Neue Untersuchung über Inhaltsstoffe aus *Aloe*- und *Rhamnus*-Arten, XV [1] Homonataloin A und B aus *Aloe lateritia:* Reindarstellung, Konstitutions- und Konfigurationsaufklärung der Diastereomeren*

A New Investigation on Constituents of *Aloe* and *Rhamnus* Species, XV [1] Homonataloins A and B from *Aloe lateritia:* Isolation, Structure and Configurational Determination of the Diastereomers*

Hans-W. Rauwald und Deo-D. Niyonzima

Institut für Pharmazeutische Biologie der Universität, Georg-Voigt-Straße 16, W-6000 Frankfurt/M., Bundesrepublik Deutschland

Z. Naturforsch. 46c, 177-182 (1991); received October 2, 1990

Aloe lateritia ENGLER, Homonataloins A and B, Anthrones, Chromones, Stereochemistry

From the leaf exudate of *Aloe lateritia* ENGLER the C-glucosyl compounds homonataloin, aloeresin A and aloesin (synon. aloeresin B) were isolated together with the anthraquinone nataloeemodin-8-methylether and spectroscopically identified. Homonataloin, widely distributed in *Aloe* species, was separated into homonataloin A and B by combined TLC and DCCC. In their 1D and 2D ¹H NMR spectra only the shifts of the 2'-hydroxyl protons of both glucosyl residues differ significantly, indicative of 10*S* (A) resp. 10*R* (B) configurations. In both compounds the anthrone is in β -position of the D-glucopyranosyl, as determined by the large coupling constants of the anomeric protons. The ¹³C NMR signals are unambiguously assigned by the use of DEPT, APT and gated-decoupling methods. Only the chemical shifts of C-11 and C-14 show significant differences between both diastereomers due to the adjacent 2'-sugar hydroxyls. The two homonataloins differ mostly in optical rotation and circulardichroism due to different configurations at C-10 of the anthrone part. The absolute configurations of the structural analogues 7-hydroxyaloins A and B, which shows that homonataloin A is the 10*S*, 1'*S*-compound and that homonataloin B has 10*R*, 1'*S*-configuration.

Das 1871 [2] erstmals beschriebene Homonataloin (10-D-Glucopyranosyl)-1,7-dihydroxy-8methoxy-3-methyl-anthron [3] ist neben Aloin das häufigste natürlich vorkommende C-Glucosylanthronderivat, das in mindestens 49 *Aloe*-Arten in Gehalten bis zu 47% nachgewiesen worden ist [4, 5]. Über stereochemische Aspekte des Homonataloins liegen bisher keine Literaturangaben vor. Nachdem wir kürzlich über die einfache präparative Trennmöglichkeit der diastereomeren Aloine A und B mittels Tröpfchengegenstrom-Chromatographie (DCCC) [6] sowie über deren neue ¹H-NMR-Analyse [7] und Bestimmung der absoluten

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0939–5075/91/0300–0177 \$01.30/0

^{*} Prof. Dr. Rudolf Hänsel, Freie Universität Berlin, zum 70. Geburtstag. Vorgetragen am 27. 10. 1989 beim "16th Annual Symposium on Pharmacognosy and Natural Products Chemistry" in Utrecht/Niederlande (s. Pharm. Ztg. Wiss. 135, 169 (1990)).

Sonderdruckanforderungen an Prof. Dr. H.-W. Rauwald.

Konfiguration durch eine Röntgenstrukturanalyse [8] berichtet haben, beschreiben wir im folgenden erstmals den Nachweis, die präparative Reindarstellung sowie die Konstitutions- und Konfigurationsbestimmung der diastereomeren Homonataloine A (1) und B (2). Beide Homonataloine wurden zusammen mit ihrer oxidierten Aglykonkomponente Nataloeemodin (3) sowie den C-Glucosylchromonderivaten Aloeresin A (5) und B (4) als Hauptinhaltsstoffe aus der in der ostafrikanischen traditionellen Medizin bedeutsamen *Aloe lateritia* ENGLER [9, 10] gewonnen, die phytochemisch bisher nicht untersucht ist.

Ergebnisse und Diskussion

Bei der DC des Blattexudats von Aloe lateritia in CHCl₃-iPrOH-H₂O (50:30:1) sind die diastereomeren Homonataloine A bei $R_{\rm f}$ 0,77 und B bei $R_{\rm f}$ 0,72 als violettbraun (A) bzw. violett (B) gefärbte Zonen vollständig getrennt zu beobachten. Ihre Reindarstellung erfolgt durch kombinierte DCCC und DC. Nach Kristallisation aus EtOH resultieren bei Homonataloin A (1) goldgelbe, dünne Kristallnadeln mit Schmp. von 207-209 °C bzw. bei Homonataloin B (2) ein hellgelbes, amorphes Pulver mit Schmp. von 203 °C (vgl. Lit.-Schmp. des Homonataloin-Gemisches: 202-204 °C [11]; 197-207 °C [5]; 204 °C [3]). 1 und 2 unterscheiden sich insbesondere durch ihre optischen Drehwerte $[\alpha]_{D}^{20} = +27.6^{\circ}$ (1) und $[\alpha]_{D}^{20} = -82.6^{\circ}$ (2) (vgl. [11]: $\left[\alpha\right]_{D}^{28} = -111.5^{\circ}$ für das Homonataloin-Gemisch) sowie durch ihre circulardichroitischen Effekte (s. Abb. 4 und Exp.T.). Im EI-MS zeigen beide Homonataloine den gleichen, schwach ausgeprägten Molekülpeak bei m/z 432, aus dem durch die Abspaltung des Bruchstücks m/z 162, verursacht durch die Eliminierung von Glucose, der Basispeak bei m/z 270 entsteht. Die ¹H-NMR-Spektren von 1 und 2 stimmen in den wesentlichen Daten überein mit denen der Aloine A und B [7] und sind in Tab. I sowie in den Abb. 1 und 2 wiedergegeben (Anm.: In der Literatur finden sich keine NMR-Daten für das Homonataloin-Gemisch). Beide Isomere zeigen keine signifikanten Unterschiede in den chemischen Verschiebungen und Kopplungskonstanten. Lediglich die Signale der 2'-Hydroxylprotonen der Glucose, durch Anwendung der Doppelresonanz-Technik in DMSO-d₆ bestimmt, sind leicht zu unterscheiden: 5,08d; J = 5,3 (A)

Tab. I. ¹H-NMR-Daten^a der diastereomeren Homonataloine A (1) und B (2) in DMSO- d_6 .

	A (1)	B (2)
1-OH	12,20 s	12,17 s
7-OH	9,45 s	9,42 s
H-2	6,64 s, br	6,63 s, br
H-4	6,84 s, br	6,76 s, br
H-5	7,07 d (8,3)	7,08 d (8,2)
H-6	7,14 d (8,3)	7,13 d (8,2)
H-10	4,39 s, br	4,39 d (1,6)
3-CH ₃	2,31 s	2,31 s
8-OCH ₃	3,77 s	3,76 s
2'-OH	5,08 d (5,3)	5,26 d (5,8)
3'-OH	4,87 d (4,8)	4,89 d (5,0)
4'-OH	4,75 d (5,1)	4,73 d (4,9)
6'-OH	3,57 t (5,3)	3,49 t (5,3)
H-1' ^b	3,17 d, br (9,6)	3,13 dd (9,6; 1,6)
H-2'	2,79 t (9,6)	2,82 t (9,6)
H-3'	3,10 t (9)	3,09 t (9)
H-4'	2,70 t (9)	2,68 dd (9; 9)
H-5'	2,72 m	2,75 m
H-6' ₁	3,40 d, br (11)	3,35 dd (11; 1,5)
H-6' ₂	3,21 dd (11; 5)	3,18 dd (11; 5)

^a δ (ppm) beziehen sich auf TMS als internem Standard. In Klammern sind die Kopplungskonstanten in Hz angegeben.

^b Die chemischen Verschiebungen und Kopplungskonstanten der Glucosylprotonen H-1' bis H-6' sind nach H/D-Austausch mit Trifluoressigsäure bestimmt worden. Die Kopplungskonstanten der z. T. überlagerten Signale H-3'/H-6'₂ sowie H-4'/5' wurden zusätzlich in CD₃OD gemessen.

und 5,26d; J = 5,6 (B) (vgl. 1D-NMR-Spektrum in Abb. 1). Dieser Befund stimmt überein mit den bisher von uns isolierten diastereomeren C-10-Glucosylanthronderivaten, z. B. [7, 12], in denen das 2'-OH-Signal in der B-Reihe um ca. 0,2 ppm tieffeldverschoben gegenüber der A-Reihe erscheint, und bestätigt die durch die Kristallstruktur- [8] bzw. Konformationsanalysen [1] aufgezeigten Wechselwirkungen der 2'-OH mit H-5 (B) bzw. H-4 (A) des Anthronsystems. Die Signale der anomeren Protonen erscheinen als Doppeldublett im gleichen Hochfeldbereich wie die übrigen Glucosylprotonen und werden durch Anwendung der 2D-COSY-Technik in der mit Trifluoressigsäure versetzten DMSO-d₆-Lösung durch ihre Kopplung zum H-10 des Anthronsystems zweifelsfrei identifiziert (s. Abb. 2 und Tab. I). Die Aufspaltung des H-1'-Signals von jeweils 9,6 Hz beweist erstmals das Vorliegen der β-Konfiguration der D-Glucosylreste in beiden Homonataloinen. Zu-

Abb. 1. 300 MHz-¹H-NMR-Spektrum von Homonataloin B (1) in DMSO-d₆.

Abb. 2. H,H-COSY-NMR-Spektrum von Homonataloin B (1) zur Bestimmung des anomeren sowie der übrigen Glucosylprotonen (DMSO- d_6 /CF₃COOD; Ausschnitt 2,2–4,6 ppm).

dem belegen die chemischen Verschiebungen und Kopplungskonstanten der übrigen Glucosylprotonen in Übereinstimmung mit den ¹³C-NMR-Daten (s. u.) das Vorliegen der Pyranoseform. Die vicinale Kopplung ³ $J_{H-10, H-1'}$ an der Verknüpfungsstelle zum Anthronsystem ist in beiden Homonataloinen durch die kleine Kopplungskonstante von etwa 1,6 Hz charakterisiert und weist analog den Aloinen A/B [7] jeweils auf einen nur geringen Anteil des Rotamers mit den in trans-Stellung angeordneten Protonen hin.

Die ¹³C-NMR-Signale der beiden Diastereomeren sind in Tab. II und Abb. 3 (Ausschnitt) wiedergegeben. Ihre eindeutige Zuordnung erfolgt durch Anwendung der Gated-decoupling Technik sowie aufgrund von DEPT- und APT-Spin-Echo-Multiplizitätstests. Die Spektren bestätigen den Anthroncharakter der Isomeren (C-9: δ 192,04 (1) bzw. 192,08 (2); C-10: 45,37 (1) bzw. 45,40 (2)) sowie das Vorliegen je einer periständigen Methoxyl-(δ 62 ppm [13]) bzw. Hydroxylgruppe (δ 162 [13] und δ 12,20/OH-1). Die in den Konfigurationsund Konformationsanalysen [1, 8] aufgezeigten unterschiedlichen Wechselwirkungen des jeweils in identischer relativer Konformation angeknüpften β -D-Glucosylrests auf die Anthronachse C4/C14/ C11/C5 sind auch aus den ¹³C-NMR-Spektren beider Homonataloine ersichtlich: Während diese vier aromatischen Kohlenstoffatome im Falle der diastereomeren, an C-7 unsubstituierten Aloine die größten Verschiebungsunterschiede aufweisen [14], werden entsprechende signifikante Effekte von ca. 4 ppm im vorliegenden Falle allein bei den Brückenkopf-C-Atomen 11 und 14 beobachtet,

Tab. II. ¹³C-NMR-Signale der Homonataloine A (1) und B (2) (75 MHz, CD₃OD, TMS). Die Zuordnung erfolgte durch Anwendung der Gated Decoupling-Methode sowie aufgrund von DEPT- und APT-Spin-Echo-Multiplizitätstests.

C-Atom	1	2
1	162,20	162,14
2	116,89	116,60
3	151,26	151,53
4	121,75	119,94
5	122,47	121,37
6	124,87	126,32
7	146,72	147,63
8	148,52	148,85
9	192,04	192,08
10	45,37	45,40
11.	137,52	133,41
12	128,42	128,83
13	119,08	118,81
14	141,68	145,98
3-CH ₃	22,02	22,00
8-OCH ₃	62,10	62,08
1'	85,36	85,52
2'	71,86	71,94
3'	79,93	79,88
4'	72,16	72,14
5'	81,43	81,11
6'	63,49	63,32

wie die Gegenüberstellung dieses strukturrelevanten Bereichs in den durch Gated-decoupling erhaltenen, eindeutig bestimmbaren ¹³C-NMR-Spektren in Abb. 3 veranschaulicht (vgl. auch perspektivische Darstellung der Molekülstruktur von Aloin B in [8]).

Die absoluten Konfigurationen der Homonataloine A und B werden auf chiroptischem Wege, durch Korrelierung der CD-Spektren (s. Abb. 4) mit denen der diastereomeren Aloine sowie strukturanaloger, in 7-Stellung hydroxylierter 10-Glucosylanthronderivate abgeleitet. Mit den 7-Hydroxyaloinen und deren 8-O-Methylderivaten [12] stehen entsprechende Vertreter zur Verfügung, deren absolute Konfiguration auf der Basis der durch Kristallstrukturanalyse aufgeklärten Konfiguration der Aloine [8] von uns als 10S, 1'S (A) und 10 R, 1'S (B) bestimmt wurden [15]. Da die C-10/ C-1'-Bindung in den jeweiligen Diastereomerenpaaren eine praktisch identische relative Konformation aufweist [1], werden im Prinzip spiegelbildliche CD-Kurven erhalten, wie in sämtlichen von uns untersuchten neun Diastereomerenpaaren zu beobachten ist [15]. Da es sich aber dennoch um

Abb. 3. Darstellung der wesentlichen 13 C-NMR-spektroskopischen Unterschiede der Homonataloine A (1) (oben) und B (2) (unten) anhand der Aufnahmen des Teilbereiches 115–150 ppm nach dem Gated-Decoupling-Verfahren.

Diastereomere handelt, dürfen andererseits auch nicht wieder völlig enantiomorphe CD-Kurven herauskommen. Im vorliegenden Falle stimmen die CD-Kurven der Homonataloine (Abb. 4) gut überein mit denen der 7-Hydroxyaloine und deren 8-O-Methylderivate, sowohl in der Bandenform als auch in der Größe der Cotton-Effekte: Das A-Diastereomere zeigt bei 295 nm einen negativen, B hingegen einen positiven Cotton-Effekt unterschiedlicher Größe. Oberhalb von 320 nm beobachtet man bei A nur einen positiven, bei B hingegen einen negativen Cotton-Effekt, ebenfalls unterschiedlicher Intensität. Im Falle der nichtamphi-hydroxylierten Aloine verhalten sich diese Effekte genau umgekehrt. Diese Befunde wiederum stehen in Einklang mit den Ergebnissen unserer CD-Serienuntersuchung [15], wonach eine unsymmetrische Hydroxylsubstitution am 1,8-Dihy-

Abb. 4. CD-Spektren von Homonataloin A (10S, 1'S) — und Homonataloin B (10R, 1'S) -----.

droxyanthron-Chromophor trotz gleicher absoluter Konfiguration des gesamten Anthronsystems zu einer Vorzeichenumkehr im CD führt. In Übereinstimmung mit den jeweiligen konfigurationstypischen ¹H- und ¹³C-NMR-spektroskopischen Befunden (2'-OH; C4/C11/C14/C5-Achse) ergeben sich demnach für Homonataloin A (1) die 10*R*,1'S- und für B (2) die 10*S*,1'S-Konfigurationen.

Aus der Phenolglykosidfraktion wurden außerdem die beiden Aloeresine B (4) (syn. Aloesin =2-Acetonyl-8-C-β-D-glucopyranosyl-7-hydroxy-5methylchromon) und A (5) (= 2'-O-p-Cumaroylaloesin) mittels DCCC isoliert, die wie Homonataloin bisher ausschließlich in der Gattung Aloe aufgefunden worden sind (vgl. [11]). Sie wurden durch dc Vergleich mit authentischen Proben nachgewiesen und mit Hilfe von UV-, MS- und ¹H-/¹³C-NMR-Spektren identifiziert (vgl. [16]). Die etherlösliche Phenolfraktion enthält in geringer Menge Nataloeemodin-8-methylether (3), dessen Konstitution durch oxidativen Abbau der Homonataloine sowie durch Vergleich physikalischer Daten mit entsprechenden Literaturangaben (Schmp., UV, EI-MS) ermittelt wurde. Dieses Anthrachinon ist bisher in nur einer *Aloe*-Art, *A. speciosa*, aufgefunden worden (vgl. [11]).

Experimenteller Teil

Pflanzenmaterial

Frische, ganze Pflanzen von *Aloe lateritia* ENG-LER, Asphodelaceae, wurden im August 1987 in Burundi (Ostafrika) auf dem Berg Muhezwa, Provinz Muramvya, gesammelt. Sie wurden identifiziert am Département de Botanique, Faculté des Sciences, Université du Burundi, wo auch Belegexemplare aufbewahrt werden (Einheimische Namen: Ingarigari oder Igikaka).

Verwendete Geräte

DCCC: DCC-A (Zinsser Analytic GmbH, Frankfurt), 300 Säulen (40 cm × 2 mm I.D.). DC: Kieselgel 60- Fertigplatten Merck. UV-VIS: Shimadzu UV-240. ¹H- und ¹³C-NMR: Bruker AC-300. EI-MS: Varian CH-7. Schmp.: Kofler Heiztischmikroskop. CD: Dichrograph III-S, Jobin Yvon Isa.

DC-Analyse

Verschiedene afrikanische Aloe-Arten (u.a. A. jacksonii, comosa, speciosa, wickensii), in denen Homonataloin nachgewiesen oder isoliert werden konnte [5], wurden im Palmengarten Frankfurt/ M. gesammelt und die MeOH-Auszüge mittels DC an Kieselgel untersucht. Homonataloin wird im langwelligen UV als violette Fluoreszenzzone beobachtet (CHCl₃-MeOH-H₂O/7:13:8, $R_{\rm f}$ 0,47; EtOAc-MeOH-H₂O/100:17:13, R_f 0,61). Die bei Tageslicht gelbe Substanz färbt sich beim Erhitzen (5 min, 110 °C) violett, geht aber relativ schnell in eine beständige braun-violette Färbung über. Im Fließmittel CHCl₃-iPrOH-H₂O (5:3:0,1) [5] sind die Zonen der Homonataloine A bei $R_f 0.77$ (violettbraun) und B bei $R_f 0.72$ (violett) vollständig getrennt zu beobachten (s. auch präparative Reindarstellung). Die Aloeresine A (5) $(R_f 0,55)$ und B (4) $(R_f 0,3)$ fluoreszieren bei 365 nm (EtOAc-MeOH-H₂O; s.o.) hellblau und färben sich nach dem Besprühen mit Echtblausalz B orange (Weitere Daten der chemisch-physikalischen Kennzeichnung, s. [11, 12, 16]). Nataloeemodin-8-methylether (3) erscheint in Cyclohexan-Methylenchlorid-Ethylformiat-Ameisensäure (35:30:30:5) bei $R_f 0,7$ nach dem Besprühen mit KOH als braunviolette Zone (Weitere Daten, s. [3, 11, 12]).

Extraktion und präparative Trennung der Diastereomeren

635 g frische Blätter von Aloe lateritia wurden mit insgesamt 31 MeOH mit dem Ultra-Turrax extrahiert, filtriert und am Rotationsverdampfer eingeengt: 87 g Rohextrakt. Aus 5 g Rohextrakt wird durch DCCC in CHCl₂-MeOH-H₂O (7:13:8; absteigende Betriebsart) 100 mg eines Gemisches der Homonataloine mit unterschiedlichen Anteilen von A und B innerhalb der Fraktionen erhalten. Die Homonataloine werden mittels präparativer DC (s.o.) rein dargestellt und umkristallisiert. Es resultierten 30 mg Homonataloin A (1) und 40 mg Homonataloin B (2). Weitere Daten (Schmp., optische Drehwerte, u.a.) sind dem Ergebnisteil zu entnehmen. Nataloeemodin-8methylether (3) wird aus den ersten DCCC-Fraktionen, Aloeresin B (4) aus den nach Homonataloin B folgenden gewonnen. Aloeresin A (5) fällt bei der präparativen DC der Homonataloine an.

Spektroskopische Charakterisierung der Diastereomeren

UV-VIS (MeOH): λ_{max} 212 (Infl.), 222, 250 (Infl.), 273 (Infl.), 296, 345 nm.

 1 H-/ 13 C-NMR: s. Tab. I, II und Abbn. 1–3.

CD-Daten: Homonataloin A: Einwaage: 1,380 mg, Lösungsmittel: 6,836 g (Ethanol), Konzentration: 0,202 mg/g (0,368 mmol/l), Schichtdikke: 0,05 cm, Empfindlichkeit: 10 mGrad.

- XIV. Mitt.: H. D. Höltje, K. Stahl, K. Lohse und H.-W. Rauwald, Arch. Pharm. (Weinheim), im Druck (1990).
- [2] E. A. Flückiger und D. Hanbury, Arch. Pharm. (Weinheim) 2, 11 (1871).
- [3] a) L. J. Haynes und J. E. Henderson, Chem. Ind. (London) 1960, 50;
 b) L. J. Haynes, Adv. Carbobudr. Chem. 18, 227
- b) L. J. Haynes, Adv. Carbohydr. Chem. **18**, 227 (1963).
- [4] T. J. McCarthy, Planta Med. 17, 1 (1969).
- [5] J. Beaumont, T. Reynolds und J. G. Vaughan, Planta Med. 50, 505 (1984).
- [6] H.-W. Rauwald, Arch. Pharm. (Weinheim) 315, 769 (1982).
- [7] H.-W. Rauwald und K. Roth, Arch. Pharm. (Weinheim) **317**, 362 (1984).
- [8] H.-W. Rauwald, K. Lohse und J. W. Bats, Angew. Chem. 101, 1539 (1989).
- [9] G. W. Reynolds: The Aloes of Tropical Africa and

λ_{max} [nm]	$\bar{\gamma}$ [kK]	Δε
367.2	27.233	5,964
294,4	33.967	-12.359
266,4	37,538	0,755
231,2	43,253	8,348
218,4	45,788	- 2,897
210,0	47,619	- 2,705
194,0	51,546	11,956

Homonataloin B: Einwaage: 1,470 mg, Lösungsmittel: 7,092 g (Ethanol), Konzentration: 0,207 mg/g (0,378 mmol/l), Schichtdicke: 0,20 cm, Empfindlichkeit: 20 mGrad.

λ_{max} [nm]	$\bar{\gamma}$ [kK]	δε
366,8	27,263	-11,084
295,6	33,829	15,554
265,2	37,707	- 2,147
252,8	39,557	1,209
231.6	43,178	-10,395
212,4	47,081	8,142

Danksagung

Herrn Prof. Dr. G. Snatzke, Ruhr-Universität Bochum, danken wir für hilfreiche Diskussionen und Herrn U. Wagner für die sorgfältige Aufnahme der CD-Spektren. Für die Anfertigung der NMR-Spektren danken wir Herrn Prof. Dr. S. Berger und Herrn A. Mbonimana, Fachbereich Chemie der Universität Marburg sowie Herrn Prof. Dr. H. Linde und Herrn S. Bihler, Fachbereich Pharmazie der Universität Frankfurt. D.-D. N. dankt der Regierung der Republik Burundi/ Ostafrika für ein Promotionsstipendium.

Magdagascar, S. 95–100, The Trustees, The Aloes book fund, Mbabane, Swaziland 1966.

- [10] S. C. Chabra, F. C. Uiso und E. N. Mshiu, J. Ethnopharmacol. 11, 157 (1984).
- [11] R. H. Thomson, in: Naturally Occurring Quinones, Vol. II, S. 413 (1971) und Vol. III, S. 409 (1988), Chapman and Hall, London/New York.
- H.-W. Rauwald und R. Voetig, Arch. Pharm. 315, 477 (1982); H.-W. Rauwald, Habilitationsschrift, Freie Universität Berlin 1983; D. D. Niyonzima, Dissertation Universität Frankfurt/M. 1990.
- [13] Y. Berger und A. Castonguay, Org. Magn. Reson. 11, 1375 (1978).
- [14] H.-W. Rauwald, K. Lohse und M. Spraul, Phytochemistry, in Vorbereitung.
- [15] H.-W. Rauwald, K. Lohse und G. Snatzke, Tetrahedron, in Vorbereitung.
- [16] P. Gramatica, D. Monti, G. Speranza und P. Manitto, Tetrahedron Lett. 23, 2423 (1982).