (2.60)

Zi =0⇔ Γ̂ i − Γ̃ i = 0 , (2.61)

Ĥ :=(3)R− ÃijÃij +
2
3

(K̂ + 2Θ)2 − 16πE = 0 , (2.62)

M̃ i :=D̃jÃ
ij − 2

3
γ̃ ij∂j(K̂ + 2Θ)− 4

3
Ãij∂j ln φ− 8πγ̃ ijSj = 0 , (2.63)

where we have introduced the covariant derivative D̃ associated to the conformal three-
metric γ̃ij . Equations (2.60) and (2.61) are required for the extended system in order
to reduce to Einstein’s equations and express the condition Zµ = 0 while Eqs. (2.62)
and (2.63) are generalizations of the Hamiltonian and momentum constraints already
introduced in Eqs. (2.33) and (2.34).

2.1.5 Moving puncture gauge conditions

As already mentioned, the formulations of Einstein’s equations discussed so far, the
ADM, BSSNOK and Z4c formulations, leave the dynamics of the gauge quantities, α
and βi , unspecified. This corresponds to the freedom of choosing an arbitrary coordi-
nate system to describe the evolution of matter and spacetime itself. Thus, their choice
can be regarded as gauge fixing for Einstein’s equations where physically meaningful
observables remain invariant under this choice.

For the purposes of this Thesis, the most important requirement on the gauge con-
ditions is the ability to simulate moving and merging binary black hole (BBH) space-
times without using singularity excision techniques [8], e.g., these were employed by
the first succesful simulation of a BBH coalescence [242], and without holding the BH
singularities or “punctures” fixed on the numerical grid. This is done when using a
corotating frame implemented by an angular shift vector [8, 57]. Following [261], this
can be achieved if the gauge conditions guarantee two requirements:

(i) Singularity-avoiding slicing condition:

The pace at which proper time evolves near the singularity has to be reduced.

(ii) Coordinate distortions due to large spatial curvatures should be counteracted.

Condition (i) is implemented successfully by using the 1+log slicing condition in the
form

∂tα − βk∂kα = −2αK . (2.64)

Condition (ii) is implemented successfully by using the Gamma driver shift condition

∂tβ
i − βj∂j =

3
4
Bi (2.65)

∂tB
i − βj∂jBi =∂t Γ̃

i − βj∂j Γ̃ i − ηBi , (2.66)

where the auxiliary variable Bi was introduced. Similar variants of the “moving punc-
ture” gauge presented in Eqs. (2.64) - (2.66) have been employed in the breakthrough
BBH simulations of [64, 24].
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2.2 Fluids and hydrodynamics

Perhaps one of the best ways to summarize the interplay between spacetime and mat-
ter is a quote by John Archibald Wheeler: "Spacetime tells matter how to move; matter
tells spacetime how to curve." The previous section introduced Einstein’s field equations
which precisely predict how spacetime curves based on a matter configuration repre-
sented by the energy-momentum tensor T µν . This corresponds to the second part of
the quote. However, given that the main objective of this Thesis is the exploration of
neutron stars and especially BNS mergers, it is important to understand how matter
behaves in the presence of strong gravitational fields. Hence, the rest of this chapter is
dedicated to the first part of the quote, where we start by giving a very brief introduc-
tion to hydrodynamics and the so-called fluid approximation, see also [261].

The theory of hydrodynamics can be understood as an effective theory in the long-
wavelength, low-frequency limit of an underlying microscopic theory. By employing
kinetic theory for the latter, it is possible to derive the equations of hydrodynamics
from the relativistic Boltzmann equation and the method of moments [93]. For ex-
ample, along this route one arrives at relations which connect the so-called particle
distribution function f = f (t,x,p), which is a function of time (t), position (x) and mo-
mentum (p), and the energy-momentum tensor

T µν =
∫
d3p

p0
f pµpν , (2.67)

see e.g., [65], thereby showing that the energy-momentum tensor is the second moment
of the distribution function [261].

Now, a fluid is present if f assumes a very specific form f0, or at least if the de-
viation f − f0 is small. Here, f0 is the so-called equilibrium distribution function
which can be the Maxwell-Jüttner distribution function for a classical gas or the Bose-
Einstein (Fermi-Dirac) distribution function for a quantum gas of bosons (fermions)
[158]. Equivalently, we say that f is close to local thermodynamic equilibrium.

From a physical point of view, it is helpful to think of an ensemble of a large num-
ber of particles which can be divided into distinct elements, so-called fluid elements.
Their size L is chosen such that each fluid element still contains a sufficiently large
number of particles but is homogeneous on scales smaller than L. This means that
each element is well approximated by a single number for its density, its temperature
and its velocity without the need to consider the substructure of the element. Now, lo-
cal thermodynamic equilibrium means that thermodynamic transformations applied
to each fluid element through an interplay with its neighbours, e.g., compression or ex-
pansion, are adiabatic, i.e., the entropy of a fluid element is conserved. Physically this
can be achieved through an extremely short mean-free path ` of the particles compared
to L. This leads us to the definition of the Knudsen number

Kn :=
`
L
, (2.68)

which takes the extremal value Kn = 0 in local thermodynamic equilibrium. Hence,
a fluid is present, if the Knudsen number is small, while the theory of hydrodynamics
describes the dynamics of fluids based on a suitable approximation of the Boltzmann
equation in the “fluid-limit”, i.e., when f − f0 is small.

At this point, it is possible to make a classification of two broad classes of fluids.
First, so-called “perfect” fluids are those which are always in local thermodynamic
equilibrium, i.e., Kn = 0. Second, so-called “non-perfect” fluids are those for which
Kn� 1 and Kn , 0, which allows for phenomena such as particle diffusion, heat trans-
fer and momentum transfer across the borders of neighbouring fluid elements. Non-
perfect fluids are characterised by growing entropy.
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2.3 General-relativistic perfect hydrodynamics

The following is a brief review of the equations that describe the evolution of per-
fect fluids on an arbitrary curved background. More specifically, we focus on a single
perfect fluid which is represented by the equations of relativistic perfect hydrodynam-
ics. In later parts of this Thesis we will go beyond this simplifying assumption and
also consider the exciting world of non-perfect fluids, which take into account effects
from being out of thermodynamic equilibrium, as well as perfect fluids which are ideal
conductors and immersed in a coevolving magnetic field. For a more comprehensive
introduction we refer to [261].

The energy-momentum tensor for perfect fluids is given by

T µν = T
µν
pf := euµuν + phµν , (2.69)

where e denotes the energy density and p the isotropic pressure, both of which are
evaluated in the fluid frame. The fluid four-velocity is given by uµ which can also
be used to define a projection operator onto hypersurfaces orthogonal to u, namely
hµν := gµν+uµuν . Note that we distinguish between the total energy-momentum tensor
T µν and the form it takes in the specific case of a single perfect fluid T

µν
pf . For conserved

charges also a charge current can be defined which in the context of neutron stars is
typically the baryon number current. Multiplying the baryon number current with a
constant baryon mass yields the rest-mass current

Jµ = J
µ
pf := ρuµ , (2.70)

where ρ is the rest-mass density, in this case the baryon-mass density, evaluated in
the fluid frame. In general, a thermodynamic relation exists connecting the thermody-
namic quantities e, p and ρ which is called EOS

p = p(ρ,e) . (2.71)

Having a closer look at the degrees of freedom of the perfect fluid we have intro-
duced so far, we observe that we are left with five undetermined variables, namely ρ,
e and three variables for u as we have uµuµ = −1. Their evolution is governed by the
conservation equations for charge, energy and momentum

∇µJµ = 0 , (2.72)

∇µT µν = 0 . (2.73)

Equations (2.72) and (2.73) represent a system of five first-order, nonlinear PDEs
which can also be written in flux-conservative form. We recall that a system of PDEs is
classified as being in flux-conservative form if it can be represented as

∂tU +∂iF
i(U ) = S , (2.74)

whereU is the state vector, F i are the flux vectors and S is the source vector. The biggest
advantage of such a formulation is related to the accurate numerical capture of shock
solutions. The nonlinearities in Eqs. (2.72) and (2.73) naturally lead to the appearance
of discontinuities which no longer fall into the class of solutions of the equations writ-
ten down in differential form. Instead, they constitute weak solutions which represent
solutions of the weak formulation, i.e., the integral form, of the equations. Now, the
importance of a flux-conservative form becomes clear through two theorems. The first
one is given in [175] and states that flux-conservative schemes converge to the weak
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solution, if they are convergent, and the second one is given in [151] and instead says
that numerical schemes not written in a flux-conservative form do not converge to the
correct solution, if a shock wave is present in the flow.

Finally, the equations of relativistic perfect hydrodynamics written in a flux-conservative
form and typically evolved for BNS merger modeling are given by

U =
√
γ


D

Sj

τ

 =
√
γ


ρW

(e+ p)W 2vj

(e+ p)W 2 − p − ρW

 , (2.75)

F i =
√
γ


V iD

αS i j − βiSj

α(S i − viD)− βi(E −D)

 , (2.76)

S :=
√
γ


0

1
2αS

ik∂jγik + Si∂jβi −E∂jα

αS ikKij − Sj∂jα

 , (2.77)

where we define the coordinate three-velocity V j := uj /ut = αvj − βj , the conserved
energy τ := E − D and the spatial projection of the energy-momentum tensor Sij :=
γiµγjνT

µν , see also Eqs. (2.25)-(2.27). At this point it is helpful to introduce the dis-
tinction between conserved and primitive variables. Conserved variables are the en-
tries of the state vector given in Eq. (2.75) and are evolved in time in a numerical
hydrodynamics code

C :=
{√
γD,
√
γSj ,
√
γτ

}
. (2.78)

Primitive variables represent physically meaningful quantities which are typically needed
to compute the flux and source vectors given in Eqs. (2.76) and (2.77) such as the set

P :=
{
ρ,p,vi

}
. (2.79)

In general, the conversion between conserved and primitive variables has to be carried
out numerically by using root-finding algorithms, see e.g., [124].

Finally, we define the square of the perfect-fluid sound speed [261] as

cs
2 =

(
∂p

∂e

)
ρ

+
1

e+ p

(
∂p

∂ρ

)
e

. (2.80)

2.3.1 Numerical methods for relativistic hydrodynamics

We start by discussing the possible options of how to represent the solution of a system
of PDEs on a discrete numerical grid. There are at least three generic choices. First, it
is possible represent the function by using a set of point values which approximate the
function at the corresponding set of locations on the grid. The evolution of the point-
wise representation of the function is commonly done by using the finite-difference
approach. This approach is the easiest to implement but gets more involved if Non-
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2.3 General-relativistic perfect hydrodynamics

Cartesian coordinates, e.g., spherical coordinates, are used. Additionally, increasing
the formal convergence order of a finite-difference method can also get involved, if the
solutions of the system of PDEs naturally develop discontinuities [248, 249, 195].

Second, it is also possible to define cell-averaged values of the function where a
set of grid points typically defines the corners of the cells over which the averages are
calculated. In this case cell-averaged values are evolved in time which is done by using
a finite-volume approach. As this approach makes use of integrals over grid cells it is
easily generalizable to a great variation of grid-cell shapes [240, 189]. In other words, it
easy to implement different coordinate systems in a finite-volume approach. However,
because the formal convergence order of the method is set by the formal convergence
order of the technique to evaluate the integrals, high-order finite-volume methods can
become very expensive. Typically, in such cases a conversion between cell-averaged
and local point values is employed [185].

Finally, it is also possible to represent the function through a finite set of orthogonal
basis functions on distinct domains of the grid. This method is named spectral method
and involves coefficients which are used to construct the approximated function from
the set of basis functions. These coeffcients are then evolved in time. The main advan-
tage of spectral methods is the formal exponential convergence of the solution if the
number of basis functions is increased. On the other hand, spectral methods are known
to be subject to the Gibb’s phenomenon in the presence of large gradients. This means
that these methods are ill-suited for the solution in regions where discontinuities can
develop [136].

In this Thesis, we will use a point-wise representation of the solution functions and
hence make use of a finite-difference scheme to solve hyperbolic equations of the form
shown in Eq. (2.74).

The temporal discretization of Eq. (2.74) is achieved by using a semi-discrete/method
of lines approach

d
dt
Ui = −D

(
F̂
)

= −1
h

(
F̂i+1/2 − F̂i−1/2

)
+ Si , (2.81)

where, for simplicity, we have reduced Eq. (2.74) to the case of one spatial dimen-
sion x and consider the evolution of only one component of the state vector U de-
noted by U on a equidistant Cartesian grid. Furthermore, Ui and Si represent U and
S evaluated at the grid point xi , while the expression D

(
F̂
)

:=
(
F̂i+1/2 − F̂i−1/2

)
/h de-

notes a non-oscillatory approximation of (∂xF)i , which is the flux derivative at xi , with
h := xi+1/2 − xi−1/2. In Equation (2.81) the spatial discretization has been already per-
formed leading to the appearance of the numerical fluxes F̂i±1/2. The whole equation
can now be considered to be discretized in space but still continuous in time which
means that the system of PDEs in Eq. (2.74) was cast into a system of ODEs. This also
means that time integration methods typically used for the solution of ODEs can also
be employed for the solution of Eq. (2.81). In this Thesis, we predominantly make use
of the third-order Runge-Kutta method referred to as optimal TVD third-order method
in [288]. Additionally, to avoid unstable behaviour the Courant-Friedrichs-Lewy (CFL)
condition needs to be fulfilled:

∆t = CCFL
h

λmax
, (2.82)

with ∆t being the timestep, CCFL < 1, and λmax being the maximum of the absolute
values of all characteristic velocities.

Next, we focus on the construction of the numerical fluxes F̂i±1/2. Following [87,
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249, 261] we can introduce an auxiliary function H defined by the expression

Fi =
1
h

∫ xi+1/2

xi−1/2

H (ξ)dξ , (2.83)

which means that the average of H equals to the point value of the flux F at xi . Hence,
we obtain the pointwise derivative of the flux by

(∂xF)i =
Hi+1/2 −Hi−1/2

h
=D (H) . (2.84)

By comparing Eq. (2.84) with Eq. (2.81) we find that the numerical flux is a discrete
approximation of the auxiliary function at the borders of the grid cells

F̂i±1/2 =Hi±1/2 +O (hq) , (2.85)

where q is the formal convergence order of our spatial discretization scheme.
Now, how to find an explicit expression for H? Fortunately, we only need an ex-

pression for F̂ which is an approximation to H to a given order q. Substituting the
numerical flux given in Eq. (2.85) into Eq. (2.83) we find that cell averages of the nu-
merical flux F̂ can be approximated by cell-centered values of the original flux F

1
h

∫ xi+1/2

xi−1/2

F̂ (ξ)dξ = Fi +O (hq) . (2.86)

Finally, we are left to calculate the point values F̂i±1/2 from its cell averages given in
Eq. (2.86) up to an error on the order of hq. This can be achieved by using a Taylor
expansion of cell averages in terms of cell-centered point values and a subsequent in-
version of the obtained expression. Following [87, 88, 89] the fourth-order formula is
given by

F̂i+1/2 = Fi+1/2 −
1

24
∆(2) (Fi+1/2) +O

(
h4

)
, (2.87)

where we introduced the operation

∆(2) (Fi) = Fi−1 − 2Fi +Fi+1 . (2.88)

Note that we set out to calculate the point values of F̂ from its cell averages, but we used
Eq. (2.86) in Eq. (2.87) to directly replace all cell averages of the numerical flux F̂ by
point values of the original flux F. We have now obtained an high-order approximation
of the derivative of the original flux (∂xF)i expressed through a numerical flux F̂ which
is evaluated at the boundary of the cell and calculated from point values of the original
flux.

As already mentioned further above, discontinuous solutions can develop naturally
in the system of Eqs. (2.74) - (2.77) even for the case of smooth initial data. This means
that particular care needs to be taken in order to obtain numerical solutions which
converge to the true solution if the resolution is increased. This requirement leads us to
the class of high-resolution shock-capturing (HRSC) methods which can be employed
in order to get faithful solutions, see [304] for an overview. In essence, HRSC methods
guarantee the upwind property of the scheme which takes into account information
about the characteristic structure of the problem [261].

The original idea goes back to Godunov [133] who had the remarkable insight that
on a discrete grid, where the solution is approximated as a constant function in each
cell, a local Riemann problem arises at interfaces of neighbouring cells. Hence, the
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characteristic structure of the problem can be taken into account by solving these lo-
cal Riemann problems and calculating the interface fluxes Fi±1/2, which are used in
Eq. (2.87), based on these solutions. Even though an exact solution to the Riemann
problem in perfect-fluid hydrodynamics exists, see e.g., [261], high computational costs
arise when computing this solution for each interface in a multidimensional code be-
cause it cannot be given in a closed analytic form. Therefore, approximate solutions
have been developed which are numerically cheap to evaluate but nevertheless yield
accurate results.

Here, we introduce the Harten-Lax-Van Leer-Einfeldt (HLLE) solver [143, 109] which
assumes that only two waves develop from an initial discontinuous state giving rise to
a Riemann fan which consists only of three states. Assuming the two waves propagate
with velocities λL and λR, the approximate solution to the Riemann problem takes the
form [261]

U (t,x) =


UL if x/t < λL ,

UHLLE if λL < x/t < λR ,
UR if x/t > λR ,

(2.89)

where UL (UR) is the state at the cell interface calculated from an interpolation based
on a left-biased (right-biased) stencil. For example, assuming a representation of the
solution using constant functions in each cell, the states UL and UR at the interface
xi+1/2 are given by Ui and Ui+1, respectively. The wave velocities are given by

λL = min(0,λ− (UL) ,λ− (UR)) , (2.90)

λR = max(0,λ+ (UL) ,λ+ (UR)) , (2.91)

where λ− (λ+) is lowest (highest) characteristic velocity. The middle state UHLLE is
given by

UHLLE =
λRUR −λLUL +FL −FR

λR −λL
, (2.92)

where we have introduced the fluxes FL := F(UL) and FR := F(UR). Finally, the applica-
tion of the Rankine-Hugoniot conditions [261] gives rise to the following flux formula

FHLLE =


FL if x/t < λL ,
F∗ if λL < x/t < λR ,
FR if x/t > λR ,

(2.93)

with

F∗ :=
λRFL −λLFR +λRλL (UR −UL)

λR −λL
. (2.94)

In this Thesis we employ a discretization which guarantees the upwind property of
Eq. (2.81) by employing the approximate HLLE Riemann solver presented in Eq. (2.93)
to calculate the original interface fluxes in Eq. (2.87).

Finally, the last piece missing in the HRSC scheme is the calculation of UL and UR
at each interface given the set of cell-centered states Ui . Here, we employ the WENO-
Z method [52] by using the proposed coeffcients and stencils from [89]. Note that
as opposed to the common reconstruction of point values from cell averages in finite-
volume schemes, in this case point values at cell interfaces are reconstructed from point
values at cell centers [87].

In this Thesis we make use of the fourth-order finite-difference HRSC GRMHD
code FIL [195] which employs the Eulerian conservative high-order (ECHO) scheme
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[89] whose methods we introduced in this subsection. In the following, we briefly
summarize the solution procedure of FIL in the correct order for a single perfect-fluid
on an one-dimensional Cartesian grid:

C2P Given the set of cell-centered conservative variables C at time t compute the
corresponding primitive variables P at cell centers.

REC Reconstruct the primitive variables at the left and right cell interfaces using
the WENO-Z method. These are two non-oscillatory interpolations from cell-
centered primitives P to primitives at cell interfaces P L/R.

HLLE Compute the HLLE flux FHLLE in Eq. (2.93) from the left and right primitive
variables defined at cell interfaces P L/R.

DER Compute the numerical flux F̂ used in Eq. (2.81) by using the fourth-order for-
mula in Eq. (2.87) and replacing the original interface flux with the correspond-
ing HLLE flux FHLLE.

RK3 Evolve Eq. (2.81) to the time t + ∆t using the third-order Runge-Kutta method
mentioned previously.

2.4 General-relativistic dissipative hydrodynamics

In this section we will introduce non-perfect fluids and the broader subject of general-
relativistic dissipative hydrodynamics (GRDHD). In simplified terms, the aim of this
subject is the faithful inclusion of dissipative effects such as viscous dissipation and
heat conduction in the relativistic continuum equations presented in Section 2.3. Typ-
ically, these dissipative effects stem from microphysical processes which together with
gradients in the macroscopic fluid variables lead to deviations from local thermody-
namic equilibrium. As an example, we discuss the appearance of a microphysical bulk
viscosity due to violations of chemical equilibrium in Subsection 4.1.2.

Apart from that, it is also interesting to mention that dissipative effects may arise
from a very different source. Due to the limitations in computational power NR simula-
tions can only be performed with finite resolutions which are typically above the scale
at which turbulence is physically quenched off. Mathematically, this corresponds to an
implicit filtering operation which neglects the contributions from unresolved scales to
the resolved ones [68, 69]. These contributions from unresolved scales are similar to
dissipative terms and arise when the filtering operation is applied to nonlinear terms
in the original set of equations. Different approaches exist to model such subgrid-scale
contributions in NR simulations. Noteworthy examples include the purely hydrody-
namical general-relativistic large-eddy simulations (LESs) presented in [244, 246, 254,
251] which aim to model the magneto-turbulent fluid state encountered after merger,
the previously mentioned LES from [310, 6] which focus on magnetic-field amplifica-
tion and the again purely hydrodynamical schemes shown in [103, 286, 115, 122, 105]
which target among other effects angular-momentum transport and mass ejection on
long timescales.

Furthermore, although applications of GRDHD in NR simulations have a only started
in the past few years, this is not the case for the modeling of heavy-ion collisions (HICs).
Specifically, the special-relativistic evolution of the quark-gluon plasma (QGP), which
is the hot and dense strongly interacting matter created in HICs, is described by rel-
ativistic dissipative hydrodynamics. Therefore, a large amount of literature on this
subject already exists, see e.g., [267, 60, 186] for some reviews. It is noteworthy that
simulations of the relativistic dissipative hydrodynamics of HICs allow us to extract
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2.4 General-relativistic dissipative hydrodynamics

the magnitudes of bulk and shear viscosity from the experimental data [39] giving rise
to the conclusion that the QGP behaves like a near-perfect fluid.

2.4.1 A brief overview

In this subsection we give a brief overview over the different formulations of GRDHD
that have been proposed over the years. We start by the general distinction of first-
order and second-order theories. In simplified terms, the class of first-order theories
can be viewed as formulations which generalize the non-relativistic Navier-Stokes (NS)
equations, in which the dissipative quantities are proportional to first-order gradients
of the perfect-fluid hydrodynamic variables, such as e.g., pressure, rest-mass density
and fluid velocity [108, 174]. While this approach has the advantage of recovering the
correct non-relativistic limit, it was shown that a large class of these first-order theories
is plagued by instabilities and acausal behaviour because of the partially parabolic
nature of the equations [148, 150, 91].

In order to counter this drawback, the class of second-order theories was devel-
oped which is characterised by the inclusion of terms which are of second-order in
the deviations from perfect-fluid hydrodynamics. As mentioned above, for first-order
theories these deviations take the form of first-order gradients of the perfect-fluid vari-
ables. Therefore, the newly included second-order terms can be second-order gra-
dients of the perfect-fluid variables or expressions which are quadratic in first-order
gradients. Additionally, it is possible to promote the dissipative currents such as the
bulk-viscous pressure, the heat current or the shear-stress tensor to independent fluid
variables of first-order in the deviations from perfect-fluid hydrodynamics. Then, the
second-order terms may also include first-order gradients of the dissipative currents or
terms quadratic in the dissipative currents. The idea to promote dissipative currents
to independent fluid variables goes back to the formulations proposed by [204, 157,
158] such that these formulations are often referred to as Müller-Israel-Stewart (MIS)
theories.

There are multiple ways to formulate second-order theories and in this overview
we will focus on three specific examples. The first approach to second-order theories
makes use of the entropy current by extending its definition. The logic is that all terms
of second-order or less in dissipative currents, which are allowed by symmetry, should
be added to the entropy current. Then, the second-law of thermodynamics naturally
leads to hyperbolic relaxation-type equations for the dissipative currents [149, 206,
160]. The second approach, instead, starts directly from the definitions of the dissipa-
tive currents. Similar to the first approach, the idea is to add all terms of second-order
or less in gradients of the perfect-fluid variables, which are allowed by symmetry, to
the definitions of the dissipative currents [22]. Finally, the third approach derives the
equations of second-order relativistic dissipative hydrodynamics from kinetic theory.
By applying the method of moments to the Boltzmann equation [158, 45, 92, 93, 159]
it is possible to derive an infinite system of coupled EOM for the moments of the devi-
ation of the full distribution function from its equilibrium form mentioned before. In
particular, a systematic power-counting scheme was proposed in [93] which rigorously
makes use of the Knudsen number in Eq. (2.68) and defines the relativistic Reynolds
number. This allows for a systematic truncation at an arbitrary order [94].

We conclude this overview by commenting a very exciting and recent development
regarding first-order theories. It was shown by the works of [37] and [173], but see
also [308, 99, 152, 293], that the acausal behaviour of first-order theories can be re-
moved by changing the so-called “hydrodynamic frame”. In practice, the definition of
the hydrodynamic frame is equivalent to the definitions of the perfect-fluid variables,
i.e., the pressure, rest-mass density and fluid velocity, when the fluid is in an out-of-

25



2 Theoretical and numerical foundations

equilibrium state. In equilibrium these quantities admit a unique definition but out of
equilibrium ambiguity arises which makes it possible to choose a frame which leads to
PDEs with the most desirable properties. This class of first-order theories is referred
to as Bemfica-Disconzi-Noronha-Kovtun (BDNK) theory and first numerical investiga-
tions paint a promising picture [224, 223, 222, 25] regarding their applicability.

2.4.2 GRDHD via the entropy current

In this subsection, we will give a brief introduction to the equations of GRDHD which
can be derived from the entropy current. Our fundamental assumption is that the rest-
mass density current Jµ and the energy-momentum tensor T µν continue to give a valid
description of the fluid even if its state is out of thermodynamic equilibrium. Hence,
the conservation equations, i.e., Eqs. (2.72) and (2.73), continue to hold. We make the
separation between perfect-fluid variables and dissipative currents which constitute
the perfect and non-perfect (dissipative) parts of the conserved currents, respectively,

T µν = T
µν
pf + T

µν
npf , (2.95)

Jµ = J
µ
pf + J

µ
npf , (2.96)

where T
µν
pf is given in Eq. (2.69) and J

µ
pf is given in Eq. (2.70). Additionally, as in perfect-

fluid hydrodynamics, the system is complemented by an EOS of the form in Eq. (2.71).
The non-perfect terms T

µν
npf and J

µ
npf can be written in their most general form assuming

the “Eckart frame” (this means we explicitly choose an hydrodynamic frame) [108, 71]

T
µν
npf = Πhµν + 2q(µuν) +πµν , (2.97)

J
µ
npf = 0 , (2.98)

where Π is the bulk-viscous pressure, qµ is the heat current, which is orthogonal to the
fluid four-velocity, i.e., qµuµ = 0, and finally, πµν is the shear-stress tensor and has the
following properties: It is symmetric πµν = πνµ, purely spatial πµνuµ = 0, and trace-
free πµµ = 0. Furthermore, we make use of the definition b〈µ〉 := h

µ
νbν as the projection

of the contravariant components of an arbitrary vector bν in the direction orthogonal
to u, and b〈µν〉 := (hα

(µhν)
β − 1

3h
µνhαβ)bαβ as the symmetric and trace-free projection of

an arbitrary rank-2 tensor bµν in the direction orthogonal to u.

If we count the number of independent variables we arrive at 14, but currently
we have specified only five evolution equations (Eqs. (2.72), (2.73) and (2.71)) which
means that nine additional evolution equations are required to close the system. These
equations determine the evolution of the dissipative currents Π, qµ and πµν . By follow-
ing [157, 149], we can write down the most general entropy current which is quadratic
in the dissipative currents

Sµ = suµ +
qµ

T
−
(
β0Π

2 + β1qαq
α + β2παβπ

αβ
) uµ

2T
+α0

Πqµ

T
+α1

qαπ
αµ

T
, (2.99)

where the physical meaning of the coefficients α0,α1,β0,β1,β2 will become clear below,
T is the temperature and s is the entropy density. From the second law of thermody-
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namics, ∇µSµ ≥ 0, the following set of constitutive equations is obtained

τ
Π
Π̇ = Π

NS
−Π− 1

2
ζΠT∇µ

(
τ
Π
uµ

ζT

)
+α0ζ∇µqµ +γ0ζT q

µ∇µ
(α0

T

)
, (2.100)

τqq̇
〈µ〉 = q µ

NS
− qµ − 1

2
κT 2qµ∇ν

(
τqu

ν

κT 2

)
+κT

[
α0∇〈µ〉Π+α1∇νπν〈µ〉

+ (1−γ0)ΠT∇〈µ〉
(α0

T

)
+ (1−γ1)Tπµν∇ν

(α1

T

)]
, (2.101)

τππ̇
〈µν〉 = π µν

NS
−πµν − 1

2
ηTπµν∇λ

(
τπu

λ

ηT

)
+ 2α1η∇〈µqν〉 + 2γ1ηT q

〈µ∇ν〉
(α1

T

)
, (2.102)

where we have introduced two new coefficients, γ0 and γ1, which come frome the
ambiguity when working out the terms which involve the products Πqµ and qαπ

αµ.
We have also introduced the so-called “comoving derivative” Ȧ := (u · ∇)A = uµ∇µA,
where A can be an arbitrary tensor field. Such a comoving derivative usually occurs
together with a so-called “relaxation time” for the corresponding dissipative current,
which are defined as

τ
Π

:= β0ζ , τq := β1κT , τπ := 2β2η , (2.103)

where ζ is the bulk viscosity, κ the heat conductivity, η the shear viscosity. The coeffi-
cients introduced in Eq. (2.103) are always positive or zero and set the timescales over
which non-equilibrium effects push the equations of GRDHD towards the relativistic
NS solution.

The acausal and unstable NS extension of GRDHD leads to the following expres-
sions [108, 174]

Π
NS

= −ζΘ , (2.104)

q µ
NS

= −κT
(
∇〈µ〉 lnT + aµ

)
, (2.105)

π µν
NS

= −2ησµν , (2.106)

which denote the NS values or quantities. The expressions Θ, aµ and σµν denote the
fluid expansion, the kinematic fluid four-acceleration and the fluid shear tensor, re-
spectively. References and their definitions can be found in Appendix B.

Furthermore, if the entropy current contains only first-order dissipative currents,
i.e., β0 = β1 = β2 = α0 = α1 = 0, then [261]:

Π = Π
NS
, (2.107)

qµ = q µ
NS

, (2.108)

πµν = π µν
NS

. (2.109)

We close this subsection by introducing the definitions of the relativistic inverse
Reynolds numbers based on the convention of [93]

R−1
Π

:=
Π

p+ e
, R−1

q :=

√
qµqµ

p+ e
, R−1

π :=

√
πµνπµν

p+ e
. (2.110)

From Eq. (2.110) it becomes clear that the Reynolds number measures the relative im-
portance of inertial forces compared to viscous or dissipative forces. Furthermore, we
can now make a precise definition of first-order O1 and second-order O2 terms:

O1 := O
(
R−1
i

)
or O (Kn) , (2.111)

O2 := O
(
R−2
i

)
or O

(
R−1
i Kn

)
or O

(
Kn2

)
. (2.112)

27



2 Theoretical and numerical foundations

First-order gradients of perfect-fluid variables, such as Θ or ė/e are typically viewed
as being of order O (Kn) because they involve gradients of macroscopic variables. This
means that they are formally of order 1/Lwhere L is the same macroscopic length scale
used in the definition of the Knudsen number in Eq. (2.68). Thus, multiplying these
terms by a microscopic length scale ` would make them formally be of first-order in
Knudsen number.

For the remainder of this Thesis we will only need a truncated version of the evo-
lution equation for the bulk-viscous pressure Π because we neglect heat currents and
viscous shear stresses, i.e., we set qµ = 0 = πµν . Thus, Equations (2.100) and (2.110) can
be simplified to

τ
Π
Π̇ = Π

NS
−Π , (2.113)

R−1 : =R−1
Π

=
Π

e+ p
. (2.114)

Then, the conservation Eqs. (2.72) and (2.73) applied to the current in Eq. (2.96)
and the total energy-momentum tensor for a pure bulk-viscous fluid, i.e., we apply
qµ = 0 = πµν in Eq. (2.95), lead to the following new definitions of the state, flux and
source vector, respectively:

U =
√
γ



D

Sj

E −D

DΠ


=
√
γ



ρW

(e+ p+Π)W 2vj

(e+ p+Π)W 2 − p −Π− ρW

ρWΠ


, (2.115)

F i =
√
γ



V iD

αS i j − βiSj

α(S i − viD)− βi(E −D)

V iDΠ


, (2.116)

S =
√
γ



0

1
2αS

ik∂jγik + Si∂jβi −E∂jα

αS ikKij − Sj∂jα

−
(
αD/τ

Π
W

)
[ζ (ϑ +Λ−KW ) +Π]


, (2.117)

where we used the expressions

Θ = ϑ +Λ−KW , (2.118)

ϑ :=Di
(
Wvi

)
=
∂i

(√
γWvi

)
√
γ

, (2.119)

Λ :=
1
α

(
∂t −Lβ

)
W +Wvi â

i , (2.120)
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to decompose the source terms of Eq. (2.113) such that the appearance of temporal
and spatial derivatives becomes evident, see also [71] for a systematic derivation of the
3+1 split of the equations of GRDHD. Additionally, we remark that for the general
case, where heat fluxes and viscous shear stresses are not set to zero, the more complex
definitions for the conservative variables C, see [71], require a more complex inversion
procedure, see e.g., [297, 90, 286, 102, 105].

Finally, we define the square of the sound speed including modifications from bulk
viscosity [36, 71, 62] as

c′s
2 =

ζ
τ
Π

1
e+ p+Π

+
(
∂p

∂e

)
ρ

+
1

e+ p+Π

(
∂p

∂ρ

)
e

, (2.121)

which becomes the standard expression for the perfect-fluid speed of sound in the
inviscid limit lim

Π,ζ→0
c′s

2 = cs2, see Eq. (2.80).

2.4.3 Numerical methods for GRDHD

In this subsection we will introduce the numerical methods typically used for the so-
lution of second-order MIS-type GRDHD. An example for such a theory modeling a
pure bulk-viscous fluid is given in Eqs. (2.115)-(2.117). This set of equations serves as
a good example because the methods necessary for the solution of Eqs. (2.115)-(2.117)
can also be applied with minor non-conceptual modifications in order to solve more
extended sets of second-order MIS-type GRDHD equations.

Most importantly, as can be seen from Eqs. (2.115)-(2.117) the newly included evo-
lution equations for the dissipative currents have an advective term, which is repre-
sented by the definition of the corresponding flux component in Eq. (2.116), and a
corresponding source term in Eq. (2.117). So far, this structure corresponds to the
structure of the equations of perfect-fluid hydrodynamics presented in Section 2.3.
However, a major difference appears when inspecting the source term of the evolution
equation for the bulk-viscous pressure Π more closely. Namely, temporal and spatial
derivatives of the primitive fluid variables, more specifically the fluid four-velocity uµ,
are present. As can be seen from the first three components of Eq. (2.117), the evolu-
tion equations stemming from the conservation of charge, energy and momentum have
only derivatives of the metric in their source terms.

Usually, the occurance of time derivatives on the RHS of Eq. (2.74) can be avoided
by writing the system of PDEs in the form

Aµ∂µΦ = S , (2.122)

where Aµ, Φ and S are vectors and Φ (S ) represents a state (source) vector. For
example, the system in Eqs. (2.115)-(2.117) can be written in such a form with Aµ

being symmetric, A0 being positive definite and Φ = (ρ,e,ui ,Π) [36]. However, as
discussed in Section 2.3 the system in Eq. (2.122) is not in a flux-conservative form
and therefore not suitable to obtain discontinuous solutions in the perfect-fluid limit.
Hence, many authors choose to solve the system in Eqs. (2.115)-(2.117) instead and
discretize the time derivative in the source term using backward finite-differencing
[103, 194, 193, 297, 275, 90, 286, 281, 102, 105].

In addition, the spatial derivatives in the source term of Eq. (2.117) constitute a so-
called non-conservative product whose discretization is the subject of path-conservative
numerical schemes [228, 107]. However, the most common approach in the modeling
of the QGP and dissipative effects in neutron stars makes use of simple finite-difference
operators similar to the discretization of the time deriative [103, 194, 193, 297, 275, 90,
286, 281, 102, 105]. We note that recently a fully flux-conservative method based on
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stiff-relaxation has been developed which shows promising results in the modeling of
shocks. However, its characteristic structure has not been investigated so far [197]
which makes it unclear whether causality and stability are guaranteed.

The appearance of derivatives in the sources leads us to the more fundamental is-
sue of how to model large gradients, and specifically shocks, in GRDHD. In principle,
the inability of Eqs. (2.122) to model discontinuities does not constitute a conceptual
problem because large gradients of hydrodynamic fields, i.e., large changes over small
length scales compared to the system size, imply that the Knudsen number is large.
Going back to the overview presented in Subsection 2.4.1 the theory of hydrodynamics
can be understood as an effective theory in the long-wavelength, low-frequency limit
of an underlying microscopic theory quantified by the two small parameters: Knud-
sen number and relativistic inverse Reynolds number. It follows that this underlying
assumption is violated, if gradients become too large and especially if a discontinu-
ity develops. This means that, strictly speaking, hydrodynamics is not applicable to
describe the behaviour of matter when passing through a strong shock, and as a con-
sequence the system in Eq. (2.122) or equally (2.115)-(2.117) should not be solved in
these regions. On the other hand, in practice, it is not feasible to solve the full Boltz-
mann equation neither in the full domain nor in localized regions, which means that
hydrodynamics is used to describe the solution at shock fronts.

Then, the question arises whether the equations of GRDHD, e.g., Eqs. (2.115)-
(2.117), can develop discontinuities starting from smooth initial data such as the equa-
tions of perfect-fluid hydrodynamics do. Obviously, this is the case in the limit of van-
ishing viscosities, i.e., ζ → 0,η → 0,κ → 0, and as a consequence numerical schemes
solving Eq. (2.122) will fail to provide convergent solutions in this limit. This means
that a flux-conservative form, see Eq. (2.74), must be employed to capture the perfect-
fluid limit of GRDHD correctly.

Furthermore, investigations of the equations of GRDHD with non-zero transport
coefficients, i.e., ζ , 0,η , 0,κ , 0, show that above a maximum upstream Mach num-
ber the solutions of the MIS theory become multiple-valued because the characteristic
velocity is exceeded [215]. Effectively, this result shows that continuous shock solu-
tions exist only for low upstream Mach numbers in the MIS theory. On top of that, a
recent work shows that the system in Eqs. (2.115)-(2.117) can develop non-smooth or
“unphysical” solutions in a finite time, see [98] for a precise definition of “unphysical”,
starting from smooth initial data [98]. Again, as a consequence of these two results
numerical schemes solving Eqs. (2.122) will fail to provide convergent solutions for
strong shocks which can develop naturally.

However, it is important to note that the construction of a weak solution in the sense
discussed in Section 2.3 is usually not possible for the MIS theory [215, 128, 98] which
constitutes a serious practical problem. Effectively, this means that strong shocks can
form in GRDHD but, in contrast to the hydrodynamics of perfect fluids, it is unclear
how the evolution of the dissipative fluid can be continued beyond shock formation.
This also means that well-informed numerical schemes can’t be constructed in order to
capture these shocks.

For the sake of completeness, we will mention two ideas that could inspire the con-
struction of numerical schemes which circumvent this problem. First, the same prob-
lem occurs in the modeling of Newtonian gas flow based on moment equations [305].
There, a regularization scheme is applied which effectively adds higher-order gradient
terms that transform the nature of the PDEs from hyperbolic to parabolic [292, 305,
256]. The new parabolic nature of the PDEs implies that information can propagate
at an infinite speed which means that the characteristic velocity cannot be exceeded.
Hence, discontinuities cannot form and the system admits arbitrary strong continu-
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ous shock solutions. In a relativistic context, as already discussed in Subsection 2.4.1,
parabolic equations violate causality which implies thermodynamic instability [126].
Thus, this approach is unfavourable. The second approach takes also advantage of the
insight that modifications of the charactersitic velocities could lead to a system which
avoids the formation of discontinuities. More specifically, it was shown that for the case
of the BDNK theory, see 2.4.1 for references, a suitable choice of free parameters exists
which increases one of the characterstic speeds to the speed of light such that, again,
all shocks become continuous [118, 224, 119].

Finally, we mention briefly that small relaxation times in the general system pre-
sented in Eqs. (2.100)-(2.102) lead to so-called stiff equations which require an implicit
or mixed implicit-explicit (IMEX) time update [229]. These methods are commonly
employed in resistive MHD [218, 97, 265, 85] and radiation hydrodynamics [314, 197,
253]. In the context of GRDHD, IMEX methods have been employed [105, 197, 63] but
also the Strang splitting method [85] together with piecewise exact solutions [297] has
been used.

2.5 General-relativistic ideal magnetohydrodynamics

In this section we will give a brief introduction to the equations of ideal general-
relativistic magnetohydrodynamics (GRMHD) which describe fluids with an infinite
conductivity and immersed in coevolving magnetic fields by following [26, 89, 111,
279, 240, 195]. We start by recalling the two Maxwell’s equations

∇µFµν = −4πJ ν , (2.123)

∇µ∗Fµν = 0 , (2.124)

where Fµν is the Faraday tensor and ∗Fµν denotes its dual. The quantity J µ = ρenµ + Jµ

describes the EM current four-vector [26] where ρe and Jµ are the charge density and
current. The Faraday tensor can be written in two equivalent forms

Fµν = ∇µAν −∇νAµ , (2.125)

= nµEν −nνEµ + εµνλδBλnδ , (2.126)

whereAµ = Φnµ+Aµ is the magnetic four-vector potential with Aµ being purely spatial
and Φ the EM scalar potential measured in the Eulerian frame [111]. The fields Eµ and
Bµ denote the electric and magnetic fields, respectively, as measured by the Eulerian
observer given by nµ and are purely spatial nµEµ = nµBµ = 0 [279]. The tensor εµνλδ is
the fully-antisymmetric Livi-Civita tensor defined in Eq. (1.4). Equations (2.125) and
(2.126) can be combined to yield

Bi =
1
√
γ
ηijk∂jAk , (2.127)

where ηijk denotes the standard three-dimensional Levi-Civita symbol [26, 111]. Ad-
ditionally and following [279], the dual Faraday tensor can be written as

∗Fµν :=
1
2
εµνλδFλδ , (2.128)

= −
(
nµBν −nνBµ + εµνλδEλnδ

)
. (2.129)

Analogously, we can also define the electric and magnetic fields in the fluid frame

eµ := Fµνuν , (2.130)

bµ := uµ
∗Fµν , (2.131)
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respectively. In the ideal MHD approximation electric fields vanish in the fluid frame

eµ = 0 , (2.132)

which leads together with Eqs. (2.123) and (2.124) to an overdetermined system such
that it is sufficient to consider only the homogeneous Maxwell’s equations given by
Eq. (2.124), e.g., the electric field in the Eulerian frame Eµ can be expressed through
velocities and magnetic fields and does not need to be evolved [279]

Ei = − 1
√
γ
ηijkvjBk . (2.133)

It is also useful to recall the relations transforming Eulerian magnetic fields to comov-
ing magnetic fields and vice versa [279, 240]

b0 =
W
α
viB

i , (2.134)

bi =
1
W
Bi +

α
W
b0ui . (2.135)

Furthermore, we can also rewrite the Faraday tensor and its dual in terms of eµ and bµ

and subsequently set eµ = 0

Fµν = εµνλδbλuδ , (2.136)
∗Fµν = bµuν − bνuµ . (2.137)

At this point, equations (2.124) and (2.137) allow us derive an evolution equation
for the EM energy density in the fluid frame in the ideal MHD approximation. In par-
ticular, it interesting to consider the sources and sinks of EM energy in order to under-
stand the mechanisms by which energy can be transferred between the EM and the ki-
netic sector. An application to local Newtonian simulations of the magnetised Kelvin-
Helmholtz instability (KHI) can be found in [213] while an application to the magne-
tised KHI in global simulations of BNS mergers can be found in [74]. The derivation
is simple and can be carried out by calculating the projections 0 = uν∇µ (bµuν − bνuµ)
and 0 = hλν∇µ (bµuν − bνuµ). The final result reads

∇µ
(
emagu

µ
)

=
1

4π
bµbνσµν −

1
3
Θemag , (2.138)

where we have introduced the definition:

emag := pmag := b2/8π = bµb
µ/8π. (2.139)

The quantity emag is the comoving EM energy density, pmag is the comoving EM pres-
sure and Θ as well as σµν are defined in Appendix B. From Eq. (2.138) we see that local
increases and decreases of EM energy density can only be due to two processes which
are highly connected to the flow properties of the fluid. More specifically, only if shear-
ing motion or expansion/compression is present in the fluid, the EM energy density
can be affected and energy transfer is possible. For convenience we will introduce a
separate definition for the RHS of Eq. (2.138):

smag :=
1

4π
bµbνσµν −

1
3
Θemag . (2.140)
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The EM component of the energy-momentum tensor in the ideal MHD approximation
reads

T
µν
em :=

1
4π

(
FµλFνλ −

1
4
gµνFλδF

λδ
)
, (2.141)

= emagu
µuν + pmagh

µν − 1
4π
bµbν . (2.142)

The magnetic pressure can also be expressed in terms of the Eulerian magnetic field Bi

pmag =
1

8π

(
B2/W 2 + (viB

i)2
)
. (2.143)

Next, we will rewrite the homogeneous Maxwell’s equations (2.124) in order to
obtain PDEs for the evolution of the magnetic fields. Following [26] and using Eqs.
(2.125) and (2.126) together with Eq. (2.124) it is possible to derive the following equa-
tions:

∂i
(√
γBi

)
= 0 , (2.144)

∂tAi =
√
γ ηijkV

jBk −∂i
(
αΦ − βjAj

)
, (2.145)

∂t
(√
γBi

)
= −∂j

[√
γ
(
V jBi −V iBj

)]
. (2.146)

Note that Eqs. (2.145) and (2.146) do not depend on Ei as the ideal MHD approx-
imation has already been applied in the derivation. Equation (2.144) expresses the
divergence-free or "no-monopoles" constraint on the magnetic fields. The subsequent
equations (2.145) and (2.146) are different versions of the magnetic induction equation
expressed either using the vector potential or the magnetic field directly, respectively.
If the evolution equation for the vector potential (2.145) is chosen, a suitable EM gauge
condition needs to be supplemented which yields a constitutive relation for the scalar
potential Φ . A suitable relation is provided by the “generalized Lorenz gauge condi-
tion” [110, 114]

∇µA = ξnµAµ , (2.147)

which prevents spurious magnetic fields from appearing on refinement boundaries.
The constant parameter ξ has dimensions 1/Length and controls the damping time of
EM gauge modes. This gauge condition yields an evolution equation for Φ :

∂t
(√
γΦ

)
= −∂j

(
α
√
γAj −√γβjΦ

)
− ξα√γΦ . (2.148)

In this Thesis we will use Eqs. (2.145) and (2.148) supplemented with Eq. (2.127) in
order to obtain the evolution of the magnetic fields. We will explain the reasons for
our choice in the following subsection.

Finally, we need to consider that the system contains a single perfect fluid as well
as EM fields which means that the total energy-momentum tensor takes the form

T µν = T
µν
pf + T

µν
em ,

= (e+ emag)uµuν + (p+ pmag)hµν − 1
4π
bµbν . (2.149)

Then, the conservation Eqs. (2.72) and (2.73) applied to the current in Eq. (2.70) and the
total energy-momentum tensor for ideal magnetohydrodynamics in Eq. (2.149) lead to
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the following new definitions of the state, flux and source vector, respectively:

U =



√
γD

√
γSj

√
γτ

Aj

√
γΦ


=



√
γρW

√
γ
[
(e+ p)W 2vj +B2vj − (viBi)Bj

]
√
γ
{
(e+ p)W 2 − p+ 1

2

[
B2(1 + v2)− (viBi)2

]
− ρW

}
Aj

√
γΦ


, (2.150)

F i =



√
γV iD

√
γ
(
αS i j − βiSj

)
√
γ
[
α(S i − viD)− βi(E −D)

]
0

√
γ
(
αAi −Φβi

)


, (2.151)

S =



0

√
γ
(

1
2αS

ik∂jγik + Si∂jβi −E∂jα
)

√
γ
(
αS ikKij − Sj∂jα

)
√
γηjikV

iBk −∂j
(
αΦ −Aiβi

)
−√γξαΦ


. (2.152)

Note that we have included the evolution Eqs. (2.145) and (2.148) in the definitions
(2.150) - (2.152) in order to present the complete set equations employed in this The-
sis. However, we remark that due to the staggering of the EM fields, see Subsection
2.5.1, their discretization procedure differs from the discretization of the fluid compo-
nents of the state vector, i.e., C, see Eq. (2.78) and [111] for further details. Addition-
ally, the more complex definitions for the conservative variables C, which follow from
Eq. (2.150), require a significantly more complex inversion procedure, see e.g., [219,
290, 195, 164].

2.5.1 Numerical methods for GRMHD

We start by discussing the advantages and disadvantages of using Eq. (2.145) or (2.146)
for the solution of Maxwell’s equations, thereby giving a brief overview of the numer-
ical methods commonly employed in GRMHD. The choice between Eqs. (2.145) and
(2.146) is mainly made by judging which set of equations is best suited to fulfill the
constraint presented in Eq. (2.144). Starting from the induction equation for the mag-
netic fields (2.146), a naive free evolution would violate the divergence-free constraint.
A customary approach from Newtonian MHD [86] adopts a constraint damping tech-
nique similar to the damped-Z4 formulation for Einstein’s equations introduced in
Subsection 2.1.4, see also [240] for implementation details. This leads to propagat-
ing and damped constraint violations. However, the solenoidal condition can also be
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2.5 General-relativistic ideal magnetohydrodynamics

maintained to machine precision by making use of constrained transport (CT) meth-
ods. If the initial condition for the magnetic fields is divergence-free, then CT methods
employ specific discretization techniques of Eq. (2.146) in order preserve Eq. (2.144).
In general, this discretization technique amounts to the definition of so-called stag-
gered magnetic fields, i.e., magnetic fields defined at cell interfaces. Examples for CT
methods are the flux-interpolated CT method presented in [306] and the upwind CT
method developed in [180] and [89]. However, both of these methods fail to work if
adaptive mesh refinement (AMR) is used without special care because the interpolation
methods which translate data between different refinement levels, i.e., prolongation
and restriction operators, need to be constraint-preserving as well [214]. Constraint-
preserving prolongation and restriction operators can be derived for staggered mag-
netic fields and have been applied successfully to simulations of accretion disks [214].
On the other hand, the use of the vector potential (2.145) allows a simpler approach
to maintaining the solenoidal constraint even with AMR. By using Eq. (2.127) together
with finite-difference operators which are defined such that the divergence of a curl
is zero to machine precision, Eq. (2.144) is fulfilled automatically even when using
AMR without constraint-preserving interpolation methods [88, 111]. Unfortunately,
this method is subject to the generation of spurious magnetic fields. However, suitable
gauge conditions such as the one shown in Eq. (2.148) are able to minimize this effect.

Simulations in this Thesis which involve magnetic fields, i.e., Bi , 0, solve Eq. (2.145).
Therefore, we will now focus on the discretization methods for Eq. (2.145) and (2.148).
Similar to Eq. (2.81), Equation (2.145) can be written in the following semi-discrete
form [88, 89]

d
dt
Ai = −Ei , (2.153)

where we drop the gauge terms for simplicity and introduce the magnetic flux

Ei := −√γηijkV jBk , (2.154)

which is present in the induction Eq. (2.145). As opposed to Eq. (2.81), we don’t need to
calculate derivatives at this level such that it is sufficient to provide high-order approx-
imations of V j and

√
γBk in Eq. (2.154). However, as the magnetic field is calculated

from Eq. (2.127), we need to indroduce a numerical vector potential Âi in order to
obtain high-order approximations of

√
γBk which gives rise to the following formula

√
γBi = ηijkDjÂk , (2.155)

where Dj is the same numerical operator already introduced in Eq. (2.81) but in the
direction i ∈ {x,y,z}. At this point it is important to understand the locations at which
the quantities appearing in Eq. (2.155) are defined. The staggering of magnetic fields
is based on Stokes’ theorem which converts the surface integral of the curl of a vector
field into a line integral of the same vector field. Naturally, this leads to magnetic fields
defined at cell surfaces and vector potentials defined at cell edges [88]. A summary of
the storage locations of various quantities involved in the solution of Eqs. (2.150) -
(2.152) can be found in Table 2.1 taken from [111]. The staggering procedure implies
the following form of the x-component of Eq. (2.155)

[√
γBx

]
i+1/2,j,k

=

[
Âz

]
i+1/2,j+1/2,k

−
[
Âz

]
i+1/2,j−1/2,k

hy
−

[
Ây

]
i+1/2,j,k+1/2

−
[
Ây

]
i+1/2,j,k−1/2

hz
,

(2.156)
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Variable(s) storage location
Metric terms, C, P (i, j,k)

Bx (i + 1
2 , j,k)

By (i, j + 1
2 , k)

Bz (i, j,k + 1
2 )

Ax (i, j + 1
2 , k + 1

2 )
Ay (i + 1

2 , j,k + 1
2 )

Az (i + 1
2 , j + 1

2 , k)
Φ (i + 1

2 , j + 1
2 , k + 1

2 )

Table 2.1: Storage locations of fluid and magnetic variables
Storage locations of various variables employed in the solution of the system in Eqs. (2.150) -
(2.152). The conservative variables C are defined in Eq. (2.78) while the primitive variables P
are defined in Eq. (2.79).This table is reused from [111].

where hx, hy and hz denote the cell sizes in the x, y, and z direction, respectively, and the
[·]a,b,c symbol denotes the evaluation of the corresponding quantity at the grid location
given by the triple index (a,b,c).

Now, following the ideas from Subsection 2.3.1 we can introduce helper functions
for the numerical vector potential components and require that their line averages cor-
respond to the point values of the original vector potential evaluated at cell edges, see
Table 2.1. Ultimately, we arrive at expressions similar to Eq. (2.87) where the fourth-
order approximations of the numerical vector potential are given by [88, 195]

Âx = Ax −
1

24
∆

(2)
y (Ax)−

1
24

∆
(2)
z (Ax) +O

(
h4

)
, (2.157)

Ây = Ay −
1

24
∆

(2)
z

(
Ay

)
− 1

24
∆

(2)
x

(
Ay

)
+O

(
h4

)
, (2.158)

Âz = Az −
1

24
∆

(2)
x (Az)−

1
24

∆
(2)
y (Az) +O

(
h4

)
, (2.159)

where the operation ∆
(2)
i applies the operation in Eq. (2.88) in the direction i ∈ {x,y,z}.

The high-order approximations of the magentic field in Eq. (2.155) satisfy the discrete
version of Eq. (2.144), i.e., the discrete version of the solenoidal constraint, at cell cen-
ters to machine precision [88].

Next, an appropriate upwind flux is needed which takes into account the staggering
of the magnetic fields. In particular, the magnetic fluxes Ei are computed at cell edges
which constitute intersections of two surfaces. Hence, in contrast to a discontinuity be-
tween two states, see Subsection 2.3.1, which can be thought of as the zero-dimensional
intersection between two lines, now a one-dimensional intersection between two sur-
faces is present. This gives rise to four states determining the solution of the Riemann
problem [88, 180]. Then, the HLLE solver introduced in Subsection 2.3.1 can be gener-
alized to yield [111]

EHLLE
z =

λRxλ
R
y ELLz +λRxλ

L
yELRz +λLxλ

R
y ERLz +λLxλ

L
yERRz

(λRx +λLx)(λRy +λLy )

+
λRxλ

L
x

λRx +λLx

(√
γRB

y
R −
√
γLB

y
L

)
−
λRyλ

L
y

λRy +λLy

(√
γRB

x
R −
√
γLB

x
L

)
(2.160)

where we introduced the quantities Eabz with a,b ∈ {L,R} denoting that the reconstruc-
tion is performed from the a-side in x-direction and from the b-side in y-direction.
The symbols

√
γL(R)B

y
L(R) are reconstructed from the left (right) state in the x-direction
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while the symbols
√
γL(R)B

x
L(R) are reconstructed from the left (right) state in the y-

direction. The characteristic speeds are given by

λLx = min(0,λ−x (ULL),λ−x (ULR),λ−x (URL),λ−x (URR)) , (2.161)

λRx = max(0,λ+
x (ULL),λ+

x (ULR),λ+
x (URL),λ+

x (URR)) , (2.162)

where the symbols Uab with a,b ∈ {L,R} denote that the state is reconstructed from the
a-side in x-direction and from the b-side in y-direction. We also introduce the lowest
(highest) characteristic speed in the x-direction by λ−x (λ+

x ). The formulas for EHLLE
x

and EHLLE
y can be obtained by suitable permutations. Finally, the reconstruction to cell

edges, i.e., the interpolation procedure to obtain the set of states {ULL,ULR,URL,URR} is
performed using the same WENO-Z method already mentioned in Subsection 2.3.1.

The code we employ in this Thesis, namely FIL, makes use of the methods described
in this subsection together with the methods described in Subsection 2.3.1 to solve the
system presented in Eqs. (2.150)-(2.152). As already mentioned, this is the so-called
ECHO scheme which takes the following brief schematic form for ideal GRMHD [89,
195]:

DER-B Compute an high-order approximation of the staggered magnetic fields using
Eq. (2.155) together with Eqs. (2.157)-(2.159).

C2P Interpolate staggered magentic fields to cell centers. Given the set of cell-centered
conservative variables C at time t compute the corresponding primitive variables
P at cell centers.

REC-F Reconstruct the primitive variables at the left and right cell interfaces using
the WENO-Z method. These are two non-oscillatory interpolations from cell-
centered primitives P to primitives at cell interfaces P L/R.

HLLE-F Compute the HLLE flux FHLLE in Eq. (2.93) from the left and right primitive
variables defined at cell interfaces P L/R.

DER-F Compute the numerical flux F̂ used in Eq. (2.81) by using the fourth-order for-
mula in Eq. (2.87) and replacing the original interface flux with the correspond-
ing HLLE flux FHLLE.

REC-B Reconstruct magnetic fields and primitive variables from cell interfaces to cell
edges using the WENO-Z method. These are four non-oscillatory interpolations.

HLLE-B Compute the HLLE magnetic flux EHLLE in Eq. (2.160).

RK3 Evolve Eq. (2.81) and Eq. (2.153) to the time t +∆t using the third-order Runge-
Kutta method mentioned previously.

37



2 Theoretical and numerical foundations

38



Chapter 3

Viscous black-hole accretion

The set of GRDHD equations presented in Eqs. (2.100) - (2.102) adds arguably a new
layer of complexity in the possible behaviour of the fluid under investigation. On top
of that, this set of equations is not commonly investigated in a general-relativistic setup
making its application to neutron star physics a challenging endeavour. Thus, before
moving on to dynamical spacetimes with neutron stars we start by developing an intu-
ition for second-order GRDHD in a general-relativistic setup by solving the problem of
spherically symmetric accretion onto BHs for a viscous fluid described by Eq. (2.113).
Additionally, this setup can be used as a test scenario by numerical codes simulating
non-perfect fluids on curved backgrounds. We also evaluate this possibility by testing
the GRDHD implementation of the code BHAC [71] with this solution.

Although viscous BH accretion solutions are not extensively explored, the solutions
for the case of perfect fluids are well known. In this case the spherically symmetric ac-
cretion onto nonrotaing BHs is commonly modeled using the famous “Michel solution”
[190] and “Bondi-Hoyle solution” [51], but see [212] as well. Both of these solutions
are commonly employed as testbeds for general-relativistic hydrodynamics (GRHD)
and GRMHD codes [144, 240, 314]. The effects of shear viscosity which arise from
magneto-turbulence have been considered for the first time by [307]. However, in this
case a prescription in terms of general-relativistic NS equations was used. To the best
of our knowledge, the problem of stationary, spherically symmetric accretion of bulk-
viscous fluids onto nonrotating BHs using the second-order equations of GRDHD has
not been solved before.

In this investigation we first solve the corresponding system of ODEs which yields
a solution that we use as initial data for an evolution in our extended version of the
GRMHD code BHAC, see [71] for details on the implementation.

We use an EOS which models a combination of ionised non-relativistic hydrogen
and photons [261]

p = p
M

(1 +α) , (3.1)

where p
M

denotes the pressure of the matter component, which is modeled as an ideal
gas, while the contribution from the photons is kept constant using the parameter α.
We can manipulate Eq. (3.1) in order to find that the EOS of the total mixture becomes
similar to the ideal gas EOS where the effective adiabatic index γe can be obtained
from:

p = (γe − 1)(e − ρ) , (3.2)

with γe = 1 + 2(1 + α)/[3(1 + 2α)]. We remark that e is the total energy density of the
fluid, while ρ is the rest-mass density of the matter component made up of hydrogen
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3 Viscous black-hole accretion

ions. The temperature can be calculated from the matter component of the ideal fluid
EOS, i.e., pM = 2(kB/mp)ρT , which yields:

T =
1

2(1 +α)

mp

kB

p

ρ
, (3.3)

where mp denotes the proton mass and kB the Boltzmann constant. We remark that
due to charge neutrality the presence of electrons needs to be considered such that a
factor 2 appears in the denominator. Furthermore, we follow [315] as well as [273] and
employ the radiative bulk viscosity of our two-component fluid

ζ = 4ζ0σSB
T 4τmfp

(4
3
−γe

)2
, (3.4)

where σ
SB

is the Stefan-Boltzmann constant and τmfp := mpρ
−1σ−1

T the mean-free path
for radiation in the fluid, with σT being the Thomson scattering cross-section. We use
the dimensionless constant ζ0 in order to explore the impact of low and high bulk
viscosities. The relaxation time τ

Π
is chosen to be set by the formula:

τ
Π

= τ0
M

|Ṁ |

( r
2M

)3
, (3.5)

where r denotes the circumference radius in Schwarzschild coordinates, M the mass
of the BH, Ṁ the accretion rate, and τ0 is a dimensionless parameter to investigate the
impact of short and long relaxation times. We remark that in Eq. (3.5) the relaxation
time is proportional to the radius to the power of three. In order to prevent the rapid
growth of non-equilibrium effects near the sonic point, which can yield unphysical
solutions, we find that the relaxation time needs to increase as a function of radius to
a sufficiently high power.

3.1 GRDHD in spherical symmetry

In this section, we introduce the equations of GRDHD in spherical symmetry in the
presence of a Schwarzschild BH. The equations of GRDHD are given by Eqs. (2.72) and
(2.73) together with the definitions in Eqs. (2.95) and (2.96) and qµ = 0 = πµν . Then, the
system is closed by Eq. (2.113) and an EOS. Moreover, we demand the solution to be
spherically symmetric, i.e., all variables are restricted to depend only on time, t, as well
as the circumference radius, r, and the fluid four-velocity is given by uµ = (ut ,u,0,0)T .
Furthermore, we want to obtain a stationary solution such that the t-dependence is
removed as well and we end up with a coupled, nonlinear system of ODEs in the radial
Schwarzschild coordinate r:

dρ

dr
= −

ρ

r

M/(E2r)−Πr/
[
(ρh+Π)τ

Π
u
]
− 2u2/E2

c′2s −u2/E2
, (3.6)

du
dr

=
u
r

M/(E2r)−Πr/
[
(ρh+Π)τ

Π
u
]
− 2c′2s

c′2s −u2/E2
, (3.7)

dΠ
dr

= −
Π

(
c′2s −u2/E2

)
/(uτ

Π
) + ζ

[
M/(E2r)−Πr/

[
(ρh+Π)τ

Π
u
]
− 2u2/E2

]
/(τ

Π
r)

c′2s −u2/E2
, (3.8)

dh
dr

= −
ρh+Π

ρr

[
c′2s − (ζ/τ

Π
−Π)/(ρh+Π)

] [
M/(E2r)−Πr/

[
(ρh+Π)τ

Π
u
]
− 2u2/(E2)

]
c′2s −u2/E2

,

(3.9)
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3.2 Investigated models

Model ζ0 τ0 [10−12]

low-ζ 160 1.0

medium-ζ 16,000 1.0

high-ζ 104,000 1.0

low-τ
Π

16,000 0.06

high-τ
Π

16,000 50

Table 3.1: Parameters for viscous black-hole accretion
This table summarizes the parameters ζ0 and τ0 for the various models employed in this study.
This table has been reused from [71].

where E := ut = −
√

1− 2M/r +u2 and h := (e + p)/ρ denotes the specific enthalpy. The
system has two conserved quantities, namely, the mass-accretion rate Ṁ and the “vis-
cous” Bernoulli constant B

Ṁ := 4πρur2 , (3.10)

B := (ρh+Π)E/ρ . (3.11)

We remark that in the inviscid limit we obtain the behaviour lim
Π→0
B = Bpf := hE = hut,

where Bpf denotes the relativistic inviscid Bernoulli constant.
By using the defintions of the constants Ṁ and B, the quantities ρ and Π can be

eliminated and expressed in terms of u, h and r alone

ρ = Ṁ/(4πur2) , (3.12)

Π = ρB/E − Ṁh/(4πur2) , (3.13)

so that the viscous speed of sound becomes

c′s
2 = (γe − 1)

B −E
B

+
ζ
τ
Π

4πEur2

BṀ
, (3.14)

and Eqs. (3.7) and (3.9) simplify to

du
dr

=
u
r

M/(E2r)− (B −Eh)r/
(
Bτ

Π
u
)
− 2c′2s

c′2s −u2/E2
, (3.15)

dh
dr

= −1
r

[(γe − 1)(B −E)/E + (B − hE)/E]
[
M/(E2r)− (B −Eh)r/

(
Bτ

Π
u
)
− 2u2/E2

]
c′2s −u2/E2

.

(3.16)

Equations (3.15)–(3.16) cannot be solved analytically. We discuss their solution in de-
tail in Appendix A.

3.2 Investigated models

We employ models where the sonic point is located at rs = 200M, the BH mass equals
M = 3M�, and the ratio between matter and radiation is set by α = 1, which then results
in γe = 1.44. In addition, the conserved quantities assume values which correspond to
their inviscid values computed at rs = 200M, i.e., Ṁ = −0.01582 and B = −1.00192. We
remark that in the perfect-fluid case we can make use of a polytropic form of the EOS,

41



3 Viscous black-hole accretion

101 102 103

r [M ]

1010

1011
T

[K
]

inviscid

high-ζ
low -τ

Π

0 1 2 3 4 5 6 7 8
t [104M ]

−10.5

−10.0

−9.5

−9.0

−8.5

−8.0

−7.5

−7.0

lo
g 1

0
(||
δ t
|| 2

)

Π

ρ

u

Figure 3.1: Temperature profile andL2-norm of the relative time variation in viscous
black-hole accretion
Left: This panel shows profiles of the temperature as a function of the circumference radius in
units of M. Filled circles show the solution for ζ0 = 0, the solid line denotes the solution for
the high-ζ model and the dashed line denotes the solution for the low-τ model. Right: This
panel shows the L2-norm of the relative time variation δt as a function of time for the following
quantities: The rest-mass density ρ (crosses), the bulk-viscous pressure Π (stars) and the fluid
four-velocity u (filled circles). All data points are shown for the medium-ζ model. This figure
has been reused from [71].

i.e., p = kρ, because the accretion process for an inviscid fluid is isentropic. Then, the
polytropic constant k of the inviscid fluid is given by k = 2(1+α)T∞ρ

1−γe
∞ . For our choice

of rs the asymptotic values for density and temperature are ρ∞ = 2 × 10−9 g cm−3 and
T∞ = 1.5×105 K1, respectively. We calculate five models which differ by their values for
ζ0 and τ0. The parameters are presented in Table 3.1. The parameters are chosen such
that we can investigate the impact of high and low bulk viscosities as well as relaxation
times while not violating causality, i.e., c′s < 1 holds everywhere in the domain.

3.3 Impact of bulk viscosity on black-hole accretion

The left panel of Fig. 3.1 shows the inviscid solution for the temperature profile to-
gether with the solutions from the models high-ζ and low-τ at time t = 10,000M. In
the right panel of Fig. 3.1 we show the logarithm of the L2-norm of the relative time
variation δt for the rest-mass density ρ, the primitive fluid four-velocity u and the bulk-
viscous pressure Π as a function of time for the medium-ζ model. For each quantity φ,
the relative time variation is defined as δtφ(t) := 1−φ(t − 10M)/φ(t).

From the right panel of Fig. 3.1 we observe that larger variations in time are present
at the beginning of the simulation. However, these variations decay on a timescale of
∼ 104M by approximately one order of magnitude such that an approximately station-
ary state is reached after ∼ 104M. The remaining small values of the time variation
are attributed to small-scale oscillations which are generated by perturbations from
the outer boundary of the numerical domain. Furthermore, we perform a (global)
self-convergence test which recovers the formal convergence order of the second-order
finite-volume code BHAC, i.e., ≈ 2 [240]. Additionally, local self-convergence tests show
that for small radii, i.e., close to the BH event horizon, the convergence order is very
close to two while for large radii we observe oscillations around two.

1The units employed in the code are such that mp/kB = 1 and k = 1.
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Figure 3.2: Relative differences in temperature and viscous sound speed in viscous
black-hole accretion
Left: This panel shows the relative differences in temperature between the viscous models and
the inviscid model. Right: This panel shows the relative differences in the viscous speed of
sound between the viscous models and the inviscid model. The inset shows the actual value of
the viscous speed of sound close to the event horizon. This figure has been reused from [71].

The left panel of Fig. 3.2 presents the radial profiles of the relative difference be-
tween the temperature for the various viscous models and the inviscid solution. By
looking at the solid lines which denote the low-, medium-, and high-ζ models, we find
that the viscous fluid is hotter near the BH event horizon and colder at large radii close
to the end of the simulation domain. The highest temperature difference observed can
be found in the high-ζ model where the temperature at the horizon can be up to ∼ 18%
larger than in the inviscid model. We observe similar behaviour for the dashed lines,
which refer to the low- and high-τ

Π
models.

In the right panel of Fig. 3.2 we show the corresponding relative difference in terms
of the viscous sound speed close to the BH event horizon. We observe that for the low-
τ
Π

model the difference can be as large as a factor of ∼ 3 while for the high-ζ model we
observe values up to ∼ 2.3. This means the models reach viscous sound speeds as high
as 0.5 and 0.4, respectively (see inset).

Overall, our simulations confirm that the inclusion of large viscosities leads to more
dissipative heating close to the BH and, therefore, to higher temperatures. Also, as
expected, larger viscosities and lower relaxation times lead to larger deviations from
the inviscid solution which manifest as larger deviations in temperature and viscous
speed of sound.

Next, we explore the behaviour of the bulk-viscous pressure in our simulations
which is a measure of out-of-equilibrium contributions according to Eq. (2.114). Figure
3.3 shows radial profiles of the inverse Reynolds numberR−1 = Π/(ρh) (left panel, solid
and dashed lines) and of the bulk-viscous pressure normalized to its corresponding NS
value Π/Π

NS
(right panel, solid and dashed lines). We observe that for large radii the

quantity Π/ρh has small values which are on the order of ∼ 10−4 to ∼ 10−7. When mov-
ing further inside its magnitude decreases even further until a turning point is reached
at around ∼ 100M. Then, the inverse Reynolds number starts to increase sharply until
it reaches the BH event horizon. This behaviour is similar for all investigated mod-
els. However, quantitative differences arise in the magnitude of the inverse Reynolds
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Figure 3.3: Inverse relativistic Reynolds number and bulk-viscous pressure over
Navier-Stokes value in viscous black-hole accretion
Left: Shown are the profiles of the inverse Reynolds number, i.e., the ratio between the bulk-
viscous pressure and the enthalpy density, as a function of circumference radius. The inset
presents a zoom-in to the event horizon. Right: Shown are the profiles of the ratio between the
bulk-viscous pressure and its NS value as a function of the circumference radius. This figure
has been reused from [71].

number and the location of the turning point. More specifically, we observe that larger
bulk viscosities ζ lead in general to larger values of the inverse Reynolds number while
smaller relaxation times τ

Π
lead in general to a turning point which is located at a larger

radius. It is also interesting to note that smaller relaxation times lead to larger inverse
Reynolds numbers close to the BH event horizon than larger relaxation times. Our
observations confirm the expectation that the coefficient of the bulk viscosity controls
the magnitude of out-of-equilibrium contributions while the relaxation time controls
the timescale on which the bulk-viscous pressure evolves. This interpretation is su-
ported by the right panel of Fig. 3.3 which confirms that small relaxation times yield
bulk-viscous pressures which are closer to their NS values. Hence, the relaxation time
controls the timescale on which the bulk-viscous pressure converges towards its NS
value, e.g., for the models low-ζ, medium-ζ, and high-ζ, the bulk-viscosity pressure
reaches nearly ∼ 80% of the NS value close to the BH horizon, while the corresponding
value for the high-τ

Π
model is considerably smaller and of the order of ∼ 10%. Instead,

the low-τ
Π

model is able to reach a maximum of ∼ 92% but not exactly at the event
horizon. This feature is absent in the solutions of the ODEs such that we attribute it to
cancellation errors in BHAC.

Finally, we note that the behaviour of our solutions close to the event horizon is
reminiscent of the late-time behaviour of longitudinally expanding fluids, such as the
Bjorken flow [47, 90, 156, 155]. In both cases, it can be observed that the fluid tends
to converge towards its NS value. However, in the accretion solutions presented here
the fluid is driven out of equilibrium close to the BH horizon while in the late-time
behaviour of the Bjorken flow the fluid thermalizes. Nevertheless, if the velocity of
the solution is reversed, we obtain outflowing solutions [144] which are similar to the
Bjorken flow.
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3.4 Summary and outlook

In this chapter we have investigated for the first time the problem of stationary, spher-
ically symmetric accretion of bulk-viscous fluids onto nonrotating BHs using a second-
order GRDHD formalism. First, we solve this problem by integrating the non-trivial
set of ODEs presented in Section 3.1. Then, this solution is used as our initial data for
a simulation of this problem using our extension of the GRMHD code BHAC [71].

By varying the bulk viscosity coefficient and the relaxation time we are able to ob-
serve differences of up to . 19% for the temperature and ∼ 200% for the sound speed
between the viscous and the inviscid case. Furthermore, we find that the bulk-viscous
pressure can show variations of approximately three orders of magnitude near the
event horizon. We attribute this behaviour to the strong compression that the fluid
is subject to when falling onto the BH close to the event horizon. This leads to an
increase in inverse Reynolds number which means that the fluid is driven out of ther-
modynamic equilibrium. Additionally, we have been able to verify that the role of the
relaxation time is to set the timescale on which the bulk-viscous pressure assumes its
NS value.

By performing tests of the stationarity of the problem together with an assessment
of self-convergence we are able to suggest this problem as an useful testbed for GRDHD
codes which aim at the inclusion of dissipative effects in BNS mergers. However, we re-
mark that one caveat remains. Although the BHAC simulations reach a quasi-stationary
state, the simulations do not converge to the reference solutions with increasing grid
resolution because of errors which stem from the finite boundaries of the domain. We
plan to investigate this issue in a future work.

Finally, this work yields the possibilty of investigating the equations of GRDHD
in a simple but non-trivial general-relativistic setup. Further ideas which arise from
our work include the investigation of the behaviour of the solution at large distances
from the BH. Given that the growth of out-of-equilibrium contributions is suppressed
in our approach by using the τ

Π
∝ r3 dependence of the relaxation time, it would be

interesting to understand the origin of this problem in more detail as well as whether
it can be cured by including terms of higher-order in Kn and R−1 in the EOM. This
idea leads us directly to the next possibility of extending this work by systematically
studying the impact of higher-order terms on viscous BH accretion. Last but not least,
given the common features we observe between the solution of the viscous accretion
problem and the late-time behaviour in the Bjorken flow, it would be interesting to
study whether even deeper similarities exist. It would be particularly exciting to ex-
plore the existence of an universal attractor for outflowing solutions which was shown
to be present for a longitudinally expanding QGP [145].
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Chapter 4

Bulk viscosity in binary mergers

4.1 Bulk viscosity in neutron stars

Binary neutron star mergers are very violent and nonlinear phenomena, especially
during the first few milliseconds after the collision, and present ideal sites for non-
equilibrium hydrodynamic effects (dissipative effects) to take place, see e.g., [23, 230,
59] for some reviews. This, however, depends crucially on the magnitude of the mi-
crophysical transport coefficients, e.g., the bulk viscosity, shear viscosity and heat con-
ductivity. The appearance of a microphysical bulk viscosity in BNS mergers has been
investigated in the simplified setup of harmonic density oscillations where realistic os-
cillation frequencies have been used [17, 10, 16]. Results from these studies provide
a classification of the thermodynamic conditions under which bulk viscosity becomes
important. Furthermore, the results shown in [9] suggest that these conditions might
indeed be present in BNS mergers. This paves the way for the inclusion of a realistic
bulk viscosity in BNS merger simulations. The consequences of such an inclusion are
numerous but most importantly, bulk-viscous damping of strong density oscillations
right after the collision might lead to a modification of the postmerger GW signal and
is potentially observable through GW detectors. This exciting idea motivates us to
study bulk viscosity in BNS mergers.

The microphysical origin of bulk viscosity in BNS mergers is the violation of weak
chemical equilibrium (β-equilibrium) through the violent collision process [12, 11,
141]. Specifically, assuming that cold neutron stars are made up of npe-matter, i.e., they
consist only of neutrons, protons and electrons, and neglecting the appearance of
muons for simplicity, see also [179, 16], different conditions for chemical equilibrium
exist which are based on the weak chemical reactions among the constituents of the
neutron star matter. Following [141] these reactions are β-processes under various
thermodynamic conditions which can be broadly grouped into electron-capture reac-
tions and neutron-decay reactions. First, we distinguish between “neutrino-transparent”
[13] and “neutrino-trapped” matter [15]. This is important as the mean-free path
of neutrinos becomes shorter than the radius of the neutron star for temperatures
& 5 MeV [17] which means that they can participate as reactants in the reactions. Ac-
cordingly, for temperatures below ∼ 5 MeV it can be assumed that neutrinos freely
escape the neutron star.

4.1.1 β-equilibrium under neutron star merger conditions

The easiest neutrino-transparent case occurs for “cold” matter where the temperature
is assumed to be less than a few hundred keV. The chemical reactions are the two
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direct Urca reactions

p+ e−→ n+ νe , (4.1)

n→ p+ e− + νe , (4.2)

and the four modified Urca reactions

p+ p+ e−→ p+n+ νe , (4.3)

p+n→ p+ p+ e− + νe , (4.4)

n+ p+ e−→ n+n+ νe , (4.5)

n+n→ n+ p+ e− + νe . (4.6)

The distinction between direct and modified Urca processes is necessary as in the T →
0 limit the former are forbidden below the direct Urca threshold density since the
electron and proton Fermi momenta are not large enough to account for the neutron
Fermi momentum [12]

pFn > pFp + pFe . (4.7)

Hence, below the direct Urca threshold density the kinematically allowed modified
Urca reactions provide the leading order contribution to the β-equilibration rate. How-
ever, above the threshold density the equilibration rate is dominated by direct Urca
processes which are several orders of magnitude faster than the modified Urca reac-
tions [12]. It is interesting to note that none of the reactions presented in Eqs. (4.1)-
(4.2) and Eqs. (4.3)-(4.6) are the exact inverse of any other. Hence, the principle of
detailed balance does not apply [12, 141] and the condition for β-equilibrium needs to
be generalized to

µn −µp −µe = µδ , (4.8)

where µn, µp, µe and µδ are the neutron, proton, electron and “offset” chemical poten-
tials. As it turns out, for our case of “cold” matter, i.e., T . O (100 keV), the neutron-
decay and electron-capture rates balance for both direct and modified Urca processes
leading to µδ . 1 MeV [12]. This means that we recover the standard cold β-equilibrium
condition

µn −µp −µe ≈ 0 , (4.9)

which becomes exact for T → 0.
For temperatures in the range O (100 keV) . T . 5 MeV we still assume that neu-

trinos freely escape the neutron star. However, modified Urca neutron-decay and
electron-capture rates no longer balance below the direct Urca threshold such that
µδ cannot be neglected. In particular, it was found that 5 MeV . µδ . 23 MeV [12].
Following [141] we call matter under these conditions “warm” matter.

Finally, above the neutrino-trapping temperature neutrinos can start to participate
as reactants in neutron-decay and electron-capture reactions such that the important
reactions become the following direct Urca reactions

p+ e−↔ n+ νe , (4.10)

n↔ p+ e− + νe . (4.11)

Note that in this case of so-called “hot” matter the reactions proceed in both directions
such that the principle of detailed balance yields the equilibrium condition

µn −µp −µe = −µνe , (4.12)

where µνe denotes the electron-neutrino chemical potential.
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4.1.2 Bulk viscosity from violations of chemical equilibrium

In the previous subsection we have identified three distinct β-equilibrium conditions,
namely Eqs. (4.9), (4.8) and (4.12) for cold, warm and hot matter, respectively. These
conditions have a specific temperature range associated to them. Furthermore, also the
baryon density plays an important role in selecting which reactions are dominant in
setting the β-equilibration rate. As a next step, we can now assume, motivated by the
violent expansion and compression cycles observed in BNS merger simulations, that
the corresponding β-equilibrium condition is violated by an amount µ∆

µn −µp −µe −µδ = µ∆ , (4.13)

where in cold matter µδ ≈ 0 while in hot matter µδ = −µνe , and that the density has
small-amplitude oscillations around a fixed background, i.e.,

ni = ni,0 + δni , (4.14)

δni ∝ exp[iωt] , (4.15)

where ni is the number density of the respective particle species with j ∈ (n,p,e,νe). We
can further split the perturbations into an equilibrium and non-equilibrium contribu-
tion

δni = δni,eq + δn′i , (4.16)

respectively. For simplicity, we restrict the discussion to the case of hot matter, such
that µδ = −µνe , and follow [17]. As the matter is oscillating, a periodic production
of neutrons and protons via the reactions (4.10) and (4.11), respectively, can drive vi-
olations of chemical equilibrium and therefore determines µ∆. In the limit of small
deviations from the equilibrium condition in Eq. (4.12), i.e., µ∆/T � 1, which is also
referred to as the “subthermal regime”, see also [14] for the so-called “suprathermal
regime”, the net direct Urca rate is given by

Γ∆ := Γp − Γn ≈
∂
(
Γp − Γn

)
∂µ∆

∣∣∣∣∣∣∣
µ∆=0

µ∆ = λµ∆, λ > 0 , (4.17)

where Γp and Γn are the proton and neutron production rates, respectively, and λ de-
notes the relaxation rate, e.g., see [15]. Due to these flavor-changing reactions the num-
ber densities are not conserved but evolve according to

∂tδni = −θni,0 ±λµ∆ , (4.18)

with a plus sign for i ∈ (p,e) and a minus sign for i ∈ (n,νe). The quantity θ is the non-
relativistic expansion θ := ∂ivi . Now, the viscosity can be derived by splitting the total
pressure into an equilibrium and non-equilibrium contribution and assuming that the
deviations from equilibrium are small

p = peq +Π ≈ peq +
∑
i

∂p

∂ni

∣∣∣∣∣
ni,0+δni,eq

δn′i = peq − ζeffθ , (4.19)

where we used the NS definition of the non-equilibrium pressure Π [108, 174] and ζeff
denotes the “effective” bulk viscosity. The final result is the standard resonant form of
the bulk viscosity for harmonic density oscillations with frequency ω

ζeff(ω) =
γ

ω2 +γ2

n2
B(∂µ∆/∂nB)2

Yn

(∂µ∆/∂nn)nB

∣∣∣∣∣∣∣
µ∆=0

, (4.20)
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where nB is the conserved baryon number density, Yn := nn/nB is the neutron fraction
and γ := (∂Γ∆/∂nn)nB = (∂µ∆/∂nn)nB λ is the equilibration rate. The second factor in
Eq. (4.20) is fully determined by the EOS while the first factor expresses the frequency
dependence of ζeff. If we consider ω to be fixed and vary γ , ζeff reaches its resonant
maximum if γ = ω, i.e., the oscillation frequency of density perturbations matches the
equilibration rate of the weak chemical reactions,

ζmax(ω) :=
1

2ω

n2
B(∂µ∆/∂nB)2

Yn

(∂µ∆/∂nn)nB

∣∣∣∣∣∣∣
µ∆=0

. (4.21)

In the “fast” limit, i.e., γ �ω, which corresponds to the physical scenario where chem-
ical equilibration happens almost instantaneously compared to the evolution timescale
of the fluid, we find

ζ := ζeff(ω/γ � 1) =
1
γ

n2
B(∂µ∆/∂nB)2

Yn

(∂µ∆/∂nn)nB

∣∣∣∣∣∣∣
µ∆=0

. (4.22)

4.1.3 Simulating bulk viscosity in neutron stars

In this subsection we connect the results about the emergence of a microphysical bulk
viscosity presented in Subsection 4.1.2 with the formulation of GRDHD shown in Sec-
tion 2.4. In particular, we follow the analytical investigations from [125, 69, 62] which
connect bulk-viscous hydrodynamics in the absence of shear viscosity and heat con-
duction, i.e., η = κ = 0, to a chemically reacting multi-fluid. As presented in [125, 62],
in the limit of small deviations from weak equilibrium, i.e., µ∆/T � 1 but see also [127]
for a more recent result on large deviations, a chemically reacting multi-fluid with one
independent particle fraction can be mapped mathematically to the MIS-theory of a
bulk-viscous single fluid which behaves according to Eq. (2.113).

This mapping is accurate to second-order in µ∆/T which translates to second-order
accuracy in inverse Reynolds number µ2

∆
∝ Π2 ∝ R−2. As we will consider only flu-

ids with vanishing shear viscosity and heat conductivity in the rest of this Thesis, we
make use of the definition of the inverse Reynolds number in Eq. (2.114). Note that
Eq. (2.113) can be obtained from the more general Eq. (2.100). In the example dis-
cussed in Section 4.1.2 we considered a fluid consisting of npe-matter with trapped
neutrinos. These are four particle fractions, however, not all of them are independent
since the conditions of baryon number conservation, nB = np+nn and∇µ(nBuµ) = 0, lep-
ton number conservation, nL = ne+nν and ∇µ(nLuµ) = 0, and charge neutrality, np = ne,
hold. These conditions restrict the system to only one independent particle fraction or
“reaction coordinate” such that the results from [125] are directly applicable.

By mapping Eq. (4.20) to Eq. (116) of [125]

ζeff(ω) = ζ
1

1 + τ2
Π
ω2 , (4.23)

we are able to confirm that the bulk viscosity ζ in Eq. (2.113) is given by Eq. (4.22) and
the relaxation time is simply the inverse of the equilibration rate γ , i.e.,

τ
Π

=
1
γ

= (∂Γ∆/∂nn)−1
nB

= (∂µ∆/∂nn)−1
nB
λ−1 . (4.24)

This mathematical duality has many consequences but most importantly, as long as
deviations from chemical equilibrium are small, we are able to model the more general
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chemically reacting multi-fluid by a simple MIS-type bulk-viscous fluid. This has the
advantage that results regarding the causality and stability of the MIS-theory apply
[36].

A recent study implementing direct and modified Urca reactions in a full NR sim-
ulation has shown that many regions in the postmerger reach the bulk-viscous regime
such that using Eq. (2.113) is indeed a valid approach [202]. Another investigation
has provided first clues about the impact of fast equilibration on the GW signal [140].
Finally, a recent study has compared a bulk-viscous fluid with transport coefficients ob-
tained through the previously mentioned mathematical duality to the corresponding
multi-fluid. The investigation has shown that the MIS approach performs reasonably
well when considering simple oscillations and the migration of TOV stars [63]. Moti-
vated by these results, we will implement Eq. (2.113) in full NR simulations and study
the impact of bulk viscosity on the postmerger evolution.

4.2 Numerical implementation of a causal bulk viscosity

In this section we introduce the novel methods implemented in the high-order and
HRSC code FIL [195, 201] which allow us to solve the system in Eqs. (2.115)-(2.117)
for BNS mergers.

4.2.1 Discretization

All flux terms appearing in Eq. (2.116) are discretized following the ECHO scheme
presented in Subsection 2.3.1. As discussed in Subsection 2.4.3, spatial derivatives oc-
curing in Eq. (2.117) in the component belonging to the evolution of Π are discretized
using fourth-order central finite differences.

The temporal derivative is calculated through first-order backward differencing
with respect to (WRT) the previous timestep. For example, let us assume we employ
Heun’s second-order method with two stages and the solution should be advanced from
t to t +∆t. We also assume that the solution at t −∆t is available. Then, the first stage
employs the following approximation of the time derivative of the Lorentz factor

∂tW |t ≈
W (t)−W (t −∆t)

∆t
, (4.25)

while in the second stage we use

∂tW |t+C∆t ≈
W (t +C∆t)−W (t)

C∆t
, (4.26)

where C = 1 for Heun’s method. For higher-order multi-stage methods only C needs to
be adjusted for each stage separately.

4.2.2 Primitive inversion and limiting

As already mentioned in Chapter 2, typical methods for the solution of the equations
of relativistic hydrodynamics involve the conversion between the conserved variables,
i.e., C, see Eq. (2.78), and the primitive variables, P , see Eq. (2.79), which has to be
carried out numerically by using root-finding algorithms. In this Thesis we augment
the purely hydrodynamical algorithm from [124] already provided by FIL in order to
include the bulk-viscous pressure Π. As will be shown, almost all desirable properties
can be transferred to the viscous case if a suitable limiting procedure is employed. In
the following we briefly review the most notable steps of the inversion algorithm pre-
sented in [124], thereby highlighting the modifications which arise from the inclusion
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of the bulk-viscous pressure. At this stage we omit all details related to the handling of
the density floor, the finite range of the EOS table as well as all rescalings that follow
from the bounds on the conserved and primitive variables. All of these steps are not
influenced by the inclusion of bulk viscosity except that an atmosphere value for Π

needs to be specified which we choose to be Πatmo = 0.
As in [124], we start by introducing the following definitions

a′ =
p+Π

ρ(1 + ε)
, h′ = h+

Π

ρ
, z =Wv , (4.27)

q =
τ
D
, r =

S iSi
D

, k =
r

1 + q
, (4.28)

which yield the following relations:

z =
r
h′
, ρ =

D
W
, W =

√
1 + z2 , (4.29)

and most crucially

ε =Wq − zr +W − 1 , (4.30)

h′ = (1 + ε)(1 + a′) = (W − zk)(1 + q)(1 + a′) . (4.31)

These expressions are exactly the same as in [124] if a and h would be replaced by a′

and h′, respectively. The quantity ε denotes the specific internal energy.

Limiting

We impose the same requirements which have been already formulated in [124] for
the case of perfect fluids on the viscous fluid of our simulations. This means that the
matter should satisfy the dominant energy condition and the viscous sound speed, see
Eq. (2.121) for the definition, has to be smaller than the speed of light

0 ≤ a′ ≤ 1 , (4.32)

0 ≤ c′s
2 ≤ 1 . (4.33)

Because the bulk-pressure Π is treated as an evolved, independent quantity, the
fluid can easily evolve into states which violate the conditions in Eqs. (4.32) and (4.33).
Hence, we formulate the following limiting strategy in order to avoid large out-of-
equilibrium contributions in the fluid:

(i) If Π < 0 and Π < αp with −1 ≤ α ≤ 0, set Π = αp. Note that for these ranges of α
the condition in Eq. (4.32) is automatically fulfilled. We typically choose α = −0.9
in order to avoid regions where the fluid is pressure-less.

(ii) If Π > 0 and a′ > 1, set Π = e − p.

(iii) If c′s
2 > cmax

2, set

τ
Π

=
ζ
ρh′

1

cmax
2 −

(
∂p
∂e

)
ρ
− 1
h′

(
∂p
∂ρ

)
e

, (4.34)

where 0 ≤ cmax
2 ≤ 1.
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Bounds for the conserved variables

Again following [124] we find the same lower bound on q, if the specific internal energy
ε is required to be positive

q = h′W − 1−
p+Π

Wρ
≥ ε ≥ εmin , (4.35)

where εmin denotes the minimum specific internal energy in the whole table. Addi-
tionally, we can also confirm that the relations and bounds for the total momentum
density in terms of k remain almost unchanged, if bulk viscosity is included, i.e.,

k(v,a′) = v
1 + a′

1 + v2a′
,

∂
∂a′

k(v,a′) ≥ 0 , (4.36)

0 ≤ 1
2
k ≤ v ≤ k ≤ 2v

1 + v2 < 1 . (4.37)

These relations are based on the dominant energy condition which is expressed through
bounds on a′. By using a limit on the maximum fluid velocity vmax we automatically
obtain

k < kmax =
2vmax

1 + vmax
2 . (4.38)

Root finding, existence and uniqueness

We use the same root-finding function as in [124] except that we substitute h̃(z) by
h̃′(z), i.e., our root-finding function takes the form

f (z) = z − z

h̃′(z)
, (4.39)

where the tilde has the same meaning as in [124]. Furthermore, the limits on Π are
imposed at this stage. This means we impose the requirements (i) and (ii) when com-
puting ã′(z). In addition, from Eq. (4.37) we find that the bracketing interval remains
unchanged as well, i.e.,

z− =
k/2

√
1− k2/4

, z+ =
k

√
1− k2

. (4.40)

Moreover, it is possible to show that f (z) has one unique solution by following the
steps outlined in [124] and replacing h̃ and â by h̃′ and â′, respectively. There is only
one notable difference: Due to the fact the we limit Π during the root-finding process,
Π can only be considered constant, if the limiter is never applied. This leads to three
separate cases, for each of which uniqueness can be established independently. Overall,
this leads to different expressions for the quantity B defined in

df

dz
= 1− v2B, (4.41)

B = â′
[
1 +

∂ln(1 + â′)
∂ln(1 + ε)

]
+
∂ln(1 + â′)
∂ln(ρ)

. (4.42)

If Π is assumed to be constant, then we obtain

BΠ =
∂p

∂e

∣∣∣∣∣
ρ

+
1
h′
∂p

∂ρ

∣∣∣∣∣
e
≤ c′s

2 ≤ 1 . (4.43)
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If Π is limited from below, then we obtain

B(i) = (1−α)
{
∂p

∂e

∣∣∣∣∣
ρ

+
ρ

(1−α)p+ e
∂p

∂ρ

∣∣∣∣∣
e

}
≤ cs2 ≤ 1 . (4.44)

Finally, if Π is limited from above, then we obtain

B(ii) = a′ = 1 . (4.45)

Comment

In this paragraph we want to give an estimate for the minimum and maximum inverse
Reynolds numbers achievable by our scheme. As an example, we use the simple ideal
gas EOS, i.e., p = (γ − 1)ρε. We assume that the pressure can be written additionally

as p = Kργ and the specific internal energy is given by ε = Kργ−1

γ−1 . Then, the minimum
inverse Reynolds number is given by (i):

R−1 =
Π

ρh
=
αp

e+ p
= α

1
K−1ρ1−γ + 1 + (γ − 1)−1

. (4.46)

A typical choice for test simulations of neutron stars is γ = 2, K = 100 and ρ = 0.00128
which yields R−1 ' −0.1 for α = −0.9. For the same setup the maximum inverse
Reynolds number is given by (ii):

R−1 =
Π

ρh
=
e − p
e+ p

=
(γ − 1)ρ1−γ /K −γ + 2

(γ − 1)ρ1−γ /K +γ
. (4.47)

Using the same choice for γ , K and ρ we find R−1 ' 0.8. These estimates show that
our scheme is well-suited to simulate out-of-equilibrium processes which are close
to the boundaries which denote the theoretical range of applicability of second-order
GRDHD, i.e., −1 .R−1 . 1.

4.2.3 Transport coefficients and transition to inviscid fluid

The scope of this is work to examine, for the first time, the impact of a causal bulk
viscosity prescription on BNS merger simulations. Hence, at this stage we are mainly
interested in the general, qualitative behaviour of bulk-viscous BNS mergers. Thus, we
decide to keep the buk viscosity as well as the relaxation time constant in our simu-
lations. This allows us the explore the most extreme case of a large but realistic bulk
viscosity and study systematically the impact of the magnitude of ζ.

However, as BNS mergers lead to violent shocks which propagate outward through
a decreasing density profile, a constant value for the bulk viscosity, which is applicable
and realistic in the high-density regions, will lead to large inverse Reynolds numbers
at sufficiently low densities. As a consequence, the limiting procedure described in
Subsection 4.2.2 will be applied consistently. However, bulk viscosity is expected to
decrease with decreasing density, see e.g., [17], which motivates us to implement a
smooth transition zone between the high-density bulk viscosity ζh and the low-density
bulk viscosity ζl which we typically chose to be ζl = 0. The high-density zone which has
ζ = ζh occupies matter with densities ρ ≥ ρh while the region with densities ρ ≤ ρl has
the bulk viscosity ζl . The functional behaviour of the bulk viscosity in the transition
zone defined as the density interval ρl < ρ < ρh is expressed through a cubic polynomial
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25 50 75 100 125 150 175
t [ms]

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

δρ
[%

]

∆x ≈ 207 m

zero visc.

low visc.

med. visc.

high visc.

fit

Figure 4.1: Central rest-mass density oscillations of perturbed viscous neutron stars
Shown in solid thin lines is the timeseries of the quantity δρ which denotes the normalized
central density of the corresponding star, where the large-scale density drift has been removed
from the data, see item 1 in Subsection 4.3.1. Shown in solid thick lines is the amplitude of
δρ estimated by using the local maxima of the signal, see item 2. Finally, dashed lines denote
fitting functions to the amplitude of δρ, see item 3. Overall, we show only data for the highest
resolution but for all viscosities.

which ensures continuity of ζ and dζ/dρ at ρh and ρl . Overall, our prescription can be
summarized as follows:

ζ(ρ) =


ζl if ρ ≤ ρl ,

aρ3 + bρ2 + cρ+ d if ρl < ρ < ρh ,
ζh if ρ ≥ ρh ,

(4.48)

where the coeffcients of the cubic polynomial are given by

a =
2(ζl − ζh)
(ρh − ρl)3 , (4.49)

b =
3(ζl + ζh)(ζh − ζl)

(ρh − ρl)3 , (4.50)

c =
6ρhρl(ζl − ζh)

(ρh − ρl)3 , (4.51)

d =

[
(3ρhρ

2
l − ρ

3
l )ζh + (ρ3

h − 3ρ2
hρl)ζl

]
(ρh − ρl)3 . (4.52)

Additionally, we specify the relaxation time to be constant as well by using a prescrip-
tion with a linear interpolation in the transition zone

τ
Π

(ρ) =


τl if ρ ≤ ρl ,

τh − (τh − τl)(ρh − ρ)/(ρh − ρl) if ρl < ρ < ρh ,
τh if ρ ≥ ρh .

(4.53)

We typically choose τh to be ∼ 1.1∆tmin and τl to be ∼ 1.1∆tmax, where ∆tmin and
∆tmax are the minimum and maximum timesteps in the simulation, respectively. If
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the neutron stars are fully covered by the highest refinement level and the dynami-
cal/hydrodynamical timescale is well-resolved by ∆tmin, this prescription for the relax-
ation time ensures that Π 'ΠNS = −ζΘ. On top of that, these choices for τ

Π
avoid stiff

source terms. Note that at the same time causality is guaranteed through Eq. (4.34).

4.3 Numerical experiments with isolated neutron stars

After having discussed our implementation strategy in the previous section, i.e., Sec-
tion 4.2, we now move on to the first numerical experiments involving isolated neutron
stars in order to test the implementation. Specifically, we investigate the damping of
radial eigenmode perturbations and the migration of neutron stars in this section.

4.3.1 Numerical viscosity in neutron star simulations
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Figure 4.2: Amplitude of central rest-mass density
oscillations of perturbed viscous neutron stars
Solid lines show the quantity δ̂ρ/δ̂ρ∗ which denotes the
reduced timeseries of the local maxima of δρ, i.e., δ̂ρ, see
Section 4.3.1, normalized by its first value δ̂ρ∗. We show
only data for the high viscosity case but for all employed
numerical resolutions. Symbols denote fitting functions
to δ̂ρ/δ̂ρ∗.

In this test problem we set out to
measure the numerical and the
physical viscosity of our code.
The procedure has been layed
out in [70] and we follow it for
the most part except of some mi-
nor differences. We use simula-
tions of isolated TOV stars using
a simple hybrid polytropic EOS,
i.e., p = KρΓ + (Γth − 1)ρεth with
K = 100, Γ = 2, Γth = 1.1 and
a central density of ρc = 1.28 ×
10−3 M−2

� ≈ 7.91 × 1014 g cm−3

which yields a M = 1.4 M�
star. This configuration is well-
explored with well-known pul-
sation frequencies [117]. We use
such a low Γth because we have
found that the drift of the cen-
tral density ρc can be reduced,
if Γth assumes values close to
1. Our measurement proce-
dure is based on the damping
of the oscillations of ρc which
means that we want to reduce
unwanted secondary effects by
reducing the density drift. This
is in contrast to [70] where inte-

grals of the velocity profile have been employed.
Furthermore, we initialize the stars by using a perturbation in the form of the fun-

damental radial eigenmode which produces oscillations in the central density on the
order of ∼ 2%, e.g., see Fig. 4.1. This ensures that our simulations remain in the linear
regime of the coupled hydrodynamic and gravitational equations. The perturbation
equations are solved by using the PizzaTOV thorn which solves the Sturm-Liouville
boundary value problem [172] and is part of the Einstein Toolkit. Overall, we carry
out 16 simulations which correspond to four different bulk viscosities and four differ-
ent resolutions. We vary the bulk viscosity between ζh ∈ {0,∼ 4.3×1025,∼ 9.42×1025,∼
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4.3 Numerical experiments with isolated neutron stars

1.98 × 1026} g s−1 cm−1, which are denoted as zero, low, medium and high viscos-
ity cases, respectively. The resolution on the finest refinement level varies between
∆x ∈ {∼ 207,∼ 281,∼ 369,∼ 487}m. Furthermore, we set ζl = 0, ρh ≈ 1.28× 10−4 M−2

� ≈
7.91× 1013 g cm−3 and ρl ≈ 1.28× 10−7 M−2

� ≈ 7.91× 1010 g cm−3.

Measurement procedure

Following [70] and [83] the rate of change of the kinetic energy of a weakly pulsating
star E, i.e., the magnitude of the pulsation is small such that linear perturbation theory
is applicable, is given by

dE
dt

= −4π
∫ R

0
drr2φ6ζ|Θ|2 , (4.54)

where φ is the conformal factor and R the radius of the neutron star. Then, if the
pulsation energy E is known, the damping time τ can be simply estimated through

τ = −2E
〈

dE
dt

〉−1

, (4.55)

where 〈·〉 denotes the time-average over one pulsation cycle.
Expanding E and dE/dt to leading order in the post-Newtonian expansion, see [70]

for details, we obtain the following expressions

E = 4π
∫ R

0
drr2 1

2
ρ0v

′2
(
1 +O(c−2)

)
, (4.56)

dE
dt

= −4π
∫ R

0
drr2ζ|Θ|2

(
1 +O(c−2)

)
, (4.57)

where v′ = v−v0 = v is the Newtonian three-velocity perturbation in the radial direction
with v0 = 0 being the background velocity which is zero in our case. Analogously, ρ0 is
the background density profile of the TOV solution.

Assuming a harmonic form of the perturbation, i.e., v′ ∝ exp[iωt + ikr], where ω is
the angular frequency of the pulsation mode and k is the wavenumber, we obtain〈

|Θ|2
〉
∝ k2 〈v′〉 = k2v′2max/2 . (4.58)

The quantity v′max is a function of radius. Analogously to the simple harmonic oscil-
lator, the energy oscillates between kinetic and potential energy. Therefore E can be
estimated by substituting v′max for v′. Then, by using the definition of the speed of
sound c2

s =ω2/k2 we obtain

E = 2π
∫ R

0
drr2ρ0v

′2
max

(
1 +O(c−2)

)
, (4.59)〈

dE
dt

〉
∼ −2π

ω2

c2
s
ζ

∫ R

0
drr2v′2max

(
1 +O(c−2)

)
. (4.60)

Finally, by using Eq. (4.55) we find a formula which relates the damping time of
radial pulsations τ to the bulk viscosity ζ

ζ = 2
1
τ
c2
s

ω2ρ0 , (4.61)
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where

ρ0 :=

∫ R
0 drr2v′2maxρ0∫ R

0 drr2v′2max

, (4.62)

is the eigenmode-averaged background density. In practice, ω can be obtained from
the simulations by measuring the pulsation frequency, ρ0 can be obtained from the
initial data by calculating the integrals in Eq. (4.62) and c2

s can be simply evaluated at
ρ0 by using the EOS. This means that we are left with the determination of τ in order
to calculate ζ through Eq. (4.61).

As already mentioned above, we use the central density ρc to measure the damping
time τ . In order to do so, we make use of the following simple recipe:

1. Make use of a high-order low-pass Butterworth filter in order to remove global
drifts of the central density from the signal.

As can be seen from Fig. 4.1 our simulations have a typical length on the order of
T ∼ O(100 ms) which yields a minimum resolved frequency of fmin ∼ 0.01 kHz.
We choose the cutoff-frequency on the order of fc ∼ 0.1 kHz and a n = 4 fil-
ter, where n denotes the order of the Butterworth filter. The frequency of the
fundamental mode is fF ∼ 1.44 kHz, see e.g., [117], which means that our cutoff-
frequency is more than an order of magnitude lower than the frequency we want
to resolve. Thus, the choices fc ∼ 0.01 kHz and n = 4 ensure that we obtain the
density drift without contributions from higher frequencies. Then, we subtract
the drift from the original data and obtain a signal which oscillates around zero.
Additionally, we normalize the “drift-free” signal by the initial central density
ρc(t = 0). We define the “drift-free” and normalized signal as δρ which is shown
in Fig. 4.1 in solid thin lines for the simulations with the highest resolution.

2. Calculate the local maxima of the signal.

Now, we assume that the signal is composed of a sum of damped sinusoids, i.e.,

δρ ≈
∑
k

Ak exp[−t/τk]sin[2πfkt −φk] , (4.63)

where the index k runs over all excited eigenmodes, i.e., F, H1, H2, . . ., Ak de-
notes the initial normalized amplitude, τk denotes the damping time, fk the fre-
quency and φk the phase shift of the k-th excitation. First, we tried a matched fil-
tering approach by fitting δρ with a function of the form presented in Eq. (4.63).
We varied the amount of sinusoids in the sum but were not able to find satisfying
results with this approach.

Hence, we resorted to the calculation of the local maxima of the signal in order
to obtain data which can be fitted to a simple exponential function. The main
caveat in this approach is that it is not possible to distinguish between different
excitation modes with different damping times. This means that it is necessary
select only those parts of the timeseries of δρ which are dominated by a single
eigenmode; the F-mode in our case. This is not a problem for lower-resolution
simulations as the overtone modes have a shorter damping time due to more
efficient numerical damping.

Therefore, for lower-resolution simulations the “pollution” of the signal is re-
duced such that almost all of δρ is dominated by the F-mode. However, as numer-
ical damping decreases with increasing resolution also the contributions from ex-
cited overtone modes become non-negligible. This can be seen in Fig. 4.1 where
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4.3 Numerical experiments with isolated neutron stars

for t . 50 ms the evolution of the local maxima is highly oscillatory due to contri-
butions from overtone modes. A naive computation of the local maxima together
with a subsequent fitting procedure results in an underestimation of τF because
overtone modes have shorter damping times than the fundamental mode. Thus,
for higher-resolution simulations we make only use of approximately the last half
of the signal where the contributions from the overtone modes can be neglected.
We show thick solid lines which connect the local maxima in Fig. 4.1 in order to
visualize the utilised part of δρ. The timeseries of the utilised local maxima of δρ
is defined as δ̂ρ and the first value in this sequence is defined as δ̂ρ∗.

3. Fit the logarithm of the local maxima to a linear function in time.

In this step we additionally normalize δ̂ρ by δ̂ρ∗ and fit the values of log[δ̂ρ/δ̂ρ∗]
to a linear function in time. The results are shown in Figs. 4.1 and 4.2. Dashed
lines in Fig. 4.1 and the star symbols in Fig. 4.2 represent the fits, respectively.
To avoid overcrowding Fig. 4.2, we only show δ̂ρ/δ̂ρ∗ for the high viscosity case.
Different color intensities in Fig. 4.2 show different resolutions and solid lines
connect the original data points of δ̂ρ/δ̂ρ∗.
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Figure 4.3: Numerical viscosity of perturbed vis-
cous neutron stars with M = 1.4 M�
Summary of the results on the measurement of the nu-
merical viscosity denoted by different symbols. The mea-
sured viscosities are given as a function of the grid reso-
lution and have been calculated from Eq. (4.61). Dashed
lines show the values of the employed physical viscosities
and the solid line shows a linear fit of log[ζ] as a function
of log[∆x] for the zero viscosity case. The parameters of
the TOV solution are given in the title.

From Fig. 4.1 we observe
that larger viscosities lead to
stronger damping of the funda-
mental mode, as expected. From
Fig. 4.2 we observe convergent
behaviour in the slopes of the
linear fits. This is expected be-
cause increased numerical reso-
lution leads to a decrease in nu-
merical damping such that the
measured damping time con-
verges to the damping time re-
lated to the physical viscosity,
see Eq. (4.61). Finally, we ob-
serve oscillatory behaviour in
the data presented for the high-
est resolution in Fig. 4.2. As
already discussed, these oscilla-
tions stem from contributions of
overtone modes and do not sig-
nificantly impact the calculation
of τF .

Results on the numerical vis-
cosity measurement

Here we present the results of
the numerical viscosity mea-
surement. Figure 4.3 shows the
values of ζ obtained through
Eq. (4.61) for all 16 simulations
denoted by different symbols.
Additionally, we present the val-
ues of the employed physical bulk viscosities in dashed lines and a linear fit of log[ζ]
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as a function of log[∆x] for the zero viscosity case by using a solid line.

150 200 250 300 350
∆x [m]

1026

1027

ζ
[g

cm
−

1
s−

1
]

Γ = 2, K = 25, M = 0.7 M⊙, R = 7.1 km

zero visc.

low visc.

med. visc.

high visc.

∝ ∆x3.62

Figure 4.4: Numerical viscosity of perturbed vis-
cous neutron stars with M = 0.7 M�
Shown is the same as in Fig. 4.3 but for a different TOV
solution whose parameters are given in the title of this
figure. In particular, this solution has a smaller mass and
radius than the solution used in Fig. 4.3.

There is a number of obser-
vations that can be made: First,
we observe that the measured
bulk viscosity for the medium
and high viscosity case approx-
imately converges to its phys-
ical value which confirms our
implementation of Eq. (2.113)
in FIL. For the high viscos-
ity case the measured value in
the highest resolution simula-
tion is even smaller than the
physical bulk viscosity. This
can be explained by consider-
ing that we setup the bulk vis-
cosity by employing a transi-
tion zone, e.g., see Eq. (4.48).
Thus, our choices of ζl , ρl and
ρh lead to a lower bulk viscos-
ity in the outer, low-density re-
gions of the star than in the in-
ner, high-density regions. Con-
sidering that the radial funda-
mental mode has larger veloci-
ties closer to the surface of the
star than in the high-density in-
terior we arrive at the conclu-
sion that the constant-viscosity

approximation made to derive Eq. (4.61) does not longer hold and leads to an un-
derestimation of the constant bulk viscosity in the inner regions of the star.

Second, we observe slow convergence of the low viscosity case. We attribute this
behaviour to the slow convergence observed also for the zero viscosity case. The FIL

code employs 4th-order accurate methods, see [195], while the employed time integra-
tor is of order three, e.g., see Subsection 2.3.1, which means that the observed conver-
gence order of ∼ 1.79 is far below the formal one. It is important to remark that the
discretization of Θ in Eq. (2.113) does not impact the convergence order for the zero
viscosity case as ζ = 0. We explain this behaviour through the influence of discretiza-
tion errors from the neutron star surface whose large density and pressure gradients
manifest as effective discontinuities in the numerical solution leading to a reduction of
the observed convergence order.

Because of the reduced convergence order found in Fig. 4.3 it is interesting to com-
pare to another numerical viscosity measurement performed during an earlier devel-
opment stage of our bulk-viscous extension of FIL. In that case, we employed a dif-
ferent isolated TOV solution with K = 25, Γ = 2, Γth = 2 and a central density of ρ =
5.12×10−3 M−2

� ≈ 3.16×1015 g cm−3 which yields a M = 0.7 M� star. We vary the bulk
viscosity between ζh ∈ {0,∼ 2.73 × 1025,∼ 1.64 × 1026,∼ 5.47 × 1026} g s−1 cm−1, which
are denoted as zero, low, medium and high viscosity cases, respectively. The resolu-
tion on the finest refinement level varies between ∆x ∈ {∼ 158,∼ 236,∼ 295,∼ 369} m.
Furthermore, instead of employing the cubic polynomial in Eq. (4.48), ζ is set to zero
sharply for ρ < ρl = ρh = 2.56× 10−4 M−2

� ≈ 1.58× 1014 g cm−3.

60



4.3 Numerical experiments with isolated neutron stars

0 1 2 3
t [ms]

10−1

100

ρ
c/
ρ

c,
0

zero visc.

low visc.

med. visc.

high visc.

0 1 2 3
t [ms]

10−4

10−3

10−2

10−1

(p
th
/p

) c

Figure 4.5: Central rest-mass density and thermal
pressure over total pressure in migrating viscous
neutron stars
Shown are the normalized central density (top panel)
and the ratio of the thermal pressure over the total pres-
sure (bottom panel) in the center of the migrating neu-
tron star as a function of time for all viscosity cases.

Figure 4.4 presents the nu-
merical viscosity measurement
for the old setup by making use
of the same measurement proce-
dure already used for Fig. 4.3.
The main difference between
Fig. 4.3 and Fig. 4.4 can be found
in the measurement of the con-
vergence order for the zero vis-
cosity cases.

We were able to obtain a con-
vergence order of ∼ 3.62 for the
old setup which is consistent
with the formal convergence or-
der of our numerical schemes.
Comparing the radii of the old
and new TOV solutions another
difference becomes evident: The
radius of the old setup is ap-
proximately half the size of the
radius of the new, more realistic
setup. This also implies that ef-
fectively, if the same resolution
is used for both setups, the star
of the old setup is covered by
only half the number of points
that the star in the new setup
is covered with. This means
that the old setup employs ef-
fectively a lower resolution than
the new setup even though the
grid spacing on the finest refine-
ment level is the same in both
cases. Hence, we suspect that
the old setup leads to a mea-
sured convergence order closer
to the formal one because the
damping of the density oscilla-
tions is dominated by discretiza-
tion errors not originating from
the surface due to the lower ef-
fective resolution.

4.3.2 Migration of viscous
neutron stars

In this test problem we simu-
late a migrating TOV star [117]
with four different values for the bulk viscosity, i.e., ζh ∈ {0,8 × 1027,4 × 1028,8 ×
1029,1030}gs−1 cm−1 which are denoted as zero, low, medium and high viscosity cases,
respectively. As before, we use a standard polytropic EOS with a hybrid thermal
component and choose K = 100 and Γ = Γth = 2. As in [117] the stars are initial-
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ized to have a central rest-mass density of ρc = 8 × 10−3 which results in an ADM
mass of M = 1.447M�. Furthermore, the computational grid has outer boundaries
at 64M� ' 95km in the three spatial directions and we employ a z-symmetry in the
equatorial plane. We use four refinement levels with a factor of two refinement; the
last level, which has a width of 24 M�, has a grid spacing of ∆x = 0.25M� ' 370m.

We start by describing the evolution of the characteristic central quantities shown
in Fig. 4.5. The top panel shows the evolution of the central rest-mass density normal-
ized by its initial value at t = 0 for all five cases in different colors. First, as expected,
the magnitude of ζ has a strong influence on the damping time of the nonlinear central
density oscillations. Higher values of the bulk viscosity lead to more efficient damping
of density oscillations.
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Figure 4.6: Absolute inverse relativistic Reynolds
number in migrating viscous neutron stars
Shown is the absolute inverse Reynolds number, i.e., the
ratio of the absolute value of the bulk-viscous pressure
over the enthalpy density, in the center of the migrating
neutron star for all viscosity cases. The black symbols de-
note the ratio of the absolute NS value over the enthalpy
density at the same location for the high viscosity case.

Additionally, the average val-
ues around which these oscil-
lations occur decrease with in-
creasing bulk viscosity. This can
be understood by looking at the
bottom panel in Fig. 4.5 which
shows the evolution of the ther-
mal pressure component pth :=
(Γth − 1)ρεth in the center over
the total pressure in the cen-
ter. Higher values for ζ lead
to a more rapid initial increase
and higher asymptotic values in
(pth/p)c. As a result, the oscillat-
ing TOV stars with a larger value
for the bulk viscosity have larger
thermal support in the center
which causes changes in their
overall structure. This leads to
less compact asymptotic states
and a lower central rest-mass
density.

Figure 4.6 shows the abso-
lute value of the relativistic in-
verse Reynolds number R−1 =
Π/ρh in the center of the stars.
By comparing to the top panel of
Fig. 4.5 we observe that a viscous
flow with |R−1| & 10−2, which is

realized in the high viscosity case, has a large influence on the evolution of the central
rest-mass density. Additionally, the black filled markers show the inverse Reynolds
number computed from the NS value ΠNS = −ζΘ. We observe good agreement be-
tween the true bulk-viscous pressure Π and ΠNS which means that our simulations
deviate only weakly from a first-order formulation of relativistic dissipative hydrody-
namics. Nevertheless, the simulations presented here are causal.

Now, we move on to the evolution of shock waves commonly observed in migration
tests. Our results are presented in Fig. 4.7 where a spacetime diagram of the evolu-
tion of the first three shock fronts on the x-axis is shown. We note that the trajectories
presented here might not include the location of the shock fronts at all times as our
tracking algorithm is designed to track only forward moving shocks having a coordi-
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nate velocity derivative below a certain threshold. However, this does not influence
our conclusions as those parts of the shock trajectories which are not visible in Fig. 4.7
constitute only small segments.

First, we observe that a larger value for the bulk viscosity leads to a shock front
which develops at larger distances from the core. In order to understand this, we need
to describe briefly the generic mechanism of shock-front formation. Prior to the devel-
opment of the shock front, the neutron star is contracting and matter at larger distances
is radially infalling. As soon as the contraction of the neutron star is decelerated as the
result of increasing pressure gradients, radially infalling material hits the neutron star
surface and gets shocked. Consequently, an outward propagating shock is generated
as soon as the shock is strong enough to overcome the ram pressure generated by the
radially infalling material.
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Figure 4.7: Shock-front evolution in migrating vis-
cous neutron stars
Spacetime diagram of the evolution of the shock fronts
on the x-axis which develop at the neutron star surface
as a result of the violent nonlinear oscillations during the
migration of the star. Different colors denote different
viscosities.

Now, this process is influ-
enced by the presence of viscos-
ity. As can be seen in Fig. 4.5,
viscosity damps the violent den-
sity oscillations which occur in
the star and produces heat. This
also changes the overall struc-
ture of the neutron star as dis-
cussed previously. The changes
in the neutron star structure can
be appreciated in Fig. 4.8 which
shows spacetime diagrams of
the coordinate velocity on the
x-axis, i.e., vx, for the zero
(left half) and medium viscos-
ity case (right half). Addi-
tionally, we use black contour
lines to plot the evolution of
the density contours at ρ ∈
4.5×{1014,1012,1010,108}gcm−3

with solid, dashed, solid and
again dashed linestyles, respec-
tively. Note that the inner solid
contour line corresponds to ρh
and the outer solid contour line
is chosen to be ρl , see Eq. (4.48).
The colored markers denote the
locations of the first three shock
fronts for each of the two simu-
lations, respectively.

We observe in Fig. 4.8 that the inner solid density contour line of the zero viscos-
ity case reaches larger values in x than the cooresponding density contour line in the
medium viscosity case. This indicates that the neutron star in the medium viscosity
case has a less compact core which can be explained by the additional thermal sup-
port observed in Fig. 4.5. At the same time a larger density gradient is present in the
outer layers of the medium viscosity case. Also, the inner dashed density contour line
is located further out than in the zero viscosity case. As a result, the pressure gradi-
ent in the outer layers of the medium viscosity star is increased which means that the
neutron star surface and the location where the shock forms have moved outwards in
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Figure 4.8: Fluid velocity evolution in migrating viscous neutron stars
The color code shows spacetime diagrams of the evolution of the Eulerian three-velocity in x-
direction, i.e., vx, on the x-axis for the zero viscosity (left panel) and medium viscosity (right
panel) cases. The symbols denote the evolution of the corresponding shock fronts already
presented in Fig. 4.7. The inner solid, inner dashed, outer solid and outer dashed lines denote
density contours at ρ = 4.5×{1014,1012,1010,108}gcm−3, respectively. Note that the inner solid
line represents ρh while the outer solid corresponds to ρl , see Eq. (4.48).

comparison to the zero viscosity case.
Second, we observe that larger values for the bulk viscosity lead to less energetic

shock waves, especially when considering the second and third shock wave. This can
be seen in Fig. 4.7 when concentrating on the second shock wave for each value of the
bulk viscosity. Clearly, the velocities of the shock fronts decrease with higher ζ. In the
high viscosity case the shock front of the second wave even stops propagating when
it reaches ∼ 60km. The reason for this behaviour is mainly related to the damping of
the neutron star oscillations due to viscosity. For the viscous cases matter is still radi-
ally infalling and being shocked at the neutron star surface. But due to the increased
dissipative transfer of radial kinetic energy to thermal energy in the neutron star a
lower energy budget is available to accelerate the shock. Additionally, most of the
shock waves are propagating through viscous material in the beginning which further
increases dissipation of kinetic energy.

4.4 Bulk viscosity in binary merger simulations

4.4.1 Simulation setup

In this section we discuss the simulations of BNS mergers with a constant causal bulk
viscosity prescription. We use the initial data setup presented in Appendix C which
produces a long-lived SMNS remnant. Similar to the numerical experiments with iso-
lated stars, we employ a hybrid EOS of the form p = pcold + ρεth(Γth − 1) where the cold
part is modeled by a cold, β-equilibrated slice of the TNTYST EOS [301]. We choose
Γth = 1.7 which corresponds to the optimal value found in [116]. We simulate four
different values for the bulk viscosity ζ which is given by ζh ∈ {ζ0,ζ0/2,ζ0/5,0} with
ζ0 = 1030 g cm−1 s−1. The value of ζ0 corresponds approximately to the highest bulk
viscosity observed in the [200]. In accordance with the magntiude of ζ the simulations
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are labeled as high, medium, low and zero viscosity. We choose ρh ≈ 4.52×1014 g cm−1

and ρl ≈ 1.13× 1012 g cm−1. Besides, we have set τh ≈ 2.7× 10−4 ms.
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Figure 4.9: Rest-mass density deformations and
rotational energy in viscous neutron star mergers
Top: Normalized m = 2 mode of the density distribution,
see Eq. (4.64), for all configurations. The red, blue, green
and black lines denote the high, medium, low and zero
viscosity cases, respectively. Bottom: Rotational kinetic
energy, see Eq. (4.65), for the same configurations.

All reported simulations are
performed with a resolution of
∆x ∼ 0.17 M� ≈ 260m on
the sixth refinement level. We
have also performed simulations
with a lower resolution of ∆x ∼
0.25 M� ≈ 370m for the zero,
low and high viscosity case. We
observe qualitatively consistent
behaviour such that we only re-
port the results of the high-
resolution simulations. In addi-
tion, the computational grid has
outer boundaries at 1000M� '
1476km in the three spatial
directions and we employ a
z-symmetry in the equatorial
plane. We use six refinement
levels with factor of two refine-
ment. The last level, which has
a width of 70 M� in order to en-
sure that only inviscid matter is
passing refinement boundaries,
is centered at the center of the
domain when the separation be-
tween the “barycenters” of the
two stars is . 9 M�.

4.4.2 Structural and rota-
tional properties

We start by describing the over-
all evolution of the binaries by
focussing on the structural and
the rotational properties of the
SMNS. Differences in the SMNS
structure can be measured by
using a modal decomposition of
the density similar to [245]

Pi :=
∫
ρWe−imφ

√
γ dxdydz .

(4.64)

We show the quantity P2/P2,0,
i.e., the m = 2 mode of the den-
sity distribution normalized by
its value at t = tmer, in the top
panel of Fig. 4.9. We observe
that P2/P2,0 is monotonically af-
fected by the magnitude of the
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Figure 4.10: Angular velocity and rest-mass density profiles in viscous neutron star
mergers
Left (Right): φ-averages in the equatorial plane of the angular velocity (rest-mass density) as a
function of the coordinate radius r := (x2 + y2)1/2 at t − tmer ≈ 23 ms. Shown are the zero, low,
medium and high viscosity cases in black, green, blue and red, respectively.

bulk viscosity which enhances the decrease of the m = 2 deformation of the SMNS
with time. Given that this mode, the so-called bar-mode, is mainly responsible for GW
losses [291], we also expect the GW amplitude to be affected in a similar way. At this
point, however, we observe that strong bulk viscosities lead to decreased m = 2 density
deformations which means that a more axisymmetric SMNS is produced. To analyse
the rotational properties of the SMNS we employ the rotational kinetic energy, which
we approximate as

Erot :=
1
2

∫
ρhvφuφ

√
γ dxdydz . (4.65)

The quantity uφ := −Wβφ/α+Wvφ denotes the φ-component of the fluid four-velocity.
Furthermore, the quantities βφ and vφ are the φ-component of the shift vector and the
the Eulerian three-velocity, respectively. The rotational energy is shown in the bottom
panel of Fig. 4.9.

We observe two important effects. First, initial oscillations of Erot appearing in the
first . 2 ms after merger are damped stronger with higher viscosities, e.g., see the inset
in the bottom panel of Fig. 4.9. Second, we find that the final amount of rotational
energy depends monotonically on the value of the bulk viscosity where higher bulk
viscosities lead to a higher Erot at the end of the simulations. The damping of the oscil-
lations can be explained naturally by considering that the origin of these oscillations
are periodic collisions of the two neutron star cores in the postmerger. Bulk viscos-
ity leads to damping of fluid expansion and compression and therefore directly affects
such periodic core bounces through strong nonlinear damping. Further evidence for
this process is provided by the inset in the left panel of Fig. 4.9 which shows reduced
deformations in the corresponding time interval. The behaviour of the final rotational
energy of the SMNS indicates that strong bulk viscosities are able to efficiently decrease
losses of kinetic rotational energy. This is not suprising as the main mechanism by
which rotational energy is lost in the postmerger phase is the emission of GWs sourced
by rotating m = 2 density deformations. Due to their reduction a larger portion of the
rotational kinetic energy can be conserved until the end of the simulations.
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Figure 4.11: Gravitational-wave strain in viscous
neutron star mergers
Gravitational-wave strain in the ` = 2,m = 2 mode of the
+ –polarisation extracted at ∼ 740 km and normalized
to a distance of 100Mpc. Shown are the configurations
zero (black line), low (green line), medium (blue line)
and high (red line) viscosity. Thick solid lines report the
corresponding amplitudes.

We show further evidence
for this mechanism in Fig. 4.10,
where the left (right) panel
shows φ-averages in the equato-
rial plane of the angular veloc-
ity (rest-mass density) as a func-
tion of the coordinate radius r :=
(x2 + y2)1/2 at t − tmer ≈ 23 ms.
At this time, we observe higher
angular velocities with higher
bulk viscosity in the region r .
7 km, while the opposite trend,
i.e., lower angular velocity with
higher bulk viscosity, is realized
for 7 km . r. The different angu-
lar velocity profiles are the con-
sequence of the efficient damp-
ing of m = 2 density deforma-
tions as these are important in
order to transport angular mo-
mentum efficiently to large radii
r, see also [210]. Thus, reduced
deformations lead to less effi-
cient angular momentum redis-
tribution. On top of that, the
increased centrifugal and ther-
mal support in the innermost re-
gions of the SMNS leads to a redistribution of matter inside the SMNS core which can
be seen in the rest-mass density profiles shown in the right panel. The density is de-
creased (increased) in the inner (outer) core, i.e., r . 5 km (5 km . r).

4.4.3 Gravitational-wave emission

Next, we report the emitted postmerger GW signal in Fig. 4.11. We start by focussing
on GW damping. Overall, we observe a strong damping of the ` = 2,m = 2 mode of the
GW signal with higher viscosities which is explained by the efficient decrease of the
m = 2 deformation, see e.g., Fig. 4.9.

More precisely, we observe that for t − tmer . 1 ms all three signals are very similar
and start to deviate only afterwards. This time corresponds approximately to half a
collision-and-bounce cycle of the stellar cores after which the cores reach a maximum
separation. This can be observed in Fig. 4.11 where at t − tmer ≈ 1 ms the second lo-
cal maximum in the signal is reached. Afterwards, the three signals start to differ in
amplitude but not in phase until t − tmer . 2.5 ms, which is a clear sign of the impact
of bulk viscosity. Higher bulk viscosities lead to stronger dissipation of the radial ki-
netic energy stored in the colliding motions of the stellar cores. At t − tmer ≈ 2.5 ms
we observe that the waveforms aquire a phase difference which can be understood by
looking at the power-spectral density of the postmerger GW signal shown in Fig. 4.12.

Overall, we observe that the highest peak of the spectral density, f2, is shifting
monotonically to higher frequencies, e.g., the difference between the zero and high vis-
cosity case is ∆fzero,high ≈ 280 Hz. This value is approximately twice as larger as the
frequency shifts observed in [140] and [202] where weak chemical equilibration has
been implemented either in the instantaneous equilibration limit, i.e., Γ → ∞, with
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Γ being the reaction rate, or by using Urca rates self-consistently in the simulations,
respectively. This behaviour can be understood by keeping in mind that higher vis-
cosities lead to a decreased m = 2 deformation of the SMNS as shown in the top panel
of Fig. 4.9. Smaller deformations of the SMNS cause two effects both of which lead to
a spin-up of the SMNS core.

First, the interaction between the high-density bar-mode and the surrounding isotropic
low-density matter leads to spiral-wave winds and mass ejection on dynamical timescales
[210, 252]. But, this interaction leads not only to dynamical mass ejection. More gener-
ically, the redistribution of angular momentum to larger distances from the SMNS core
is caused, as mentioned before. Effectively, this means that higher rotational frequen-
cies can be realized in the “inner” regions of SMNS if the development of the high-
density bar-mode is suppressed due to large bulk viscosities.
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Figure 4.12: Gravitational-wave power spectral
density in viscous neutron star mergers
Power spectral density of the ` = 2,m = 2 mode of the
+ –polarisation extracted at ∼ 740 km and normalized to
a distance of 100Mpc for the configurations zero (black
line), low (green line), medium (blue line) and high (red
line) viscosity. Grey lines denote sensitivity curves of a
selection of GW detectors [146, 61].

Second and perhaps most
importantly, the decrease in GW
emission shown in Fig. 4.11
leads to a decrease in angu-
lar momentum losses through
GWs. Effectively, this means
that higher rotational frequen-
cies can be realized in the SMNS
if the moment of inertia is kept
fixed. Then, higher rotational
frequencies will also lead higher
frequencies in the GW spec-
trum.

Additionally, we observe in
Fig. 4.12 that the neighbouring
peaks, i.e., the local maxima de-
noted by f1 and f3 in Fig. 4.12,
are decreasing with increasing
bulk viscosity as well. Assuming
that these peaks are the result of
the nonlinear coupling between
the rotating non-axisymmetric
bar-mode and the quasi-radial
mode excited through the colli-
sion [291, 296], the decrease can
be explained by bulk-viscous
damping of the quasi-radial
mode.

Furthermore, as can be seen in the top panel of Fig. 4.9 a low viscosity also leads to
a decrease of the m = 2 deformation, which, however, is very weak. At the same time,
a low viscosity leads to a weak spin-up of the SMNS core shown in the left panel of
Fig. 4.10. For the low viscosity case both of these effects, i.e., the decrease of the m = 2
deformation and the spin-up of the SMNS core, lead to comparable but counteracting
effects on the damping of gravitational waves. While the reduced m = 2 deformation
decreases GW emission, the spin-up leads to an increased emission. Both of these
effects become comparable for the low viscosity case, which leads to the amplitude
of the ` = 2,m = 2 mode being equal to and at certain times even higher than the
amplitude from the zero viscosity case. Note that non-monotonic behaviour has been
observed before in general-relativistic LESs of BNS mergers [244] where extra terms in
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the hydrodynamic equations take the form of a shear-viscous tensor.
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Figure 4.13: Radiated energy and remnant spin in
viscous neutron star mergers
Evolution of the radiated GW energy (solid lines) and
of the dimensionless spin of the SMNS remnant (dashed
lines) for the four configurations considered. Both quan-
tities are measured at ∼ 740km.

To conclude the discussion
about the GW emission from
viscous BNS mergers we briefly
mention the impact of bulk
viscosity on the cummulative
energy emitted by GWs EGW.
Figure 4.13 shows the emitted
GW energy (solid lines) together
with dimensionless spin of the
SMNS remnant χrem (dashed
lines) defined by

χrem :=
JADM − JGW

(MADM −EGW)2 ,

(4.66)

where MADM and JADM are the
initial ADM mass and angular
momentum, respectively, and
JGW ≈ JzGW is the radiated angu-
lar momentum approximated by
its z-component (see, e.g., [226]).

Higher bulk viscosities lead
to less energy losses due to GW
emission. Again, it is inter-
esting to consider the low vis-
cosity case as we observe non-
monotonic behaviour which cor-
responds to our previous discus-
sion about GW damping in the low viscosity case. In essence, our previous discussion
is directly related to the non-monotonicity observed here. We recall that the effect of
reduced m = 2 density deformations is comparable to the effect of the spin-up of the
SMNS core resulting in an increased radiated energy.

4.4.4 Thermal properties

In this subsection we discuss the impact of bulk viscosity on the thermal properties
of BNS mergers. We start by reporting the maximum rest-mass density (top panel of
Fig. 4.14) and the thermal energy

Eth :=
∫
ρεW

√
γ dxdydz , (4.67)

(bottom panel of Fig. 4.14).
First, from the inset in the top panel of Fig. 4.14 we observe that the strong density

oscillations which occur in the first ∼ 5 ms after merger are damped efficiently in the
cases with strong bulk viscosities. This is not suprising as these oscillations are related
to expansion and compression cycles of the newly formed SMNS. It is precisely the
kinetic energy stored in fluid expansion and compression which is dissipated through
bulk viscosity. Furthermore, we observe that a larger bulk viscosity leads to a less dense
SMNS core at the end of our simulations at around t−tmer ≈ 24 ms. This effect is similar
to the increase in the kinetic rotational energy observed previously, e.g., see Fig. 4.9 and

69



4 Bulk viscosity in binary mergers

Fig. 4.10. Hence, this can be explained by the additional centrifugal support which is
present for larger bulk viscosities.
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Figure 4.14: Maximum rest-mass density and ther-
mal energy in viscous neutron star mergers
Top: Maximum rest-mass density in the postmerger
phase for the zero (black line), low (green line), medium
(blue line) and high (red line) viscosity case. The inset
shows a zoom-in for the first five milliseconds. Bottom:
Same as Top but for the total thermal energy defined in
Eq. (4.67).

Second, from the bottom
panel of Fig. 4.14 we find that
larger bulk viscosities lead to a
larger overall thermal energy in
the first ∼ 5 ms after merger.
As observed before, during the
first ∼ 5 ms after merger the
damping of large density oscilla-
tions is most efficient such that
also the dissipation of kinetic
into thermal energy is most effi-
cient. Thus, larger bulk viscosi-
ties lead to larger thermal en-
ergies during that time. How-
ever, after the first five mil-
liseconds other effects need to
be taken into account in order
to explain the evolution of Eth.
While the dissipation of kinetic
into thermal energy leads to an
increase in thermal energy the
aforementioned decrease in cen-
tral rest-mass density leads to
a decrease in thermal energy.
Both of these effects are compet-
ing on a timescale larger than
five milliseconds which leads to
the non-monotoic behaviour ob-
served in Eth at the end of our
simulations. In particular, we
see that the decrease in central
density of the medium and high
viscosity cases leads to lower fi-
nal thermal energies than in the
low viscosity case which has the
largest final thermal energy. The
final thermal energy of the high
viscosity case is even below the
inviscid case.

Finally, we show the total ki-
netic energy in the z-direction

Ez :=
1
2

∫
ρhvzuz

√
γ dxdydz ,

(4.68)

in Fig. 4.15. In order to
strengthen the claim that during
the first ∼ 5 ms after the merger

most of the bulk-viscous energy dissipation is taking place we can make use of Ez. This
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is illustrative as the kinetic energy in the z-direction is generated purely by strong os-
cillations and shocks coming from the collision of the binary and is therefore subject to
bulk-viscous damping. Here, we see very clearly that the behaviour is monotonic and
larger bulk viscosities lead to a smaller Ez. Additionally, we also verify that most of the
kinetic energy is dissipated during the first ∼ 5 ms after merger.
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Figure 4.15: Kinetic energy in viscous neutron star
mergers
Total kinetic energy in the z-direction defined in
Eq. (4.68) for all viscosity cases considered in this inves-
tigation.

Furthermore, we can also
evaluate “how viscous” the fluid
is or in other words, how large
the deviations from thermody-
namic equilibrium are by mea-
suring the relativistic Reynolds
numberR defined in Eq. (2.114).
We present the quantity |R−1|
measured in the center of the
grid for the first ∼ 5 ms af-
ter merger in the top panel
of Fig. 4.16 while the quan-
tity |Π|/p measured in the cen-
ter of the grid for the same time
interval is shown in the bot-
tom panel. We present time-
series for all simulations and
additionally show the quanti-
ties (|Π|

NS
/ρh)c and (|Π|

NS
/p)c de-

noted by dashed lines in both
panels, see also Eq. (2.104). The
NS values are presented only for
the high viscosity case to avoid
overcrowding the figure.

Both panels show qualita-
tively the same unsurprising be-
haviour: Larger bulk viscosities lead to a larger inverse Reynolds number as well as
larger viscous contributions to the total pressure. It is interesting to note that for the
high viscosity case the inverse Reynolds number reaches values above ∼ 1% which cor-
responds to a bulk-viscous pressure that is ∼ 20% of the equilibrium pressure. This
happens right after merger when the strongest density oscillations are present. After-
wards, both quantities decrease but remain of this order until t − tmer ≈ 1.5 ms.

Then, both quantities drop sharply by approximately two orders of magnitude and,
after further decrease, reach values of around (|Π|/ρh)c ≈ 10−5 and (|Π|/p)c ≈ 10−4 at
t − tmer ≈ 5 ms. This provides further evidence that bulk-viscous dissipation works
very efficiently in the first five milliseconds after merger; Figure 4.16 even suggests
that during the first 1.5 ms after merger bulk-viscous dissipation is having the biggest
impact on the merger.

The measurement of the relativistic Reynolds number enables us to compare off-
equilibrium contributions in BNS mergers to the viscous contributions in another rel-
ativistic fluids, namely the QGP encountered in HICs. Following the results presented
in [202], we first observe that the order-of-magnitude estimates obtained in that study
through post-process calculations agree with our findings for the highest viscosity case.
This is not suprising as [202] present the maximum inverse Reynolds number over the
whole domain which is likely found where the bulk viscosity ζ reaches its maximum.
Since our high viscosity case makes use of a constant value for ζ which corresponds
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to the highest value found in [202], it is natural to expect similar inverse Reynolds
numbers if the underlying fluid motion does not vary significantly.
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Figure 4.16: Relativistic inverse Reynolds num-
ber and bulk-viscous pressure over equation of
state pressure in viscous neutron star mergers
Top: Absolute inverse Reynolds number, i.e., the ratio
of the absolute bulk-viscous pressure over the enthalpy
density, for all viscosity cases in different solid lines.
The black dashed line denotes the same quantity but
calculated from the NS value. Bottom: Same as Top but
for the ratio of the absolute bulk-viscous pressure over
the EOS pressure.

Second, as observed in [202]
we find that the inverse Reynolds
number in HICs is approximately
one order of magnitude higher
than in BNS mergers suggest-
ing that the QGP is further
away from thermodynamic equi-
librium than the high-density
matter encountered in a SMNS
shortly after merger.

Next, we report sections of
the temperature distribution (top
row) and the distribution of the
quantity Π/p (bottom row) in
the equatorial plane at t − tmer ≈
4.22 ms for the low (left col-
umn), medium (middle column)
and high viscosity (right column)
cases. The solid line denotes a
density contour at ρ = ρh ≈ 4.52×
1014 g cm−1 while the dashed line
denotes a density contour at ρ =
ρl ≈ 1.13 × 1012 g cm−1. Dur-
ing this time the strong damp-
ing of density oscillations and
thus the dissipation of oscillatory
kinetic energy into thermal en-
ergy has almost ended, as dis-
cussed previously. However, the
SMNS has not settled into an ap-
proximately axisymmetric state
yet where the rotational energy
density has been redistributed.
Thus, during this time the ther-
mal energy is not yet affected by
the indirect influence of matter
redistribution due to centrifugal
forces.

As discussed previously, this
indirect influence leads to non-
monotonicity in the thermal en-
ergy at the end of the simula-
tions. On the other hand, this
means that we should be able
to observe higher temperatures
for higher bulk viscosities during

this time because all configurations have a similar compactness as can be observed
in Fig. 4.14, where all configurations have a comparable maximum rest-mass density
at t − tmer ≈ 4.22 ms. Indeed, we observe that the temperature distributions shown
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Figure 4.17: Cross-sections of temperature and bulk-viscous pressure over equation
of state pressure in viscous neutron star mergers
The color code shows cross-sections of the temperature T (top row) and of the ratio of the
bulk-viscous pressure Π over the EOS pressure p in the (x,y) plane. The snapshots are taken at
t−tmer = 4.22 ms. Shown are the low viscosity (left column), medium viscosity (middle column)
and high viscosity (right column) cases.

in the top row of Fig. 4.17 look more homogeneous and feature less “cold” material,
i.e., T . 5 MeV, if the bulk viscosity is large.

Two effects are important in order to understand this behaviour. First, as already
mentioned, higher bulk viscosities lead to more dissipation of kinetic into thermal
energy which leads to an increase in temperature if the fluid is not expanding simul-
taneously (adiabatic cooling might dominate the temperature evolution). Second, the
decrease in kinetic energy is affecting the redistribution and ejection of loosely bound
matter through shock waves. This means that in addition to the increased dissipa-
tive heating due to bulk viscosity the SMNS is also less efficient in transporting heated
matter through shock waves. Both of these effects lead to the relatively homogeneous
distribution of temperature in the outer layers of the SMNS for the high viscosity case
shown in the top right panel of Fig. 4.17.

In addition, the lower row shows how the bulk-viscous pressure is distributed.
First, given that ρl marks the value of the rest-mass density below which we set ζ =
ζl = 0, e.g., see Eq. (4.48), we observe that the bulk-viscous pressure Π becomes van-
ishingly small for densities below ρl . Furthemore, we observe that |Π|/p reaches its
maximum value in the transition zone ρl < ρ < ρh, i.e., between the dashed and the
solid line. The largest values of |Π| are reached in regions with densities higher than ρh
because these regions have the largest oscillations and bulk viscosities. Nevertheless,
the largest values of |Π|/p are sensitive to the rapid decrease in pressure in the outer
layers of the SMNS which is the reason for |Π|/p reaching its maximum at ρ < ρh.

We also observe that even though the distributions of Π/p are subject to different
density oscillations, overall, larger bulk viscosities lead to larger bulk viscous pressures
as one would intuitively expect. We recall that this was not the case for the viscous
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migration test reported in Fig. 4.6 as the high viscosity case was extremely efficient in
the damping of density oscillations.

Last but not least, the distributions of Π/p resemble quadrupolar structures for
ρh ≤ ρ and ρl < ρ < ρh for all cases. This can be explained by considering the m = 2
bar-mode deformation of the SMNS and its interaction with the surrounding matter. It
is useful to recall that Π ∼ −ζΘ in our simulations. This means that regions with Π < 0
are expanding while regions with Π > 0 are compressing. First, we observe that one
of the intersections between negative and positive bulk-viscous pressure is connecting
the two temperature “hot spots” [142] which also correspond to the two largest eddies
that developed during the merger. Then, the other intersection separating negative and
positive Π regions is found approximately orthogonal to the first intersection connect-
ing the hot spots.

As the SMNS is rotating counter-clockwise in Fig. 4.17 we observe that the regions
of the SMNS which are located immediately above either of the two hot spots are al-
ways compressing (positive Π) while the regions below either of the two hot spots are
expanding (negative Π). As the two eddies located at the two temperature hot spots
have the same orientation as the rotation axis of the SMNS, i.e., both rotate counter-
clockwise, matter above the hot spots must have a postive Π and matter below a nega-
tive Π. The reason for this is that the rotating motions of the eddies compress matter in
front of them because of the drag towards the SMNS. Correspondingly, matter behind
the eddies expands because of the drag away from the SMNS.

Finally, we discuss sections of the rest-mass density distribution (left half pan-
els) and the distribution of the temperature (right half panels) in the (xz) plane at
t − tmer ≈ 23 ms for the zero (upper left), low (upper right), medium (lower right)
and high viscosity (lower left) cases in Fig. 4.18. The solid line denotes a density
contour at ρ = ρh ≈ 4.52 × 1014 g cm−1, the dashed line denotes a density contour at
ρ = ρl ≈ 1.13 × 1012 g cm−1 and the dash-dotted line denotes a low-density contour at
ρ ≈ 1.85 × 1010 g cm−1 which covers the envelope of the SMNS or torus. This figure
helps us to understand the impact of large bulk viscosities on the overall structure of
the long-lived SMNS and torus when a quasi-stationary state is reached. First, we ob-
serve that the torus has a smaller extent, if the bulk viscosity is increased. Also, the
SMNS has a less oblate shape with larger bulk viscosities which is related to the less
efficient angular momentum transport to the outer layers of the remnant. In general,
large bulk viscosities prevent neutron star matter from reaching large radii which leads
to an overall more compact envelope and an higher concentration of angular momen-
tum at smaller radii.

Second, focussing on the temperature distributions, we find that the low-density
funnel above the SMNS has overall lower temperatures with larger bulk viscosities. At
this point it is important to remark that large temperatures in the funnel region are
most likely the consequence of using a hybrid EOS with an ideal gas law because a
comparable study using fully tabulated hot EOSs did not show this behaviour [244].
However, since we are interested in learning about the qualitative impact that large
bulk viscosities have in the postmerger phase, it is still interesting to compare the tem-
perature distributions for the different cases to understand how bulk viscosity can im-
pact the funnel region. In our case, large temperatures in the funnel region stem from
bound shock-heated material which accumulates above the SMNS. As bulk viscosity
tends to damp violent nonlinear density oscillations of the SMNS, which are a primary
source of shock waves, larger bulk viscosities tend to produce weaker shock waves and
therefore less efficient shock-heating in the funnel region.
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Figure 4.18: Cross-sections of rest-mass density and temperature at small distances
in viscous neutron star mergers
Left (Right) half of each panel: The color code shows cross-sections of the rest-mass density ρ
(temperature T ) in the (x,z) plane. The snapshots are taken at t − tmer = 23 ms. Shown is the
zero viscosity case in the upper left panel, the low viscosity case in the upper right panel, the
medium viscosity case in the lower right panel and the high viscosity case in the lower left
panel. The solid line denotes a density contour at ρ = ρh ≈ 4.52× 1014 g cm−1, the dashed line
denotes a density contour at ρ = ρl ≈ 1.13 × 1012 g cm−1 and the dash-dotted line denotes a
low-density contour at ρ ≈ 1.85× 1010 g cm−1.
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4.4.5 Dynamical mass ejection
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Figure 4.19: Mass and velocity distribution of dy-
namical ejecta in viscous neutron star mergers
Top: Cummulative ejected mass from the Bernoulli crite-
rion. The detector is placed at ∼ 517 km for all viscosity
cases. Bottom: Distribution of ejected mass in velocity
v =

√
vivi at the end of our simulations. The inset shows

a zoom-in around the mean of the distribution.

In this subsection we discuss the
impact of large bulk viscosities
on the dynamical mass ejection
in our simulations. We start
by showing to total unbound
material passing through a de-
tector at ∼ 517 km and calcu-
lated by using the Bernoulli cri-
terion, i.e., material is classified
as being unbound if −hut − h∞ >
0 with h∞ being the minimum
specific enthalpy of the cold EOS
table employed, see also [121].
The top panel of Fig. 4.19 shows
the cummulative unbound mass
as a function of t− tmer while the
bottom panel shows the veloc-
ity distribution of the total un-
bound material at the end of the
simulations for all cases.

First, we observe a clear im-
pact of bulk viscosity on the to-
tal unbound material from the
top panel. Large bulk viscosities
suppress dynamical mass ejec-
tion. For the high viscosity case
the total ejecta mass is only ∼
20% of the mass measured for
the zero viscosity case. The im-
pact of bulk viscosity on the ve-
locity distributions is less severe.
We observe that large bulk vis-
cosities tend to suppress ejecta
with velocities below ∼ 0.2 and
above ∼ 0.5 compared to the less
viscous cases.

As can be seen from the inset
in the bottom panel of Fig. 4.19,
the majority of the distribution
tends to shift slightly to higher
velocities. Correspondingly, the
median of the distribution is
shifting to higher velocities as
well. The suppression of the

slow ejecta component as well as the shift of the distribution to higher velocities is
most likely sourced by the same effect. We suspect that the slow ejecta, more pre-
cisely, ejecta with v . 0.2, observed in the zero and low viscosity cases stems from
marginally unbound material which could be powered by shocks which propagate
through it. Large viscosities would naturally suppress this type of ejecta due to less ef-
ficient shock-heating, see also the discussion on Figs. 4.17 and 4.18. As a consequence,
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Figure 4.20: Cross-sections of rest-mass density and Bernoulli criterion in viscous
neutron star mergers
Top (Bottom) half of each panel: The color code shows cross-sections of the rest-mass density ρ
(Bernoulli criterion −hut −h∞) in the (x,y) plane. The snapshots are taken at t − tmer = 7.11 ms.
Shown is the zero viscosity case in the upper left panel, the low viscosity case in the upper
right panel, the medium viscosity case in the lower right panel and the high viscosity case in
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the distribution of the ejecta in v shifts to higher velocities as only the marginally un-
bound material with low velocities is affected by this mechanism.

The suppression of the fast ejecta component is the direct result of strong viscous
damping of density oscillations. The fast ejecta component originates from the first
bounces of the two neutron star cores. As bulk viscosity tends to damp these violent
collisions the energy reservoir powering the ejection of fast matter is dissipated more
efficiently leading to a reduction of fast unbound matter.

Next, we will discuss the geometric distribution of the dynamical ejecta in the ϑ
and φ-directions on the detector. Figure 4.20 shows the rest-mass density (top half
panels) and the quantity −hut − h∞ (bottom half panels) at t − tmer ≈ 7.11 ms for all
configurations in the equatorial plane. We observe that an increase in bulk viscosity
leads to a more asymmetric or less spherical shape of the outermost ejecta front which
is at the same time a major component of the overall dynamical ejecta. This means that
bulk viscosity tends to increase the selection of a preferred direction of the dynamical
ejecta in the φ-direction. In our case, mass ejection tends to be increased for the angles
φ ≈ π/4 and φ ≈ 5π/4. This finding is further supported by the Mollweide projections
of the total dynamical ejecta presented in Fig. 4.21. Solid lines denote contour lines
at 0.006%. For the medium and high viscosity case we observe pockets of low mass
ejection in the equatorial plane with less than 0.006% of Mej. On the other hand, we
also observe that the medium and high viscosity cases tend to reach higher fractions of
theirMej inside the contour lines which means that these distributions are less uniform
than the distributions for the zero and low viscosity cases. Additionally, we observe
low mass ejection in the polar direction for all cases which is in agreement with the
findings from other NR simulations, see e.g., [77]. This effect can easily be explained
by considering that the dynamical ejecta consists of a tidally ejected component and
a shock-heated component [285]. The tidally ejected component is weakly affected by
bulk viscosity in our simulations as we set ζ = 0 in low-density matter which is more
likely to get unbound through tidal forces. In contrast, as already explained above
together with Fig. 4.18, strong bulk viscosities reduce shock-heating. Hence, the first
bounce of the two neutron star cores powers significantly more matter ejection than
all subsequent bounces, if the bulk viscosity is large. Therefore, matter is ejected pri-
marily in the direction of the first bounce for the high viscosity case while for the zero
viscosity case matter ejection from the subsequent core bounces tends to symmetrise
the distribution along the φ-direction.

To conclude this subsection, we present the same quantities as in Fig. 4.18 focussing
now, however, on the distributions at large distances from the SMNS in Fig. 4.22. As
already observed in Fig. 4.18, we find that large bulk viscosities lead to a significantly
more compact envelope or torus. We attribute this observation to the less efficient
transport of matter to large distances which is a direct effect of large bulk viscosities.
Also, it is important to note that the matter shown in Fig. 4.22 is primarily bound.
The temperature distributions at large distances are comparable for all cases which
indicates that the impact of bulk viscosity on the thermal properties of matter located
at large distances from the SMNS is weak.

4.5 Summary and outlook

The results presented in this chapter can be broadly grouped into results on numerical
aspects of the inclusion of bulk viscosity in NR simulations (Sections 4.2 and 4.3) and
the impact of bulk viscosity on BNS mergers (Section 4.4). Thus, in the following we
divide this section into two summaries and overviews. The first summary and overview
is based on Sections 4.2 and 4.3 and concludes about the numerical aspects of the
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Figure 4.21: Mollweide projections of ejected mass in viscous neutron star mergers
The color code shows Mollweide projections of the cummulative ejected mass measured by
using the Bernoulli criterion at the end our simulations. Shown is the zero viscosity case in
the upper left panel, the low viscosity case in the upper right panel, the medium viscosity case
in the lower right panel and the high viscosity case in the lower left panel. Solid lines denote
contour lines at 0.006%.

0

100

200

300

z
[k

m
]

zero visc. low visc.

−300 −200 −100 0
x [km]

0

100

200

300

z
[k

m
]

high visc.

0 100 200 300 −300 −200 −100 0
x [km]

med. visc.

0 100 200 300

107 108 109 1010 1011 1012
ρ [g cm−3]

100 101

T [MeV]

Figure 4.22: Cross-sections of rest-mass density and temperature at large distances
in viscous neutron star mergers
Same as Fig. 4.18 but for a much larger domain focussing on the envelope of the remnant.
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inclusion of bulk viscosity in NR simulations. The second summary and overview is
based on Section 4.4 and concludes about the impact of bulk viscosity in BNS mergers.

4.5.1 Numerical aspects of the inclusion of bulk viscosity in numerical rel-
ativity

In this chapter we have presented a new implementation strategy to include the effects
of bulk viscosity in NR simulations. The strategy is heavily based on the implementa-
tion developed in [71] with a few differences to account for the more complex dynamics
of neutron stars. To summarize, the discretization of the fluxes is based on high-order
HRSC methods while the discretization of the sources makes use of standard finite-
difference methods. Additionally, we employ a modified version of the C2P algorithm
proposed in [124]. Our modification preserves the existence and uniqueness properties
of the root-finding function, thereby making it highly robust. We also make use of a
limiting procedure based on the dominant energy condition and on causality. Finally,
we employ a cubic fall-off of the bulk viscosity coefficient ζ ∝ ρ3 in low-density regions
which ensures a smooth transition between viscous and inviscid matter.

As a first test case we consider the measurement of numerical viscosity and calcu-
late the damping time of the radial fundamental eigenmode of an isolated TOV solu-
tion. By evolving stars with different physical bulk viscosities and different resolutions
we were able to observe convergent behaviour in the measured viscosity. Specifically,
we observe that the measured viscosity is converging to the employed physical viscosity
when we increase the numerical resolution. However, the convergence order is strongly
affected by the size of the neutron stars due to the relative importance of discretization
errors originating from the ill-balanced surface. In a representative setup we obtained
numerical viscosities . 1026 g cm−1 s−1 which is a promising finding considering that
realistic viscosities can reach values of & 1027 g cm−1 s−1 [276, 17] in isolated stars as
well as BNS mergers.

As a second test case we simulate the violent migration of unstable neutron stars to
the stable branch. In contrast to the first test case, this scenario tests the implemented
equations in a nonlinear and fully general-relativistic regime. We observe the expected
behaviour that the damping of the nonlinear density oscillations is increased for larger
bulk viscosities. Additionally, dissipative heating leads to a decrease of the central
rest-mass density because the contribution of the thermal pressure in the neutron star
core increases. The contribution can reach values of up to ∼ 10% of the total pressure
for the highest viscosity case. Also, we observe inverse Reynolds numbers on the or-
der ∼ 1% for the highest viscosity considered. Furthermore, we find good agreement
between the values of the bulk-viscous pressure and its NS value which indicates that
our simulations are in the NS regime of the equations. Finally, this test case allows us
to provide evidence that our scheme is able to handle the transition between a viscous
neutron star and an inviscid low-density exterior. This is an important ability as it
allows us to study the impact of bulk viscosity on mass ejection in BNS merger simu-
lations. We show that shock waves which originate at the neutron star surface located
in viscous matter propagate without any disturbance through the transition region be-
tween viscous and inviscid matter. This allows us to observe that higher viscosities lead
to weaker shock waves in the second and third bounce of the neutron star. It is due to
the efficient dissipation of kinetic energy into heat that a lower amount of energy is
transferred to the shock wave for higher bulk viscosities.

Finally, we plan to extend our numerical scheme in two important ways. First, the
simulations performed so far make use of a simplified hybrid EOS which makes it easy
to calculate the thermodynamic derivatives in Eq. (4.34). In order to use a more real-
istic temperature-dependent EOS we need to provide tabulated data for these deriva-
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tives which is straightforward but technical. Along the same lines, we plan to imple-
ment realistic temperature-dependent bulk viscosities and relaxation times given by
Eqs. (4.22) and (4.24). And second, short relaxation times as well as the explicit time in-
tegration procedure currently employed could lead to stiff source terms which require
very short timesteps in the numerical solution. Hence, the simulations could become
unfeasible due to the increasing computational costs. In order to solve this problem we
will consider more sophisticated numerical methods including mixed implicit-explicit
(IMEX) time integrators [218, 97, 314, 197, 198]

4.5.2 Impact of bulk viscosity on binary mergers

Motivated by the possibility of studying the impact of realistic bulk viscosities on the
postmerger GW emission from BNS mergers we perform fully general-relativistic sim-
ulations employing a causal MIS-type model for the inclusion of a relativistic bulk
viscosity. In order to estimate the maximum impact a realistic bulk viscosity can have
we perform several simulations with varying constant bulk viscosities assuming the
values ζ ∈ {ζ0,ζ0/2,ζ0/5,0}with ζ0 = 1030 g cm−1 s−1. We also carry out several simula-
tions with different resolutions in order to estimate the impact of discretization errors.
We observe qualitatively consistent behaviour such that we only report the results from
the high-resolution simulations.

We start by summarizing the results on the GW emission from viscous BNS merg-
ers. We find that high bulk viscosities lead to damping and a frequency increase in
the GW emission. Both of these effects are related to the decrease of m = 2 density
deformations as a result of a strong bulk viscosity. Large bulk viscosities efficiently
damp the violent collisions of the two neutron star cores during the first few millisec-
onds after the merger. This leads to reduced m = 2 density deformations. The decrease
of density deformations causes weaker angular momentum losses through GW emis-
sion and weaker angular momentum transport to large radii. Effectively, larger bulk
viscosities lead to faster rotating SMNS cores in the postmerger phase which leads to
the frequency increase in the GW signal. For ζ = 1030 g cm−1 s−1 we observe efficient
GW damping on a timescale of t − tmer . 15ms and an increase of f2 compared to the
inviscid case by ∆fzero,high ≈ 280 Hz.

We also observe non-monotonic behaviour in the GW emission for ζ = 2×1029 g cm−1 s−1.
For this magnitude of the viscosity the impact of reduced density deformations and
SMNS core spin-up seems to be comparable such that the energy emitted by GWs in-
creases compared to the inviscid case.

Additionally, moving on to the thermal properties of viscous BNS mergers, we find
that for large viscosities the increase of the total thermal energy due to dissipative heat-
ing is counteracted by the lower density of the SMNS core. These lower densities are
the result of the additional centrifugal support in the SMNS core mentioned above. We
also observe a more uniform temperature distribution and less efficient shock-heating
in the SMNS remnant. We attribute this behaviour to the dissipation of kinetic energy
into heat and, as a result, a less efficient kinetic-energy transfer from the fast-rotating
deformed SMNS core to the matter making up its envelope. This energy transfer is
suppressed for large viscosities due to the damping of density oscillations and the re-
duction of m = 2 deformations. Furthermore, we measure inverse Reynolds numbers
on the order of ∼ 1% in the center of the SMNS directly after the merger for the highest
viscosity considered. This corresponds to bulk-viscous pressures, which are approxi-
mately ∼ 20% of the total EOS pressure. Overall, the remnant of a viscous BNS merger
has a less extended envelope and at the same time a less dense core.

Finally, the dynamical mass ejection from viscous BNS mergers is in agreement with
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the overall results presented so far. We find that the dynamically ejected mass in our
simulations is suppressed by a factor of approximately five for the high viscosity case
when compared to the inviscid case. Again, this is the result of efficient dissipation of
kinetic energy which makes it hard to unbind mass. Interestingly, we also find that
the distribution of ejected matter along the azimuthal direction becomes increasingly
less uniform with increasing viscosities. We attribute this behaviour to the fact that
for large viscosities most of the unbound material stems from the first collision-and-
expansion cycle of the two stars. Thus, matter is ejected in a preferred direction.

Our results imply that viscosities on the order of ζ ≥ 5×1029 g cm−1 s−1 can signifi-
cantly impact the GW emission. Compared to the values observed in [200] this creates
a promising picture for studying the bulk viscosity of nuclear matter through BNS col-
lisions. However, in [202] effective viscosities on the order of ζ . 1028 g cm−1 s−1 have
been extracted. Values of this order will most likely not be able to influence the GW
emission. Additionally, one caveat remains when drawing conclusions from our simu-
lations: Due to the resonant behaviour of the bulk viscosity and its strong temperature
dependence, which is the result of neutrino trapping, large values of ζ will most likely
appear only in small localized regions in the SMNS [9, 200]. Hence, the conclusions
drawn from our simulations represent an optimistic viewpoint. Most likely the impact
of a realistic, density and temperature-dependent bulk viscosity with a resonant value
equal to the values sampled in this work will be reduced compared to the correspond-
ing case presented here.

Apart from using a more realistic EOS and more realistic transport coefficients, this
study could be extended to a greater variety of EOSs, total masses and mass ratios in
order to sample these parameter spaces. Furthermore, so far we haven’t closely inves-
tigated the impact of bulk viscosity on the inspiral GW signal. It would be interesting
to explore the damping of tidal deformations or resonant density oscillations as the
result of bulk viscosity during the inspiral. Finally, another potential site for the in-
fluence of a microphysical bulk viscosity could be the tidal disruption of BHNSs. Can
a large bulk viscosity “save” the neutron star from being tidally disrupted? We leave
these investigations for future work.
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Chapter 5

Crustal magnetic fields in binary
mergers

5.1 Magnetic fields in neutron stars

The role of magnetic fields is indisputable when discussing observational phenomena
related to single neutron stars. Such phenomena include radio emission and spin-down
from pulsars [239, 154], thermal emission and neutron star cooling which is intimately
linked to the evolution magnetic fields in the neutron star [241, 239], the emission of
non-thermal radiation from highly magnetised neutron stars, so-called magnetars, as
well as the observation of “hot spots” on the neutron star surface through the NASA
mission NICER [191, 264, 84], potential associations with the emission of fast radio
bursts [80, 48] and many more. Thus, our ability to understand many of these ob-
servations depends crucially on our understanding of the topology and strength of
the magnetic fields of neutron stars. Arguably, understanding magnetic fields in iso-
lated neutron stars presents on its own already a formidable challenge. But on top
that, detailed knowledge of this subject might accelerate progress on other fundamen-
tal questions related to neutron star physics, e.g., constraining the neutron star EOS.
However, even though magnetic fields participate in a wide variety of observational
phenomena of neutron stars a coherent theory of pulsar magnetospheres is still miss-
ing, see [43] for a review. Many models still rely on the simplifying assumption of a
centered dipolar field configuration. Recently, this assumption has been challenged by
NICER observations suggesting more complex, multipolar field topologies [46, 319]. In
spite of its simplicity the dipolar field component is expected to dominate the observed
spin-down of pulsars due to the weaker fall-off in distance compared to higher-order
mutlipoles. Hence, by using simple formulas relating the period P , the period time
derivative Ṗ and the angle between the rotation axis and the orientation of the mag-
netic dipole the strength of the dipolar component of the surface magnetic field Bp can
be inferred. These values are typically overlaid in the famous P -Ṗ diagram and range
from ∼ 108 G to ∼ 1014 G [154], where magnetars fall in the class of Bp & 1013 G.

But not only observations of isolated neutron stars are subject to the influence of
strong magnetic fields. At least since the advent of multimessenger astronomy for BNS
mergers marked by the coincident detection of GWs, GW170817 [1], a sGRB, GRB
170817A [1], and a kilonova signal, AT2017gfo [101, 81], strong evidence exists that
large magnetic fields are necessary to account for these observations. This conclusion
is based on a large amount of investigations exploring the ability of magnetic fields to
drive large amounts of “slow”, i.e., sub- and mildly relativistic, outflow [167, 289, 166,
115, 75, 121] as well as power ultrarelativitsic outflows in the form of so-called jets
[177, 18, 262, 220, 169, 205, 76, 209, 208, 134].
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Already early studies of BNS mergers identified a mechanism to amplify the mag-
netic field during such collisions efficiently. Namely, magnetohydrodynamic turbu-
lence which is triggered by the onset of the KHI in the first few milliseconds after
merger can lead to magnetic-field growth by several orders of magnitude [243, 130,
168, 6]. The KHI itself is developing as a result of the unstable shear layer which is
present right at the onset of the merger between both stars. The dispersion relation for
the linear Kelvin-Helmholtz modes at an interface of a simplified but representative
setup [300] can be written as

ω± = k∆V
(
ρ+ ± i(ρ+ρ−)1/2

ρ+ + ρ−

)
, (5.1)

where the quantities ω, k, ∆V , ρ+ and ρ− denote the angular frequency, the wavenum-
ber, the difference in velocity at the interface and the two densities separated at the in-
terface, respectively. From Eq. (5.1) it becomes evident that the linear Kelvin-Helmholtz
modes with a positive imaginary part (the perturbation is proportional to ∝ exp[i(kx −
ωt)]) are unstable with a growth rate of

= [ω+] = k∆V
(ρ+ρ−)1/2

ρ+ + ρ−
. (5.2)

As the growth rate in Eq. (5.2) is proportional to the wavenumber k which is inversely
proportional to the wavelength of the perturbation λ, i.e., =[ω+] ∝ k ∝ λ−1, we find
that small spatial perturbations of the interface grow faster than large ones. This
finding has very important implications for the numerical modeling of magnetic-field
amplification in BNS mergers. First, we assume that in reality all perturbations with
k & (2πR)−1, where R denotes the radius of the neutron star, are triggered and keep in
mind that the growth rate of the magnetic field is determined by the growth rate of the
KHI. As a consequence, we are left with the conclusion that due to an unavoidable fi-
nite resolution in numerical simulations an upper bound for k, which is approximately
the inverse of the grid spacing, i.e., kmax ≈ (2π∆x)−1, determines the overall observed
growth rate of magnetic fields in the numerical modeling. In reality we would expect
effects from microphysical transport, such as shear and bulk viscosity [276], a large but
finite conductivity and parasitic instabilities [213] or the backreaction of strong mag-
netic fields [213, 221] to determine kmax. This means that a faithful modeling of tur-
bulent magnetic-field amplification can only be achieved at very high resolutions and,
therefore, very high computational costs. However, so-called subgrid-scale modeling
techniques exist which try to circumvent this problem by altering the EOM through
additional terms. Simulations employing such extra terms fall in the class of LESs and
their goal is to include the small-scale, dynamo-driven, magnetic-field amplification
into global high-resolution GRMHD simulations with affordable resolutions [131, 219,
244, 66, 309, 310, 6, 284]. It is important to mention also local high-resolution sim-
ulations of the KHI in a magnetised fluid which provide evidence of saturation and
convergence of the growth of the magnetic energy [213, 320].

A generally accepted picture of how magnetic fields are amplified, how magneto-
turbulence develops and the saturation of the magnetic-field growth in a BNS merger
is still missing. However, there exists broad consensus that the turbulent amplification
process should stop when small-scale magnetic fields are strong enough to backre-
act on the fluid and therefore resist further amplification by quenching the KHI. This
means that magnetic energy and kinetic energy are in equipartition on the smallest
scales which is sometimes referred to as “local” equipartition. This mechanism yields
“magnetar-strength” fields on the order & 1016 G [243, 177, 129]. Recently, a high-
order and high-resolution global LES of merging magnetised neutron stars was able to
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Figure 5.1: Initial full- and crust-configuration magnetic-field topology
The color code shows cross-sections of the magnetic-field strength |B| in the (x,z) plane. The
snapshots are taken from the HR simulations ∼ 1 ms before merger. Yellow lines denote
magnetic-field lines. On the left we show the full-configuration while on the right we show
the crust-configuration. This figure has been reused from [74].

demonstrate this expectation [221], where the amplification of the averaged magnetic
field saturated to approximately 1016 G.

Another interesting question is about the role played by the properties of the initial
or seed magnetic field. In particular, does it matter which strength or topology the seed
field has? Some initial investigations in this direction have been undertaken by [129,
165, 271], but most recently [5] have shown that the topology of the seed field is de-
stroyed in the first milliseconds of the postmerger phase. Thus, the outcome depends
only weakly on the configuration considered, e.g., dipoles with different strengths, mis-
aligned dipoles, and even a multipolar structure. A common assumption in all of these
studies is that the magnetic field is confined to the neutron star and permeates the
whole stellar structure, i.e., the whole star is assumed to be magnetised. However, a
number of investigations studying the long-term evolution of newly born neutron stars
by exploring the rotational, thermal, and magnetic properties simulate configurations
where the magnetic field is present only in the crust [237, 238]. The underlying as-
sumption is that above a certain threshold density neutrons become superfluid and
protons become superconducting. Then, if the stellar core is a type-I superconductor
most of the magnetic flux in the core of the neutron star will be expelled on a very short
timescale [311], much shorter than the typical timescales on which BNSs merge which
are determined by orbital decay through GW emission [113]. However, it is important
to point out that the timescales on which magnetic fields are evolving in the neutron
star interior are highly uncertain and can vary up to several orders of magnitude [233,
232, 138]. Nevertheless, it is interesting to investigate whether BNS mergers together
with their observations have predicting power in distinguishing configurations where
the magnetic fields in the stellar cores have been expelled or have decayed from those
where the whole neutron stars are magnetised.

Therefore, in this chapter we will present BNS merger simulations of magnetised
neutron stars with two different magnetic-field topologies. Specifically, we distinguish
between the “crust-configuration”, where magnetic fields are located only close to the
neutron star surface, and the “full-configuration”, where magnetic fields are present
everywhere in the neutron star, i.e., the core and the crust of the neutron star are mag-
netised.

5.2 Simulation setup

In order to study the impact of crustal magnetic fields in BNS mergers, we carry out
GRMHD simulations in a fully dynamical spacetime. Hence, we solve self-consistently
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5 Crustal magnetic fields in binary mergers

Model ∆x Rin Ab gw gr pco n

[m] [M�] [M−2
� ] [M�] [M−2

� ]

full (HR) 70 0 0.028 0 0.0 1.0× 10−8 1.00
full (LR) 105 0 0.028 0 0.0 1.0× 10−8 1.00
crust (HR) 70 5 0.131 4 6.1 1.0× 10−8 0.85
crust (LR) 105 5 0.120 4 6.1 1.6× 10−7 0.85

Table 5.1: Parameters for initial magnetic fields
This table provides important information about the models we simulate in this work. Going
from the left column to the right column we show the cell size on the highest refinement level
as well as the seed magnetic-field parameters employed in Eq. (5.3) to initialize the magnetic
field, respectively. This table has been reused from [74].

Einstein’s equations by employing the Z4c formulation presented in Eqs. (2.52)-(2.57)
together with the moving puncture gauges in Eqs. (2.64)-(2.66). Furthermore, magnetic
and fluid fields are evolved by assuming the ideal MHD approximation and solving the
evolution of the vector potential. Thus, we solve the system presented in Eqs. (2.150)-
(2.152).

As before, we make use of the high-order HRSC code FIL [195, 201, 111] which
employs the publicly available Einstein Toolkit [178] infrastructure including the
fixed mesh-refinement code Carpet [277]. FIL employs fourth-order accurate finite-
difference stencils in Cartesian coordinates to solve the system in Eqs. (2.52)-(2.57).
The system of fluid and EM equations is solved via the ECHO scheme presented in
Subsection 2.5.1. In addition, we use the temperature-dependent EOS TNTYST [301]
and the initial data calculated as in Appendix C.

We use seven refinement levels and a computational domain which ranges from
−1000M� ' −1476km to 1000M� ' 1476km in all three spatial dimensions. The last
level is added shortly before merger and has a width of 32 M�. Besides, we make
use of a z-symmetry in the equatorial plane. In order to estimate the influence of
discretization errors on our results we employ two different resolutions which are ∆x ∼
0.047 M� ≈ 70m and ∆x ∼ 0.071 M� ≈ 105m on the seventh refinement level. The
former resolution is labeled as high-resolution (HR) and the latter is denoted as low-
resolution (LR).

We make use of the same analytic function for both configurations, i.e., the crust-
and full-configuration, in order to initialize the vector potential

Ai = Ab [−(xj − xj
NS

)εij ]exp[−gw(r − gr )2]max(p − pco,0)n, (5.3)

for i ∈ {x,y} and Az = 0, where xjNS denote the coordinate centers of the two stars (x3
NS

=

z
NS

= 0), r :=
√
δij(xi − xiNS

)(xj − xjNS), and εij is the Levi-Civita symbol. The outer bound-

ary of the magnetised region is determined by the cut-off pressure pco ≈ 6 × 10−5 × pc,
where pc is the central pressure. The inner boundary of the magnetised region is set
by the parameter Rin, such that Ai = 0, if r < Rin (see Table 5.1 for a comprehensive
account of the employed seeding parameters).

Using such a prescription for the magnetic-field seed, i.e., Eq. (5.3) and Table 5.1,
we obtain magnetic-field configurations which are characterised by closed poloidal
loops around a neutral line which is located at ' 0.52 RNS for the full-configurations
and at ' 0.87 RNS for the crust-configurations. The topolgy shortly before merger is il-
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Model |B|seed
max tKHI

end − tmer tD
end − tmer tTA

end − tmer

[G] [ms] [ms] [ms]

full (HR) 1.04× 1014 2.46 3.48 7.13
full (LR) 1.04× 1014 1.77 5.15 10.1
crust (HR) 2.36× 1014 0.90 3.59 5.09
crust (LR) 2.26× 1014 1.82 3.54 11.5

Table 5.2: Characterising information about the full- and crust-configuration
This table provides important information about the models we simulate in this work. Going
from the left column to the right column we show the maximum magnetic-field strength after
initialization, |B|seed

max , as well as the end time of the different stages discussed in the text, i.e., tKHI
end,

tD
end and tTA

end, respectively. This table has been reused from [74].

lustrated in Fig. 5.1. In the HR (LR) case the magnetised crust of the crust-configuration
is resolved by & 17 (& 11) gridpoints.

Furthermore, we provide additional information about the simulations presented
in this chapter in Table 5.2. From left to right, Table 5.2 shows the the initial maximum
magnetic-field strength |B|seed

max and the times characterising the different stages of our
simulations, namely, the end of the KHI-driven stage tKHI

end, the end of the decay stage
tD
end, and the end of the turbulent-amplification stage tTA

end.

5.3 Overall evolution of magnetic fields

We start this section by discussing the overall common dynamics of the magnetic fields
in both configurations with particular focus on the evolution of the total EM energy in
the whole computational domain

EB :=
1

8π

∫
(E2 +B2)

√
γdxdydz , (5.4)

where B2 := BiB
i (E2 := EiE

i) is the square modulus of the magnetic (electric) field
in the Eulerian frame. We present the evolution of EB in the top panel of Fig. 5.2
for all simulated configurations where blue lines represent the full-configurations and
red lines the crust-configurations. Solid lines represent HR simulations while dashed
lines denote LR simulations. In order to compare simulations with the same initial EM
energy budget we set the initial EM energy to ∼ 3×1044 erg for all configurations which
corresponds to a maximum initial magnetic-field strength of ∼ 1014 G (∼ 2.4 × 1014 G)
for the full-configuration (crust-configuration; see also Table 5.2).

The evolution of EB can be divided into four distinct stages all of which are charac-
terized by different processes which influence the evolution of the total EM energy. The
first stage of the evolution, or "KHI-driven stage", starts at t − tmer ≈ −0.6ms (−0.6) and
ends at t−tmer ≈ 2.46ms (0.9) for the full-configuration (crust-configuration). The KHI-
driven stage is initiated due to the development of the KHI at the shear layer between
both stars which are strongly deformed due to tidal forces. An example of overturn-
ing eddies which stem from the KHI can be observed in the first column of Fig. 5.3
which shows cross-sections of the norm of the magnetic field |B| :=

√
BiBi in the (x,y)

plane at time t− tmer = −0.12ms for the full- (top row) and crust-configuration (bottom
row). The cross-sections are obtained at z ' 1 km . 0.115 RNS which is chosen such
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Figure 5.2: Total magnetic energy and magnetic-energy growth rate for the full- and
crust-configuration
Upper panel: This panel shows the evolution of the total magnetic energy EB for all configura-
tions. Blue lines denote the full-configurations while red lines denote the crust-configurations.
Solid lines denote the HR simulations while dashed lines denote the LR simulations. Also, we
use different shadings in order to highlight the different stages for the HR full-configuration
(top half of upper panel) and the HR crust-configuration (bottom half of upper panel). Ad-
ditionally, we add a black dotted line which is a quadratic fit to the data of the HR full-
configuration during the winding stage in order to highlight the similarity. However, we move
the black dotted line slightly downwards for better visualization. Finally, V is the volume of a
reference neutron star with a radius of 11km. Lower panel, top: Shown is the same as in the up-
per panel of this figure with the only difference that t− tmer . 2ms. Lower panel, bottom: Shown
is the same as in the top half of the lower panel but instead of showing the total magnetic
energy the growth rate ĖB/EB is shown. This figure has been reused from [74].

88



5.3 Overall evolution of magnetic fields

−10

−5

0

5

10

y
[k

m
]

full (HR)

t− tmer = −0.12 ms

10
13

g
cm
−3

7×
10

14

0.52 ms 3.0 ms 14.98 ms

−10 −5 0 5 10
x [km]

−10

−5

0

5

10

y
[k

m
]

crust (HR)

10
13

g
cm
−3

7×
10

14

−10 −5 0 5 10
x [km]

−10 −5 0 5 10
x [km]

−10 −5 0 5 10
x [km] 1011

1012

1013

1014

1015

|B
|[

G
]

Figure 5.3: Cross-sections of magnetic-field strength for the full- and crust-
configuration
The color code shows cross-sections of the magnetic-field strength |B| in the (x,y) plane. The
snapshots are taken at four different times from the HR simulations. The upper panels show
the full-configuration while the lower panels show the crust-configuration. This figure has
been reused from [74].

that the influence of the boundary conditions in the equatorial plane are minimized.
Furthermore, after the linear stage of the KHI the development of turbulence occurs
which extends also to regions other than the immediate viccinity of the shear layer.
For example, the second column of Fig. 5.3 shows a snapshot at t − tmer = 0.52ms and
highlights how turbulent motions start to develop also closer to the stellar interior.

During the second stage of the evolution, or "decay stage", the total EM energy
shows a constant evolution or even a weak decay. This behaviour can be attributed to a
number factors. First, during this stage large magnetic pressure gradients are present
which stem from the magnetic field amplification of the previous stage. These gra-
dients contribute to the expansion of matter in the SMNS such that work is done on
the fluid by the magnetic fields which leads to an overall decrease in EB. In addition,
due to the development of an effective turbulent viscosity and the emission of GWs the
periodic collisions and bounces of the two neutron star cores are damped. As a conse-
quence, the production of shear layers in the fluid is suppressed. These shear layers are
important as they serve as the basis for the development of the KHI which amplifies
the magentic field. This means that in this stage KHI-driven turbulent motion ceases
to be produced efficiently as the kinetic energy in the remnant is reduced and redis-
tributed. It is interesting to note that the developed turbulence has not yet penetrated
the SMNS core. This results in weak magnetic fields in the SMNS core for the crust-
configuration and the preservation of the initial large-scale coherence of the magnetic
fields in the SMNS core for the full-configuration, e.g., see the third column of Fig. 5.3
at t − tmer = 3ms. The decay stage ends for the full-configuration (crust-configuration)
at t − tmer = 3.48ms (3.59).

In the third stage, or "turbulent-amplification stage", we observe that the total EM
energy is growing again. This means that a new process of magnetic-field amplification
has been activated and is strong enough to contribute to the growth of EB, see also
[289]. At the same time we observe that the violent and nonlinear early postmerger
phase in which the cores of both neutron stars collide periodically has ended, see [296]
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5 Crustal magnetic fields in binary mergers

for a toy model. We link the amplification during this stage to turbulent motions which
arise when the SMNS is changing its structure to a more axisymmetric one. It is also
important to note that this behaviour is not associated with the growth of the magneto-
rotational instability (MRI) but nevertheless leads to a significant amplification of the
poloidal component of the magnetic field up to t − tmer = 7.13ms (5.09) for the full-
configuration (crust-configuration).

Finally, the last and longest stage of the evolution of EB, or "winding-stage", starts
when the turbulence is not increasing anymore. This means that the evolution of EB is
not dominated by turbulence on small-scales but rather large-scale shearing motions
in the SMNS are the source of energy increase. More specifically, due to the infinite-
conductivity condition of ideal MHD large-scale differential rotation leads to magnetic
winding and the characteristic linear-in-time growth of the magnetic field, see also
[278, 79, 106, 167]. This behaviour is present until the end of our simulations, e.g., see
the final part of the top panel of Fig. 5.2. Additional evidence is given by the highly
magnetised ring that can be seen in the upper panel of the last column of Fig. 5.3.
The location of the ring corresponds to the radius where the angular velocity shows
the steepest gradient which marks the area of strongest differential rotation. Further-
more, it is important to note that even though we don’t observe saturation of EM energy
growth it is expected that the winding stage terminates when the EM energy budget
becomes comparable to the budget of differential kinetic energy. This sets a threshold
for the maximum EM energy achievable through magnetic winding. Additionally, it
is possible that the evolution of EB saturates already after the KHI-driven stage such
that all subsequent stages might be absent. This could be the result of additional terms
in the MHD equations, see [131, 221], large initial magnetic fields or even higher res-
olutions [166]. This means that the 4-stage classification presented here even though
applicable to our simulations with moderate magnetic fields may fail to hold for other
simulations and evolutions present in the literature [131, 221, 166].

5.4 Evolution of crustal magnetic fields

In this section we focus specifically on the differences between the full- and crust-
configuration which eventually determine the final magnetic-field amplification. The
first and probably most striking difference between both configurations is the duration
of the KHI-driven stage. This stage is significantly shorter in the crust-configuration
which leads to a weaker magnetic-field amplification by a factor of > 3 after the KHI-
driven stage has ended for both configurations. We will investigate this behaviour
further below in more detail. In addition, the crust-configuration exhibits a longer
decay stage and a shorter turbulent amplification than the full-configuration, see also
Table 5.2. All in all, this leads to the result that EB differs by more than one order of
magnitude between both configurations at the beginning of the winding stage. Dur-
ing the winding stage both configurations show similar growth rates of the EM energy
such that the difference in EB is preserved until the simulations end. Apart from that, it
is interesting to look into the question of why the KHI-driven amplification is weaker
in the crust-configuration than in the full-configuration. This behaviour can be at-
tributed to two effects. First, due to the different magnetic-field topologies naturally
there is less magnetised matter in the crust-configuration which is affected by turbu-
lence than in the full-configuration. Second, because in the crust-configuration the
magnetised matter is located predominantly in those regions having a lower density
(i.e., ρ . 1013 gm/cm3) and near the stellar surface, a larger portion of it is subject to
dynamical ejection and mass-shedding what ultimately removes it from the regions
where it can be used for magnetic-field amplification due to turbulence. In the full-
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configuration, however, both of these effects are suppressed.
We will now discuss the evolution of EB during the first two stages in more detail by

using also the bottom panel of Fig. 5.2. The upper row of the bottom panel of Fig. 5.2
shows the same as the top panel of Fig. 5.2 but is restricted to a window in time with
t − tmer . 2ms. The lower row of the bottom panel of Fig. 5.2 shows the growth rate
ĖB/EB for the same time window. First, we observe that EB is growing exponentially
and reaches its maximum growth rate in . 0.7ms (0.2) for the full-configuration (crust-
configuration). The maximum growth rate is similar for both configurations for the
same resolution. Also, the magnetic-field amplification is much more efficient in the
crust-configuration which manifests as more rapid changes of EB. This behaviour stems
from the fact that all of the initial EM energy participates directly in the amplification
process as it is exactly the two crusts of the neutron stars which are subject to the KHI.
In contrast, the initial EM energy is distributed over the whole extent of both stars for
the full-configuration such that it is always only a fraction of EB that is amplified. The
evolution after the maximum of ĖB/EB is similar for both configurations. The growth
rate declines until it reaches values below zero which indicates the end of the KHI-
driven stage. However, it is interesting to have a closer look at the short variations
which occur during this decline in growth rate.

We find that the variations occur with a typical period of ' 0.25 − 0.35ms. If we
assume that the largest eddies present in the simulation have a characteristic eddy-
rotation velocity of ∼ 0.15c we are able to estimate that the lengthscale of such ed-
dies is ∼ 1.8 − 2.5km. This number is broadly consistent with the size of the largest
eddies produced across all simulations. In addition, the observed period of the vari-
ations is approximately half the period of the bounces of the two stellar cores which
is ∼ 0.77ms. These observations lead to the following picture: The colliding motions
of the two neutron star cores generate turnovers of the shear layer between the stars
which produce the largest eddies present in the soon-to-be SMNS. These largest ed-
dies drag magnetic flux tubes into rotation such that periodic variations in the growth
rate develop. We conclude that lasting magnetic-field amplification depends crucially
on the development of magnetic turbulence in all regions of the SMNS. In the crust-
configuration magnetic-field amplification continues when the turbulence extends be-
yond the neutron star crust to the stellar interior but is weakened because of the mix-
ing of magnetised and unmagnetised material. Together with losses of magnetised
material at the surface of the SMNS this effect explains the faster decay of ĖB/EB in
the crust-configuration compared to the full-configuration which benefits from a fully
magnetised stellar interior.

Finally, Fig. 5.4 provides evidence for the loss of important magnetised material at
the SMNS surface which ultimately leads to the early termination of the KHI-driven
stage in the crust-configuration. Figure 5.4 shows snapshots of representative quanti-
ties at t − tmer = 0.52 ms for the full- (top row) and crust-configuration (bottom row).
In particular, we show |B|/[1015 G], the density-weighted spatial projection of the kine-
matic vorticity ∣∣∣ρωxy⊥ ∣∣∣ := ργxµγ

y
νω

µν , (5.5)

and the amplification source term defined in Eq. (2.140) from left to right, respec-
tively. The quantity ωµν denotes the kinematic vorticity, see Appendix B. As already
mentioned in Section 2.5, smag can be used to measure local sources smag > 0 and sinks
smag < 0 of magnetic energy.

First, when comparing the magnetic-field strength |B| shown in the left column be-
tween both configurations we find that the crust-configuration has stronger magnetic
fields than the full configuration. This observation can naturally be explained by the
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Figure 5.4: Cross-sections of magnetic-field strength, vorticity and amplification
source term for the full- and crust-configuration
The color code shows cross-sections of the magnetic-field strength |B| (left column), of the
density-weighted xy-component of the kinematic vorticity |ρωxy⊥ | (middle column), and of the
amplification source term smag (right column) in the (x,y) plane. The snapshots are taken at
t − tmer = 0.52 ms. The upper panels show the HR full-configuration while the lower panels
show the HR crust-configuration. This figure has been reused from [74].
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fact that the initial magnetic-field strength is higher for the crust-configuration than
for the full-configuration, e.g., see Table 5.2, and the more efficient magnetic-field am-
plification during the KHI-driven stage in the crust-configuration, see e.g., Fig. 5.2 and
the corresponding discussion further above in this section. In addition, we observe that
the strongest magnetic fields in the crust-configuration are located near the stellar sur-
face marked by the green density contour line at ρ = 1013 g cm−3. This implies that the
evolution of a large portion of the total magnetic energy in the crust-configuration de-
pends on the evolution of the low-density matter located near the stellar surface of the
SMNS. For example, any dynamical process which leads to the ejection matter located
at lower densities can potentially remove large amounts of magnetic energy from the
regions of the SMNS which will be subject to turbulence. Second, the middle column
shows that the vorticity looks almost identical between both configurations. Vorticity is
mainly concentrated in all regions of the SMNS which are connected to the shear layer
that developed in the first few fractions of a millisecond after the merger. In particular,
we observe also a larger amount of vorticity in the low-density region near the stellar
surface which marks both ends of the shear layer. On the other hand, vorticity falls-off
rapidly in the high-density region of the newly formed SMNS. The reason why the vor-
ticity looks almost identical for both configurations is related to the relative importance
of magnetic fields when compared to the purely hydrodynamic evolution. This can be
quantified through the so-called plasma beta quantity β := p/pmag which measures
the relative strength between fluid pressure p and the magnetic pressure pmag. Even
though we observe turbulence and the corresponding magnetic-field amplification in
the low-density region of the SMNS which naturally corresponds to lower fluid pres-
sures, the magnetic-field strengths obtained in these simulations are not high enough
to yield β . 103. This means that the evolution of the matter in our simulations is
mainly hydrodynamical where magnetic fields lead only to small perturbations which,
however, are barely visible in the middle column of Fig. 5.4. Finally, when having a
look at the right column of Fig. 5.4 we find that for both configurations the sources of
magnetic energy are more pronounced than the sinks. This is expected as the snapshots
are taken at a time where the total EM energy is growing. Furthermore, we also ob-
serve that many of the important sources of magnetic energy in the crust-configuration
are located near the SMNS surface. All in all, Fig. 5.4 supports the hypothesis that
the loss of precious magnetised matter at the SMNS surface is an important process
by which an early termination of magnetic-field amplification is realized in the crust-
configuration. More specifically, Fig. 5.4 shows that a large portion of magnetic energy
together with its important sources are located in the low-density region of the SMNS
close to the stellar surface where turbulence is developing. Naturally, together with
the dynamical ejection of mass from these regions important magnetised material is
removed from the regions of the SMNS where further turbulent amplification could
increase the magnetic energy in the crust-configuration. This contributes to an early
termination of magnetic-field amplification.

5.5 Gravitational-wave emission

In this section we will discuss how the GW signal is influenced by the different magnetic-
field configurations. Figure 5.5 shows the emitted ` = 2, m = 2 mode of the +-polarised
GW strain measured at ∼ 740 km and assuming that the merger is located 100 Mpc
away from the observer. The full-configuration is shown in blue while the crust-
configuration is shown in red. The signal for both configurations looks almost the
same in the first two milliseconds after merger. This corresponds to the time when
the KHI is most active. However, for t − tmer & 2 ms the two signals start to differ sig-
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Figure 5.5: Gravitational-wave strain for the full- and crust-configuration
Shown is the ` = 2,m = 2 mode of the gravitational-wave strain for the + –polarisation. The
signal is extracted at ∼ 740 km and normalized to a luminosity distance of 100Mpc. Blue lines
denote the HR full-configuration while red lines denote the LR crust-configuration. The thick
lines highlight the corresponding amplitudes. This figure has been reused from [74].

94
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Figure 5.6: Cross-sections of magnetic-field strength, vorticity, amplification source
term and characteristic length-scale for the full- and crust-configuration
The color code shows cross-sections of the magnetic-field strength |B| (first column), of the
density-weighted xy-component of the kinematic vorticity |ρωxy⊥ | (second column), of the am-
plification source term smag (third column), and of the characteristic length-scale of the mag-
netic field, i.e., |B|/ |J |, in the units of the grid spacing ∆x (fourth column) in the (x,y) plane. The
snapshots are taken at t − tmer = 0.52 ms. The upper panels show the HR crust-configuration
while the lower panels show the LR crust-configuration. This figure has been reused from [74].

nificantly. In particular, the amplitude of the strain of the full-configuration decays
much stronger than the amplitude of the crust-configuration. This also means that less
gravitational energy is emitted for t − tmer & 2 ms for the full-configuration than for
the crust-configuration. There are two reasons for this effect. The first one is related
to the increased magnetic energy in the full-configuration which comes at the expense
of the kinetic energy reservoir. Less kinetic energy which is predominantly stored as
rotational kinetic energy means slower rotation which directly affects the magnitude of
the emitted GW strain. The second reason is related to the m = 2 density-deformations
of the SMNS which are affected by the strong magnetic fields in the full-configuration.
Strong magnetic fields lead to a more axisymmetric SMNS in the full-configuration
which weakens the emitted GW signal.

5.6 Impact of resolution

Due to the dependence of the growth rate of the KHI on the grid resolution also the
achievable final magnetic energy in the KHI-driven stage depends on grid resolution
[168]. This makes a quantification of the impact of resolution on the results shown in
the previous sections inevitable. In this section we will contrast the low-resolution and
high-resolution versions of the crust-configuration in addition to the results already
presented in Fig. 5.2. We will not concentrate on the full-configuration as in this case
the evolutions for both resolutions are very similar. Also, the evolution of BNS mergers
with magnetic fields which have been seeded in the whole stellar volume (as done in
the full-configuration) has been discussed already extensively by a number of papers,
e.g., see [195] for a case with larger magnetic-field strengths but lower resolutions com-
pared to the simulations in this Thesis. Even though the resolutions employed in this
work are still not high enough for a rigorous convergence study, the observed evolu-
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tions provide evidence for being numerically consistent, i.e., numerical errors decrease
with increasing resolution. In particular, Fig. 5.6 shows snapshots of representative
quantities for the high-resolution (top row) and the low-resolution (bottom row) simu-
lations at t − tmer = 0.52 ms and t − tmer = 0.59 ms, respectively. The different times are
due to the difference in phase evolution resulting from the different resolutions. As in
Fig. 5.4, the first three columns from the left report |B|/[G], the density-weighted spatial
projection of the kinematic vorticity, see Eq. (5.5), and the amplification source term
defined in Eq. (2.140), respectively. The fourth column, on the other hand, shows the
characteristic length-scale of the Eulerian magnetic field, i.e., |B|/ |J |, and is expressed
in units of the grid spacing ∆x, see Eq. (15) of [213]. Here, J :=

√
J iJi and the spatial

current is estimated as

J i ' 1
4πα
√
γ
ηijkDj (αBk) . (5.6)

Expression (5.6) can be deduced from Eq. (21) of [26] which denotes the Ampère-
Maxwell equation in the 3+1 formalism

∂tE
i =

1
√
γ
ηijk Dj (αBk)− 4παJ i +αKEi +LβEi . (5.7)

From the ideal MHD approximation which results in Eq. (2.133) we find that for non-
relativistic flows Ei ∼ O(vi) � 1 and the charge current in Eq. (5.7) can be expressed
by Eq. (5.6). The first column of Fig. 5.6 shows that the high-resolution simulation
suffers from larger losses of magnetised material at the SMNS surface. This is most
pronounced at both ends of the turbulent shear layer which also mark the regions
where dynamical mass ejection will take place due to violent collisions of the neu-
tron star cores. The second column compares the densitised vorticity for high- and
low-resolution and shows that the high-resolution simulation features higher vortici-
ties. In addition, the high-resolution simulation shows more small-scale features and
variations as one would expect from a finer grid structure. However, the broad region
of high vorticity is almost identical for both resolutions except of the region at both
ends of the turbulent shear layer which has notably higher vorticity values in the high-
resolution simulation as compared to its low-resolution counterpart. The third column
shows that stronger sinks (higher in magnitude but negative) of magnetic energy can
be found in the high-resolution simulation. More specifically, these large sinks are
located at both ends of the turbulent shear layer which correlates with the location
where precious magnetised material is lost. Finally, the fourth column clearly shows a
“cloud” of low-density and magnetised material which has a very small characteristic
length-scale. This “cloud” is surrounding the SMNS and originates from mass losses
at the SMNS surface and is less pronounced in the low-resolution simulation. To sum-
marize, Fig. 5.6 demonstrates how a higher resolution for the crust-configuration can
lead to enhanced losses of important magnetised material at the SMNS surface eventu-
ally leading to an early termination of magnetic-field amplification in the KHI-driven
stage.

5.7 Summary and outlook

Motivated by the common modeling assumption of crustal magnetic fields in the long-
term evolution of isolated neutron stars, we have explored the hypothesis whether seed
magnetic fields which are confined to a small region near the stellar surface have an
impact on the total magnetic-field amplification in BNS mergers. We have used high-
resolution, global, and high-order GRMHD simulations of BNS mergers with different
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seed magnetic-field topologies in order to investigate this hypothesis. Our study in-
cludes simulations of four binaries where we vary between two different topologies,
namely the crust-configuration and the full-configuration. In the crust-configuration
the magnetic field is seeded only near the stellar surface while in the full-configuration
the whole star, including the core, is magnetised. Additionally, both topologies have
the same initial total magnetic energy. These two setups are simulated at two different
resolutions in order to estimate the influence of discretization errors. However, we find
qualitatively consistent behaviour such that we focus the discussion for the most part
on the simulations with higher resolutions.

First, we observe four different stages of magnetic-field evolution for both config-
urations, namely the KHI-driven stage, the decay stage, the turbulent-amplification
stage and the winding stage. These stages are named in agreement with the main phys-
ical process determining the magnetic-energy evolution in the corresponding stage.
Second, although in the crust-configuration the KHI-driven stage is more efficient in
amplifying the magnetic fields as a result of larger initial magnetic-field strengths, the
final magnetic energy of the full-configuration is more than one order of magnitude
larger when compared to the crust-configuration. We attribute this behaviour to the
early termination of the KHI-driven stage in the crust-configuration which is the re-
sult of two effects: the lack of magnetised material in the neutron-star interior and
losses of magnetised material at the stellar surface. On the one hand, magnetic-field
amplification cannot be sustained in the crust-configuration due to the fact that the
turbulent motions, which amplify the magnetic field, move into regions which are un-
magnetised in the crust-configuration. This cannot happen in the full-configuration
as such regions do not exist. On the other hand, magnetic-field amplification in the
crust-configuration could continue due to turbulent motions in the outer regions of
the newly formed SMNS. However, this possibility is prevented as well due to the ejec-
tion of magnetised material at the stellar surface. And third, as a result of the lower
magnetic-field strengths in the crust-configuration we observe that the corresponding
GW signal is approximately two times stronger than in the full-configuration. We at-
tribute this behaviour to the lower degree of axisymmetry in the crust-configuration.

Even though the resolutions we employ in this work are very high and computation-
ally expensive, they are still not high enough in order to reach convergent behaviour
during the KHI-driven stage. In order to accomodate for this short-coming we employ
two different resolutions and estimate the impact of the discretization errors. We find
that the behaviour presented in this work is affected only quantitatively by varying the
resolution. Thus, we conclude that our results are reasonably accurate models for the
magnetic-field amplification in BNS mergers with crustal and full magnetic fields.

Furthermore, our findings have the important implication that future observations
of magnetar-strength magnetic fields in the merger remnant disfavour purely crustal
premerger magnetic-field topologies. In particular, the launching of sub-relativistic
magnetised outflows on short timescales after the merger might not be possible if the
magnetic-field topology is a purely crustal one. This opens up a new avenue of con-
straining the magnetic-field topology of old coalescing BNSs using observations of the
SMNS remnant.

Finally, this study could be continued in many interesting directions. To name only
a few, it would interesting to investigate the final magnetic energy as a function of the
volume fraction endowed with magnetic field before merger. Such an investigation
might provide clues about the maximum radius of an unmagnetised neutron star core
which is still compatible with magnetar-strength magnetic fields in the postmerger.
Additionally, it would be interesting to investigate the impact of crustal magnetic fields
on the mass ejection from BNS mergers. It is not trivial whether crustal magnetic
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fields increase or decrease the ejected mass. That is because crustal magnetic-field
topologies might increase the magnetic pressure in low-density regions of the early
postmerger but might fail to produce significant magnetic pressures later on due to
the lower amplification. Also, a deeper investigation of the turbulent properties of
the postmerger crustal magnetic field could provide interesting information about the
development of magneto-turbulence in different regions of the neutron stars. We leave
these investigations for future work.
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Chapter 6

Conclusions

In this Thesis we have pursued the overall goal to investigate dissipative and shearing
effects in BNS mergers in order to identify new avenues to constrain hot and dense
neutron star matter through BNS mergers. To do so, we have chosen two promising
effects which might have an observable impact on the dynamics of BNS mergers.

The first effect is the dissipation of kinetic energy due to bulk viscosity in the vi-
olent early postmerger phase of a BNS merger. The bulk viscosity stems from out-
of-thermodynamic equilibrium nuclear reactions, i.e., direct and modified URCA pro-
cesses, which can happen on comparable timescales as the nonlinear density oscilla-
tions in the postmerger phase [17]. Given the novelty of the modeling of dissipative
effects in a fully general-relativistic setting, we have decided to start our investigation
of bulk viscosity by exploring the behaviour of the corresponding equations in a sim-
plified setup first.

Hence, in Chapter 3 we have studied the problem of spherically symmetric BH
accretion of a bulk-viscous fluid [71]. We have obtained solutions by solving the corre-
sponding system of ODEs and a suitable parametrization which prevents large out-of-
thermodynamic equilibrium contributions at large radii. The parameters are chosen
such that the fluid is causal at all radii which limits the deviations of the viscous so-
lution from the inviscid one. We observe only small deviations between the two cases
for the most extreme bulk viscosities and relaxation times we have considered. Nev-
ertheless, to the best of our knowledge, our calculations represent the first stationary
accretion solution of a MIS-type bulk-viscous fluid onto a Schwarzschild BH. This is
the first step in the process of investigating bulk viscosity in BNS mergers as we have
developed a sufficiently simple, general-relativistic solution which can serve as a test
case for GRDHD codes.

Motivated by these results we have moved on and developed a robust scheme to
include the effects of the aforementioned MIS-type bulk viscosity in fully dynamical
general-relativistic simulations of BNS mergers in the first part of Chapter 4. We have
tested the implementation by measuring the numerical and physical viscosity of our
code and achieved convergent results. However, as also already observed by [70], we
find that the numerical viscosity can be dominated by discretization errors at the neu-
tron star surface which leads to a degraded convergence order compared to the formal
convergence order of the code. Our code represents one of a few NR codes taking into
account the effects of viscosity and being able to simulate BNS mergers self-consistently
[103, 244, 286, 105].

In the second part of Chapter 4 we have explored, for the first time, the impact
of bulk viscosity on the BNS merger dynamics. Given the novelty of this study we
decided to have a simplified description of bulk viscosity by setting it to a constant
value inside the neutron stars. Varying its value within the allowed range [200] has
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allowed us to gain systematically a first qualitative and quantitative understanding of
the most extreme scenarios. Our main findings are:

1. Large bulk viscosities can efficiently damp the GW emission by suppressing quadrupo-
lar density deformations, see also [280] for a similar observation related to shear
viscosity.

2. Large bulk viscosities can lead to a shift in the dominant frequency f2 of the
GW signal which can be of ' 9% or ' 280Hz, see also [140, 202] which report
frequency shifts which are by approximately a factor 2 smaller.

3. Large bulk viscosities impact the secondary peaks, f1 and f3, of the postmerger
PSD by reducing their power, see also [296] for an inviscid toy model.

4. Large bulk viscosities lead to a change in the SMNS structure by increasing the
angular velocity in the SMNS core and therefore the total rotational kinetic en-
ergy.

5. Large bulk viscosities suppress the dynamical mass ejection and enhance the
anisotropy in the outflow.

The main caveat of our study is the employment of a constant bulk viscosity which
in reality is expected to vary as a function of density and temperature. Nevertheless,
our observations have numerous implications for future observations of BNS mergers.
Most importantly, given the strong impact of bulk viscosity on the postmerger GW
signal, upcoming third-generation GW detectors such as the Einstein Telescope [146]
and the Cosmic Explorer [112] might be able to provide meaningful upper limits on
the bulk viscosity through observations of the postmerger GW signal. Additionally,
universal relations involving the measurements of the f2 frequency which are used to
deduce the properties of the EOS (see, e.g., [31, 295, 41, 296, 259, 30, 35, 40, 34, 53,
176, 55]) need to be properly adjusted in order to account for shifts in f2 due to bulk
viscosity. Also, the EM counterpart from a BNS merger might be affected by large
bulk viscosities due to its influence on the rotational energy of the remnant and the
dynamically ejected mass. We reserve an investigation of the links between a large bulk
viscosity and the corresponding kilonova signal for future studies where data from the
kilonova accompanying GW170817 [252] will be used. Overall, given the tight relation
between the magnitude of the bulk viscosity and the EOS, meaningful upper limits on
the bulk viscosity might therefore add novel constraints on the EOS of hot and dense
neutron star matter.

The second effect investigated in this Thesis, which might yield novel constraints on
the physics of neutron star matter, is the amplification of crustal magnetic fields in BNS
mergers. In Chapter 5 we provide first evidence that magnetic fields which are located
only close to the neutron star surface lead to weaker magnetic fields and smaller total
magnetic energies compared to the standard case where magnetic fields are present
also in the core of the neutron stars [74]. These results have been obtained by perform-
ing computationally expensive high-resolution GRMHD simulations of BNS mergers.

The main caveat of our study, as is the case with most simulations of BNS mergers,
is the high but still insufficient resolution to fully capture the shearing dynamics of
the KHI [320, 166, 221]. Nevertheless, the outcome of our investigation has important
implications for the outcome of BNS mergers due to the role magnetic fields play in
the postmerger phase. Numerous studies have shown how strong large-scale helical
magnetic fields can launch mildly relativistic polar outflows [231, 268, 203, 75, 58, 78,
199, 82] which serve as a possible explanation for the massive blue kilonova compo-
nent observed in AT2017gfo [252]. The generation of such magnetic-field structures
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is sensitive to the strength and topology of the magnetic fields in the early postmerger
phase. As a consequence, the timescales on which these outflows are generated can be
prolonged as a result of magnetic fields which are not strong enough in the first ten
milliseconds after the merger.

Hence, polar outflows which originate from an early postmerger phase are in ten-
sion with purely crustal initial magnetic field topologies. Going back to our initial goal
of finding new avenues to constrain the physics of neutron star matter, this finding
suggests that the neutron star cores could not have been type-I superconductors which
have expelled most of their magnetic flux on a sufficiently short timescale, if early mag-
netised outflows are observed. Our study suggests that the superconducting properties
of dense nuclear matter could be tested in high-resolution simulations of BNS mergers
for the most extreme cases.

All in all, this Thesis provides promising results on the influence of realistic dissi-
pative and shearing effects in BNS mergers. Although promising, further studies are
needed in order to clarify the role of a realistic bulk viscosity and crustal magnetic
fields in BNS mergers and overcome the shortcomings of our first investigations.
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Appendix

A Calculation of viscous black-hole accretion

This section contains important details about the solution of the viscous BH accretion
problem.

Singular point analysis and integration

The sonic point rs is defined as the radius at which the fluid velocity is surpassing the
speed of sound. This radius is given by the condition u2/E2 = c′s

2. Therefore, the sonic
point is a singular point of the system of ODEs given in Eqs. (3.15) and (3.16). We start
solving the problem by choosing the sonic point rs. In the following, we will describe
our integration method which starts directly at rs. This allows us to integrate inward
(i.e., the supersonic portion) and outward (i.e., the subsonic portion) from there such
that we can employ analytical results on the fluid properties and their derivatives at
the sonic point.

In the inviscid case, the constants of motion Ṁ and B
pf

are already determined by
the choice of a sonic point [144]. We calculate these values from rs and reuse them
for the viscous solution, e.g., B = B

pf
(rs). This allows us to compute the initial values

us := u(rs) and hs := h(rs) as the first step of the viscous solution in the following way:
Given that the singularity at rs must be removable for the solution to be regular, we
obtain from Eqs. (3.15) and (3.16) the conditions

0 =
M

E2r
− B −Eh
B

r
τ
Π
u
− 2c′2s , (A.1)

0 = c′2s −
u2

E2 . (A.2)

The values us and hs can now be calculated by using a numerical root-finding procedure
with the help of Mathematica [316]. At this point we find multiple solutions and choose
the accreting solution by enforcing us < 0 and hs > 1, which was found to provide a
unique solution for constant ζ and τ

Π
.

Finally, in order to start the numerical integration at rs we need to have accurate
values for the derivatives du/dr and dh/dr which do not come from the evaluation of
the RHS of Eqs. (3.15) and (3.16). Although the solution is regular at rs, numerical er-
rors make the evaluation of the RHS at rs unreliable and behave singularly. Hence, the
first step in the integration (inward and outward) makes use of analytically calculated
values for the RHS. We follow the work of [183] (but see also [255, 4]) and assume u,
r and h to be functions of an additional parameter ξ, i.e., u = u(ξ), r = r(ξ),h = h(ξ).
Then, Eqs. (3.15) and (3.16) which are written symbolically in the form du/dr = A/B
and dh/dr = C/B, respectively, can be rewritten in the form du/dξ = A, dr/dξ = B, and
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dh/dξ = C:

dr
dξ

= r
(
c′2s −

u2

E2

)
, (A.3)

du
dξ

= u
(
M

E2r
− B −Eh
B

r
τ
Π
u
− 2c′2s

)
, (A.4)

dh
dξ

= −
[
(γe − 1)

B −E
E

+
B − hE
E

][
M

E2r
− B −Eh
B

r
τ
Π
u
− 2

u2

E2

]
. (A.5)

We remark that ξ is not physically meaningful and should be viewed as a mathe-
matical parameter. However, it is helpful to think of the solution at rs as having two
branches: one branch for the supersonic portion and one for the subsonic portion, and
the solution at rs is given in the limit ξ→±∞1.

Note that solutions of the original system, i.e., Eqs. (3.15) and (3.16), are now given
by the trajectories of the solutions of the extended system, i.e., Eqs. (A.3)–(A.5), in the
phase space, i.e., the (u,h, r)-space. Hence, the solutions of the original system describe
the so-called phase paths of Eqs. (A.3)–(A.5). Then, the solution at the sonic point (us,hs)
corresponds to the so-called equilibrium point (us,hs, rs) of the extended system (the
equilibrium point is defined by the conditions du/dξ = dh/dξ = dr/dξ = 0).

In order to obtain values for the RHS analytically, we can linearise the extended
system of Eqs. (A.3)–(A.5) at the equilibrium point, i.e., u ≈ us + δu, h ≈ hs + δh and
r ≈ rs + δr, to obtain a local solution [162]. Using the ansatz δu = δu exp(λξ), δh =
δh exp(λξ) and δr = δr exp(λξ) we obtain an eigenvalue problem. The result is a set of
three eigenvalues {λ1,λ2,λ3} and eigenvectors with the properties λ1 < 0, λ2 > 0 and
λ3 ≈ 0. The corresponding set of local solutions is then

δu1(ξ) = (δu)1 exp(λ1ξ) ; δh1(ξ) = (δh)1 exp(λ1ξ) ; δr1(ξ) = (δr )1 exp(λ1ξ) , (A.6)

δu2(ξ) = (δu)2 exp(λ2ξ) ; δh2(ξ) = (δh)2 exp(λ2ξ) ; δr2(ξ) = (δr )2 exp(λ2ξ) , (A.7)

where ((δu)i , (δh)i , (δr )i) denotes the i-th eigenvector which corresponds to the i-th eigen-
value λi . We note that the linearised solution of the extended system must pass through
the equilibrium point (us,hs, rs) such that we find that δui(ξ) = δhi(ξ) = δri(ξ) = 0 only
in the limit ξ → +∞ or ξ → −∞. In particular, we find that in the limit ξ → +∞
the set in Eq. (A.6) reaches the equilibrium point while in the limit ξ → −∞ the set
in Eq. (A.7) passes through the equilibrium point. We neglect the set of eigenvectors
which correspond to λ3 because λ3 ≈ 0. Furthermore, superpositions between different
sets of eigenvectors are not allowed because they reach the equilibrium point for dif-
ferent limits of ξ. The RHS of Eqs. (3.15) and (3.16) at the sonic point is then given by
(du/dr)s = (δu)i/(δr )i and (dh/dr)s = (δh)i/(δr )i for i ∈ {1,2}. We choose the eigenvalue
whose eigenvector yields (du/dr)s > 0.

We are now able to start the numerical integration of the ODEs. The first step on
either side of the sonic point, i.e., at rl = rs −∆r and rr = rs +∆r, is calculated by using
simple forward and backward finite differencing where we employ the analytical so-
lutions to estimate the RHS of Eqs. (3.15) and (3.16). After the first step, we employ
a fourth-order L-stable singly diagonally implicit Runge-Kutta (SDIRK) method (see
Table 6.5. of [139] and the corresponding Butcher tableau). The implicit equation ap-
pearing in this method is solved by using a fixed-point iteration method. The s-stage

1This condition is the result of the form of the perturbation which behaves as ∼ eλξ , where λ is a
constant eigenvalue that can be either positive or negative, and that it vanishes at the sonic point; see also
below.
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B Decomposition of the gradients of the fluid four-velocity

1/4 1/4

3/4 1/2 1/4

11/20 17/50 −1/25 1/4

1/2 371/1360 −137/2720 15/544 1/4

1 25/24 −49/48 125/16 −85/12 1/4

25/24 −49/48 125/16 −85/12 1/4

Table A.1: Butcher tableau for a L-stable SDIRK method of order 4

Runge-Kutta method has the form

yn+1 = yn +∆r
s∑
i=1

biki , (A.8)

ki = f

rn + ci∆r,yn + h
s∑
j

aijkj

 , i = 1, . . . , s , (A.9)

where the coefficients {ci , aij ,bi} are given in the form of Butcher tableaus in Table A.1.
We use 700,000 points for the integration and concentrate resolution wherever it is
most needed, i.e., near the sonic point and close to the BH event horizon.

B Decomposition of the gradients of the fluid four-velocity

This section introduces various definitions related to the decomposition of the gradi-
ents of the fluid four-velocity and is based on [235, 234, 261, 71]. The “irreducible
decomposition” is given by

∇µuν =ωµν + σµν +
1
3
Θhµν −uµaν , (B.1)

where Θ is the so-called “fluid expansion” and defined as

Θ := ∇µuµ , (B.2)

aµ is the so-called “kinematic fluid four-acceleration” and given by

aµ := uλ∇λuµ , (B.3)

σµν is the so-called “fluid shear tensor” and defined by

σµν := ∇〈µuν〉 = ∇(µuν) + a(µuν) − 1
3
Θhµν , (B.4)

and finally, ωµν is the so-called “kinematic fluid vorticity”

ωµν := ∇[µuν] +u[µaν]. (B.5)
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C Initial data for binary neutron star simulations

The initial data for all simulations of BNS mergers, which are presented in this Thesis,
is computed using the FUKA codes [227]. We compute irrotational equal-mass binaries
with a total ADM mass of ∼ 2.55 M� at a separation of ∼ 30 M� ≈ 44km. Furthermore,
we employ a cold, β-equilibrated slice of the TNTYST EOS, which has a maximum mass
of MTOV = 2.21 M� [301]. Note that the ADM mass of this binary is smaller than
the maximally supported mass of a uniformly rotating neutron star described by the
TNTYST EOS which can approximated as Mmax ≈ 1.2×MTOV ≈ 2.65 M� [56]. Therefore,
we expect the resulting SMNS remnant to be long-lived. Furthermore, these choices for
the binary parameters are well-represented in the set of observed BNS systems [217].
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