
 1

Supplementary	Information	for		

	

Subnanometer-resolution	structure	determination	in	situ	by	a	hybrid	subtomogram	
averaging	-	single	particle	cryoEM	-	workflow		

	

Ricardo	Sanchez,	Yingyi	Zhang,	Wenbo	Chen,	Lea	Dietrich,	Misha	Kudryashev#	

#	corresponding	author,	email:	misha.kudryashev@biophys.mpg.de		

	

	

 2

Supplementary Figures and Figure Legends

Supplementary	Figure	1.	Recovering	high-resolution	 information	 from	the	misaligned	TMV	
dataset	using	hybrid	StA	refinement.	The	shifts	and	rotations	for	the	initial	alignment	(in	A)	
were	perturbed	slightly	(B),	moderately	(C)	or	significantly	(D)	which	reduced	the	resolution.	
Hybrid	refinement	recovered	the	resolution	to	similar	to	the	original	levels	(E,	F).	Scale	bar:	10	
nm.

 3

Supplementary	Figure	2.	Distribution	of	orientations	for	RyR1.	A,	B)	Slices	through	tomograms	
of	 native	 SR	 vesicles	 with	 the	 top-	 and	 side-views	 of	 RyR1	 indicated	 by	 red	 boxes.	 C)	
Distribution	of	the	angles	to	the	electron	beam	for	the	RyR1	dataset	with	10	degree	bins.	Zero	
and	180	degrees	correspond	to	top-	and	bottom-views,	90	degree	corresponds	to	views	from	
the	sides.		

	 	

 4

Supplementary	Table	1.	Details	for	cryo-EM	data	collection	

		 TMV	(EMD10834)	 RyR1	(EMD	10840)	

		
hStA	map	without	CTF	

refinement	 hStA	map	

Electron	microscope		
Thermo	Fisher	Krios	G2	with	

a	post-GIF	K2	(Gatan)			
Thermo	Fisher	Krios	G1	

with	a	post-GIF	K2	(Gatan)	

Magnification				 64000	 81000	

Voltage	(kV)	 300	 300	

Electron	exposure	(e–/Å2)	 15	 16	

Defocus	range	(μm)	 	-3…-3.5	 	-3.5	…	-4.5	

Pixel	size	(Å)	 2.2	 1.7	

Symmetry	imposed	 helical	 c4	

Final		particle	images	(no.)	 20,214	 2,563	

Map	resolution	(Å)	 5,2	 9,1		

				FSC	threshold	
0.143	with	independent	

subsets	
0.143	with	independent	

subsets	

Original	data		 EMPIAR-10393		 EMPIAR-10452		

 5

Supplementary Note 1

MacroName HybridDoseSymmetricTomo
Adopted from the script of Wim J.H.Hagen (EMBL Heidelberg 2015)
Roll Buffers A-> H.
Uses LowDose
Run eucentric rough and fine
Track plus K
Track min L
Record plus M
Record min N

########## SETTINGS ##########

step = 3 # stage tilt step in degrees
tilttimes = 10 # multiply by 4 images + 1 image
Tiltbacklash = -3 # negative tilts will be backlashed, must be negative value!

Driftcrit = 3 # Angstrom/second
Driftinterval = 10 # wait time between drift measurements in seconds
Drifttimes = 5 # maximum number of drift measurements before skipping

########## END SETTINGS ##########

ResetClock
echo =====> batchrun HybridDoseSymmetricTomo

tiltangle = 0

CallFunction HybridDoseSymmetricTomo::TiltZero

prevent runaway focus
AbsoluteFocusLimits -10 10
FocusChangeLimits -2 2

Loop $tilttimes
 # tilt plus1
tiltangle = $tiltangle + $step
CallFunction HybridDoseSymmetricTomo::TiltPlus
 # tilt min1
tiltangle = -1 * $tiltangle
CallFunction HybridDoseSymmetricTomo::TiltMinus
 # tilt min2
tiltangle = $tiltangle - $step
CallFunction HybridDoseSymmetricTomo::TiltMinus
 # tilt plus2
tiltangle = -1 * $tiltangle
CallFunction HybridDoseSymmetricTomo::TiltPlus
EndLoop

TiltTo 0

 6

ResetImageShift
SetDefocus 0
echo =====================================

function TiltZero
store stage position
ReportStageXYZ
StageX = $ReportedValue1
StageY = $ReportedValue2

drift and tracking
T
Copy A K
Copy A L
Delay $driftinterval
Loop $drifttimes index
 T
 AlignTo K
 ReportAlignShift
 dx = $reportedValue3
 dy = $reportedValue4
 dist = sqrt $dx * $dx + $dy * $dy
 rate = $dist / $driftinterval * 10
 echo Rate = $rate A/sec
 If $rate < $driftcrit
 echo Drift is low enough after shot $index
 break
 Elseif $index < $drifttimes
 Delay $driftinterval
 Else
 echo Drift never got below $driftcrit: Skipping …
 break
 Endif
EndLoop

autofocus
G
G
G

store defocus
ReportDefocus
focusplus = $RepVal1
focusmin = $RepVal1

acquire the “high-dose” tilt image here
Set Exposure R 15
R
S
RestoreCameraSet
Copy A M

 7

Copy A N

store image shifts
ReportImageShift
ISxplus = $RepVal1
ISyplus = $RepVal2
ISxminus = $RepVal1
ISyminus = $RepVal2

tracking after just to be sure
#T
#Copy A K
#Copy A L
endfunction

function TiltPlus
tilt stage
TiltTo $tiltangle

reset stage XY
MoveStageTo $StageX $StageY

set defocus and image shift
GoToLowDoseArea R
SetDefocus $focusplus
SetImageShift $ISxplus $ISyplus

drift and tracking
T
AlignTo K
Delay $driftinterval
Loop $drifttimes index
 T
 AlignTo K
 ReportAlignShift
 dx = $reportedValue3
 dy = $reportedValue4
 dist = sqrt $dx * $dx + $dy * $dy
 rate = $dist / $driftinterval * 10
 echo Rate = $rate A/sec
 If $rate < $driftcrit
 echo Drift is low enough after shot $index
 break
 Elseif $index < $drifttimes
 Delay $driftinterval
 Else
 echo Drift never got below $driftcrit: Skipping …
 break
 Endif
EndLoop

 8

autofocus. Two rounds. Remove one G for single focus round.
G
G

store defocus
ReportDefocus
focusplus = $RepVal1

acquire tilt image
R
S

tracking after
AlignTo M
Copy A M

store image shifts
ReportImageShift
ISxplus = $RepVal1
ISyplus = $RepVal2

new track reference
T
Copy A K
endfunction

Function TiltMinus
tilt stage with backlash
TiltTo $tiltangle
TiltBy $Tiltbacklash
TiltTo $tiltangle

reset stage XY
MoveStageTo $StageX $StageY

set defocus and image shift
GoToLowDoseArea R
SetDefocus $focusmin
SetImageShift $ISxminus $ISyminus

drift and tracking
T
AlignTo L
Delay $driftinterval
Loop $drifttimes index
 T
 AlignTo L
 ReportAlignShift
 dx = $reportedValue3
 dy = $reportedValue4
 dist = sqrt $dx * $dx + $dy * $dy

 9

 rate = $dist / $driftinterval * 10
 echo Rate = $rate A/sec
 If $rate < $driftcrit
 echo Drift is low enough after shot $index
 break
 Elseif $index < $drifttimes
 Delay $driftinterval
 Else
 echo Drift never got below $driftcrit: Skipping …
 break
 Endif
EndLoop

autofocus. Two rounds. Remove one G for single focus round.
G
G

store defocus
ReportDefocus
focusmin = $RepVal1

acquire tilt image
R
S

tracking after
AlignTo N
Copy A N

store image shifts
ReportImageShift
ISxminus = $RepVal1
ISyminus = $RepVal2

new track reference
T
Copy A L
endfunction

 10

Supplementary Note 2

The script below could be used together with the built-in Tilt Series functionality of SerialEM.
It modifies the exposure times for high- and low-dose images and, importantly, overwrites the
parameters specified in the SerialEM setup. In case of strong preferred orientation
TargetHighDoseAngle could be modified, in this case dose-symmetric checkbox probably
should be disabled in the Tilt Series Setup of SerialEM.
To run Enable SerialEM option Tilt Series -> Run script at TS (on); then Tilt Series -> Set
script to Run

MacroName DuringTomoHybridSta
Written by Wim Hagen and Misha Kudryashev,
MPI for Biophysics, May 2020

Settings for exposure times and high-dose angle
HighExposure = 3
LowExposure = 0.25
TargetHighDoseAngle = 0

echo ################# DuringTomoHybridSta

SetUserSetting RefocusThreshold 1
SetTargetDefocus $TomoTargetDefocus
delay 5 sec

ReportTiltAngle
tiltangle = $RepVal1
anglediff = $TargetHighDoseAngle - $tiltangle
anglediff = ABS $anglediff
anglediff = ROUND $anglediff 1

If $anglediff < 0.1
 echo High dose exposure at start tilt!
 SetExposure R $HighExposure
 HighExposureFrameTime = $HighExposure / 40
 SetFrameTime = $HighExposureFrameTime

ElseIf $anglediff > 0.1
 echo Normal dose exposure at other tilts.
 SetExposure R $LowExposure
 LowExposureFrameTime = $LowExposure / 10
 SetFrameTime = $LowExposureFrameTime
Endif

KeepCameraSetChanges R

 11

Supplementary Note 3

In this subsection we explain how to export a project from the Dynamo StA project to Relion.
For that, purpose we will use the second, larger TMV dataset to recreate the results shown in
Figures 3E and 3F. The original stacks, results of the Dynamo project and the necessary
alignment files for the use in Imod can be downloaded from the EMPIAR database using the
following link:
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10393/
The files are the final Dynamo table file (.tbl); and the .st, .tlt, .xf and .defocus files for each
tomogram. Below we will explain how to use the dyn2rel package, and then provide a
description of it.

Preprocessing of input tomographic stacks:
Before aligning the tomographic stack, it must be normalized and weighted according to the
applied electron dose. In our case, we want to maximize the dynamic range that can be
represented in an unsigned 8-bit data type, that its, to have mean values µ = 128, and standard
deviations σLD = 11. As mentioned in the text of the manuscript, we used e-

HD = 15 e-/Å2 and e-

LD = 2 e-/Å2, the ratio of standard deviations is σHD = 0.37 * σLD = 4. This normalization is
applied to each tomographic stack using the “newstack” command provided by the Imod
package. In our dataset, the high-dose image was the 21-th projection on the stack:

 newstack -in stack.st -ou stack_norm.st -meansd 128,11
 newstack -in stack_norm.st -ou hd_frame.mrc -fr -se 21
 newstack -in hd_frame.mrc -ou hd_frame_norm.mrc -meansd 128,4
 newstack -in hd_frame_norm.mrc -ou stack_norm.st -fr -rep 21

Determining the defocus and assembling the Imod-style .defocus files
A simple way to detect the defocus per micrograph is by using the ctfplotter functionality from
Etomo GUI (final aligned stack -> Correct Ctf). Ctfplotter can be scripted27.

Alternatively, its possible to use Gctf which is fast and robust and works particularly well for
untilted images. We use a Matlab script; please create a folder slices_forGctf and either copy
the individual files there or create symbolic links according to the pattern

slices_forGctf/tomo_$N_proj_$M.mrc

where N is the running number of the tomogram, M – number of projection in a given
tomogram. Go to the folder and run Gctf from your installation.

Gctf-v1.06_sm_30_cu8.0_x86_64 *.mrc --apix 1.4 --kV 300 --defL 10000 --defH 80000

Go to Matlab to your folder one above the slices_forGctf folder, run the following commands

list = dir('../*Tom*/tilt*.st'); % path to the imod folders

for tomo = 1:length(list)
 try
 stack_name = [list(tomo).folder '/' list(tomo).name];
 tlt_name = [stack_name(1:end-3) '.tlt'];
 defocus_file_name = [stack_name(1:end-3) '.defocus'];
 tlt = textread(tlt_name);
 disp([tomo tlt(1)]);

 12

 for i = 1:length(tlt)
 name_log = ['slices_forGctf/tomo_' num2str(tomo) '_proj_' num2str(i) '_gctf.log'];
 [status dfs] = system(['cat ' name_log ' | grep Final']);
 df_all(i) = (str2num(dfs(3:13)) + str2num(dfs(14:25)))/20;
 end

 text = [];
 text(1:length(tlt),1) = 1:length(tlt);
 text(1:length(tlt),2) = 1:length(tlt);
 text(1:length(tlt),3) = tlt;
 text(1:length(tlt),4) = tlt;
 text(1:length(tlt),5) = df_all(1:length(tlt));

 fid = fopen(['slices_forGctf/tomo' num2str(tomo) '.defocus'], 'wb');
 fprintf(fid, '%d\t %d\t %6.2f\t %6.2f\t %6.0f\t 2 \n', text(1,1:5));
 for i = 2:length(tlt)
 fprintf(fid, '%d\t %d\t %6.2f\t %6.2f\t %6.0f \n', text(i,1:5));
 end
 fclose(fid);
 catch
 disp(lasterr)
 end
end

You now have the .defocus files in the slices_forGctf folder, make sure that they make sense.
If they do – exchange ['slices_forGctf/tomo' num2str(tomo) '.defocus'] to defocus_file_name in
the fopen command and run the script again. Clean up the contents of the slices_forGctf folder.

After that tomographic reconstruction could be performed as usual. However, during
tomographic processing, only use the rigid-body geometry for tomographic reconstruction. Do
not use local alignments and offsets for tomogram positioning. After the tomographic
reconstructions are performed, pick particles, perform subtomogram averaging. The current
workflow assumes the Dynamo-style output.

Postprocessing with the hybrid StA script:
You can download the results of our conventional StA processing of the TMV dataset from
Figure 3 from EMPIAR. In the dataset EMPIAR-10393 you can find all the files needed to
export a Dynamo project into a Relion one. To simplify file access, we arranged the tomograms’
files inside folders and named them following a simple naming convention. The downloaded
folder should have the following scheme (showing the files for the first two tomograms only):

 hybrid_tmv/
 ├── create_stack.m
 ├── data/
 │ ├── tomo_01/
 │ │ ├── tiltstack.defocus
 │ │ ├── tiltstack.st
 │ │ ├── tiltstack.tlt
 │ │ └── tiltstack.xf
 │ ├── tomo_02/
 │ │ ├── tiltstack.defocus
 │ │ ├── tiltstack.st
 │ │ ├── tiltstack.tlt
 │ │ └── tiltstack.xf
 │ ├── tomo...
 ├── mask_b1.mrc
 └── sta_rslt.tbl

In our case, we used the same name for each .st, .tlt, .ali and .defocus file inside a folder
designated for each tomogram. This is not required, however helps to fill the required file name
information in the dyn2rel.Tomogram class. The additional three files, “sta_rslt.tbl”,

 13

“mask_b1.mrc” and “create_stack.m”, are the resulting table from the Dynamo project, the
mask used in said project, and the main exporting script, respectively. The exporting procedure
consists of three parts:

1. Setting up tomograms: The information of each tomogram is read into a
dyn2rel.Tomogram class, and stored in an array of it. In our case we are using the
original unbinned stack, with pixel size of 1.1 Å (recorded in superresolution mode on
a K2). We must set up the .st, .xf, .tlt, and .defocus file for each tomogram, along with
the full unbinned tomogram size, and the pixel size.

2. Setting up the exporter: A dyn2rel.Exporter is created and configured according to
our Dynamo project. In our case, the table was the result of processing a once binned
tomogram, so the coordinates and shifts in our table must be multiplied by 2
(exporter.tbl_mul = 2). Also, we want our Relion project to work with a box size of 200
voxels, but binned once too (bin=1). To accomplish this, we set up a cropping size of
400 and a binning of 1 (exporter.out_siz = 400; exporter.out_bin = 1). Finally, we used
column 23 in our dynamo table to define to which particle half-set the particles belong,
we provide this information for the exporter too (exporter.split_h = 23).

3. Export the project: The final step crops the particles from the stacks according to the
information on the dyn2rel.Tomogram array and the table ‘sta_rslt.tbl’ and creates the
MRCS stack and the STAR file. In our case, we chose the prefix ‘hyb_b1’ for the
project. This creates the ‘hyb_b1.mrcs’ and ‘hyb_b1.star’ files.

The contents of the exporting script are:

% Contents of create_stack.m

%% SETTING UP TOMOGRAMS:

 % Tomogram indices used in sta_rslt.tbl.

tomo_ix = [1 3 4 5];
% as an alternative, we could use:
% tbl = dread(‘sta_rslt.tbl’);
% tomo_ix = unique(tbl(:,20));

 % Number of tomograms used in the project:

N_TOMOS = 4;
% alternatively we can use
% N_TOMOS = length(tomo_ix);

 % Create the dyn2rel.Tomogram array with N_TOMO elements:

tomos_list = dyn2rel.Tomogram.create_tomos_list(N_TOMOS);

 % All the tomograms have the same dimension and pixel size (unbinned).
 tomo_size = [7676, 7420, 1600];
 pix_size = 1.1;

 % Set up the information for each tomogram:
 for i = 1:N_TOMOS % Set up filenames:
 base_tomo_dir = sprintf('data/tomo_%02d/',i);
 stack_name = [base_tomo_dir 'tiltstack.st'];
 tlt_name = [base_tomo_dir 'tiltstack.tlt'];
 xf_name = [base_tomo_dir 'tiltstack.xf'];
 def_name = [base_tomo_dir 'tiltstack.defocus'];

 14

 % Set the information for the i-th tomogram:
 tomos_list(i).index = tomo_ix(i);

 tomos_list(i).set_stack(stack_name,pix_size);
 tomos_list(i).read_ali_files(tlt_name,xf_name);
 tomos_list(i).set_tomogram_size(tomo_size);
 tomos_list(i).set_defocus(def_name);
 % optional:
 % tomos_list(i).HD_ix = 21;% the number of the high dose image in the seacks
 end

%% SETTING UP THE EXPORTER:

 exporter = dyn2rel.Exporter;

 % In our case, the DYNAMO project was run using binned data (half the size),
 % and the stack files (.st) are unbinned. Then, we have to use a factor of 2:
 exporter.tbl_mul = 2;

 % The StA map is a binned 200x200x200 volume, to have a hybrid map of the
 % same size, we need patches of 400 and then bin the data one time (according
 % to the DYNAMO’s dbin command):

exporter.out_siz = 400;
 exporter.out_bin = 1;

 % In our case, we stored the half-set information in the column 23 of the
 % table, so we pass that information to the exporter:
 exporter.split_h = 23;

 % Finally, we exclude 10% of the particles, the ones with the worst cross
 % correlation. Then, we set up xcor_sel to 90% of the particles:
 exporter.xcor_sel = 0.9;

% Optionally, dependent on the handedness of the images, defocus could increase in

% positive or negative direction along the height of the tomogram; this parameter can

% flip the direction of the defocus; try both if not sure; this was not used for the TMV example
 % exporter.inv_dz = true;

%% EXPORT THE PROJECT:

 % Export table sta_rslt.tbl, using the tomograms in tomos_list, By giving
 % ‘hyb_b1’ as first argument, the method will create the files ‘hyb_b1.star’
 % and ‘hyb_b1.mrcs’, which can be used with RELION:
 exporter.exec('hyb_b1',tomos_list,'sta_rslt.tbl');

Once the execution of the script is finished, we reconstruct the hybrid map to obtain the map
from Figure 3E:

 $ relion_reconstruct –-i hyb_b1.star –-o hyb_b1_rec.mrc --ctf --nr_helical_asu 15 --helical_rise 1.411626 --helical_twist 22.033413

or two half maps:
 $ relion_reconstruct –-i hyb_b1.star –-o hyb_b1_h1.mrc --ctf --subset 1 --nr_helical_asu 15 --helical_rise 1.411626 --helical_twist
22.033413
 $ relion_reconstruct –-i hyb_b1.star –-o hyb_b1_h2.mrc --ctf --subset 2 --nr_helical_asu 15 --helical_rise 1.411626 --helical_twist
22.033413

Finally, we refine the results to get the map from Figure 3F:

 15

 $ relion_refine –-i hyb_b1.star –-o Refine3D/run_001 --ctf --ref hyb_b1_rec.mrc --angpix 2.2 --o --flatten_solvent --solvent_mask
mask_b1.mrc --firstiter_cc --ini_high 8 --offset_range 6 --offset_step 1 --ctf --split_random_halves --auto_refine --norm --scale --pool 4 --
oversampling 1 --healpix_order 6 --sigma_rot 0.1 --sigma_tilt 0.05 --sigma_psi 0.05 --helix --helical_nr_asu 15 --helical_twist_initial 22.0337
--helical_twist_min 21.9 --helical_twist_max 22.1 --helical_twist_inistep 0.05 --helical_rise_initial 1.4123 --helical_rise_min 1.36 --
helical_rise_max 1.46 --helical_rise_inistep 0.1 --helical_z_percentage 0.4 --helical_inner_diameter 20 --helical_outer_diameter 200 --
helical_symmetry_search true --helical_keep_tilt_prior_fixed

This last command was executed on a computing cluster as a part of a submission script. In
cases of poor alignment of tomograms or of subtomograms to the average, it is possible to
attempt increasing --sigma_ang up to 0.2.

Finally, we exported the particles to cryoSPARC and performed per-particle CTF refinement
(https://cryosparc.com/docs/tutorials/ctf-refinement). The resulting defocus values were used
for another round of refinement in Relion which improved the resolution to 4.4 Å.

Note: For the RyR1 dataset we started with a traditional autorefine Relion project, however, in
order to achieve higher resolution, we disabled the autorefinement and enabled the “always_cc”
flag. The Relion’s refinement command looks like this:

$ relion_refine --i autorefine_rslt.star --angpix 3.4 --o Refine3D/cc --sym c4 --iter 20 --flatten_solvent --ref autorefine_rslt.mrc --
solvent_mask mask.mrc --ini_high 15 --offset_range 3 --offset_step 0.2 --ctf --norm --scale --pool 2 --oversampling 1 --healpix_order 7 --
sigma_rot 0.1 --sigma_tilt 0.1--sigma_psi 0.1 --always_cc

Description of the dyn2rel package:
The Matlab package that perform the exporting procedure is called dyn2rel, and can be
downloaded from the Kudryashev lab’s GitHub repository
(https://github.com/KudryashevLab/dyn2rel. To download the package, we go to the desired
installation directory and use the git command. For this example, we installed the package in
the “~/matlab_packages/dynamo_2_relion/” directory:
 $ cd ~/matlab_packages/dynamo_2_relion/
 $ git clone https://github.com/KudryashevLab/dyn2rel

To use the package in Matlab we have to add it to its path. In our current Matlab command line,
we execute “addpath” and then “help” to validate the correct installation:
 >> addpath ~/matlab_packages/dynamo_2_relion/
 >> help dyn2rel

If the package was correctly installed, the last command will show the documentation of
dyn2rel, which should list the main components of the package:

Contents of dyn2rel package:

 CTF - Holds the CTF's information.
 Exporter - Creates a RELION stack from a DYNAMO tbl and an Array of Tomograms.
 Tomogram - Holds a Tomogram's info: ST, XF, ALI, DEFOCUS files, and its size.

Here we give a brief description of the main classes and functions of the dyn2rel package:

• dyn2rel.CTF: (For internal usage mostly) class that holds the defocus information: U,
V, angle, voltage, spherical aberration, amplitude contrast and Bfactor. Additional
information can be read using the Matlab command:

 >> help dyn2rel.CTF

 16

• dyn2rel.Exporter: Class that exports the Dynamo project into Relion for 2D refinement.

It reads the Dynamo table, projects the coordinates of each particle into the high-dose
projection on the respective stack, crops the corresponding patch, stores it into a MRCS
file and writes out a STAR file. The cropping procedure is controlled by the “xcor_sel”
property, which sets the percentage of the best particles to be cropped (according to the
cross correlation score, column 10 of a Dynamo table). The location of each particle is
calculated by adding the shifts (columns 4, 5 and 6) to the position (columns 24, 25 and
26) and then multiplying the result by the “tbl_mul” property. The projection and
defocus values are adjusted using the tomogram information (dyn2rel.Tomogram), and
the cropped patch size is set by the “out_siz” property. After the patch is cropped, it can
be inverted, according to the “invert” property, and binned, according to the “out_bin”
property. Additionally, the “split_h” can be used to define how the random half sets are
set. Here we give a small summary of the class’ properties grouped by purpose:
◦ Particles selection:
▪ xcor_sel: fraction of particles to be cropped, according to the cross correlation

value (column 10 in a Dynamo table).
◦ Table scaling:
▪ tbl_mul: Multiplication factor to be applied to the position and shifts on the table

to bring the table scaling to the unbinned tomogram scale.
◦ Particle’s patch cropping:
▪ out_siz: size of the unbinned cropped patch.
▪ out_bin: Binning level of the patch. It is applied after the cropping stage, and it

is done using Dynamo’s dbin command.
▪ Invert: Is “true” the values on the patch will be inverted.

◦ Extra information:
▪ split_h: Sets how the value of “RandomSubset” will be set:

• split_h < 1: the field will be not set.
• split_h = 1: even-odd.
• split_h > 1: the RandomSubset value will be set from the value of the

“split_h”-th column in the Dynamo table. Column 23 of Dynamo tables is
typically non-assigned.

Finally, the dyn2rel.Exporter class has only one method: exec. This method performs the
exporting procedure. It requires 3 input parameters and produces one output:

• dyn2rel.Exporter.exec inputs:
◦ out_pfx: (string) base name of the resulting files for the Relion project. The

method creates a out_pfx.star file and a out_pfx.mrcs file.
◦ tomo_list: (dyn2rel.Tomogram array) contains the information of the

tomograms used in the project. It must be created with the
dyn2rel.create_tomos_list function.

◦ table: (Dynamo table, or filename) table created as a result of a Dynamo project.
• dyn2rel.Exporter.exec output:

 17

◦ out_tbl: a subset of table input, containing only the particles that were exported.

For additional information, check the “help” of the class dy2rel.Exporter and its method:
 >> help dyn2rel.Exporter
 >> help dyn2rel.Exporter.exec

• dyn2rel.Tomogram: Class that holds the information of a Tomogram. That information

includes unbinned tomogram size (tomo_size), file name of the stack (file_stack),
defocus information and the projection information. To set up all the information, the
“set_stack”, “read_ali_files”, “set_tomogram_size” and “set_defocus” methods must be
used. Additionally, the “index” property must be set, and it is related to column 20 of a
Dynamo table.
This class also provides the static method “dyn2rel.Tomogram.create_tomos_list”,
which must be used to create a list of dyn2rel.Tomogram objects. This list is the one
used by the dyn2rel.Exporter class.
To see more information, check the help pages of the class:

 >> help dyn2rel.Tomogram
 >> help dyn2rel.Tomogram.set_stack
 >> help dyn2rel.Tomogram.read_ali_files
 >> help dyn2rel.Tomogram.set_tomogram_size
 >> help dyn2rel.Tomogram.set_defocus
 >> help dyn2rel.Tomogram.create_tomos_list

