Synthese und Kristallstruktur von $(PPh_4)_2[Mo_2(O_2C-Ph)_4Cl_4] \cdot 2 CH_2Cl_2$, einem Komplex mit Mo=Mo-Bindung

Synthesis and Crystal Structure of $(PPh_4)_2[Mo_2(O_2C-Ph)_4Cl_4] \cdot 2 CH_2Cl_2$, a Complex with Mo \equiv Mo Bonding

Kay Jansen, Kurt Dehnicke*

Fachbereich Chemie der Universität Marburg, Hans Meerwein-Straße, D-3550 Marburg/Lahn

Dieter Fenske

Institut für Anorganische Chemie der Universität Frankfurt/Main, Niederurseler Hang, D-6000 Frankfurt

Z. Naturforsch. 42b, 1097-1101 (1987); eingegangen am 2. März 1987

Tetrabenzoato-tetrachloro-dimolybdate, Synthesis, IR Spectra, Crystal Structure

The title compound has been prepared from (PPh₄)₂[Mo₂(O₂C-Ph)₄Cl₂] and CCl₄ in CH₂Cl₂ solution as moisture sensitive crystals, which are black in reflexion and yellow in transmission. (PPh₄)₂[Mo₂(O₂C-Ph)₄Cl₄] · 2 CH₂Cl₂ was characterized by a X-ray crystal structure determination (7873 observed independent reflexions, R = 0.048). It crystallizes in the space group P I with one formula unit in the unit cell; the lattice constants are a = 1186.4; b = 1404.0; c = 1451.0 pm; $a = 61.98^\circ$; $\beta = 78.91^\circ$; $\gamma = 78.26^\circ$. The structure consists of PPh₄[⊕] ions, CH₂Cl₂ molecules and centrosymmetric anions [Mo₂(O₂C-Ph)₄Cl₄]^{2©} containing a molybdenum d³d³ unit with a relatively long Mo≡Mo bond of 249.6 pm. The Mo≡Mo group is spanned in a chelate manner by four O atoms of two benzoate groups and by two further single O atoms of two further benzoate groups. Two terminal Cl atoms on each Mo atom complete the pentagonal bipyramidal coordination spheres about the Mo atoms.

1. Einleitung

Zweikernige Übergangsmetallkomplexe mit Metall-Metall-Bindung, für die Beispiele von M-M-Einfachbindung bis M≣M-Vierfachbindung bekannt sind, haben in den vergangenen Jahren wegen ihrer vielseitigen Chemie und auch aus theoretischen Gründen weitgespannte Interessen geweckt [1]. Besonders variationenreich ist die Chemie der Komplexe mit Dreifachbindung zwischen Molybdän- und Wolframatomen, von denen allerdings nur wenige Beispiele strukturell untersucht sind [2]. In diesen überwiegt die MO-Konfiguration $\sigma^2 \pi^4$ für die M=M-Bindung mit einem Bereich von 220-240 pm für den MoMo-Abstand [2], doch wurde unlängst auch über ein Beispiel mit der MO-Konfiguration $\pi^4 \delta^2$ berichtet, in dem die Mo≡Mo-Bindungslänge mit 213 pm extrem kurz ist [3]. Vielfach sind in diesen Komplexen die MM-Hanteln durch geeignete Chelate überspannt. Wir berichten im folgenden über einen Mo≡Mo-Komplex, in dem ein bisher unbekanntes Verknüpfungsprinzip der Benzoatoliganden realisiert ist.

2. Synthese und IR-Spektrum von (PPh₄)₂[Mo₂(O₂C-Ph)₄Cl₄] · 2 CH₂Cl₂

Ausgehend von dem d⁴d⁴-Komplex

 $(PPh_4)_2[Mo_2(O_2C-Ph)_4Cl_2] \cdot 2 CH_2Cl_2$, den wir unlängst kristallographisch charakterisiert haben [4], läßt sich durch Zugabe von Tetrachlorkohlenstoff zu einer Lösung des Komplexes in Dichlormethan in exothermer Reaktion glatt eine Oxidation zu dem d³d³-Komplex der Titelverbindung erreichen:

$$[Mo(O_2C-Ph_4)_4Cl_2]^{2\ominus} + 2 CCl_4 \rightarrow [Mo_2(O_2C-Ph)_4Cl_4]^{2\ominus} + C_2Cl_6$$
(1)

Überschüssiges CCl₄ bewirkt zugleich eine Verringerung der Löslichkeit, so daß sich das Tetraphenylphosphoniumsalz in guter Ausbeute durch Filtration gewinnen läßt. Zur Herstellung von Einkristallen läßt man CCl₄ über die Gasphase in eine gesättigte Lösung von (PPh₄)₂[Mo₂(O₂C-Ph)₄Cl₂] \cdot 2 CH₂Cl₂ in Dichlormethan eindiffundieren. Das Produkt von Reaktion (1) bildet in der Aufsicht schwarze, in der Durchsicht und beim Verreiben gelbe, feuchtigkeitsempfindliche Kristalle, die sich gut in CH₂Cl₂ lösen.

Im IR-Spektrum des

 $(PPh_4)_2[Mo_2(O_2C-Ph)_4Cl_4] \cdot 2 CH_2Cl_2$ tritt im Bereich von $v_{as}CO_2$ des mit beiden O-Atomen gebun-

^{*} Sonderdruckanforderungen an Prof. Dr. K. Dehnicke. Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932–0776/87/0900–1097/\$ 01.00/0

denen Benzoatrestes (s.u.) nur eine Bande bei 1602 cm^{-1} auf, die der Gegentaktschwingung

entspricht, während $\nu_{as}CO_2$ des Gleichtakttyps für C_{2h} -Symmetrie IR-inaktiv ist [5]. Demgegenüber beobachtet man in den IR-Spektren von $Mo_2(O_2C-Ph)_4$ [6] und im $[Mo_2(O_2C-Ph)_4Cl_2]^{2\ominus}$ -Ion [4] mit jeweils vier gleichartig gebundenen Benzoatliganden entsprechend den Auswahlregeln [5] je zwei asymmetrische CO₂-Valenzschwingungen bei 1592 und 1606 cm⁻¹. Zusätzlich tritt im IR-Spektrum des $[Mo_2(O_2C-Ph)_4Cl_4]^{2\ominus}$ eine starke Absorption bei 1706 cm⁻¹ auf, die nach allen Erfahrungen [5] einer C=O-Valenzschwingung entspricht, und die wir der Gegentaktschwingung des über ein O-Atom gebundenen Benzoatliganden zuordnen:

In Einklang mit der röntgenographischen Strukturanalyse (s.u.) ist auch das Auftreten zweier MoCl-Valenzschwingungen bei 322 und 299 cm⁻¹, die von den beiden IR-aktiven Gegentaktschwingungen herrühren:

Ihre Frequenzlage entspricht den Erfahrungen bei anderen anionischen Chlorokomplexen des Molybdäns, deren MoCl-Valenzschwingungen im Bereich von 270–360 cm⁻¹ angetroffen werden [7].

3. Kristallstruktur von (PPh₄)₂[Mo₂(O₂C-Ph)₄Cl₄] · 2 CH₂Cl₂

Tab. I enthält die kristallographischen Daten und Angaben zur Strukturlösung, Tab. II die Bindungsabstände und -winkel, Tab. III die Atomkoordinaten*.

Die Struktur besteht aus PPh_4^{\oplus} -Ionen, eingelagerten CH_2Cl_2 -Molekülen und zentrosymmetrischen dimeren Anionen $[Mo_2(O_2C-Ph)_4Cl_4]^{2\ominus}$ mit C_{2h} -Sym-

Tab. I. Kristalldaten und Angaben zur Kristallstrukturbestimmung von (PPh₄)₂[Mo₂(O₂C-Ph)₄Cl₄] · 2 CH₂Cl₂.

Gitterkonstanten	a = 1186,4(3); b = 1404,0(3); c = 1451,0(3) pm;
	$\alpha = 61,98(3)^{\circ}; \beta = 78.91(2)^{\circ}; \gamma = 78,26(2)^{\circ}$
Zellvolumen	$V = 2075,9 A^3$
Zahl der Formeleinheiten pro Zelle	Z = 1
Dichte (berechnet)	$1,22 \text{ g/cm}^3$
Kristallsystem, Raumgruppe	triklin, P1
Meßgerät	Vierkreisdiffraktometer, Siemens AED II
Strahlung	MoK α (Graphit-Monochromator)
Meßtemperatur	20 °C
Zahl der Reflexe zur Gitterkonstantenberechnung	25
Meßbereich, Abtastungsmodus	2θ : 3,0 bis 56,0°
Zahl der unabhängigen Reflexe	7873 mit I>2 σ (I)
Korrekturen	Lorentz- und Polarisationsfaktor, Absorptionskorrektur, ψ -scan
	μ (MoK α) 5.95 cm ⁻¹
Strukturaufklärung	Patterson-Methoden
Verfeinerung	Alle Atome außer Wasserstoff anisotrop
Verwendete Rechenprogramme	[17, 18]
Atomformfaktoren, $\Delta f'$, $\Delta f''$	International Tables 1974
$R = \Sigma \mathbf{F}_{o} - \mathbf{F}_{o} / \Sigma \mathbf{F}_{o} $	4.8%
$R_{\rm w} = [\Sigma w (F_{\rm o} - F_{\rm c})^2 / \Sigma w F_{\rm o}^2]^{1/2}$	5,0%

⁶ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 52551, des Autors und des Zeitschriftenzitats angefordert werden.

Tab. II. Bindungsabstände [pm] und -winkel [Grad].

Tab. III. Atomkoordinaten×104 und Parameter U für den äquivalenten isotropen Temperaturfaktor

Mo(1) - Cl(1)	243,6(1)	Cl(1) - Mo(1) - Cl(2)	88,7(0)	$\exp(-8\pi^2 \dot{U} \sin^2\theta/\lambda^2) \ [19].$					
Mo(1) - Cl(2)	243,0(1)	Cl(1) - Mo(1) - O(2)	94,5(1)					LL 10-1	
Mo(1) - O(2)	211,0(2)	CI(2) - Mo(1) - O(2)	93,2(1)	Atom	x	У	z	$0 \cdot 10^{-1}$	
$Mo(1^{-}) - O(1)$	209,6(2)	CI(1) - Mo(1) - O(3)	1/0, 7(1)		4520(0)	1127(0)	000((0)	29(1)	
Mo(1) - O(3)	210,6(3)	$CI(1) - Mo(1) - O(3^{\circ})$	81,7(1)	Mo(1)	4520(0)	4427(0)	0886(0)	28(1)	
Mo(1') - O(3)	209,8(3)	CI(2) - Mo(1) - O(3)	82,8(1)	CI(1)	3937(1)	45/9(1)	2520(1)	41(2)	
Mo(1) - Mo(1)) 249,6(0)	O(2) - Mo(1) - O(3)	82,2(1)	CI(2)	3859(1)	2647(1)	1/54(1)	45(2)	
and the second second		O(1') - Mo(1) - O(2)	173,2(2)	O(1)	3810(2)	6276(2)	-1319(2)	34(1)	
C(1) - O(1)	127,3(3)	Mo(1') - Mo(1) - Cl(1)) 135,3(1)	O(2)	2934(2)	5228(2)	0268(2)	35(1)	
C(1) - O(2)	127,6(3)	Mo(1')-Mo(1)-Cl(2)) 135,9(1)	C(1)	2910(3)	5959(2)	-0682(2)	33(2)	
C(1) - C(2)	148,5(4)	Mo(1) - Mo(1') - O(1)	86,7(1)	C(2)	1765(3)	6476(3)	-1076(3)	38(1)	
C(2) - C(3)	138,4(5)	Mo(1') - Mo(1) - O(2)	86,6(1)	C(3)	1691(4)	7305(4)	-2086(3)	54(2)	
C(3) - C(4)	138,7(7)	Mo(1') - Mo(1) - O(3)	53,5(1)	C(4)	0612(4)	7786(5)	-2431(4)	63(2)	
C(4) - C(5)	135,7(7)	Mo(1) - Mo(1') - O(3)	53,7(1)	C(5)	-0377(4)	7448(5)	-1803(4)	59(2)	
C(5) - C(6)	137.5(7)			C(6)	-0308(4)	6615(5)	-0804(4)	63(2)	
C(6) - C(7)	138,7(6)	Mo(1) - O(3) - Mo(1')	72.8(1)	C(7)	0760(3)	6130(4)	-0435(3)	52(2)	
C(2) - C(7)	138.1(5)	$M_0(1) - O(3) - C(8)$	130.1(2)	O(3)	4824(2)	4118(2)	-0434(2)	34(1)	
-(-) -(.)		$M_0(1') - O(3) - C(8)$	128.0(2)	O(4)	6355(2)	2877(2)	-0422(3)	55(2)	
C(8) = O(3)	133 8(5)	$M_0(1) = O(2) = C(1)$	121.0(2)	C(8)	5349(3)	3229(3)	-0536(3)	40(1)	
C(8) - O(4)	120,6(3)	$M_0(1') = O(1) = C(1)$	121, 4(2)	C(9)	4562(3)	2747(3)	-0828(3)	42(1)	
C(8) - C(9)	120,0(7) 148 0(7)	$M_0(1) = O(2) = C(1)$	121, 0(2)	C(10)	3384(3)	3075(3)	-0796(3)	46(2)	
C(0) - C(10)	137.8(5)	NO(1) O(2) O(1)	121,0(2)	C(10)	2668(4)	2609(4)	-1068(4)	60(2)	
C(10) = C(11)	137,0(3) 137,0(8)	O(3) = C(8) = O(4)	123.7(4)	C(11)	3120(6)	1828(5)	-1392(5)	79(3)	
C(10) - C(11) C(11) - C(12)	137,9(0) 136,4(10)	O(3) - C(8) - O(4)	123,7(4) 112,2(3)	C(12)	1287(6)	1420(5)	-1414(7)	89(3)	
C(11) - C(12) C(12) - C(12)	130,4(10) 136,0(10)	O(3) = C(8) = C(9)	112,2(3) 124,1(4)	C(13)	4207(0)	1490(0) 1048(5)	-1154(5)	67(3)	
C(12) - C(13)	130,9(10) 126,4(12)	O(4) = C(8) = C(9)	124,1(4) 124,0(2)	D D	1249(1)	1940(3)	-1134(3)	37(1)	
C(13) - C(14)	130,4(13)	O(1) - C(1) - O(2)	124,0(3)	P C(15)	1248(1)	7529(1)	4019(1)	$\frac{37(1)}{40(1)}$	
C(9) - C(14)	138,7(9)	O(1) - C(1) - C(2)	117,0(2)	C(15)	0050(3)	7771(3)	4/05(3)	40(1)	
D ((15)	100 4(4)	O(2) = C(1) = C(2)	118,4(2)	C(16)	-0274(3)	8857(5)	4492(3)	49(2)	
P - C(15)	180,4(4)	C(1) - C(2) - C(7)	120,1(3)	C(17)	-1209(4)	9166(4)	5077(4)	59(5)	
P - C(21)	1/9, 7(3)	C(1) - C(2) - C(3)	120,6(3)	C(18)	-1822(4)	8408(4)	5896(3)	55(3)	
P-C(27)	179,0(5)	C(8) - C(9) - C(10)	121,9(4)	C(19)	-1500(4)	7319(4)	61/2(3)	52(2)	
P-C(33)	179,3(3)	C(8) - C(9) - C(14)	119,9(4)	C(20)	-0559(4)	6996(4)	5614(3)	48(2)	
				C(21)	2220(3)	6316(3)	4921(3)	40(1)	
LC(1)-Cl(3)	174,0(8)	C(15) - P - C(21)	108,1(2)	C(22)	2399(4)	6429(4)	5784(3)	51(2)	
LC(1)-Cl(4)	172,3(9)	C(15) - P - C(27)	110,2(2)	C(23)	3196(4)	5693(4)	6456(4)	58(2)	
LC(2)-Cl(5)	159(1)	C(15) - P - C(33)	108,5(2)	C(24)	3793(4)	4831(4)	6289(4)	57(2)	
LC(2) - Cl(6)	185(2)	C(21) - P - C(27)	110,4(2)	C(25)	3617(4)	4718(4)	5445(4)	58(2)	
		C(21) - P - C(33)	110,7(2)	C(26)	2837(3)	5454(3)	4750(3)	50(2)	
		C(27) - P - C(33)	109,0(2)	C(27)	0734(3)	6777(3)	3313(3)	39(1)	
				C(28)	-0387(3)	6519(3)	3536(3)	45(1)	
		Cl(3) - LC(1) - Cl(4)	111.4(4)	C(29)	-0731(4)	6039(4)	3004(3)	52(2)	
		C(5) - LC(2) - C(6)	106(1)	C(30)	0037(4)	5813(4)	2276(3)	54(2)	
				C(31)	1149(4)	6073(4)	2043(3)	51(2)	
				C(32)	1500(3)	6562(4)	2552(3)	46(2)	
				C(32)	1959(3)	8485(3)	3099(3)	42(2)	
				C(34)	2852(4)	8768(4)	3362(4)	52(2)	
matria (Abb. 1) In ihnon and dia MaMa Hantala				C(34)	2052(4)	0700(4)	2682(4)	50(3)	
metre (A00, 1). In innen sind die MoMo-Halleli			C(35)	3312(4) 2015(4)	$\frac{9721(4)}{10271(4)}$	1735(4)	62(3)		
einerseits über zwei Benzoatogruppen mit beiden O-			C(30)	2913(4) 2014(5)	10071(4) 10098(4)	1455(4)	67(3)		

Atomen überbrückt (A), mit coplanar angeordneten Phenylgruppen, andererseits senkrecht hierzu von je einem O-Atom der beiden übrigen Benzoatogruppen, deren Phenylgruppen senkrecht zur MoMo-Achse orientiert sind (Typ B):

Coplanar zu dem Mo₂O₂-Gerüst sind die terminal gebundenen Chloratome koordiniert, so daß sich für die Molybdänatome insgesamt die Koordinations-

zahl sieben ergibt mit einer verzerrt pentagonal-bipyramidalen Anordnung:

Die Mo≡Mo-Bindung ist länger als in anderen Molybdänkomplexen vom d³d³-Typ [1, 2]. Beispiele sind Verbindungen mit ethanähnlichem Gerüst Mo_2X_6 (X = CH₂-SiMe₃ [8], NMe₂ [9], OCH₂-t-Bu [10] und SAr [11, 12]), bei denen die MoMo-Abstände nahe bei 220 pm liegen und dem $\sigma^2 \pi^4$ -Typ zuzuordnen Strukturuntersuchungen sind. an Mo≡Mo-Komplexen mit chelatisierenden, die MoMo-Hantel überspannenden Liganden liegen vor von dem d³d³-Komplex Mo₂(CH₂-t-Bu)₂(O₂CMe)₄ mit $\pi^4 \delta^2$ -Konfiguration und dem sehr kurzen MoMo-Abstand von 213 pm [3], sowie von dem d^5d^5 -Mo=Mo-Komplex Mo₂[F₂PN(CH₃)PF₂]Cl₂ mit $\sigma^2 \pi^4 \delta^2 \delta^{*2}$ -Konfiguration und dem sehr langen MoMo-Abstand von 246 pm [13].

Abb. 1. Ansicht des $[Mo_2(O_2C-Ph)_4Cl_4]^{2\Theta}$ - Ions.

In unserem Beispiel des Anions

 $[Mo_2(O_2C-Ph)_4Cl_4]^{2\Theta}$ ist der MoMo-Abstand mit 249,6 pm noch etwas länger. Wir führen dies vor allem auf die Ringspannung der Mo2O-Dreiringe (Typ B) zurück. Eine MoMo-Bindungslänge von 249,8 pm wird auch in dem μ -CO-Komplex Mo₂(O-t-Bu)₆(CO) beobachtet, in dem die MoMo-Achse zusätzlich noch über zwei O-Atome zweier t-Butylgruppen überspannt wird [14]. Allerdings wird in diesem Fall die MoMo-Bindung als Doppelbindung gedeutet [1, 14]. Die Mo-O-Bindungslängen sind für beide Brückentypen (A, B) im [Mo₂(O₂C-Ph)₄Cl₄]^{2⊖}-Ion mit etwa 210 pm gleich lang; sie entsprechen damit auch denen im $[Mo_2(O_2C-Ph)_4Cl_2]^{2\Theta}$ -Ion (~212 pm [4]). Die Dehnung des MoMo-Abstandes von 213 pm [4] auf 249,6 pm hat nur eine geringfügige Erweiterung des O-C-O-Bindungswinkels der Brückenbenzoatliganden von 122,8° [4] auf 124,0° (Typ A) zur Folge.

Die CO-Bindungslängen des Benzoattyps A sind mit 127,3 bzw. 127,6 pm praktisch gleich lang, die des Brückenbenzoattyps B sind mit 133,8 pm und 120,6 pm naturgemäß verschieden, was recht gut einer C-O-Einfach- bzw. einer C=O-Doppelbindung entspricht [15]. Im Mittel sind jedoch die CO-Abstände beider Brückentypen exakt gleich lang.

Experimenteller Teil

Die Versuche erfordern Ausschluß von Feuchtigkeit. CH_2Cl_2 und CCl_4 wurden über P_4O_{10} destilliert. PPh₄Cl war ein handelsübliches Produkt (Fluka); es wurde i. Vak. bei 100 °C entwässert. Tetrakis(benzoato)dimolybdän erhielten wir wie beschrieben [16] aus Molybdänhexacarbonyl und Benzoesäure. Das IR-Spektrum wurde mit Hilfe eines Perkin-Elmer-Gerätes Typ 577 registriert. CsI-Scheiben, Nujolverreibung.

$(PPh_4)_2[Mo_2(O_2C-Ph)_4Cl_4] \cdot 2 CH_2Cl_2$

Man löst 1,60 g

$C_{78}H_{64}Cl_8O_8Mo_2P_2$ (1666,8)

Gef. C56,65 H3,97 Cl17,11 Mo10,96 P3,30, Ber. C56,20 H3,88 Cl17,01 Mo11,51 P3,72.

Der Fonds der Chemischen Industrie unterstützte diese Arbeit großzügig mit Sachmitteln.

- F. A. Cotton und R. A. Walton, Multiple Bonds between Metal Atoms, Wiley, New York – Chichester – Brisbane – Toronto – Singapore (1982).
- [2] M. H. Chisholm, Angew. Chem. 98, 21 (1986); Angew. Chem., Int. Ed. Engl. 25, 21 (1986).
- [3] M. H. Chisholm, J. C. Huffman und W. van der Sluys, Inorg. Chim. Acta 116, L13 (1986).
- [4] K. Jansen, K. Dehnicke und D. Fenske, Z. Naturforsch. **40b**, 13 (1985).
- [5] J. Weidlein, U. Müller und K. Dehnicke, Schwingungsspektroskopie, G. Thieme-Verlag, Stuttgart – New York (1982).
- [6] E. W. Abel, A. Singh und G. Wilkinson, J. Chem. Soc. 1959, 3097.
- [7] J. Weidlein, U. Müller und K. Dehnicke, Schwingungsfrequenzen II, G. Thieme-Verlag, Stuttgart – New York (1986).
- [8] F. Huq, W. Mowat, A. Shortland, A. C. Skapski und G. Wilkinson, J. Am. Chem. Soc. 91, 1079 (1971).
- [9] M. H. Chisholm, F. A. Cotton, B. A. Frenz, W. W. Reichert, L. W. Shive und B. R. Stults, J. Am. Chem. Soc. 98, 4469 (1978).

- [10] M. H. Chisholm, F. A. Cotton, C. A. Murillo und W. W. Reichert, Inorg. Chem. 16, 1801 (1977).
- [11] M. H. Chisholm, J. F. Corning, K. Folting und J. C. Huffman, Polyhedron 4, 383 (1985).
- [12] P. J. Blower, J. R. Dilworth und J. Zubieta, Inorg. Chem. 24, 2866 (1985).
- [13] F. A. Cotton, W. H. Ilsley und W. Kaim, J. Am. Chem. Soc. **102**, 1918 (1980).
- [14] M. H. Chisholm, F. A. Cotton, M. W. Extine und R. L. Kelly, J. Am. Chem. Soc. 101, 7645 (1979).
- [15] A. F. Wells, Structural Inorganic Chemistry, 5th Ed., Clarendon Press, Oxford (1984).
- [16] T. A. Stephenson, E. Banister und G. Wilkinson, J. Chem. Soc. 1964, 2538.
- [17] G. M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge (1976).
- [18] C. K. Johnson, ORTEP, Report ORNL-3794, Oak Ridge National Laboratory, Tennessee (1965).
- [19] W. C. Hamilton, Acta Crystallogr. 12, 609 (1959).