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1 Introduction

1.1 Gravitational Waves and Dark Matter

“Ladies and gentlemen, we have detected gravitational waves! We did it!”

- David Reitze, executive director of the LIGO Laboratory [1]

On September 14, 2015, marking a century since the final establishment of general relativ-

ity (GR) by Albert Einstein, the time had finally come: The first confirmed gravitational

wave signal was directly detected concurrently by the two detectors of the Laser Interferome-

ter Gravitational-Wave Observatory (LIGO) located in Hanford, Washington and Livingston,

Louisiana. These gravitational waves were emitted during the coalescence of two black holes

with stellar masses of 35M⊙ and 30M⊙, respectively, resulting in the formation of a single

black hole with a mass of 62M⊙ at a luminosity distance of 440Mpc [2]–[4].

Gravitational waves (GWs) are tiny distortions of four-dimensional spacetime that propagate

as waves at the speed of light c and are solutions to the linear approximation of Einstein’s field

equations (see Chapter 2.4). Strong sources of GWs include binary systems of compact objects

such as neutron stars, black holes, or a mixture of both. Additionally, supernovae and poten-

tially cosmological first-order phase transitions in the early universe can also produce GWs [5].

Similar to electromagnetic waves, GWs can be characterized by their frequency, polarization,

direction, and amplitude. The frequency of a GW varies depending on the properties of its

source, resulting in different frequency ranges. To capture the entire GW spectrum depicted in

Figure 1.1, not only ground-based detectors but also upcoming space-based detectors such as

the Laser Interferometer Space Antenna (LISA) are utilized1. The amplitude of GWs, and con-

sequently the characteristic strain (see Chapter 2.4), carries essential information, for instance,

about the environment of the constituents of a binary system. By studying its GW signal,

one can infer, for example, the possible existence of dark matter (DM) halos around the com-

pact objects, which could significantly influence the orbital evolution of the system, primarily

through the dynamical friction mechanism (see Chapter 2.3.2). As a result, the components of

the binary system gradually approach each other and the intensity and phase of the GWs are

altered compared to the idealized case where the objects are surrounded by vacuum.

1The current detectors of GWs usually work on the principle of a Michelson interferometer.
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Fig. 1.1: Gravitational wave spectrum. Plot of the sensitivity curves2 for different detectors
and of the characteristic strain against frequency for a variety of astrophysical and
cosmological sources [6].

The fundamental characteristics and selected indications for the existence of DM are outlined

below. DM is a theoretical form of matter that does not interact with photons through absorp-

tion, reflection, or emission, and therefore appears dark or invisible to conventional telescopes.

The specific nature of DM particles remains unknown at present.

Observations of galaxy rotation curves [7] or gravitational lensing [8] by a large accumulation

of matter can be accounted for only through the existence of additional, unseen matter; the

presence of visible matter alone is inadequate to explain these phenomena. Furthermore, DM

is invoked in explaining the current large-scale structures of the universe and the closely asso-

ciated formation and evolution of galaxy clusters [9].

Despite numerous theories regarding the properties of DM (cf. Figure 2.1), there is still no di-

rect evidence for its existence. In Chapter 2.1 the most important DM models for this bachelor

thesis are presented. These include cold dark matter (CDM) and self-interacting dark matter

(SIDM).

2Sensitivity curve: It shows how sensitive a detector is to a GW signal at a certain frequency. The signal
can be detected by the corresponding detector, only for the frequency range in which the GW spectrum of a
source is above this curve.
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Some astrophysicists, on the other hand, propose an alternative hypothesis that DM does

not consist of particles beyond the Standard Model of particle physics. Instead, they assume

that the gravitational theory formulated by Einstein or Newton is incomplete, and therefore,

they attempt to generalize it. In this so-called modified gravity theory or modified Newtonian

dynamics, Einstein’s field equations or Newton’s law of gravitation are modified to explain

successfully the aforementioned observations3 (cf. [10], [11]) and other phenomena [12].

However, these modified theories cannot fully or convincingly explain all observations, such as

those of the Bullet Cluster (1E 0657-558) [13]. Therefore, in this work it is assumed that DM

is composed of particles.

1.2 Cassini Spacecraft and the Stochastic Gravitational Wave Background

As shown in Figure 1.1 there is currently no permanently available detector that can measure

GWs in the micro- to millihertz frequency range. Here, the Cassini spacecraft comes into play.

It is based on the Doppler tracking method for detecting or constraining the level of GWs.

The detector operates on the principle that the Earth and a distant spacecraft act as separated

test masses. A nearly monochromatic electromagnetic microwave signal is transmitted from the

ground, phase-coherently transponded at the spacecraft, and subsequently received back on the

ground. The Doppler tracking system determines the relative dimensionless velocity between

the Earth and the spacecraft by comparing the frequencies of the transmitted and received

signals. The Earth-spacecraft system is affected by the presence of GWs, resulting in Doppler

perturbations. These disturbances ultimately allow the determination of the characteristic

strain of the GW signal. From the respective data collected during the three 40-day-long

Cassini missions in the years 2001/2002, 2002/2003, and 2003/2004, an upper limit for the

isotropic stochastic gravitational wave background (GWB) in the frequency range of 10−6 to

10−3 Hz can be derived (see Chapter 4) [14], [15].

The GWB being referred to in this context is not the one that could potentially be a relic

of specific cosmological events during the early stages of the universe’s evolution (cf. Figure

1.1 and [5]), but rather the GWB generated by the incoherent superposition of GWs from a

large number of widely spaced inspiraling supermassive black hole binaries (SMBHBs) in the

late phase of their evolution. Due to the immense masses of their components, each ranging

3Specifically, the modified Newtonian dynamics (MOND) concept is remarkably effective in explaining the
profiles of galactic rotation curves [9].
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from 105 to 1010M⊙, SMBHBs are among the most powerful known sources of GWs. While

the frequency of GWs emitted by SMBHBs can initially be attributed to the nanohertz range,

where the aforementioned cosmological GWB of primordial origin is also located, they enter

the detectable frequency range of Cassini in the last years to days of their evolution, depending

on their masses. These gravitational bound systems are formed through the merger of two

galaxies, each harboring a supermassive black hole (SMBH) in its central region [2].

1.3 Motivation

For frequencies below about 10Hz, it becomes difficult to protect ground-based detectors from

seismic noise and the fluctuating gravitational forces caused by environmental factors [16].

Therefore, astrophysical information regarding SMBHBs and their environments remains inac-

cessible to any current Earth-based detector generation. Hence, the aim of this bachelor thesis

is to examine the measurement data of the first 40-day observation by Cassini regarding the

GWB in more detail to assess the likelihood of certain DM theories relative to others. In order

to achieve this, a lower limit for the DM density around SMBHs is calculated using the upper

limit on the characteristic strain of the GWB. This lower limit is then compared with the spike

densities (cf. Chapter 2.2) in the case of CDM and SIDM. The Cassini data are particularly

suitable for this purpose due to the rapid decrease in separation between the constituents of

SMBHBs within the frequency range accessible to the spacecraft. This enables insights into

an interesting stage of their evolution even within the relatively short observation period of

Cassini.

In the subsequent sections, a concise summary will be provided for the two DM models men-

tioned earlier, along with an explanation of DM spikes around SMBHs (see Subsections 2.1

and 2.2). Following that, a mathematical and physical analysis will be conducted to describe

the orbital evolution of SMBHBs and the GWs emitted during their progression (see Subsec-

tions 2.3 and 2.4). Before presenting and discussing the results of this work in Chapter 4, the

Python code utilized for the numerical calculations will be introduced. In the last two chapters

the findings of this study are summarized, and an outlook on future research in this field is

provided.
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2 Theoretical Background

2.1 Dark Matter Models

Figure 2.1 illustrates the diversity of DM theories, of which the two most relevant models for

this work will be briefly presented. A detailed description of individual theories can be found,

for example, in [9] or [17].

Fig. 2.1: Overview of some theories of DM from [18].

2.1.1 Cold Dark Matter

Cold dark matter (CDM) is the most common model, in which particles are assumed to move

at non-relativistic speeds (cold) and interact weakly with any form of matter, making them

collisionless. It is also part of the standard model of cosmology, known as the ΛCDM4 model.

Simulations using CDM have been successful in describing the large-scale structure formation

and clustering of galaxies in the universe. However, they also encounter inconsistencies when it

comes to observations regarding the distribution of DM in the inner regions of spiral galaxies

(cf. [19]). This is known as the core-cusp problem [9].

4ΛCDM model: It describes the evolution of the universe as a flat spacetime structure, starting from the
Big Bang up to the present day. Λ represents the cosmological constant, which could potentially be associated
with dark energy.
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J. Navarro, C. Frenk, and S. White (NFW), using N-body simulations with CDM, found that

over time, spherically symmetric accumulations of DM, known as DM halos, can form around

the centers of galaxies [20]. These NFW halos can be described using just two parameters, the

scale radius rs and the scale density ρs, according to

ρNFW (r) =
ρs

r
rs

(

1 + r
rs

)2 , (2.1)

where r represents the distance from the galactic center.

It can be seen that for small r, i.e., at the center of a galaxy, the density profile is proportional

to r−1, and consequently the density increases steadily for small r. This is referred to as a cusp.

However, some observations of rotation curves suggest a constant density in the inner regions

of galaxies, which is called a core.

One solution to this problem is the concept of self-interacting dark matter, which will be

discussed in more detail in the next subsection. This offers the possibility of smoothing the

density profile, as, for example, investigated in [21] and [22].

2.1.2 Self-Interacting Dark Matter

Self-interacting dark matter (SIDM) is an alternative theory of DM particles that exhibit strong

interactions with each other. In [23], the authors propose that the core-cusp problem can be

resolved by considering SIDM particles with a significant scattering cross-section (per DM

particle mass) σm, while assuming negligible annihilation5 or dissipation. The scattering leads

to heat transfer between particles and thermalization6 within the nucleus of a galaxy [9].

The results of such an analysis are shown in Figure 2.2. If σm exceeds the value of 10 cm2 g−1,

the halo can undergo a process called gravothermal collapse (see [25] for more details).

Moreover, the SIDM model is consistent with the predictions of CDM on large scales, as the

density of DM, and hence the probability of self-interactions, decreases on these size scales [26].

5The high-energy electromagnetic signature from a potential self-annihilation process of DM particles can
also be utilized as evidence for the existence of DM or to constrain its properties (see, for example, [24]).

6Thermalization occurs when physical bodies interact with each other in a sufficient stochastic manner,
resulting in a thermal equilibrium state.
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Fig. 2.2: SIDM particles with varying cross-sections (per DM particle mass) σm (here σ) can
lead to the smoothing of the density profile in the inner regions of galaxies [27]. CDM
produces a cusp.

2.2 Dark Matter Spikes around Supermassive Black Holes

Observations with ground-based telescopes as well as the Hubble Space Telescope reveal that

most, if not all, galaxies host a SMBH in their central region [2]. In the following, it is assumed

that the SMBHs are of the Schwarzschild type. If these SMBHs are embedded in DM halos,

there is a possibility that the density distribution of the halos is strongly influenced by them. In

particular, if a SMBH undergoes adiabatic growth over a timescale much longer than the orbital

periods of the DM-halo particles, it is expected to result in a significant increase in the DM

density around it. As a consequence, a so-called DM spike is formed [28]. This increase can be

as large as 10 orders of magnitude within the region corresponding to the sphere of influence

of the black hole (BH) [9], [29]. The spatial extent rh (radius of the sphere of influence) of this

region, where the gravitational attraction of the SMBH dominates over that of the host galaxy,

is defined by

rh =
GmBH

σ2
. (2.2)

G denotes Newton’s gravitational constant, mBH the mass of the SMBH, and σ represents the

velocity dispersion of the host galaxy-bulge.
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Furthermore, this formula can be used to calculate the separation below which two SMBHs form

a binary system. For this purpose, mBH must be replaced by the total mass M = mBH,1+mBH,2

[30]. The DM spike density ρspike(r) around a single SMBH can be described in the form of a

power-law:

ρspike(r) =







0 , r < rmin

ρsp
( rsp

r

)α
, rh ≥ r ≥ rmin

, (2.3)

where ρsp is the normalization density, rsp is the parameter of the spike size, which can be

empirically defined by rsp ≈ 0.2 rh [31], and α represents the slope of the profile. α is related

to the slope 0 ≤ αini ≤ 2 of the initial cuspy halo density profile, i.e., the density profile before

the adiabatic growth of the SMBH, according to the following equation [28]:

α =
9− 2αini

4− αini

. (2.4)

Based on this, the slope of the DM spikes takes the values 2.25 ≤ α ≤ 2.5. In the case of an

initial CDM halo (NFW profile) with αini = 1 (as explained in Subsection 2.1.1), the value for

αCDM is 7/3. Spikes formed from SIDM have a slope of αSIDM = 7/4 [32].

From the second definition of rh,

MDM(r < rh) = 4π

∫ rh

0

ρspike(r) r
2 dr

rh ≫ rmin≈ 4π

∫ rh

0

ρsp

(rsp
r

)α

r2 dr
!
= 2mBH , (2.5)

an expression for ρsp can be derived [31]. It is given by

ρsp =
(3− α) 0.23−α mBH

2πrsp3
. (2.6)

Here it is assumed that the amount of baryonic matter compared to DM in the central region

of a galaxy is negligibly small7 and that rsp = 0.2 rh is valid (see above). In Equation (2.5)

MDM(r < rh) is the total mass of DM within the radius rh around a SMBH.

7This assumption could be motivated by the fact that about 83.9% of the matter in the universe is (C)DM
according to [33].
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Finally, in this work, rmin is equated with the innermost stable circular orbit (ISCO) of a

Schwarzschild-BH, i.e.,

rmin = rISCO = 6
GmBH

c2
. (2.7)

In Figure 2.3, the three different mentioned density profiles of DM are depicted. It can be seen

that CDM produces the spike with the highest density. Furthermore, it is typical to model the

CDM density for r > rh as the corresponding NFW profile.

Fig. 2.3: The DM density is plotted as a function of the distance r from the SMBH. The green
line represents an NFW halo with parameters {rs, ρs} = {rh, 4 × 0.2αCDM ρsp,CDM}.
The parameters were selected such that the density function of CDM matches the
NFW profile at the radius rh of the sphere of influence (cf. Equation (2.1)), which is
a continuity condition. rh is indicated by a vertical red line. The blue line shows the
CDM spike, and the orange line the SIDM spike. The ISCO is also marked in violet.
The values of mBH and σ are set to 9× 107M⊙ and 200 km/s, respectively.

Additionally, there is still uncertainty about the temporal evolution of DM spikes around

SMBHs. For example, mergers with smaller BHs or a SMBH that is experiencing adiabatic

growth, which does not occur exactly at the center of its initial DM halo, can lead to the

formation of a weaker cusp [29]. In the following, the changes in the DM density distribution

around SMBHs due to these dynamical processes are not taken into account.

- 12 -
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2.3 Orbital Evolution of Supermassive Black Hole Binaries

In this work, it is assumed that the two SMBHs of a SMBHB can be treated as point-like parti-

cles with masses m1 and m2 located at positions r⃗1 and r⃗2 within the framework of Newtonian

approximation (two-body problem). The effects of GR become significant when the two SMBHs

approach each other within a distance of rISCO,1+rISCO,2, where rISCO,i represents the ISCO of

the i-th SMBH. This is why the numerical calculation (see Chapter 3) of the SMBHB evolution

is terminated when the separation becomes smaller than this value.

2.3.1 Keplerian Orbits

The Lagrangian function that describes the motion of the SMBHs on Keplerian orbits (neglect-

ing dynamical friction and GW emission) is given by

L = T − V =
m1

2
˙⃗r 2
1 +

m2

2
˙⃗r 2
2 +G

m1m2

|r⃗1 − r⃗2|
. (2.8)

Due to the Galilean invariance of L, it is convenient to introduce center-of-mass (CoM) and

relative coordinates:

R⃗ =
m1r⃗1 +m2r⃗2
m1 +m2

, r⃗ = r⃗1 − r⃗2. (2.9)

Using the reduced mass µ = m1m2/M , where M = m1 +m2 is the total mass, the Lagrangian

function in these coordinates can be expressed in the following form:

L =
M

2
˙⃗
R 2 +

µ

2
˙⃗r 2 +G

m1m2

|r⃗| . (2.10)

The equations of motion for R⃗ and r⃗ can be obtained using the Euler-Lagrange formalism:

¨⃗
R = 0⃗, ¨⃗r =

F⃗Grav(r⃗)

µ
with F⃗Grav(r⃗) = −G

m1m2

|r⃗|2
r⃗

|r⃗| . (2.11)

By choosing the CoM as the origin of the coordinate system, i.e., R⃗ = 0⃗, and using polar

coordinates r⃗ = (r cos(ϕ), r sin(ϕ), 0), the orbits of the two SMBHs can be described by

r⃗1 =
m2

M
r⃗, r⃗2 = −m1

M
r⃗ with r⃗ =

a(1− e2)

1 + e cos(ϕ)

r⃗

r
, (2.12)

- 13 -



Goethe-University Frankfurt Institute for Theoretical Physics Bachelor thesis - Matthias Daniel

where a is the semi-major axis, e the eccentricity and ϕ the eccentric anomaly of the elliptical

orbits. The two-body motion is therefore planar. Using the conservation of energy and angular

momentum, the magnitude of the total velocity can be derived. It is given by

v = | ˙⃗r| r⃗1↑↓r⃗2
= | ˙⃗r1|+ | ˙⃗r2| = v1 + v2 =

√

GM

(
2

r
− 1

a

)

. (2.13)

From the above approach, the orbital angular frequency ωorb and the angular momentum Lorb

of the orbit can be obtained, and the formula for the total energy Eorb can be expressed in a

more compact form, yielding

ωorb =

√

GM

a3
= 2πforb =

2π

T
, (2.14)

Lorb = µr2ϕ̇ = µ
√

GMa(1− e2) = µGM

√

µ(e2 − 1)

2Eorb

, (2.15)

Eorb = −Gm1m2

2a
. (2.16)

In Equation (2.14), T represents the period, and forb denotes the frequency of the orbital

motion.

The dynamical friction resulting from the presence of DM (and baryonic matter), the hardening

mechanism8 via three-body-interactions with stars, and the emission of GWs during the inspiral

are responsible for the gradual loss of energy and angular momentum in the binary system,

causing the two SMBHs to approach each other over time. In this work, only the first and

last effect play a role in the investigation of DM fingerprints in the GW signal of a SMBHB.

The following two subsections describe these effects in detail. In Subsection 2.3.4, the resulting

energy and angular momentum balance is established, and from that, the equations of motion

for a and e are derived.

8Hardening mechanism: During this process, the orbits of the SMBHs become tighter through gravitational
interactions with surrounding objects like stars, leading to a "hardening" of the system. For more details see,
for example, [34].
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2.3.2 Dynamical Friction

The initial phase of SMBHB evolution is primarily characterized by energy loss due to the

gravitational interaction between DM and SMBHs, known as dynamical friction (DF) [35].

This phenomenon occurs when one SMBH moves through the matter halo of another, causing

deceleration due to the increased matter density that forms behind that SMBH.

The interaction of DM particles in the overlap region of the spikes between the SMBHs is

neglected, which is more consistent with the CDM model (cf. Subsection 2.1.1).

Static, non-relativistic DM spikes

In the following derivation of the formula for the DF caused by DM, it is assumed that a

spherically symmetric and static (i.e., time-independent) DM spike has formed around each9

SMBH, whose density can be described using Equation (2.3). The parameters of the two spikes

can also differ from each other. In a first non-relativistic analysis, the DM spikes are assumed

to move around the CoM in the same way as the SMBHs themselves. Thus, the proper motion

of the DM particles relative to the corresponding SMBH is initially neglected. The mass ratio

of the SMBHs and the initial eccentricity of their orbits can be chosen arbitrarily. In what

follows, one SMBH is denoted as i and the other as j (i, j = 1, 2; i ̸= j).

Only the DM surrounding mj has an influence on the motion of mi, as at the location of mi,

the DM density of its own spike, according to Equation (2.3), is zero. Since for the mass mDM

of one DM particle surely mDM ≫ m1, m2 is valid, one can start with Chandrasekhar’s formula

for the change of velocity v⃗i of mi by the DM of the spike around mj based on [37]:

dv⃗i
dt

= 4 π G2 mi mDM ln(Λ)

∫

f(v⃗DM,j, r⃗)
v⃗i − v⃗DM,j

|v⃗i − v⃗DM,j|3
d3vDM,j. (2.17)

Here, ln(Λ) represents the Coulomb logarithm, which will be discussed in more detail below.

v⃗DM,j denotes the velocity of the DM particles, and f(v⃗DM,j, r⃗) represents the velocity distri-

bution of these around mi, which must satisfy the condition

∫

f(v⃗DM,j, r⃗) d
3vDM,j = nDM,j(r⃗), (2.18)

9For example, in [36], a single stationary DM halo was assumed to surround the CoM of the SMBHB, in
which both SMBHs orbit each other.
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where nDM,j(r⃗) stands for the DM number density, so that ρDM,j(r⃗) = nDM,j(r⃗)mDM .

According to the above assumptions, which are visualized in Figure 2.4a, the velocity v⃗DM,j of

the DM particles around mi approximately corresponds to the velocity v⃗j of the j-th SMBH at

each location. Thus, the velocity distribution can be written as

f(v⃗DM,j, r⃗) = nDM,j(r⃗) δ(v⃗DM,j − v⃗j). (2.19)

By utilizing v⃗i ↑↓ v⃗j (in the CoM frame, see Equation (2.12)), i.e., v⃗i = vi ˆ⃗v and v⃗j = −vj ˆ⃗v

with ˆ⃗v = v⃗i
vi

, the following expression is obtained:

dvi
dt

(2.13)
= 4 π G2 mi ρDM,j(r) ln(Λ)

1

v2
. (2.20)

Finally, the DF force FDF,i acting on mi can be expressed as

FDF,i = 4 π G2 m2
i ρDM,j(r) ln(Λ)

1

v2
. (2.21)

The location, denoted as r, at which ρDM,j(r) needs to be evaluated corresponds to the position

of the i-th SMBH. In this context, there is no distinction between r as the distance to the j-th

SMBH in ρDM,j(r) and r as the separation between the i-th and j-th SMBH. This is due to the

isotropy of the DM spike in the rest frame of the j-th SMBH and the fact that the two SMBHs

always face each other (the line connecting them intersects the stationary CoM). In short, the

DM density does not depend on the reference frame under the given non-relativistic conditions.

Rotating, non-relativistic DM spikes

Due to the gravitational interaction between a static DM spike and a SMBH, an increasing

number of DM particles would fall into the SMBH over time, leading to a time-dependent

density distribution of the spike during the inspiral. However, for short durations, the previous

approximation can still be used.

In the plane where the evolution of the SMBHB takes place, a rotating DM disk with a spike-

like density profile is now considered around each SMBH. In order for the DM particles to

rotate on stable circular orbits around the j-th SMBH, the following condition applies to the
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magnitude of their velocity v⃗DM,j,rot (in the rest frame of mj):

vDM,j,rot =

√

G(mj +mDM,j(r))

r
, (2.22)

where mDM,j(r) is the total mass of DM located within a sphere of radius r around mj. Ac-

cording to Equation (2.5), for r ≪ rh, the approximation mj +mDM,j(r) ≈ mj holds well.

The direction of rotation of the spikes around their respective SMBH usually corresponds to

the direction of rotation of the SMBHB itself (see [38]). Each DM particle follows its SMBH,

so it already has an intrinsic velocity v⃗DM,j,intr equal to the velocity v⃗j of the j-th SMBH. Ad-

ditionally, there is the rotational velocity v⃗DM,j,rot, which leads to a reduction of the total DM

speed to an effective DM velocity v⃗DM,j,eff on the side of mj where the other SMBH is located,

as can be seen in Figure 2.4b. Thus, in the immediate vicinity of mi applies: v⃗j ↑↓ v⃗DM,j,rot || v⃗i.
Hence, in general, it follows:

v⃗DM,j,eff = v⃗DM,j,intr + k v⃗DM,j,rot =

(

−vj + k

√

Gmj

r

)

ˆ⃗v, (2.23)

with ˆ⃗v = v⃗i
vi

and k =







0 → static spikes

1 → rotating spikes

.

Instead of determining f(v⃗DM,j, r⃗) at every location, it is sufficient to know the DM velocity

distribution only in the vicinity of mi [37]. Analogous to the above derivation, the more general

form of the DF force acting on mi as represented in Equation (2.21) can be derived, yielding

FDF,i = 4 π G2 m2
i ρDM,j(r) ln(Λ)

1
(

v − k
√

Gmj

r

)2 . (2.24)
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(a) Static, non-relativistic spikes.

(b) Rotating, non-relativistic spikes.

Fig. 2.4: Shown are the differences between static and rotating spikes related to the velocity
of DM particles within the spike around mj near mi. For clarity, the representation
of the spike around mi has been omitted. In both cases, non-relativistic conditions
are assumed.
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Total energy loss due to DF

Based on the previous considerations, the loss of energy over time by the SMBHB due to the

DF mechanism can be obtained as follows:

dEDF

dt
=

dEDF,1

dt
+

dEDF,2

dt
= − (FDF,1 v1 + FDF,2 v2)

(2.12)
= −

(

FDF,1
m2

M
+ FDF,2

m1

M

)

︸ ︷︷ ︸

FDF

v = −FDF v.
(2.25)

The following two specific cases are relevant for this work:

a) Static spikes (k = 0):

dEDF

dt

(2.21)
= −4 π G2 ln(Λ)

1

v2

(

m2
1 ρDM,2(r)

m2

M
+m2

2 ρDM,1(r)
m1

M

)

v

= − 4 π G2 ln(Λ)
1

v2
µ (m1 ρDM,2(r) +m2 ρDM,1(r))

︸ ︷︷ ︸

Fa
DF

v

= −F a
DF v.

(2.26)

b) Rotating spikes (k = 1) and circular orbits (e = 0), i.e., v =
√

GM
r

:

dEDF

dt

(2.24)
= −4 π G2 ln(Λ)




m

2
1 ρDM,2(r)

1
(

v −
√

Gm2

r

)2

m2

M
+m2

2 ρDM,1(r)
1

(

v −
√

Gm1

r

)2

m1

M




 v

= −4 π G2 ln(Λ)

[

m2
1 ρDM,2(r)

1
[
v
(
1−

√
m2

M

)]2

m2

M
+m2

2 ρDM,1(r)
1

[
v
(
1−

√
m1

M

)]2

m1

M

]

v

= − 4 π G2 ln(Λ)
1

v2
µ

[

m1 ρDM,2(r)
1

(
1−

√
m2

M

)2 +m2 ρDM,1(r)
1

(
1−

√
m1

M

)2

]

︸ ︷︷ ︸

F b
DF

v

= −F b
DF v.

(2.27)
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Estimation of the Coulomb logarithm

In general, the Coulomb logarithm ln(Λ) is given by the ratio of the maximum impact parameter

bmax and the minimum impact parameter bmin [37]:

ln(Λ) = ln

(
bmax

bmin

)

. (2.28)

While for intermediate-mass ratio inspirals10 (IMRIs), it is common to use Λ =
√

m1

m2

≫ 1 with

m1 ≫ m2 [39], this definition is not applicable in the context of SMBHBs, as it would result in

the DF disappearing for equal masses (m1 = m2: ln(Λ) = 0). Therefore, an alternative way of

estimating Λ is required.

The value of bmax is typically unknown a priori, but an estimation of its order of magnitude is

often sufficient due to the extremely small slope of the logarithm for large arguments. For bmin,

the impact parameter b90 is used, which indicates the distance at which particles are reflected

at an angle of 90 degrees during their encounter with the SMBHs [40]. As mentioned in [37],

b90 is chosen to be

b90 ≈
GM

v2typ
≈ GM

σ2
= rh, (2.29)

where the typical relative velocity vtyp of matter in the host galaxy of the SMBHB can be

equated with the local velocity dispersion σ. Hence, b90 corresponds to the radius rh of the

sphere of influence of a SMBHB (cf. Equation (2.2)). Thus, finally follows:

Λ ≈ bmax

rh
=

bmax σ
2

GM

!≫ 1. (2.30)

In the following, the effect on the DF in the case of relativistic velocities of the SMBHs is briefly

discussed.

10IMRI: In such a system, a compact object with stellar mass (black hole or neutron star) undergoes an
inspiral towards an intermediate-mass black hole with a mass ranging from 103 to 105M⊙.
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Relativistic correction to the DF formula

To motivate the relativistic correction to the DF formula, the maximum velocity of the SMBHs

in a binary system can be estimated. Assuming equal-mass SMBHs (m1 = m2 = m) on circular

orbits (r = a), and with the minimum distance between them given by rmin = rISCO,1 +

rISCO,2 = 12 Gm
c2

(where the numerical computation of the SMBHB-code stops), the maximum

total velocity vmax of the two SMBHs can be determined as the sum of their individual velocities

v1 and v2 at r = rmin:

vmax = v(rmin) = v1(rmin) + v2(rmin)
(2.13)
=

√

2Gm

rmin

=

√
6

6
c ≈ 40.8% c. (2.31)

This corresponds to a relativistic velocity (vmax > 10% c), underscoring the importance of

considering the relativistic correction. However, the correction only plays a role in the final

inspiral phase, as can be seen in Figure 2.5. For larger separations between the SMBHs, this

effect can be neglected. The relativistic correction factor ϵ(v) is given by

ϵ(v) = γ2

[

1 +
(v

c

)2
]2

=

[

1 +
(
v
c

)2
]2

1−
(
v
c

)2 , (2.32)

where γ represents the Lorentz factor [41]. This factor takes into account the increased deflec-

tion angle of the DM (considered as a fluid) as the orbiting SMBH traverses through it, while

also accounting for the relativistic momentum of the fluid from the perspective of the SMBH

[42].

According to [42], the correction to the total energy loss caused by DF due to interaction with

DM can be expressed as

(
dEDF

dt

)

rel

= ϵ(v)

(
dEDF

dt

)

non-rel

. (2.33)

Here,
(
dEDF

dt

)

non-rel
is equivalent to the expression in Equation (2.25).
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(a) Relativistic corrections to DF ϵ(v) as a function of the total velocity v in fractions of the speed of
light c.

(b) Relativistic corrections to DF ϵ(r) as a function of the separation r between the SMBHs in fractions

of rISCO,1 + rISCO,2. v was replaced by v(r) =
√

2Gm
r in Equation (2.32).

Fig. 2.5: The corrections to DF force due to relativistic effects in the final inspiral phase are
depicted. Here, m1 = m2 = m and circular orbits (r = a) were chosen.
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2.3.3 Gravitational Wave Emission

In the final phase of the evolution of a SMBHB, the energy loss due to GW emission dominates

over all other effects. The reason for this is that the DF force is proportional to v−2 (cf.

Equation (2.21)), so the DF mechanism becomes negligible above a certain total velocity of

the two SMBHs. This rapidly leads to their coalescence, which could be accompanied by

a powerful burst of electromagnetic radiation, depending on local conditions such as matter

density or magnetic field strength (multi-messenger observation) [43].

According to [44], the energy and angular momentum loss of the binary system because of GW

radiation are described by

〈
dEGW

dt

〉

= −32

5

G4µ2M3

c5a5
1

(1− e2)7/2

(

1 +
73

24
e2 +

37

96
e4
)

, (2.34)

〈
dLGW

dt

〉

= −32

5

G7/2µ2M5/2

c5a7/2
1

(1− e2)2

(

1 +
7

8
e2
)

. (2.35)

In this case, the averaging ⟨...⟩ has already been performed over an orbital period T , which will

be explained in the next subsection.

2.3.4 Energy and Angular Momentum Balance

As shown in the previous subsections, the binary system loses energy and angular momentum

through DF caused by the interaction with DM particles and the emission of GWs in the last

phase of its evolution. Consequently, the SMBHs progressively approach each other until they

finally merge. Thus, the energy and angular momentum balance of a single SMBHB can be

formulated as follows:

dEorb

dt
=

〈
dEDF

dt

〉

+

〈
dEGW

dt

〉

, (2.36)

dLorb

dt
=

〈
dLDF

dt

〉

+

〈
dLGW

dt

〉

. (2.37)

Here, the terms on the right-hand side of the equations represent the averaging of energy and

angular momentum over a period T (see Equation (2.14)), respectively, i.e.,
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⟨(...)⟩ =
∫ T

0

dt

T
(...) . (2.38)

Averaging over a period is commonly used to obtain a more representative depiction of periodic

motions. This enables the identification of general trends and facilitates better predictions

regarding the behavior of a SMBHB. For a dissipative force such as the DF force, the temporal

average can be transformed into an integral over ϕ according to [44]. It holds:

〈
dEDF

dt

〉

=

∫ T

0

dt

T

dEDF

dt
=
(
1− e2

)3/2
∫ 2π

0

dϕ

2π

dEDF

dt
(1 + e cos(ϕ))−2

(2.25)
= −

(
1− e2

)3/2
∫ 2π

0

dϕ

2π

FDF (r(ϕ), v(ϕ)) v(ϕ)

(1 + e cos(ϕ))2
,

(2.39)

〈
dLDF

dt

〉

=

∫ T

0

dt

T

dLDF

dt

(∗)
=
[45]

−
√

GMa (1− e2)

∫ T

0

dt

T

FDF

v

= −
√
GMa

(
1− e2

)2
∫ 2π

0

dϕ

2π

FDF (r(ϕ), v(ϕ))

(1 + e cos(ϕ))2 v(ϕ)
.

(2.40)

In the second step in Equation (2.40), marked by (∗), was used:

−dLDF

dt
= −

(
dLDF,1

dt
+

dLDF,2

dt

)

=

∣
∣
∣
∣
∣

dL⃗DF,1

dt

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

dL⃗DF,2

dt

∣
∣
∣
∣
∣

=
∣
∣
∣r⃗1 × F⃗DF,1

∣
∣
∣+
∣
∣
∣r⃗2 × F⃗DF,2

∣
∣
∣ = FDF,1

∣
∣
∣
∣
−r⃗1 ×

v⃗1
v1

∣
∣
∣
∣
+ FDF,2

∣
∣
∣
∣
−r⃗2 ×

v⃗2
v2

∣
∣
∣
∣

(2.12)
=

(2.25)

(

FDF,1
m2

M
+ FDF,2

m1

M

)

︸ ︷︷ ︸

FDF

1

v

∣
∣
∣r⃗ × ˙⃗r

∣
∣
∣

Ch. 2.3.1
=

FDF

v

∣
∣
∣

(

r ˆ⃗r
)

×
(

ṙ ˆ⃗r + r ϕ̇
ˆ⃗
ϕ
)∣
∣
∣

=
FDF

v
r2 ϕ̇

(2.15)
=
√

GMa (1− e2)
FDF

v
,

(2.41)

where ˆ⃗r and
ˆ⃗
ϕ represent the unit basis vectors in polar coordinates. Furthermore, F⃗DF,l ↑↓ v⃗l,

i.e., F⃗DF,l = −FDF,l
v⃗l
vl

, l = 1, 2, was utilized.
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Now the coupled differential equations describing the secular evolution of the SMBHB parame-

ters e(t) and a(t) can be formulated in a similar way as in [45]. These can be solved numerically

using the SMBHB-code (cf. Chapter 3). The Equation (2.15) can also be written as

e =

√

1 +
2Eorb L2

orb

G2M2µ3
. (2.42)

Hence, the differential equation for e(t) is given by

de

dt

(2.42)
=

1

2e

2

G2M2µ3

(
dEorb

dt
L2
orb + 2Lorb Eorb

dLorb

dt

)

(2.15)
=

e2 − 1

e

(
dEorb

dt

1

2Eorb

+ 2Lorb
1

2L2
orb

dLorb

dt

)

=
e2 − 1

2e

(
dEorb

dt

1

Eorb

+ 2
dLorb

dt

1

Lorb

)

.

(2.43)

The temporal evolution of a(t) can be described using

da

dt
=

dEorb

dt

(
∂Eorb

∂a

)−1

, (2.44)

with ∂Eorb

∂a
= Gm1m2

2a2
(cf. Equation (2.16)).
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2.4 Gravitational Wave Signals of Individual SMBHBs

In this subsection, the mathematical derivation of GWs based on [44] will be outlined. For this

purpose, the Einstein summation convention will be used. As mentioned in the introduction of

this bachelor thesis, GWs are solutions of the linearized Einstein field equations (EFEs). The

EFEs are known to be

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (2.45)

Here, Rµν represents the Ricci tensor, R the Ricci scalar, gµν is the metric tensor, and Tµν the

energy–momentum tensor of matter.

The starting point is the consideration of a small perturbation hµν of the flat-space metric ηµν

known from Special Relativity, i.e.,

gµν = ηµν + hµν with |hµν | ≪ 1. (2.46)

Next, the left-hand side of (2.45) is extended to linear order in hµν , so that the linearized

Einstein field equations,

2h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
Tµν , (2.47)

are obtained, with h̄µν = hµν − 1
2
ηµνη

αβhαβ and the flat space d‘Alembertian 2 = ∂α∂α =

1
c2

∂2

∂t2
−∆, which implies that GWs travels at the speed of light c. To reach the form of a simple

inhomogeneous wave equation for h̄µν ,

2h̄µν = −16πG

c4
Tµν , (2.48)

one uses the gauge freedom in GR and choose the Lorentz gauge,

∂ν h̄µν = 0. (2.49)

The GWs emitted by various sources propagate through the vacuum on their path to the

detectors. Therefore, a more detailed discussion of the solution of Equation (2.48) for Tµν = 0

is now required.
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The transverse-traceless (TT) gauge, along with another condition (see [44]), reduces the degrees

of freedom of the symmetric tensor hµν from ten to two. The solutions of 2h̄µν = 0 are plane

waves. It follows:

hTT
µν = eµν(k⃗) e

ikλxλ . (2.50)

Here, eµν(k⃗) represents the polarization tensor and kµ = (ω/c, k⃗) the wave four-vector with

the spatial wave vector k⃗ (|⃗k| = ω/c) and the angular frequency ω of the GW. xµ denotes the

known space-time four-vector with xµ = (ct, x⃗). In addition, xµ = ηµνx
ν = (ct,−x⃗).

For example, the non-vanishing components of the real part of hTT
µν for a GW propagating in

the z-direction can be expressed as

hTT
ab =




h+ h×

h× −h+



 cos
[

ω
(

t− z

c

)]

, (2.51)

where h+ and h× are the two independent polarization modes of the GW, and a, b = 1, 2 are

indices in the transverse (x, y) plane.

According to [44], [31] and [46]11, for circular orbits12, the gravitational waveform of a binary

system like an individual SMBHB is described by the following equations:

h+(t) =
1

D0

4Gµω2
orb(t) r

2(t)

c4
1 + cos2(ι)

2
cos [Φ(t)] , (2.52)

h×(t) =
1

D0

4Gµω2
orb(t) r

2(t)

c4
cos(ι) sin [Φ(t)] , (2.53)

Φ(t) =

∫ t

t0

ω(t′) dt′. (2.54)

D0 represents the luminosity distance to the considered system at the time of GW emission,

Φ(t) the phase of the GW and ι is the inclination angle as the angle between the line-of-sight

and the rotation axis of the binary. Furthermore, ω corresponds to twice the angular frequency

ωorb of the binary system, i.e., ω = 2ωorb [31].

11This reference examines the special case of SMBHBs, already taking into account the redshift (see below).
12For elliptical orbits, the corresponding equations are significantly more complex (see, for example, [44]),

and are therefore not considered in this work.
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As mentioned earlier, the system loses energy through various effects, causing the orbital radii

of the SMBHs to change over time. However, it is common to assume that this process occurs

adiabatically, allowing for the approximation of quasi-circular orbits at any time [31].

The strain h(t) caused by passing GWs and measured by a GW detector can be expressed as

a linear combination of the polarization modes:

h(t) = F+h+(t) + F×h×(t), (2.55)

where F+,× are the detector pattern functions that depend in general on the GW frequency f

and the location of the binary system in the sky [47].

To facilitate discussions on detectability and parameter accuracy in GW observations, it is

advantageous to work in the frequency domain. According to [31], the corresponding Fourier

transformation is given by

h̃(f) =

∫ ∞

−∞
h(t) e2πift dt. (2.56)

For simplicity, in the next subsection, it is assumed that the GWs arrive at the detector in

such a way that the × mode vanishes, meaning it is optimally aligned for the + mode. This

is the case, for example, when ι = π/2. Thus, due to F+ = 1 and F× = 0 [31], it follows that

h(t) = h+(t) = A(t) cos [Φ(t)] with

A(t) =
1

D0

4Gµω2
orb(t) r

2(t)

c4
1 + cos2(ι)

2
. (2.57)

In the frequency range of interest, the amplitude A(t) of the GW varies slowly, while the phase

Φ(t) changes rapidly. As a result, the Fourier transformation of the gravitational waveform

can be approximated using the stationary phase method. This method involves neglecting the

rapidly oscillating term and considering only the slowly oscillating term [31]. Consequently, the

gravitational waveform h̃(f) in the Fourier domain based on [31] is given by

h̃(f) =
1

2
eiΨ(t) A(t)

√

2π

Φ̈(t)
, (2.58)
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with

Ψ(t) = 2πf

(

tc +
D0

c
− t

)

+ Φ(t)− Φc −
π

4
, (2.59)

where Φc is the GW phase at and tc the time of coalescence.

Finally, the dimensionless characteristic strain hc can be defined as

hc(f) = 2 f
∣
∣
∣h̃(f)

∣
∣
∣

(2.58)
=

(2.54)
A(t) f

√

2π

ω̇
= A(t)

√

f 2

ḟ
. (2.60)

For Chapter 4.2, the signal-to-noise ratio SNR will also play an important role. It is given by

SNR2 =

∫ ∞

−∞
d(ln(f))

[
hc(f)

hn(f)

]2

with hn(f) =
√

f Sn(f), (2.61)

where hn(f) is the noise amplitude and Sn(f) the spectral noise density which depends on the

GW detector [6], [48].

Accounting for cosmic expansion

So far, the effect of the Hubble expansion of the universe on the GW signal has not been

taken into account because nearby binaries were assumed. However, this consideration can be

relevant when dealing with SMBHBs, since they are likely to be the strongest GW sources and

detectors are therefore sensitive to them over larger distances, i.e., cosmological distances. To

get an understanding of the distances involved, the parameter z is introduced, which represents

the redshift of the GW signal. It indicates that the sources of GWs typically are moving away

from earth. The resulting luminosity distance D is given by

D = (1 + z)D0, (2.62)

where D0 was defined below Equation (2.54).

The time and GW frequency in the rest frame of the source (t, f) are related to those in the

reference frame where the detector is located (tobs, fobs), according to [44], as follows:

tobs = (1 + z) t and fobs =
f

1 + z
. (2.63)
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This leads to the following expression for A(fobs) from Equation (2.57):

A(fobs)
(∗∗)
=

(1 + z)

D

4Gµ

c4
(fobs (1 + z) π)2

[
GM

(fobs (1 + z) π)2

]2/3
1 + cos2(ι)

2

=
1

D

4 (1 + z)5/3

c4
(GM)5/3 (πfobs)

2/3 1 + cos2(ι)

2
.

(2.64)

Here, the chirp mass13 M = µ3/5M2/5 has been introduced. Furthermore, for (∗∗) was used:

fobs =
1

1 + z

2ωorb

2π

(2.14)
=
r=a

1

1 + z

1

π

√

GM

r3
⇔ r =

[
GM

(fobs (1 + z) π)2

]1/3

. (2.65)

2.5 Dark Matter Density as a Function of the Characteristic Strain hc

In this subsection, an expression for the density profile ρDM(r) of the DM around the SMBHs

will be derived as a function of the observed GW frequency fobs and the measured characteristic

strain hc(fobs). This formula will play an important role in Chapter 4.3.

For this purpose, the following assumptions are made:

• For simplicity, the orbits of m1 and m2 are circular, i.e., e = 0 and r = a.

• The two SMBHs have equal masses: m1 = m2 = m, so that ρDM,1(r) = ρDM,2(r) =

ρDM(r) can be assumed.

• There is only energy loss due to non-relativistic DF and GW emission.

• GWs coming in the detector from the optimal direction for the + mode, i.e., h(t) = h+(t).

First, ω̇ in Equation (2.60) can be replaced by

ω̇ =
∂ω

∂r

dr

dt
, (2.66)

with

13The chirp mass M is often introduced because it is easier to measure than the individual masses of the
components of a binary system.
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∂ω

∂r
= 2

∂ωorb

∂r

(2.14)
= −3

√

2Gm

r5
, (2.67)

dr

dt

(2.44)
=

dEorb

dt

(
∂Eorb

∂r

)−1
(2.36)
=

[〈
dEDF

dt

〉

︸ ︷︷ ︸

=
dEDF

dt

+

〈
dEGW

dt

〉] (
∂Eorb

∂r

)−1

(2.27)
=

(2.34)
−




4 π G2 ln(Λ)

1

v
µ

2mρDM(r)
(

1− k
√
2
2

)2 +
32

5

G4µ2M3

c5r5






(
∂Eorb

∂r

)−1

(2.13)
=

(2.16)
−




2

√
2 π G3/2 ln(Λ)m3/2 r1/2

ρDM(r)
(

1− k
√
2
2

)2 +
64

5

G4m5

c5r5






2r2

Gm2

= −




4

√
2 π G1/2 ln(Λ)m−1/2 r5/2

ρDM(r)
(

1− k
√
2
2

)2 +
128

5

G3m3

c5r3




 .

(2.68)

Substituting the two expressions into Equation (2.66) leads to

ω̇ = 24 π G ln(Λ)
ρDM(r)

(

1− k
√
2
2

)2 +
384

5

√
2
G7/2 m7/2

c5 r11/2
. (2.69)

For the characteristic strain hc(fobs) from Equation (2.60), the expression is now

h2
c(fobs) ω̇

(2.63)
= A2(fobs) (1 + z)2 f 2

obs 2 π

(2.64)
=

[
1

D

4 (1 + z)5/3

c4
(GM)5/3 (πfobs)

2/3 1 + cos2(ι)

2

]2

(1 + z)2 f 2
obs 2 π

= 27/3 π7/3 1

D2

(1 + z)16/3

c8
G10/3 m10/3 f

10/3
obs

(
1 + cos2(ι)

)2
.

(2.70)
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This is equivalent to

24 π h2
c(fobs)G ln(Λ)

ρDM(fobs, hc(fobs))
(

1− k
√
2
2

)2 =

= 27/3 π7/3 1

D2

(1 + z)16/3

c8
G10/3 m10/3 f

10/3
obs

(
1 + cos2(ι)

)2 − 384

5

√
2h2

c(fobs)
G7/2 m7/2

c5 r11/2

(2.65)
=

(2 π)7/3

D2

(1 + z)16/3 (Gmfobs)
10/3

c8
(
1 + cos2(ι)

)2 − 384

5

√
2h2

c(fobs)
(Gm)7/2

c5

[

(fobs (1 + z) π)2

2Gm

]11/6

=
(2 π)7/3

D2

(1 + z)16/3 (Gmfobs)
10/3

c8
(
1 + cos2(ι)

)2 − 3

5
217/3 π11/3 h2

c(fobs)
(Gm)5/3

c5
(fobs (1 + z))11/3 .

Rearranging the equation to ρDM(fobs, hc(fobs)) finally gives

ρDM(fobs, hc(fobs)) =

(

1− k
√
2
2

)2

ln(Λ)

[

1

3
2−2/3 π4/3 1

D2

(1 + z)16/3 G7/3 (mfobs)
10/3

c8 h2
c(fobs)

(
1 + cos2(ι)

)2

−1

5
(2 π)8/3

G2/3 m5/3

c5
(fobs (1 + z))11/3

]

,

ρDM(fobs, hc(fobs)) = A f
10/3
obs

h2
c(fobs)

− B f
11/3
obs , (2.71)

with

A =
1

3

1

22/3

(

1− k
√
2
2

)2

ln(Λ)

1

D2 c8
(
π4 (1 + z)16 G7 m10

)1/3 (
1 + cos2(ι)

)2
, (2.72)

B =
1

5
28/3

(

1− k
√
2
2

)2

ln(Λ)

1

c5
(
π8 (1 + z)11 G2 m5

)1/3
. (2.73)

Here, A and B depend only on the SMBHB parameters k,D, z,m, ι and Λ (cf. Equation (2.30)),

which could be determined separately by, for example, multi-messenger observations.
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3 SMBHB-Code

The SMBHB-code is an extension of the IMRI-code, developed by me, for the study of SMBHBs.

The IMRI-code (https://github.com/DMGW-Goethe/imripy) was written by my colleague

Niklas Becker. Accordingly, the SMBHB-code can produce the same results as the IMRI-code

under the conditions of an IMRI. It is capable of numerically calculating the time evolution of

the orbital parameters e(t) and a(t) for the inspiral of SMBHs as well as the form of the GWs

emitted by these systems. In this process, the components of binary systems can lose energy

due to various effects such as DF when the SMBHs are passing through DM spikes. The code

uses geometrized units with G = c = 1 and converts each occurring unit to parsecs (pc) before

using it. It is freely available on GitHub (https://github.com/DMGW-Goethe/SMBHBpy). The

code can be tested within the Jupyter Notebook BasicExamples.ipynb.

3.1 Necessary Adjustments of the IMRI-Code

An IMRI is the inspiral of a stellar-mass object and an intermediate-mass black hole (IMBH)

with a mass ranging from 103 to 105M⊙. In this scenario, the lighter component of the binary

system moves through the DM halo of the IMBH, resulting in a gradual approach through the

emission of GWs and the DF mechanism. Because of the large mass ratio between the two

components it is typically assumed that the IMBH rests at the CoM of the system. This is not

the case for SMBHBs. In these systems, both SMBHs move around their common CoM and

both may have a DM halo surrounding them.

The class SystemProp, which describes the properties of the binary system, has been extended

to include additional parameters such as a second DM halo and the radius rh of the sphere

of influence, as well as the maximum impact parameter bmax for calculating the Coulomb

logarithm ln(Λ). An overview of all important code parameters can be found in the next

subsection. Furthermore, the formula for the DF force in the class DynamicalFriction had to

be replaced by the one derived in Subsection 2.3.2.
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3.2 Overview of the most Important Code Parameters

The following table contains all important parameters of the SMBHB-code.

Symbol (code) Symbol (this work) Equation Definition

m1 m1 Mass of the first SMBH

m2 m2 Mass of the second SMBH

D_luminosity D (2.62) Luminosity distance

sigma σ Velocity dispersion of the host bulge

b_max bmax Maximum impact parameter

ln_Lambda ln(Λ) (2.28) Coulomb logarithm

inclination_angle ι Inclination angle

relCovFactor ϵ(v) (2.32) Relativistic correction factor to DF

k k (2.23) k = 0: static spikes;

k = 1: rotating spikes (e
!
= 0)

r_isco_i rISCO,i (2.7) ISCO of the i-th SMBH

r_infl rh (2.2) Influence radius of the binary

m_reduced µ Reduced mass

m_total M Total mass

z z Redshift parameter

r_sp_i rsp,i Parameter for the DM spike size

rho_sp_i ρsp,i (2.6) Normalization density

alpha_i αi (2.4) Slope of the DM spike

R0 r0 Initial separation for circular orbits

R_fin, a_fin rISCO,1 + rISCO,2 (2.7) Final condition for the evolution

a0 a0 Initial major semi-axis of the orbits

e0 e0 Initial eccentricity of the SMBHB

Tab. 3.1: Overview of the most important parameters used in the code.
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4 Results

In this chapter the results of this work will be presented and discussed. First, the influence

of different orbital parameters and masses of the SMBHs on the evolution of the SMBHB and

the form of the emitted GWs is investigated in more detail. In this context, the distinctions

between the results for CDM and SIDM spikes become apparent. Rotating spikes and the

effect of including relativistic corrections to the DF will also be considered as possible factors

influencing the motion of the SMBHs. The second subsection will be dedicated to Cassini’s

limitations in the detectability of GW signals. This allows to set limits on the masses of

the SMBHs and their distances within which a detection of GWs is possible by the Cassini

spacecraft. Finally, using the Cassini data as an example, a method will be presented to obtain

the DM distribution around the SMBHs of a binary system.

4.1 Impact of Various System Parameters on the Orbital Evolution of SMBHBs

To obtain the results presented in this subsection, the values listed in Table 4.1 for the respective

parameters are always used.

D σ bmax ι r0 = a0

65Mpc 200 km/s 10 kpc π/2 50 (rISCO,1 + rISCO,2)

Tab. 4.1: Table with the values used for individual parameters.

The choice of the value for D of 65Mpc will become more significant later on. 200 km/s is a

typical value for the velocity dispersion σ in elliptic galaxies [49]. bmax was chosen such that

Λ ≫ 1 holds (cf. Equation (2.30)). As mentioned in a previous subsection, an estimation of the

order of magnitude of bmax is sufficient. The inclination angle ι was chosen to be π/2, so that

h(t) = h+(t) (cf. Chapter 2.4). r0 was selected such that fobs(r0) is on the order of 10−7 Hz to

10−5 Hz.

In the following, the temporal evolution of the separation r and the semi-major axis a, respec-

tively, the dependence between e and a and the form of the GWs will be plotted for two different

SMBHBs with equal-mass SMBHs. Accordingly, for α1 = α2: ρDM,1(r) = ρDM,2(r) = ρDM(r).

- 35 -



Goethe-University Frankfurt Institute for Theoretical Physics Bachelor thesis - Matthias Daniel

4.1.1 Results for m1 = m2 = 106 M⊙

First, the findings for m1 = m2 = 106 M⊙ are discussed.

Fig. 4.1: Temporal evolution of the separation r for CDM spikes (left) und SIDM spikes (right)
for circular orbits. The blue line is the result for rotating, non-relativistic spikes
and the orange for static, non-relativistic spikes. The case where the SMBHB loses
energy only through GW emission, i.e., the situation without DM clouds (vacuum),
is represented by the green line.

Fig. 4.2: Temporal evolution of the separation r for CDM spikes (left) und SIDM spikes (right)
for circular orbits. The blue line is the result for static spikes with relativistic cor-
rections to the DF and the orange for static, non-relativistic spikes from Figure 4.1.

The results reflect exactly the theoretical predictions from Chapter 2: the larger the decelerating

DF force FDF , the shorter the time until the two SMBHs merge. For rotating spikes, according

to Subsection 2.3.2, FDF is larger by a factor of
(

1−
√
2
2

)−2

≈ 11.66 than for static spikes. By

including relativistic effects the DF force is larger by a factor of about 1 to 1.63 (cf. Figure 2.5).
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As a consequence, the evolution of the SMBHB proceeds faster in both cases. Furthermore,

FDF is also proportional to the DM spike density. For this reason, CDM spikes - compared

to SIDM spikes - have the same shortening effect on the time to coalescence (see Figure 2.3).

In addition, the beginning of the final phase of evolution, i.e., when GW emission starts to

dominate energy loss, is clearly visible: from this point onwards, the magnitude of the rate of

change of separation increases significantly.

Fig. 4.3: Temporal evolution of the separation r for e0 = e(t) = 0 and of the semi-major
axis a for e0 ̸= 0 in the case of static, non-relativistic CDM spikes (left) und static,
non-relativistic SIDM spikes (right). The different colors represent different initial
values e0 of eccentricity.

Fig. 4.4: Evolution of the eccentricity e depending on the semi-major axis a for different e0 in
the case of static, non-relativistic CDM spikes (left) and static, non-relativistic SIDM
spikes (right). The different colors represent different initial values e0 of eccentricity.
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As depicted in Figure 4.3, in both cases a higher initial eccentricity e0 leads to a similar reduction

in the lifetime of the binary system. As it was shown in [45], the DF force, characterized by

FDF ∼ r−α v−2 with α < 3 (slope of the DM spikes), leads to an eccentrification (de/dt > 0) of

the SMBH orbits. On the other hand, the emission of GWs results in circularization (de/dt < 0).

Thus, the evolution can be clearly divided into the phases explained in Chapter 2.3: once the

value of the semi-major axis a falls below a certain value, the energy loss due to GW emission

dominates over the interaction with DM particles through DF.

Furthermore, in Figure 4.4 it can be seen that in the case of SIDM spikes (right), e converges

to approximately zero during the course of evolution for all considered initial values e0. This

behavior is not seen for CDM spikes (left). In the latter case, the eccentricity converges to

different final values for various e0. In addition, the maximum change of e compared to the

initial value e0 is larger for CDM than for SIDM. This is due to the higher DM density around

the SMBHs in the CDM model, which leads to a stronger DF force and a longer-lasting effect of

eccentrification, i.e., up to a smaller a. As a result, the time in the final phase is not sufficient

to completely circularize the different orbits.

Fig. 4.5: The GW spectrum of the SMBHB is shown in the case of static, non-relativistic DM
spikes (orange) and rotating, non-relativistic DM spikes (green) for circular orbits.
Again, a distinction is made between CDM (left) and SIDM (right). Additionally,
the situation without DM spikes (vacuum) is represented in blue, and the upper limit
on the GWB (from Cassini) during its first observation period is shown in pink.

By comparing the GW spectra with and without DM spikes, it can be clearly seen that above

a certain frequency (or distance according to Equation (2.65)) the transition between the two

phases mentioned earlier occurs also for circular orbits. For the regime where the energy and
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angular momentum loss due to DF dominates, hc ∼ f
(5−α)/3
obs holds. The final phase, where

GW emission dominates, is characterized by hc ∼ f
−1/6
obs . These proportionalities are obtained

using the Equations (2.65), (2.69), and (2.70). The values for hc in the DF regime for rotating,

non-relativistic spikes (k = 1) are smaller by a factor of
(

1−
√
2
2

)

than these for static, non-

relativistic spikes (k = 0) (see Chapter 2.5).

For higher frequencies, especially in the case of SIDM, the characteristic strain hc cannot be

distinguished from that of the vacuum case anymore. Therefore, hc does not contain any

information about the environment of the SMBHs. In the CDM model, a difference between

the two GW spectra (with and without DM) is observed up to the frequency corresponding to

r = rISCO,1 + rISCO,2 (here, the numerical calculation stops). This is due to the higher density

of DM in the inner region of the spikes compared to the SIDM model. This leaves more distinct

fingerprints of DM in the characteristic strain even at higher fobs.

4.1.2 Results for m1 = m2 = 108 M⊙

Since the explanations for the following plots are the same as for those in the above case

(m1 = m2 = 106 M⊙), only the significant differences related to the masses of the SMBHs are

discussed below the figures.

Fig. 4.6: Temporal evolution of the separation r for CDM spikes (left) und SIDM spikes (right)
for circular orbits. The blue line is the result for rotating, non-relativistic spikes
and the orange for static, non-relativistic spikes. The case where the SMBHB loses
energy only through GW emission, i.e., the situation without DM clouds (vacuum),
is represented by the green line.
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Fig. 4.7: Temporal evolution of the separation r for CDM spikes (left) und SIDM spikes (right)
for circular orbits. The blue line is the result for static spikes with relativistic cor-
rections to the DF and the orange for static, non-relativistic spikes from Figure 4.6.

Fig. 4.8: Temporal evolution of the separation r for e0 = e(t) = 0 and of the semi-major
axis a for e0 ̸= 0 in the case of static, non-relativistic CDM spikes (left) und static,
non-relativistic SIDM spikes (right). The different colors represent different initial
values e0 of eccentricity.
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Fig. 4.9: Evolution of the eccentricity e depending on the semi-major axis a for different e0 in
the case of static, non-relativistic CDM spikes (left) and static, non-relativistic SIDM
spikes (right).The different colors represent different initial values e0 of eccentricity.

Fig. 4.10: The GW spectrum of the SMBHB is shown in the case of static, non-relativistic
DM spikes (orange) and rotating, non-relativistic DM spikes (green) for circular
orbits. Again, a distinction is made between CDM (left) and SIDM (right). For
CDM, the result for static spikes with relativistic corrections to DF is also plotted
in red, as in this case it still slightly differs from the one without these corrections.
Additionally, the situation without DM spikes (vacuum) is represented in blue, and
the upper limit on the GWB (from Cassini) is shown in pink.

At first glance, one might assume that the larger masses of SMBHs would extend the time to

coalescence by about two orders of magnitude. However, this conclusion is not entirely correct

as the increase in masses by a factor of 100 simultaneously leads to an increase in the initial

separation r0 by the same factor according to Equation (2.7). Furthermore, the increase in

masses and r0 results in a decrease in the orbital frequency forb (cf. Equation (2.14)) and,
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consequently, the observed frequency fobs of the emitted GWs. As a consequence, the inspiral

is shifted further into Cassini’s frequency range. Moreover, for the masses larger by a factor

of 100, one obtains an increase of the characteristic strain hc by approximately two orders of

magnitude in both cases (CDM and SIDM).

4.2 Cassini’s Limitations in the Detectability of Gravitational Wave Signals

As mentioned in the motivation of this study, the phase of the SMBHB evolution where the

separation between the two SMBHs rapidly decreases occurs in Cassini’s frequency range. This

is evident from the GW spectra in conjunction with the temporal evolution of r or a presented

in the previous subsections.

The authors of [50] found that the main contribution to the total strain amplitude of the

GWB comes from SMBH coalescence events occurring at redshifts 0 < z < 1. This supports

the assumption used in the following analysis that a part of the GWB (from Cassini) could

originate from an individual nearby SMBHB, whose GW signal is characterized by a high

characteristic strain. This assumption is crucial since it has not yet been possible to extract

signals from the GWB that could be attributed to individual sources. Furthermore, there is

still uncertainty about the astrophysical or cosmological events that generate this background.

Firstly, one has to examine the requirements for such an individual SMBHB so that its GWs

could be detected by Cassini. One important quantity that constrains both the maximum

distance of the binary and the possible range of SMBH masses is the signal-to-noise ratio

(SNR). In Figure 4.1114, the SNR15 is plotted as a function of the initial frequency fini and

the chirp mass of the system for m1 = m2 in the upper panel and for m2/m1 = 0.01 in the

lower panel. The SNR is calculated for the Virgo Cluster, which is located at a distance of

D = 17Mpc [51]. In this context, fini is defined as the frequency of the GW signal at the

beginning of Cassini‘s observation period.

The idea is to calculate fini for different M and then examine for which chirp masses the

corresponding SNR from Figure 4.11 takes the highest values. This allows to constrain the

mentioned mass range. Furthermore, only possible equal-mass SMBHBs in the Virgo Cluster

14While the SNR in this figure is plotted for Cassini’s third observation time, I assume that it is approximately
equivalent to that of the first measurement.

15It is important to note that the SNR was estimated for various combinations of fini and M prior to
the measurements. Therefore, it can be considered as an independent quantity for constraining the values of
m1 = m2 = m and D of the SMBHBs.
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are considered for this purpose. For larger distances than D = 17Mpc or for a mass ratio

different from unity, the SNR decreases further. From Figure 4.11, it is also evident that the

SNR increases with increasing initial frequency for a fixed M. Although this behavior is only

seen up to a certain maximum value for fini, this is not relevant as this value is not reached by

a SMBHB. It is also clear that fini is larger when the separation between the SMBHs is already

smaller. For this reason, I decided to coincide the timing of the SMBHs’ coalescence with the

end of Cassini’s 40-day observation period. Therefore, I assume that the two SMBHs reach

the separation at which the numerical calculation terminates, i.e., r = rISCO,1 + rISCO,2, 35

days after the start of Cassini‘s measurement. After that, the two SMBHs have an additional 5

days16 until their merger. This approach allows to achieve the highest possible initial frequency

for a fixed chirp mass defined by

fini
(2.65)
=

1

(1 + z) π

√

GM

[N (rISCO,1 + rISCO,2)]
3 , (4.1)

where N can be numerically determined using the SMBHB-code by

35 days ≈ t(rISCO,1 + rISCO,2)
︸ ︷︷ ︸

total evolution time

−t(N(rISCO,1 + rISCO,2)). (4.2)

Another reason for this assumption is that the SMBHB has the highest rate of change in

separation r during the last 40 days before coalescence, as discussed in the previous subsection.

Therefore, a large distance is "sampled" by the SMBHs within the observation time of Cassini.

Consequently, in the next subsection, it can be calculated the DM density around a SMBH for

the largest possible spatial area.

The following table presents different values of M along with their corresponding N , fini, and

the resulting SNR read from Figure 4.11. These values are also indicated in red in the same

figure. For smaller or larger values of the chirp mass than these, the frequency range considered

in this figure for fini is not sufficient to read the SNR. However, these are not necessary, as will

become clear later. Based on the discussion in the previous subsection regarding GW spectra,

I have chosen to focus on the case of static, non-relativistic CDM spikes and circular orbits.

16This is a conservative estimate for the time to coalescence using tcoal =
5

256
c5

G3

(rISCO,1+rISCO,2)
4

M2µ
from [44]

for circular orbits in the case where a SMBHB loses energy only through GW emission, which is applicable in
the final phase.
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m1 = m2 [M⊙] M [M⊙] N fini [Hz] SNR (fig. 4.11)

107 8.71× 106 12.3 5.06× 10−6 0 to 1

2× 107 1.74× 107 6.65 6.37× 10−6 0 to 1

3× 107 2.61× 107 5.0 6.51× 10−6 1 to 5

4× 107 3.48× 107 4.2 6.34× 10−6 1 to 5

5× 107 4.35× 107 3.73 6.06× 10−6 1 to 5

6× 107 5.22× 107 3.41 5.78× 10−6 1 to 5

7× 107 6.09× 107 3.18 5.50× 10−6 ≈ 5

8× 107 6.96× 107 3.0 5.23× 10−6 5 to 10

9× 107 7.83× 107 2.87 4.99× 10−6 5 to 10

108 8.71× 107 2.75 4.79× 10−6 5 to 10

Tab. 4.2: SNR for different values of M and fini. {D, σ, bmax} = {17Mpc, 200 km/s, 10 kpc}.

Fig. 4.11: The figure illustrates the detectable inspiral signals emitted by SMBHBs in the
Virgo Cluster (D = 17Mpc). The contour plots depict the levels of 1, 5, and 10
for the SNR in the (M, fini)-plane. The values listed in Table 4.2 are also marked
in red. The top panel corresponds to the case of m1 = m2, while the bottom panel
represents the case of m2/m1 = 0.01. The meaning of the dashed diagonal line and
the dotted line is irrelevant in this work [15].
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From Table 4.2 and Figure 4.11, the mass range with the highest SNR (≳ 5) can be determined

to be 7× 107 M⊙ ≤ m ≤ 108 M⊙ with m1 = m2 = m. The maximum distance reachable by the

spacecraft is estimated to be 100Mpc in [51]. Therefore, the range of the luminosity distance

for SMBHBs used in the following is 17Mpc ≤ D ≤ 100Mpc. Within these intervals, an upper

and lower bound for the GW spectrum of an individual SMBHB can now be calculated. These

two limit cases are shown in the next two subfigures.

(a) Lower bound for the GW spectrum.
{D, m} = {100Mpc, 7× 107M⊙}.

(b) Upper bound for the GW spectrum.
{D, m} = {17Mpc, 108M⊙}.

Fig. 4.12: The GW spectrum is depicted for the two limit cases in the scenario of static,
non-relativistic CDM spikes and circular orbits. fini is marked with a vertical
red line. In addition, the vacuum case is also considered. {σ, bmax , ι, r0} =
{200 km/s, 10 kpc, π/2, 50 (rISCO,1 + rISCO,2)}

In the following, a combination of D and m needs to be found whose hc best matches a part of the

GWB within the detectable frequency range (fmax = fobs(r = rISCO,1 + rISCO,2) ≥ fobs ≥ fini)

for the case of static, non-relativistic CDM spikes. Since, as mentioned above, this part is

assumed to be dominated by the GW signal from this individual nearby SMBHB.

By calculating the total absolute deviation ∆ =
∑fmax

fobs=fini
|hc,Cassini(fobs)− hc,SMBHB(fobs)|

for each detectable combination of D and m, I conclude that approximately D = 65Mpc

and m = 9 × 107 M⊙ is the most appropriate choice17 (see Figure 4.13). In this context,

hc,Cassini represents the upper limit on the characteristic strain from Cassini, and hc,SMBHB the

17For this combination ∆ ≈ 0.7× 10−12 for 100 different values of fobs ∈ [fini, fmax] is valid. The larger the
number of values used for fobs, the larger ∆ becomes. The maximum number is limited by the accuracy of the
SMBHB-code in calculating hc,SMBHB .
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characteristic strain of the GW signal from the respective SMBHB for static, non-relativistic

CDM spikes. For m ≥ 2 × 108 M⊙ the characteristic strain of the signal is too high for all

possible values of D.

I would also like to mention that there are combinations for which the total absolute deviation

fits slightly better. However, for these combinations, the calculated DM density distributions by

using Cassini data (see next subsection) are quite unphysical: within the detectable frequency

range, they are highly discontinuous and take negative values for certain fobs. Therefore, I have

discarded these combinations.

Fig. 4.13: GW spectrum for the appropriate values of D and m. In addition, the vertical
red line marks the initial frequency fini. {D, m, σ, bmax , ι, r0} = {65Mpc, 9 ×
107 M⊙, 200 km/s, 10 kpc, π/2, 50 (rISCO,1 + rISCO,2)}.

Interestingly, Cassini was also sensitive to GW signals from extreme mass ratio inspirals (EM-

RIs) from compact objects with masses ≳ 30M⊙ and the SMBH Sgr A∗ of our galaxy [51].

However, the radius of the orbit around the galactic center of such light objects, even in the

final phase of their evolution, changes very little within Cassini’s observation period. Therefore,

their fini is only minimally smaller than fobs(rISCO,1+ rISCO,2). As a result, EMRIs potentially

detected by Cassini are not suitable for the analysis in this work.
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4.3 Calculation of the Dark Matter Density around SMBHs using Cassini Data

Finally, in this subsection, a lower limit for the DM density ρDM is determined based on the

upper limit on the GWB, characterized by the characteristic strain hc, Cassini. The parameters

of the SMBHB whose characteristic strain best matches hc, Cassini, as shown in Figure 4.13, are

used to calculate A and B in Equation (2.71). For hc(fobs), hc,Cassini(fobs) is utilized in this

formula. In Figure 4.14, the DM density obtained from the Cassini data is compared with the

density distribution of the corresponding CDM and SIDM spike. The values of rsp and ρsp for

both DM spikes are calculated by using the SMBH mass (m = 9 × 107 M⊙) of the selected

SMBHB and Equations (2.2) and (2.6), respectively.

It should be noted that, of course, only the range between "35 days to ISCO1+2" and "ISCO1+2

(stop numerical calculation)" can be considered for the subsequent discussion of the plot. This

frequency range is referred to as "relevant" in the following.

Fig. 4.14: The lower limit for the DM density by using the Cassini data is depicted in violet.
For comparison, the DM density distribution for the corresponding CDM (blue) and
SIDM (orange) spike is also plotted. Additionally, three different frequencies are
marked, and their labels indicate the respective separation r between the SMBHs.
The label "35 days to ISCO1+2" corresponds to the initial frequency fini. When
the SMBHs reach the separation of r = rISCO,1+ rISCO,2, the numerical calculation
is terminated. Furthermore, the ISCO of one of the SMBHs is marked as a refer-
ence value. Again, static, non-relativistic spikes and circular orbits are assumed.
{D, m, σ, bmax , ι} = {65Mpc, 9× 107 M⊙, 200 km/s, 10 kpc, π/2}.
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In the above plot, it is evident that both the density distribution of the CDM spike and that

of the SIDM spike mostly lie below the lower limit of the DM density around SMBHs in the

relevant frequency range. Unfortunately, this problem occurs for all possible combinations of

D and m for which this lower bound behaves in a physically meaningful way (i.e., takes only

positive values). Using (rotating) SIDM spikes to constrain the mass interval from Chapter

4.2 would ultimately only lead to finding a different combination of D and m that minimizes

the total absolute deviation ∆. In the case of rotating CDM spikes, fini is about an order of

magnitude smaller than for static CDM spikes (cf. Table 4.2). The corresponding SNR should

approach zero according to Figure 4.11.

Since the lower limit is not completely below the density distribution for CDM spikes for all

detectable D and m, neither of the two models can be ruled out. In summary, it can be

noted that the data from Cassini is less suitable for assuming an individual nearby SMBHB

dominating a part of the GWB. If this assumption is nevertheless made, Figure 4.14 shows

that the case involving CDM spikes around SMBHs is more likely than the one involving SIDM

spikes.

To constrain the particle properties of DM, one requires a GW signal from an individual SMBHB

with known parameters such as mass and luminosity distance. The attempt to determine the

values of these parameters by minimizing ∆, i.e., choosing the most suitable combination for D

and m such that the characteristic strain hc of the GW signal from this selected SMBHB best

matches hc,Cassini within the relevant frequency range, has proven to be not very successful.

If it becomes possible in the future to detect GWs from individual SMBHBs, and if these binaries

satisfy the conditions mentioned in Chapter 2.5, one can calculate the density of DM in their

vicinity using Equation (2.71). By comparing the results with the density distributions in the

case of CDM and SIDM spikes, potential constraints on the matter environment of SMBHs

could be derived.
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5 Conclusions

In this work it has been illustrated that the presence of DM spikes around the SMBHs of a

SMBHB can leave clearly visible fingerprints in the GW signal emitted by this system. The

depth of these fingerprints depends on the particle properties of DM. It has been shown that in

the final phase of the SMBHB evolution, the characteristic strain in the case with CDM spikes

can be better distinguished from that of the vacuum case because of the higher density in the

central region of the spikes, in contrast to the situation with SIDM spikes. In this context,

it was important to consider the dynamical friction due to the gravitational interaction of the

SMBHs with DM particles. Therefore, a formula describing this effect for different system

properties, such as static or rotating spikes, was derived. One drawback of the model is that

it does not take into account interactions between DM particles. The resulting energy transfer

within the spikes could have a significant impact on the evolution of SMBHBs. This can be

explored in future works.

The main focus of this bachelor thesis was to use the upper bound on the GWB from the

Cassini spacecraft to determine a lower limit for the DM density around SMBHs. By directly

comparing this lower limit with the density distributions of CDM and SIDM spikes, the aim was

to find out which of these two DM theories could be considered more appropriate for describing

DM spikes around SMBHs. Unfortunately, the assumptions made are not well-suited to make

clear statements or to draw definitive conclusions, since the density distributions for CDM and

SIDM spikes are mainly below the lower limit. Nevertheless, at the current stage, it would not

have been possible to use the Cassini data within this research without these assumptions, since

it is not yet possible to filter out GW signals from the GWB and attribute them to individual

sources.

However, I am not aware of any previous research in this field that specifically addresses this

particular and, in my opinion, promising method for constraining the properties of DM par-

ticles in this frequency range. All that is missing are GW signals that can be unambiguously

attributed to individual SMBHBs in the final phase of their evolution. The Laser Interferometer

Space Antenna (LISA) should have the potential to measure these GWs in the future [52].
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6 Outlook

Another way to gain information about the matter environment of SMBHs is to study the

stochastic GWB in the nanohertz range. As mentioned at the beginning of this work, the

GW signals from SMBHBs are located in this frequency range during the early phase of their

evolution. Interestingly, the shape of the characteristic strain of this astrophysical background

could provide insights into the properties of the matter surrounding the SMBHs, as discussed in

[36] or [46]. The measurement data on this GWB from Pulsar Timing Arrays18 (PTAs) seems

to be promising for this purpose, especially in the light of the recent publications of the 15-year

data set (see [53]–[55]) by NANOGrav19.
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