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Abstract

Measurements of the production of electrons from heavy-flavour hadron decays in pp collisions at√
s = 13 TeV at midrapidity with the ALICE detector are presented down to a transverse momen-

tum (pT) of 0.2 GeV/c and up to pT = 35 GeV/c, which is the largest momentum range probed
for inclusive electron measurements in ALICE. In p–Pb collisions, the production cross section and
the nuclear modification factor of electrons from heavy-flavour hadron decays are measured in the
pT range 0.5 < pT < 26 GeV/c at

√
sNN = 8.16 TeV. The nuclear modification factor is found to

be consistent with unity within the statistical and systematic uncertainties. In both collision systems,
first measurements of the yields of electrons from heavy-flavour hadron decays in different multiplic-
ity intervals normalised to the multiplicity-integrated yield (self-normalised yield) at midrapidity are
reported as a function of the self-normalised charged-particle multiplicity estimated at midrapidity.
The self-normalised yields in pp and p–Pb collisions grow faster than linear with the self-normalised
multiplicity. A strong pT dependence is observed in pp collisions, where the yield of high-pT elec-
trons increases faster as a function of multiplicity than the one of low-pT electrons. The measurement
in p–Pb collisions shows no pT dependence within uncertainties. The self-normalised yields in pp and
p–Pb collisions are compared with measurements of other heavy-flavour, light-flavour, and strange
particles, and with Monte Carlo simulations.

Keywords: Heavy-flavour electrons, nuclear modification factor, self-normalised yield, multiplicity,
pp collisions, p–Pb collisions
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1 Introduction

In high-energy hadronic collisions, heavy quarks are mainly produced in hard parton scattering pro-
cesses. Due to their large masses, their production cross sections can be calculated in the framework of
perturbative quantum chromodynamics (pQCD) down to low transverse momenta [1–4]. Measurements
of production cross sections of open heavy-flavour hadrons and their decay products in pp and Pb–Pb
collisions were performed by the ALICE, CMS, ATLAS and LHCb Collaborations at the LHC at both
mid and forward rapidity [5–28]. These measurements are described by theoretical predictions based on
pQCD calculations with the collinear factorisation approach at next-to-leading order with next-to-leading
log resummation e.g. in the GM-VFNS (general-mass variable-flavour-number scheme) [29–33]) or the
FONLL (fixed order with next-to-leading-log resummation) [34] frameworks, within theoretical uncer-
tainties. Measurements of charm-baryon production at midrapidity in pp collisions show an enhance-
ment of the Λ+

c /D0 [14, 35–38], Ξ
+,0
c /D0 [39–41], Σ

+,0
c /D0 [42], and Ω

+,0
c /D0 [43] ratios with respect

to those measured in e+e− and ep collisions [44]. A multiplicity dependence measurement of the Λ+
c /D0

ratio [14] has revealed a significant increase from the lowest to the highest multiplicity. These obser-
vations indicate that the hadronisation of charm quarks into charm hadrons is not a universal process
among different collision systems. These findings are similar to those obtained in the beauty sector by
the CDF Collaboration at the Tevatron [45] and by the LHCb Collaboration at the LHC [46, 47].

In proton–nucleus collisions, the so-called cold nuclear matter (CNM) effects occur due to the presence
of a nucleus in the colliding system and to the large density of produced particles. In particular, the
parton distribution functions (PDFs) of nucleons bound in nuclei are modified with respect to those of
free nucleons, which can be described by phenomenological parameterisations referred to as nuclear
PDFs (nPDFs) [48–51]. When the production process is dominated by gluons at low Bjorken-x, the
nucleus can be described by the Colour Glass Condensate (CGC) effective theory as a coherent and
saturated gluonic system [52–55]. The kinematics of the partons in the initial state can be affected
by multiple scatterings [56, 57] or by gluon radiation (energy loss) before or after the heavy-quark
pair is produced [58]. Measurements of heavy-flavour production in p–Pb collisions at the LHC will
allow a study of the above mentioned effects. Previous measurements of the nuclear modification factor
of leptons from heavy-flavour hadron decays in p–Pb collisions at

√
sNN = 5.02 TeV by the ALICE

Collaboration indicate no significant modification of their yields due to CNM effects in the measured
transverse momentum (pT) region within uncertainties [19, 59]. For a nucleus–nucleus collisions (AA),
the nuclear modification factor (RAA) is the ratio of the yield in nucleus–nucleus collisions with respect
to the yield in proton–proton collisions scaled by the number of binary nucleon–nucleon collision in AA.
It quantifies the interaction of a particle and its energy loss while traversing through a medium formed
in AA collisions with respect to pp collisions. Measurements of the nuclear modification factor of open
heavy flavour and quarkonia at mid, forward, and backward rapidity in p–Pb collisions were performed
by the ALICE [60–65], ATLAS [66], CMS [67, 68], and LHCb [69–72] collaborations. The results can
be described qualitatively by the various theoretical calculations mentioned above.

Recent measurements of light-flavour [73–88] and heavy-flavour hadrons [89–93] in high-multiplicity
pp, p–A, and d–A collisions at different energies have revealed strong flow-like effects in these small
systems [94]. The origin of this phenomenon is debated. Models that incorporate hydrodynamical evo-
lution of the system [95–98], overlapping strings [99], string percolation [100], or multiple-parton in-
teractions together with colour reconnection [101, 102] can describe qualitatively the observed features
in high-multiplicity events. A multiphase transport model [103], as well as calculations based on the
fragmentation of saturated gluon states [104, 105], are also able to describe some features of the data.
The measurement of heavy-flavour production in small systems as a function of the charged-particle
multiplicity produced in the collision could thus provide further insight into the processes occurring in
the collision at the partonic level and the interplay between the hard and soft mechanisms in particle
production in pp and p–Pb collisions.
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Measurements of charm and beauty productions [106–111] indicate an increase of heavy-flavour produc-
tion with charged-particle multiplicity measured at midrapidity. The D meson [106] and J/ψ [107] pro-
ductions normalised to their corresponding multiplicity-integrated yields in minimum bias events (self-
normalised yields), as a function of self-normalised event multiplicities, (i.e., normalised to the average
multiplicity in minimum bias collisions) are measured in pp collisions at

√
s = 7 TeV and

√
s = 13 TeV

by the ALICE Collaboration at the LHC, and at
√

s= 0.2 TeV by the STAR Collaboration at RHIC [108].
These measurements show a stronger than linear increase of self-normalised yields as a function of self-
normalised multiplicity. Measurements of the ϒ(nS) production in pp collisions at

√
s = 2.76 TeV and

√
s

= 7 TeV by the CMS Collaboration at midrapidity indicate a linear increase with the event activity, when
measuring it at forward rapidity, and a stronger than linear increase with the event activity measured at
midrapidity [109]. A comprehensive review of the connection between the ϒ(nS) production and the
underlying event, is presented by the CMS Collaboration in pp collisions at

√
s = 2.76 TeV [112]. Mea-

surements of multiplicity dependence of ϒ(nS) production at forward rapidity, is presented by the ALICE
Collaboration in pp collisions at

√
s = 13 TeV [113]. In p–Pb collisions, the self-normalised D meson

yield at midrapidity increases with a faster than linear trend as a function of the self-normalised charged-
particle multiplicity at midrapidity and is consistent with a linear growth for multiplicity measured at
large rapidities [111]. The self-normalised J/ψ yield at larger rapidities also exhibits an increase with in-
creasing normalised charged-particle pseudorapidity density, where the yield at backward rapidity grows
faster than the forward rapidity one [110]. A possible correlation with the event multiplicity (and event
shape) is also observed for the inclusive charged-particle production [114], and for identified particles,
including multi-strange hyperons [115]. The trends are qualitatively, and for some of the calculations
quantitatively, reproduced by QCD-inspired event generators such as PYTHIA 8 [116], and EPOS LHC
and EPOS 3 [117, 118]. But a critical evaluation of the similarities and differences between the physics
mechanisms at play in various models is yet to be performed. More stringent tests of the models would
be important in this direction. A comparison of the multiplicity-dependent measurements for different
particle species would also provide insight into the origin of the observed phenomena [14, 119].

In this article, measurements of the production cross section of electrons from heavy-flavour hadron
decays at midrapidity in pp collisions at

√
s = 13 TeV and p–Pb collisions at

√
sNN = 8.16 TeV are

presented. The cross section of electrons from heavy-flavour hadron decays was measured as a function
of transverse momentum down to 0.2 GeV/c and up to 35 GeV/c in pp collisions, which is the lowest
and highest pT-reach attained for electrons from heavy-flavour hadron decays with the ALICE detec-
tor. Results of the nuclear modification factor (RpPb) of electrons from heavy-flavour hadron decays at
midrapidity in p–Pb collisions at

√
sNN = 8.16 TeV are reported as well. The self-normalised yields of

electrons from heavy-flavour hadron decays measured for the first time as a function of charged-particle
multiplicity estimated at midrapidity (|η | < 1) in pp and p–Pb collisions are also presented. The com-
parison of the self-normalised yields of electrons from heavy-flavour hadron decays with other particles
measured using the ALICE detector and with Monte Carlo (MC) simulations is discussed.

The article is structured as follows. In Sec. 2, the ALICE apparatus, its main detectors and the data
samples used for the analysis are reported. The definition of multiplicity and the calculation of the
charged-particle pseudorapidity density is addressed in Sec. 3. In Sec. 4, the procedure employed to ob-
tain the production cross sections of electrons from heavy-flavour hadron decays is explained. Section 5
describes the systematic uncertainties associated with the measurements. The results of the analysis are
presented and discussed in Sec. 6. Finally, the article is summarised in Sec. 7.

2 Experimental apparatus and data sample

In LHC Run 2, the ALICE apparatus consisted of a central barrel, covering the pseudorapidity re-
gion |η | < 0.9, a muon spectrometer with −4 < η < −2.5 coverage, and forward- and backward-
pseudorapidity detectors employed for triggering, background rejection, and event characterisation. A
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complete description of the detector and an overview of its performance are presented in Refs. [94, 120,
121].

The central barrel detectors used in the analysis are the Inner Tracking System (ITS) [122], the Time Pro-
jection Chamber (TPC) [123], the Time-Of-Flight detector (TOF) [124, 125], and the Electromagnetic
Calorimeters (EMCal and DCal) [126, 127]. They are embedded in a large solenoidal magnet that pro-
vides a magnetic field parallel to the beams axis. The ITS consists of six layers of silicon detectors, with
the innermost two composed of Silicon Pixel Detectors (SPD). The ITS is used to reconstruct the primary
vertex and to track charged particles. The TPC is the main tracking detector of the central barrel. It is a
gas detector placed co-axially with the beam axis next to the ITS radially. It also enables charged-particle
identification via the measurement of the particle specific energy loss (dE/dx) in the detector gas. The
particle identification capabilities of the TPC are supplemented with the TOF detector, which provides a
measurement of the time-of-flight of charged particles. The TOF is a gas detector which uses Multigap
Resistive Plate Chamber (MRPC) [128] as its basic detecting element. The TOF detector has the capa-
bility to distinguish the electrons from pions, kaons, and protons up to pT ≈ 1 GeV/c, pT ≈ 2.5 GeV/c,
and pT ≈ 4 GeV/c, respectively. The EMCal and DCal detectors are shashlik-type sampling calorime-
ters consisting of alternate layers of lead absorber and scintillator material. The EMCal covers |η |< 0.7
in pseudorapidity and ∆ϕ = 107◦ in azimuth. The DCal is located azimuthally opposite to the EMCal
covering 0.22 < |η |< 0.7 and ∆ϕ = 60◦ plus |η |< 0.7 and ∆ϕ = 7◦. In the following, EMCal and DCal
will be together referred to as EMCal, as they are part of the same detector system. The smallest segmen-
tation of the EMCal is a cell, which has a dimension of 6×6 cm2 (0.0143 rad × 0.0143 rad) in its base
placed in the η×ϕ direction. The electromagnetic calorimeters were used for electron identification and
for triggering on rare events with high momentum particles in their acceptance.

The detectors at forward rapidity used in the analysis are the V0 [129] and T0 [129] detectors. The V0
detector, composed of two scintillator arrays placed on either side of the interaction point along the beam
axis (with pseudorapidity coverage 2.8 < η < 5.1 and −3.7 < η < −1.7), was utilised for triggering
and for offline rejection of beam-induced background events. In p–Pb collisions, the contamination
from beam–background interactions and electromagnetic interactions was further removed using the
information from the Zero Degree Calorimeters (ZDC) [130] located at 112.5 m on both sides of the
interaction point along the beam axis. The T0 detector, composed of two arrays of quartz Cherenkov
counters, covers an acceptance of 4.6 < η < 4.9 and −3.3 < η <−3.0, and is used to provide the start
time for the TOF detector. The V0 and T0 detectors were also employed to determine the integrated
luminosity.

The results presented in this article were obtained using data recorded by ALICE during the LHC Run
2 data taking periods between the years 2016 and 2018 for pp collisions at

√
s = 13 TeV, and in 2016

for p–Pb collisions at
√

sNN = 8.16 TeV. While the nominal magnetic field used during the data taking
is 0.5 T, for a subset of periods in pp collisions the magnetic field was reduced to 0.2 T (will be re-
ferred to as low-B field data set in the following sections), allowing for the measurement of electrons
down to a pT of 0.2 GeV/c. In p–Pb collisions, a centre-of-mass energy per nucleon–nucleon colli-
sion of

√
sNN = 8.16 TeV was obtained by delivering proton and lead beams with energies of 6.5 TeV

and 2.56 TeV per nucleon, respectively. Due to this asymmetry of the beam energy per nucleon, the
proton–nucleon centre-of-mass rapidity frame is shifted by ∆y = 0.465 in the direction of the proton
beam.

Events used in the analyses were obtained using the minimum bias (MB) trigger provided by the V0
detector, and two single shower triggers based on the energy deposited in the EMCal [121, 131]. The
MB trigger condition requires coincident signals in both scintillator arrays of the V0 detector. The EMCal
trigger is based on the sum of energy in a sliding window of 4× 4 cells above a given threshold. The
energy thresholds of the two EMCal triggers were set to 4 GeV (EG2) and 9 GeV (EG1) for the pp data
sets, and 5.5 GeV (EG2) and 8 GeV (EG1) for the p–Pb data sets.
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In order to obtain a uniform acceptance of the detectors, only events with a reconstructed primary vertex
within ±10 cm from the centre of the detector along the beam line (zvtx) were considered for both pp
and p–Pb collisions. The number of selected events in pp and p–Pb collisions for different triggers, and
the corresponding integrated luminosities [132, 133] are listed in Table 1. In-bunch pileup events, where
more than one collision occurs in the same bunch crossing and are recorded as a single event, were re-
jected using an algorithm based on track segments reconstructed with the SPD to detect multiple primary
vertices. Out-of-bunch pileup events, where one or more collisions occur in bunch crossings different
from the one that triggered the data acquisition, were then rejected based on the timing information
provided by the V0 detector.

Table 1: Number of selected events in pp and p–Pb collisions for different triggers, and the corresponding inte-
grated luminosities and their uncertainties.

pp
√

s = 13 TeV p–Pb
√

sNN = 8.16 TeV

Magnetic field (T) 0.2 0.5 0.5

Trigger MB MB EG2 EG1 MB EG2 EG1

Number of events (106) 438 1755 116 96 39 0.6 3.4

Luminosity (nb−1) 7.6 30.3 811.3 8214.5 0.0190 0.0860 1.65

±0.2 ±0.7 ±30.7 ±378.7 ±0.0005 ±0.0025 ±0.05

3 Multiplicity definition and corrections

The production of electrons from heavy-flavour hadron decays was investigated as a function of charged-
particle pseudorapidity density (dNch/dη) in pp and p–Pb collisions. The dNch/dη was measured in the
pseudorapidity range |η |< 1. It was evaluated using the number of tracklets (Ntracklets) in the SPD [134,
135], defined as track segments pointing to the primary vertex and formed by joining pairs of hits in the
two SPD layers.

The number of raw tracklets (Ntracklets) in an event were corrected (Ncorr
tracklets) for the variation of the

detector conditions with time (fraction of active SPD channels) and its limited acceptance as a function of
zvtx using a data-driven event-by-event correction, following the procedure discussed in Refs. [136]. The
corrections were done by applying a zvtx and time-dependent correction factor such that the measured
average multiplicity is equalised to a reference value, which was chosen to be the largest mean SPD
tracklet multiplicity observed over time. The correction factor for each event was randomly smeared
using a Poisson distribution to take into account event-by-event fluctuations. The number of events, sliced
in Ncorr

tracklets intervals, were corrected for the trigger and primary vertex finding efficiencies, following the
procedure discussed in [107]. The former was estimated from MC simulations and the latter with a data-
driven approach. The efficiencies were close to unity for all multiplicity classes except for the lowest
multiplicity class interval, where the efficiency was close to 90%.

Detector inefficiencies, production of secondary particles due to interactions with the detector mate-
rial, and particle decays give a different number of reconstructed tracklets compared to the true primary
charged-particle multiplicity value Nch [137]. MC simulations using the PYTHIA 8.2 [116] and the DP-
MJET [138] event generators, for pp and p–Pb collisions respectively, and the GEANT 3 [139] transport
code were used to estimate Nch from Ncorr

tracklets and later dNch/dη . A second-order polynomial correlation
was assumed between the two quantities, Nch and Ncorr

tracklets, for the full Ncorr
tracklets range. To estimate the

systematic uncertainties on dNch/dη , possible deviations from the second-order polynomial correlation
between Nch and Ncorr

tracklets were estimated using a linear function. The systematic uncertainty on the resid-
ual zvtx dependence due to differences between data and MC amounts to about 1% in pp collisions and is
negligible in p–Pb collisions. The total systematic uncertainty on dNch/dη is about 5% in all multiplicity

5



Electrons from heavy-flavour hadron decays in pp and p–Pb collisions ALICE Collaboration

intervals for both pp and p–Pb collisions.

The average charged-particle pseudorapidity density was normalised to its average value in INEL > 0
events in pp and p–Pb collisions. The INEL > 0 event class contains all events with at least one charged
particle within |η |< 1. The average charged-particle pseudorapidity densities (〈dNch/dη〉) for INEL> 0
were found to be in agreement with the previous published ALICE measurements [107, 110, 140]. The
resulting values of the self-normalised charged-particle pseudorapidity density (dNch/dη/〈dNch/dη〉)
for the event classes considered in the analyses presented here are summarised in Table 2.

Table 2: Average self-normalised charged-particle pseudorapidity density (dNch/dη/〈dNch/dη〉) in |η |< 1.0 for
each event class selected in pp and p–Pb collisions.

pp
√

s = 13 TeV p–Pb
√

sNN = 8.16 TeV

Multiplicity class Ncorr
tracklets dNch/dη/〈dNch/dη〉 Ncorr

tracklets dNch/dη/〈dNch/dη〉

I 1–14 0.48 1–38 0.51

II 15–24 1.63 39–55 1.32

III 25–34 2.50 56–95 2.03

IV 35–44 3.34 96–121 3.01

V 45–54 4.16 122–300 3.85

VI 55–64 4.97

VII 65–120 6.05

4 Analysis overview

Measurements of electrons from heavy-flavour hadron decays were obtained by selecting an inclusive
electron sample and subtracting electrons which do not originate from heavy-flavour hadron decays.
The measurements were performed by identifying electrons using the TPC and TOF detectors at low pT
(pT < 4 GeV/c) and the TPC and EMCal detectors at higher pT (pT > 3 GeV/c) offering the largest
pT reach. In particular, this ensures that the systematic uncertainties and the hadron contamination are
small over the whole transverse momentum range. In the interval 3 < pT < 4 GeV/c, where the heavy-
flavour decay electron production was measured with both techniques, the TPC–TOF analysis was used
for the final results, while the TPC–EMCal analysis was utilised as a consistency check. This choice was
motivated by the precision of the measurements based on the statistical and systematic uncertainties, as
will be further discussed in Sec. 6. Throughout the article, the term ‘electron’ is used for electrons and
positrons.

4.1 Electron identification

Reconstructed tracks were selected based on the criteria listed in Table 3, which are similar to those used
in the analysis described in [141, 142]. These requirements were applied depending on the data sample as
well as the transverse momentum region of the analysis. The rapidity ranges used in the nominal-B field
TPC–TOF analysis and the TPC–EMCal analysis were limited to |y|< 0.8 and |y|< 0.6, respectively, to
avoid the edges of the detectors, where the systematic uncertainties related to the particle identification
increase. In the low-B field TPC–TOF analyses for pp collisions, the rapidity interval was restricted to
|y|< 0.5, to ensure a stable estimation of the photonic electron background (Sec. 4.2), which significantly
increases in the low-B field sample for small pT and large rapidities, resulting in a small signal over
background ratio. A charged particle passing through the TPC deposits energy inducing signals in the
pad rows of the detector. The reconstructed space points are known as clusters. The number of crossed
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rows which is equivalent to the effective cluster track length is used as a criteria for selecting tracks. A
threshold of a minimum of 70 out of the total 159 crossed rows of the TPC for track reconstruction and
80 clusters for particle identification were used. The χ2 of the Kalman fit of the reconstructed track in
the TPC, normalised to the number of TPC clusters (χ2/Ncls

TPC), had to be smaller than 4 to select tracks
with good quality and reduce the contribution from wrongly attached clusters to the reconstructed track.
Only tracks with a distance of closest approach (DCA) to the primary vertex smaller than 1 cm in the
transverse plane and 2 cm in the longitudinal direction were selected in order to reject background and
non-primary tracks. In the TPC–TOF analyses, all tracks were required to have an associated hit in each
of the two innermost layers of the ITS to reduce the background electrons from photon conversions in
the material, and to reduce wrong assignations of hits in the first layer of the ITS. For the TPC–EMCal
analyses, the tracks were required to have at least one hit in one of the two innermost layers of the ITS.
This reduces the impact of the inactive channels in the first ITS layer in the acceptance window of the
EMCal. As the photon conversion background decreases with increasing pT, the relaxed requirement
does not affect the signal over background ratio significantly in the pT range where the TPC–EMCal
analyses were performed. Moreover, it is important to note that the track selection criteria on SPD, TOF,
and EMCAL detectors sufficiently suppress background tracks originating from out-of-bunch pileup.

Table 3: Summary of the track selection criteria imposed on the inclusive electron candidates for different data
sets and electron identification strategies. Details can be found in Sec. 4.1.

pp
√

s = 13 TeV p–Pb
√

sNN = 8.16 TeV

pT interval (GeV/c) 0.2–4.0 0.5–4.0 3.0–35.0 0.5–4.0 3.0–26.0

Track selection
criteria

Low-B
TPC–TOF

Nominal-B
TPC–TOF

Nominal-B
TPC–EMCal

Nominal-B
TPC–TOF

Nominal-B
TPC–EMCal

|y| < 0.5 < 0.8 < 0.6 < 0.8 < 0.6

No. of TPC
crossed rows ≥ 70 ≥ 70 ≥ 70 ≥ 70 ≥ 70

No. of TPC dE/dx
clusters for PID ≥ 80 ≥ 80 ≥ 80 ≥ 80 ≥ 80

Number of ITS hits ≥ 3 ≥ 3 ≥ 3 ≥ 3 ≥ 3

χ2/Ncls
TPC < 4 < 4 < 4 < 4 < 4

Minimum number of
hits in the SPD 2 2 1 2 1

|DCAxy| < 1 cm < 1 cm < 1 cm < 1 cm < 1 cm

|DCAz| < 2 cm < 2 cm < 2 cm < 2 cm < 2 cm

To identify electrons at low pT (pT < 4 GeV/c), the specific energy deposition (dE/dx) in the TPC and
the time-of-flight measurement in the TOF detector were used. The discriminant variable used for the
TPC (TOF) detector is the deviation of dE/dx (particle time-of-flight) from the parameterised electron
Bethe–Bloch (electron time-of-flight) expectation value [143], expressed in terms of the dE/dx (time-of-
flight) resolution, nTPC

σ ,e (nTOF
σ ,e ). In the left panel of Fig. 1, nTPC

σ ,e is shown as a function of the momentum
of the track (p) after TOF selection. For 0.2 < pT < 4 GeV/c, electron candidates were selected by
requiring |nTOF

σ ,e | < 3 and −1 < nTPC
σ ,e < 3, resulting in a 100% pure electron sample at pT ≈ 0.2 GeV/c,

and a sample with a purity of about 90% at 4 GeV/c. The remaining hadron contamination in the sample,
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Figure 1: TPC dE/dx signal, expressed in terms of deviation from the expected electron energy loss as a function
of momentum (left panel) and fit of the measured nTPC

σ ,e distribution after the nTOF
σ ,e requirement in the momentum

range 2.9 < p < 3.0 GeV/c (right panel) in pp collisions at
√

s = 13 TeV for the low-B field data set.

after TOF selection, was estimated and subtracted by parameterising the TPC dE/dx distribution for each
particle species with an analytical function in different momentum regions as shown in the right panel of
Fig. 1, and as performed in previous analyses [141, 142].

Analyses using TPC and EMCal detectors were performed by spatially matching reconstructed charged
tracks in the ITS and TPC with EMCal clusters. This is implemented by extrapolating the reconstructed
charged tracks with ITS and TPC to the EMCal, taking into account the energy loss of the particle when
it traverses the detector materials, and matching within the ∆η and ∆ϕ as given by Eq. (1). At low pT, the
position resolution of tracks and the EMCal clusters gets worse which leads to a pT-dependent matching
criteria. The pT-dependent selection window is approximately one EMCal cell size at high pT and few
cell sizes below 1 GeV/c [131]. This matching criterion removes the contribution from photon signals
and from wrong associations of EMCal clusters to charged-particle tracks.

|∆η | ≤ 0.010+(pT,track(GeV/c)+4.07)−2.5,

|∆ϕ| ≤ 0.015+(pT,track(GeV/c)+3.65)−2.
(1)

Candidate tracks matched with EMCal clusters with −1 < nTPC
σ ,e < 3 were selected. Electrons were

identified and separated from hadrons using the E/p information, where, E is the energy deposited by
the particle in the EMCal detector and p is the momentum of the track. It was required that the measured
E/p is around unity, 0.85 < E/p < 1.2, as expected for electrons, while hadrons have lower E/p values.
To further reduce the amount of hadron contamination, a condition on the shape of the electromagnetic
shower, σ2

long, [144] was applied. The quantity σ2
long stands for the eigenvalues of the dispersion matrix

of the shower shape ellipse defined by the energy distribution within the EMCal cluster [145, 146]. A pT-
dependent selection criterion was applied, 0.02 < σ2

long < 0.9 at low pT and a more stringent selection up
to 0.02 < σ2

long < 0.5 at higher pT, in both pp and p–Pb collisions. The lower threshold on σ2
long removes

contamination caused by neutrons hitting the readout electronics. The remaining hadron contamination
in the electron sample was estimated by fitting the measured E/p distributions of electron candidates
in momentum slices. For this purpose, the shape of the E/p spectrum for hadrons was obtained by
selecting hadrons in the TPC with nTPC

σ ,e < −3.5. The obtained hadron E/p distribution was then scaled
to match the E/p distribution of electron candidates in a region within E/p < 0.7, as shown in Fig. 2.
The electron yield was calculated by integrating the E/p distributions of electron candidates in the range
0.85<E/p< 1.2 after the subtraction of the hadron contamination. In the pp (p–Pb) analysis, the hadron
contamination was negligible at low pT, increasing up to 23% (25%) at pT = 35 (26) GeV/c.
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Figure 2: The E/p distribution measured in pp collisions at
√

s = 13 TeV for EG1 triggered events.

4.2 Subtraction of electrons from non heavy-flavour sources

The selected inclusive electron sample contains electrons from open heavy-flavour hadron decays and
from different sources of background:

– dielectrons originating from Dalitz decays of light-neutral mesons such as π0, η as well as con-
versions of photons in the detector material, named as photonic electrons in the text,

– dielectrons from decays of J/ψ (J/ψ → e+e−) and low-mass vector mesons (ρ → e+e−, ω →
e+e−, φ → e+e−),

– electrons from kaon weak decays K0,±→ e± π∓,0
(−)
νe (Ke3),

– electrons from W and Z decays.

In pp collisions, the ratio of signal over background electrons is about 0.08 at pT = 0.2 GeV/c, 3 at
pT = 0.5 GeV/c increasing to ∼ 10.5 at pT = 25 GeV/c and reaches 12.3 at pT = 35 GeV/c, whereas
in p–Pb collisions it is about 2.65 at pT = 0.5 GeV/c and increases up to 8.39 at pT = 26 GeV/c. The
dominant sources of background electrons are photon conversions in the detector material and Dalitz de-
cays of light-neutral mesons. These contributions were removed using an invariant mass technique [59]
of electron–positron pairs. Unlike-signed electron–positron pairs (ULS) were defined by pairing the se-
lected electrons with opposite-charge electron partners. To increase the efficiency of finding the partner,
associated electrons were selected applying similar but looser track quality and particle identification cri-
teria than those used for selecting signal electrons. The selection criteria are summarised in Table 4. The
electron–positron pairs from photonic background have a small invariant mass (me+e−). Heavy-flavour
decay electrons can form ULS pairs mainly through random combinations with other electrons. The
combinatorial contribution was estimated from the invariant mass distribution of like-signed electron
(LS) pairs. The photonic background contribution was then evaluated by subtracting the LS distribu-
tion from the ULS one in the invariant mass region me+e− < 0.14 GeV/c. The efficiency of finding
the partner electron, called tagging efficiency (εtag) from hereon, was estimated using MC simulations.
In the pp and p–Pb analyses, the MC sample was obtained using PYTHIA 6 [116] and HIJING [147]
generators, respectively. The generated particles were propagated through the ALICE apparatus using
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GEANT 3 [139]. In order to increase the statistical precision of εtag using the invariant mass method,
π0 and η mesons were embedded in the simulated events. The simulated π0 and η pT distributions
were reweighted to match the measured spectra. For pp collisions, the π0 spectrum was estimated as
the average of the spectra of π+ and π− [148], whereas the η spectrum was obtained using mT scaling,
as in [149–151]. For the p–Pb analysis, the measured transverse momentum spectra of π0 and η were
used [152]. In the pp analysis, the tagging efficiency at low pT (pT < 1.0 GeV/c) is 55–65% for the low-
B field data set, whereas for the nominal-B field data set it is around 45–55% at low pT (pT < 1.0 GeV/c)
increasing to about 85% at high pT (pT > 15 GeV/c). In the p–Pb analysis, the tagging efficiency varies
between 40% at low pT (pT < 3.0 GeV/c) and 80% at high pT (pT > 7.0 GeV/c).

Table 4: Summary of the track selection criteria imposed on the associated electron candidates for different data
sets and electron identification strategies.

pp
√

s = 13 TeV p–Pb
√

sNN = 8.16 TeV

pT interval (GeV/c) 0.2–4.0 0.5–4.0 3.0–35.0 0.5–4.0 3.0–26.0

Track and PID
cuts

Low-B
TPC–TOF

Nominal-B
TPC–TOF

Nominal-B
TPC–EMCal

Nominal-B
TPC–TOF

Nominal-B
TPC–EMCal

pmin
T 0.0 GeV/c 0.1 GeV/c 0.1 GeV/c 0.1 GeV/c 0.1 GeV/c

|y| < 0.8 < 0.9 <0.9 < 0.8 < 0.8

No. of TPC
dE/dx clusters for PID ≥ 60 ≥ 60 ≥ 60 ≥ 60 ≥ 60

Number of ITS hits ≥ 2 ≥ 2 ≥ 2 ≥ 2 ≥ 2

χ2/Ncls
TPC < 4 < 4 < 4 < 4 < 4

|DCAxy| < 1 cm < 1 cm < 1 cm < 1 cm < 1 cm

|DCAz| < 2 cm < 2 cm < 2 cm < 2 cm < 2 cm

Due to the requirement of hits in the SPD layers, the contribution of electrons from Ke3 decays was found
to be negligible with respect to the heavy-flavour signal for pT > 0.5 GeV/c. At lower pT, the relative
contribution of electrons from Ke3 decays becomes non-negligible and hence it was subtracted from
the pT-differential cross section of electrons from heavy-flavour hadron decays. The Ke3 contribution
was estimated using a parameterisation of the ratio of Ke3 to photonic electrons obtained from previous
analyses using the so-called cocktail approach [9, 153, 154]. The same parametrisation was used in the
analysis of pp collisions at

√
s = 13 TeV and in p–Pb collisions at

√
sNN = 8.16 TeV.

Other background contributions of e+e− pairs from J/ψ and low-mass vector mesons were negligi-
ble [153, 155] compared to the signal and were therefore not subtracted. Electrons from W± and Z0

boson decays form a significant background at high pT (pT > 20 GeV/c), which was estimated with
the next-to-leading order event generator POWHEG [156], interfaced with PYTHIA as a decayer, and
subtracted from the pT-differential cross section of electrons from heavy-flavour hadron decays. This
contribution increases from 1% at pT = 15 GeV/c to about 3% at pT = 20 GeV/c and up to 25% at
pT = 35 GeV/c with respect to the heavy-flavour decay electron yield in both pp and p–Pb collisions.

4.3 EMCal trigger rejection factor

The EMCal triggered events are reported in terms of Nevt×RF, where Nevt is the number of triggered col-
lisions and the Rejection Factor (RF) is the average number of rejected MB events per EMCal triggered
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Table 5: Multiplicity-integrated values of the EMCal trigger RF with their uncertainties for the EG2 and EG1
triggered data sets in pp and p–Pb collisions.

pp
√

s = 13 TeV p–Pb
√

sNN = 8.16 TeV
Trigger EG2 EG1 EG2 EG1

RF value 406 4985 283.4 1020.7
± 1 (stat.) ± 12 (syst.) ± 11 (stat.) ± 200 (syst.) ± 1.5 (stat.) ± 5.9 (syst.) ± 3.6 (stat.) ± 30.4 (syst.)

event. The RFs were estimated with a data-driven method. For the EG2 trigger the RF was calculated
as the ratio of the cluster energy distribution in EG2 triggered data to the one in MB triggered data
( f cl

EG2/ f cl
MB), which gives the EG2 turn-on curve. In order to reduce the effect of poor statistics in the

MB sample at high pT, the EG1 trigger turn-on curve was obtained using the ratio of the EG1 triggered
data cluster energy distribution to the one in EG2 triggered data ( f cl

EG1/ f cl
EG2). The RF of EG1 trigger is

then the product of f cl
EG2/ f cl

MB and f cl
EG1/ f cl

EG2. The turn-on curve was determined for the multiplicity-
integrated interval and for different multiplicity intervals in pp and p–Pb collisions. The turn-on curves
are shown for both trigger energy thresholds (EG1 and EG2) in multiplicity integrated pp and p–Pb
collisions in Fig. 3.
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Figure 3: Trigger RF for EG2 and EG1 triggers in pp collisions at
√

s = 13 TeV (left panel) and in p–Pb collisions
at
√

sNN = 8.16 TeV (right panel).

A Fermi function [157, 158] was used to fit the trigger turn-on curves and determine the RF above the
trigger threshold. The fit range is from the beginning of the turn-on region i.e. near trigger threshold to
the highest energy where the distribution remains flat. The EG2/MB and the EG1/EG2 values correspond
to the constant values determined by the plateau of the fitted Fermi function above the trigger thresholds.
The final values of the RF used in the analyses are summarised in Table 5. The systematic uncertainty on
the trigger RF was estimated by varying the fit region of the trigger turn-on curve and the fit function, i.e.
using a linear function in the plateau region. A systematic uncertainty of 3% (2%) for the EG2 trigger
and 4% (3%) for EG1 trigger was obtained for pp (p–Pb) collisions.

4.4 Efficiency correction and normalisation

The raw number of electrons and positrons from heavy-flavour hadron decays, Nraw, was obtained by
subtracting the hadron contamination, photonic electrons, and the other background electron contribu-
tions. The pT-differential cross section of electrons from heavy-flavour hadron decays at midrapidity was
then calculated using the formula

d2σ

dpTdy
=

1
2

1
∆y∆pT

Nraw

εgeo× ε reco× εeID
1

Lint
(2)
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, where Lint is the integrated luminosity, and ∆pT and ∆y the width of the pT and rapidity inter-
vals, respectively. The integrated luminosity was calculated using the number of analysed events and
the measured MB trigger cross sections (σMB), as Nevt/σMB for minimum bias triggered events and
Nevt×RF/σMB for EMCal triggered events, and are listed in Table 1. The trigger bias was studied in
MC simulations and was found to be negligible for the selections applied to tracks and clusters. The
measured σMB values are 58.44 ± 1.11 mb, 58.10 ± 1.57 mb, and 57.52 ± 1.21 mb for the pp collisions
at
√

s = 13 TeV collected in the years 2016, 2017, and 2018, respectively [159], and 2100± 60 mb [133]
in p–Pb collisions at

√
sNN = 8.16 TeV. The raw number of electrons from heavy-flavour hadron decays

was corrected for the geometrical acceptance (εgeo), the track reconstruction (ε reco), and electron identi-
fication (εeID) efficiencies. The factor of two accounts for the charged averaged contribution of electrons
and positrons. The trigger and event selection criteria were found to be fully efficient for electrons from
heavy-flavour hadron decays.

The above mentioned acceptance and track reconstruction efficiencies are computed by means of MC
simulations using PYTHIA 6 [116] and HIJING [147] event generators for pp and p–Pb collisions,
respectively. For pp simulations PYTHIA 6 generated events with at least one cc or bb pair were selected
for propagation through the apparatus with GEANT 3 [139] and subsequent reconstruction. In the case
of p–Pb collisions, to have an efficient generation of heavy-flavour signals and reproduce the detector
occupancy, one PYTHIA 6 event with a cc or bb pair was embedded in each HIJING simulated event.

The electron identification (eID) efficiencies for the TOF, TPC, and EMCal detectors were obtained
separately, and then multiplied according to the detectors used in the analysis to compute the full electron
identification efficiency εeID. The TPC–TOF track matching and electron identification efficiency of the
TOF detector was calculated with the above mentioned MC sample and was found to be 60–70% (40–
65%) for 0.5 < pT < 1.5 GeV/c increasing up to 75% (70%) at 4 GeV/c in the low (nominal)-B field
analysis. A better track matching between the TPC and the TOF detectors is achieved at a given pT with
the low-B field compared to the nominal-B field, due to the smaller curvature of the tracks. Therefore,
a higher reconstruction efficiency is observed in the low-B field data compared to the nominal-B field
sample. The TPC electron identification efficiency was determined using a data-driven approach based
on the nTPC

σ ,e distribution [9]. It is about 88% at pT = 0.2 GeV/c and increases to 89% for pT > 0.5 GeV/c,
for the low-B field data sample.

In the nominal-B field data set, it was found to be around 86% at pT = 0.5 GeV/c increasing to 88% for
pT > 4 GeV/c. The electron identification efficiency with EMCal was estimated using MC simulations
and was found to be about 60% at 3 GeV/c, increasing up to 80% for pT larger than 10 GeV/c for
pp collisions. The total reconstruction efficiency (εgeo× ε reco× εeID) for different data sets and with
different detectors is presented in Fig. 4.

The production of electrons from heavy-flavour hadron decays was further studied as a function of the
charged-particle pseudorapidity density in pp or p–Pb collisions using the self-normalised yield of heavy-
flavour hadron decay electrons. The differential yield measured in a given multiplicity class was divided
by its average over all INEL > 0 events (d2N/dpTdη/〈d2N/dpTdη〉INEL>0) in pp or p–Pb collisions.
All efficiency were obtained as a function of multiplicity. At low pT, the tagging efficiency and the total
reconstruction efficiency of electrons from heavy-flavour hadron decays were observed to be multiplicity
dependent, while no dependencies were seen at high pT, so the efficiencies cancelled out in the self-
normalised ratios at high pT.

5 Systematic uncertainties

The systematic uncertainties on the measured cross sections in pp and p–Pb collisions were obtained
separately for the different pT intervals and for the different analyses performed using the TPC–TOF
and TPC–EMCal detector combinations. For the self-normalised yield measurements, the systematic
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Figure 4: Total reconstruction efficiency of electrons from heavy-flavour hadron decays using the TPC and TOF
or the TPC and EMCal detectors in pp collisions at

√
s = 13 TeV with nominal and low magnetic field (left panel)

and in p–Pb collisions at
√

sNN = 8.16 TeV (right panel).

uncertainties were estimated directly on the self-normalised yield for each multiplicity class and pT
interval. The different sources of systematic uncertainties are discussed in this section and the assigned
values are summarised in Tables 6, 7, and 8.

The systematic uncertainty on the track reconstruction and selection efficiency was obtained by multiple
variations of the track selection criteria, namely, the minimum number of space points in the TPC, the
number of TPC crossed rows, the number of TPC dE/dx clusters and the number of hits in the ITS.

The uncertainty due to an imperfect description in the simulation of the TPC–TOF (and the TPC–ITS)
track matching was estimated by calculating the difference between efficiencies of the TPC–TOF (and
the TPC–ITS) track matching in data and MC. To obtain the matching efficiency, the abundances of
primary and secondary particles in data were estimated via template fits to the track impact-parameter
distributions, and the relative abundances in the simulation were weighted to match those in data [160,
161]. For the low-B field sample in pp collisions, the uncertainty on the track matching between the ITS
and TPC is 2% at pT = 0.2 GeV/c increasing up to 4% at 4 GeV/c, whereas, the uncertainty on the track
matching between the TPC and the TOF detector is 4% at pT = 0.2 GeV/c and 2% at 4 GeV/c. In case
of the nominal-B field data set, the uncertainty is about 2% for the TPC–TOF track matching and about
3% for the TPC–ITS track matching in the whole pT range. In the p–Pb analysis, the uncertainty for the
TPC–TOF track matching, as well as the TPC–ITS track matching, was found to be around 2% in the
whole pT range.

The systematic uncertainty on the SPD hit requirement was obtained by varying the condition on the
minimum number of hits and the specific layer of the SPD on which a hit was required for both the
TPC–TOF and the TPC–EMCal analyses. For the low-B field sample in pp collisions, the systematic
uncertainty due to the SPD hit requirement was about 25% at pT = 0.2 GeV/c decreasing to 15% at
0.5 GeV/c, whereas for nominal-B field data sets in pp and p–Pb collisions, the uncertainty is about 10%
at pT = 0.5 GeV/c decreasing to 5% at 4 GeV/c and becomes negligible in the highest-pT interval.

The uncertainty on the procedure of track matching to EMCal clusters was obtained by varying the
∆η −∆ϕ selection using pT-independent thresholds ranging from 0.015 to 0.05 rad in η and ϕ . The
resulting uncertainty was found to be negligible.

The uncertainty on the electron identification originates from imprecisions in the description of the de-
tector response in the MC, as well as from potential biases in the procedure employed to select electron
candidates and to estimate the hadron contamination. It was studied by varying the electron identification
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Table 6: Sources of systematic uncertainties and their assigned values in pp collisions at
√

s = 13 TeV for
B = 0.2 T (0.2 < pT < 0.5 GeV/c) and B = 0.5 T (0.5 < pT < 4 GeV/c) data sets with the TPC and TOF
detectors, as well as with the TPC and EMCal detectors (4 < pT < 35 GeV/c). The values presented as a range
correspond to the lowest- and highest-pT intervals.

Sources of systematic
uncertainties

0.2 < pT < 0.5 GeV/c 0.5 < pT < 4 GeV/c 4 < pT < 35 GeV/c
low-B

TPC–TOF
nominal-B
TPC–TOF

nominal-B
TPC–EMCal

Track selection negl. 1% 3%

TPC–TOF matching 4%–2% 2% N/A

TPC–ITS matching 2% 3% 3%

TPC–EMCal matching N/A N/A negl.

SPD hit requirement 25%–15% 10%–3% 5%–negl.

Electron identification 5% 5%–negl. 6%–12%

Hadron contamination negl. negl.–2% negl.–7%

Photonic electron subtraction 20%–11% 7%–1% negl.

Ke3 subtraction 15%–1% N/A N/A

W±/Z0→ e N/A N/A negl.–8%

π0, η weights 3%–1% negl. negl.

RF N/A N/A 3%–4%

Luminosity 2.3% 2.3% 2.3%–5%

Total systematic 36%–20% 14%–7% 11%–18%

selection criteria on nTPC
σ ,e , E/p, and σ2

long. The assigned systematic uncertainties are listed as “Electron
identification” in the Tables 6, 7, and 8. The assigned systematic uncertainties vary from 5% to 12%
depending on the pT and the analysis method

Additionally, the robustness of the fit procedure used to extract the hadron contamination in both elec-
tron identification strategies was checked. In the TPC–TOF analysis, different analytical functions were
utilised to parameterise the TPC dE/dx, which had negligible effects on the estimated hadron contamina-
tion up to a pT of 3 GeV/c. In the TPC–EMCal analysis, the scaling region of the hadron E/p distribution
was varied. The resulting uncertainties were found to be negligible at low pT and of the order of 5% at
high pT.

The uncertainty on the subtraction of photonic electrons is related to the efficiency of finding the partner
electron and was studied by varying the selection of partner tracks, i.e. the number of TPC clusters used
for (dE/dx) calculation and the minimum pT requirement, as well as the selection on the invariant mass
of e+e− pairs.

The subtraction of Ke3 decay electrons in pp collisions for pT < 0.5 GeV/c can be affected by the
uncertainty on the parameterisation of the ratio of Ke3 to photonic electrons, and was found to result in
an uncertainty of 15% at pT = 0.2 GeV/c and to be negligible at pT ≥ 0.5 GeV/c.

The uncertainty on the contribution of electrons from W± and Z0 boson decays was estimated by varying
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Table 7: Sources of systematic uncertainties and their assigned values in p–Pb collisions at
√

sNN = 8.16 TeV
with TPC and TOF detectors (0.5 < pT < 4 GeV/c), as well as with the TPC and EMCal detectors
(4 < pT < 26 GeV/c). The values presented as a range correspond to the lowest- and highest-pT intervals.

Sources of systematic
uncertainties

0.5 < pT < 4 GeV/c 4 < pT < 26 GeV/c
nominal-B
TPC–TOF

nominal-B
TPC–EMCal

Track selection 1% 5%–1%

TPC–TOF matching 2% N/A

TPC–EMCal matching N/A negl.

TPC–ITS matching 2% 2%

SPD hit requirement 10%–3% 5%–negl.

Electron identification 3%–1% 1%–5%

Hadron contamination negl. negl.–5%

Photonic electron subtraction 7%–1% negl.

Ke3 subtraction N/A N/A

W±/Z0→ e N/A negl.–1%

π0, η weights negl. negl.

RF N/A 2%–4%

Luminosity 3% 3%

Total systematic 13%–5% 8%–9%

the yield of electrons from W± and Z0 boson decays by 25%. The strategy is imported from the most
recent measurements from ALICE [16, 141]. The resulting uncertainty was found to be negligible for
p–Pb collisions and only relevant at very high pT for pp collisions, where it amounts to about 8%.

In the MC simulations, the π0 and η meson pT distributions were weighted such that their measured
pT spectra are reproduced. The uncertainty from the measurements was propagated to the efficiency of
finding the partner electron by parameterising the data along the upper and lower ends of their statis-
tical and systematic uncertainties added in quadrature. The uncertainty was found to be about 3% at
pT = 0.2 GeV/c in pp collisions and to be negligible at pT ≥ 0.5 GeV/c in both pp and p–Pb collisions.

The systematic uncertainty on the trigger RF, as explained in Sec. 4.3, was propagated on the pT-
differential cross section of electrons from heavy-flavour hadron decays. The uncertainty was of the
order of 4% at the highest pT.

The systematic uncertainty on the luminosity was propagated on the pT-differential cross section of elec-
trons from heavy-flavour hadron decays. The uncertainty was 2.3% to 5% in pp collisions depending on
the pT, as the uncertainty from the rejection factors for triggered samples were taken into consideration,
and 3% in p–Pb collisions, where the uncertainty from the rejection factors contributed negligibly to the
uncertainty on luminosity.

As the geometrical acceptance and reconstruction efficiencies are essentially independent of dNch/dη

in the measured multiplicity range, these corrections and their corresponding systematic uncertainties
largely cancel in the ratio to the multiplicity-integrated yield, thus resulting in a lower systematic uncer-
tainty for self-normalised yields compared to the one for the pT spectra.
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The total systematic uncertainties on the pT spectra and the self-normalised yields were calculated by
summing the different contributions in quadrature, as they are considered to be uncorrelated.

Table 8: Systematic uncertainty on self-normalised yield in pp collisions at
√

s = 13 TeV and p–Pb collisions at
√

sNN = 8.16 TeV.

pp,
√

s = 13 TeV p–Pb,
√

sNN = 8.16 TeV

Multiplicity pT interval (GeV/c) pT interval (GeV/c)

intervals 0.5–6 6–12 15–30 0.5–6 6–8 14–26

Track selection

I negl. 2% 2% negl. 3% 3%

III negl. 2% 2% negl. 3% 3%

V negl. 2% 2% negl. 4% 4%

SPD hit requirement

I 10% 6% 14% 10% 2% 10%

III 3% 6% 6% 2% 2% 2%

V 4% 6% 6% 2% 2% 2%

Electron identification

I 1% 3% 3% 1% 2% 2%

III 1% 3% 3% 1% 2% 2%

V 1% 3% 3% 1% 4% 4%

Photonic electron
subtraction

I 1% 1% 2% 1% 1% 1%

III 1% 2% 2% 1% 1% 1%

V 1% 2% 2% 1% 1% 1%

Total systematics

I 10% 7% 15% 10% 4% 11%

III 3% 7% 7% 2% 4% 4%

V 4% 7% 7% 2% 6% 6%

6 Results

6.1 pT-differential cross section of heavy-flavour hadron decay electrons in pp and p–Pb collisions

The pT-differential production cross section of electrons from semileptonic decays of heavy-flavour
hadrons at midrapidity in pp collisions at

√
s = 13 TeV measured in the transverse momentum inter-

val 0.2 < pT < 35 GeV/c is shown in Fig. 5. The statistical uncertainties are represented as vertical
lines while the total systematic uncertainties are displayed as boxes. In the top left panel of Fig. 5,
the cross sections measured with the TPC–TOF detectors and the two different data sets collected with
different magnetic fields are plotted together with the spectra obtained using the TPC–EMCal detec-
tors with MB triggered events, as well as with EMCal triggered events, EG1, and EG2. The ratios of
the different analyses in the overlapping pT intervals are shown in the bottom left panel of Fig. 5. For
0.5 < pT < 4 GeV/c, the ratio of the result from the TPC–TOF analyses with B = 0.5 T to the one ob-
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tained with B = 0.2 T is displayed. In 3 < pT < 4 GeV/c, the ratio of the cross section obtained from the
TPC–TOF analysis to that obtained from the TPC–EMCal analysis is shown for MB triggered events.
At higher pT, namely 6 < pT < 10 GeV/c (12 < pT < 18 GeV/c), the ratio of the TPC–EMCal results
for MB and EG2 (EG2 and EG1) triggered events is reported. All ratios are consistent with unity within
statistical and systematic uncertainties, which demonstrates that the different analyses are in agreement
with each other. The final cross section in the pT intervals 0.2–0.5 GeV/c, 0.5–4 GeV/c, 4–6 GeV/c,
6–12 GeV/c, and 12–35 GeV/c was obtained from the TPC–TOF low-B field analysis, the TPC–TOF
nominal-B field analysis, and from the results obtained with the TPC–EMCal detectors using MB, EG2
and EG1 triggered events, respectively. In this way, for each pT range, the measurement with the smallest
total uncertainty (quadratic sum of statistical and systematic uncertainty) is used.

The pT-differential cross section measurement was compared with FONLL [34] and GM-VFNS [32]
pQCD calculations 1, as shown in the right panel of Fig. 5. The uncertainties of the FONLL calculations
reflect different choices for the charm- and beauty-quark masses, and for the factorisation and renormali-
sation scales as well as the uncertainty on the set of parton distribution functions (PDF) (CTEQ6.6 [162]).
The FONLL calculations describe the measurements within the uncertainties, although the theoretical un-
certainties are large, up to a factor of two. The data are found to be close to the upper edge of the FONLL
prediction, which can be clearly seen in the right bottom panel of Fig. 5, where the ratio of the data points
to the FONLL calculations is shown. Similar observations were made for the measurements of electrons
from heavy-flavour hadron decays in pp collisions at lower energies at the LHC [9, 142, 153, 154] and at
RHIC [163, 164]. The measurement of the cross section of D mesons is also consistent with upper bound
of FONLL pQCD calculations in pp collisions at LHC [5, 6, 8, 12, 13, 160, 165] and RHIC [166], as
well as in pp̄ collisions at Tevatron energies [167]. The FONLL calculations use fragmentation functions
tuned on e+e− data and assume that all charm quarks fragment only into D+ and D0 mesons (and their an-
tiparticles). Recent measurements of charm-baryon production at midrapidity in pp and p–Pb collisions
from ALICE show a baryon-to-meson ratio significantly higher than that in e+e− collisions, suggesting
that the fragmentation of charm quark is not universal across different collision systems [14, 168]. As
a consequence, calculations taking properly into account the latest open-cham baryon measurements at
midrapidity to constrain the charm fragmentation are expected to predict a smaller yield of heavy-flavour
hadron decays by about 9% compared to the FONLL spectrum. The largest source of uncertainties in
the GM-VFNS prediction is due to scale variation, and hence PDF related uncertainties and variations
of the bottom and charm mass are not considered. The GM-VFNS framework includes leptoproduction
from the following three steps: beauty quark to beauty hadrons (b→ B), transition from beauty quark to
charm hadrons (b→ B→ D), and charm quark to charm hadrons (c→ D). The GM-VFNS calculations
describe the data within the uncertainties for pT greater than 5 GeV/c, but largely underestimate the cross
section for lower pT, up to a factor of five at 1 GeV/c, as seen in the right middle panel of Fig. 5. Similar
observations were reported for the non-prompt D meson measurements at

√
s = 5.02 TeV [165]. For

prompt D mesons at
√

s = 5.02 TeV, however, the GM-VFNS predictions describe the cross section
within the uncertainties [165]. Electrons from heavy-flavour hadron decays are dominated by semilep-
tonic decays of beauty hadrons for pT > 5 GeV/c [28, 169]. Therefore, the cross section measured up
to 35 GeV/c can provide important information to beauty hadron production.

The pT-differential production cross section of electrons from semileptonic heavy-flavour hadron decays
at midrapidity in p–Pb collisions at

√
sNN = 8.16 TeV measured in the transverse momentum interval

0.5 < pT < 26 GeV/c is shown in Fig. 6. In the upper panel of Fig. 6, the cross sections measured with
the TPC–TOF detectors are plotted together with the measurements obtained using the TPC–EMCal
detectors with MB and EMCal EG2 and EG1 triggered events. On the bottom left panel of Fig. 6, the
ratios of the cross sections obtained from the different measurements are calculated in the overlapping

1Central values : FONLL : µF = µR =
√

m2
Q + p2

T, mb = 4.75 GeV, mc = 1.5 GeV; GM−VFNS : µF = 0.49 µR,

µR =
√

4m2
Q + p2

T, mb = 4.5 GeV, mc = 1.5 GeV; where µR = renormalization scale, µF = factorisation scale

17



Electrons from heavy-flavour hadron decays in pp and p–Pb collisions ALICE Collaboration

1 10
)c (GeV/

T
p

0.8

1

1.2

R
at

io
 

7−10

6−10

5−10

4−10

3−10

2−10

1−10

))
 

c
 (

m
b 

/ (
G

eV
/

yd
T

p
 / 

d
σ2 d

| < 0.5y = 0.2 T, |BTOF, −TPC
| < 0.8y = 0.5 T, |BTOF, −TPC

| < 0.6yEMCal, MB trigger, |−TPC
| < 0.6yEMCal, EG2 trigger, |−TPC
| < 0.6yEMCal, EG1 trigger, |−TPC

      ALICE
 = 13 TeV spp, 
 e  →c,b 

1 10
0
2
4

G
M

-V
F

N
S

D
at

a

1 10
)c (GeV/

T
p

0

2

F
O

N
LL

D
at

a

7−10

6−10

5−10

4−10

3−10

2−10

1−10

))
 

c
 (

m
b 

/ (
ge

v/
yd

T
p

 / 
d

σ2 d

      ALICE
 = 13 TeV spp, 
 e  →c,b 

 Data  

GM-VFNS

FONLL

| < 0.5 y, |c < 0.5 GeV/
T

p 

| < 0.8   y, |c < 4 GeV/
T

p 0.5 < 

| < 0.6   y, |c < 35 GeV/
T

p 4 < 

Figure 5: Left, top: pT-differential cross section of electrons from heavy-flavour hadron decays in pp collisions at√
s = 13 TeV measured at midrapidity with different detectors and data sets. Left, bottom: Ratios of the different

measurements in the overlapping pT intervals. Right: pT-differential cross section compared with Fixed Order
with Next-to-Leading-Log resummation (FONLL) [34] and General-mass-variable-flavour-number-Scheme (GM-
VFNS) [33] predictions and its ratios with respect to FONLL and GM-VFNS central values in the two lower
panels. Vertical bars and boxes denote statistical and systematical uncertainties, respectively.
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Figure 6: Top: pT-differential cross section of electrons from heavy-flavour hadron decays in p–Pb collisions at
√

sNN = 8.16 TeV measured at midrapidity with different detectors. Bottom: Ratios of the different measurements
in the overlapping pT intervals.

pT intervals. For 3 < pT < 5 GeV/c, the ratio of the result obtained from the TPC–TOF analysis with
respect to that from the TPC–EMCal is shown for MB triggered events. For 6 < pT < 10 GeV/c (12 <
pT < 14 GeV/c) the ratio of the TPC–EMCal results obtained with MB and EG2 triggered events (EG2
and EG1) is reported. All ratios are consistent with unity within statistical and systematic uncertainties.
The same strategy as in pp collisions was used to get the final cross section in p–Pb collisions. The final
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cross section in the pT intervals 0.5–4 GeV/c, 4–6 GeV/c, 6–9 GeV/c, and 9–26 GeV/c was obtained
from the TPC–TOF nominal-B field analysis and from the results using the TPC–EMCal detectors with
MB, EG2, and EG1 triggered events, respectively.

6.2 Nuclear modification factor of electrons from heavy-flavour hadron decays in p–Pb collisions

The nuclear modification factor of electrons from heavy-flavour hadron decays, RpPb, is defined as

RpPb(pT,y) =
1
A

d2σpPb/dpTdy
d2σpp/dpTdy

, (3)

where d2σpPb/dpTdy is the cross section of electrons from heavy-flavour hadron decays measured in
p–Pb collisions at

√
sNN = 8.16 TeV and d2σpp/dpTdy is the cross section of electrons from heavy-

flavour hadron decays in pp collisions at the same centre-of-mass energy, scaled with the number of
nucleons (A) in the lead ion. The reference cross section in pp collisions was obtained using the mea-
surement at

√
s = 13 TeV, presented here. The cross section at

√
s = 13 TeV was scaled to

√
s = 8.16 TeV

using pQCD calculations. The pT-dependent scaling factor was obtained by calculating the ratio of the
production cross sections of electrons from heavy-flavour hadron decays from FONLL calculations [34]
at
√

s = 8.16 TeV to
√

s = 13 TeV. The systematic uncertainty on the pp reference includes the sys-
tematic uncertainties on the measured cross section at

√
s = 13 TeV, which was described above, and

the ones on the pT-dependent scaling factor. The uncertainty on the scaling factor ranges between 11%
and 1% going from pT = 0.2 GeV/c to pT = 26 GeV/c. This includes the uncertainties on the PDFs,
quark masses, and factorisation and renormalisation scales, as described in Ref. 170. The two contri-
butions were added in quadrature leading to a total systematic uncertainty of 5-15%, depending on pT.
In addition, a global normalisation systematic uncertainty of 2.3% from the pp analysis at

√
s = 13 TeV

was also considered. The pT-differential cross section of electrons from heavy-flavour hadron decays in
pp collisions at

√
s = 13 TeV scaled to

√
s = 8.16 TeV using the aforementioned procedure is shown

together with the pT-differential cross section of electrons from heavy-flavour hadron decays in p–Pb
collisions at

√
sNN = 8.16 TeV in Fig. 7.

The nuclear modification factor of electrons from heavy-flavour hadron decays as a function of trans-
verse momentum at

√
sNN = 8.16 TeV is presented in Fig. 8. The statistical and systematic uncertainties

of the spectra in p–Pb and pp collisions were propagated as uncorrelated. The normalisation uncer-
tainties are shown as a solid box at RpPb = 1. The RpPb is consistent with unity within statistical and
systematic uncertainties over the whole pT range of the measurement. Modifications of the cross section
of electrons from heavy-flavour hadron decays in p–Pb collisions due to different cold nuclear matter
effects, are small compared to the current uncertainties of the measurement in the probed pT range.
The sample of electrons from heavy-flavour hadron decays is dominated by beauty-hadron decays for
pT > 5 GeV/c [28, 171]. The RpPb was fitted with a constant function above 5 GeV/c and the value
was 0.95± 0.02(stat.)± 0.13(sys.), thus consistent with unity within 13%. The RpPb of unity indicates
that the beauty production is not modified in p–Pb collisions within the kinematic range of this mea-
surement, which is also consistent with the measurement of RpPb of beauty-decay electrons up to pT = 8
GeV/c at

√
sNN = 5.02 TeV [19]. In the right panel of Fig. 8, the RpPb at

√
sNN = 8.16 TeV is com-

pared with that at
√

sNN = 5.02 TeV and different theoretical models provided for
√

sNN = 5.02 TeV
[141]. The RpPb is observed to be independent of the centre-of-mass energy. The data disfavour the
enhancement trend at low pT predicted by the model calculations which are based on incoherent multiple
scatterings [172]. Model predictions which are based on coherent multiple scattering and energy loss in
the CNM, pQCD calculations using FONLL framework and EPS09NLO for the nuclear modification of
the PDF, as well as calculations which assume the formation of a hydrodynamical expanding medium in
p–Pb collisions at

√
sNN = 5.02 TeV within the Blast wave framework predict an RpPb close to unity and

are in agreement with the measurements.
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(right) [141].

6.3 Self-normalised yield of electrons from heavy-flavour hadron decays vs. normalised multi-
plicity in pp and p–Pb collisions

The self-normalised yield of electrons from heavy-flavour hadron decays as a function of the self-
normalised charged-particle pseudorapidity density at midrapidity, i.e., d2N/dpTdy/〈d2N/dpTdy〉INEL>0
vs. dNch/dη/〈dNch/dη〉, in pp collisions at

√
s = 13 TeV is presented in Fig. 9. The results are self-

normalised to the INEL > 0 event class. The measurements were performed in five pT intervals from 0.5
to 30 GeV/c. The dashed line shown in the figure is a linear function with a slope of unity. The available
data samples allow us to examine events with a multiplicity more than six times larger than the average
multiplicity in pp collisions. The self-normalised yield of electrons from heavy-flavour hadron decays
grows faster than linear with the self-normalised multiplicity. The measurement in intervals of pT shows
that this increase is more pronounced for high-pT electrons. The yield of heavy-flavour decay electrons
increases by approximately a factor of nine with respect to its multiplicity-integrated value for the lowest
measured pT interval (0.5 < pT < 1.5 GeV/c) and a factor of 29 for the highest measured pT interval
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(20 < pT < 35 GeV/c) for multiplicities of six times the average multiplicity.
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Figure 9: Self-normalised yield of electrons from heavy-flavour hadron decays as a function of normalised
charged-particle pseudorapidity density at midrapidity computed in pp collisions at

√
s = 13 TeV in different

pT intervals.
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Figure 10: Ratio of the self-normalised yields in different pT intervals with respect to that in the 6 < pT <

12 GeV/c interval (left) and double ratio of the self-normalised yields of electrons to the self-normalised multi-
plicity (right) in pp collisions at

√
s = 13 TeV for three pT ranges.

In the left panel of Fig. 10, the ratios of the self-normalised yields of electrons from heavy-flavour hadron
decays in various pT intervals with respect to the one measured in the 6 < pT < 12 GeV/c interval are
shown. The yield of lower-pT electrons is higher in low multiplicity events, while it decreases in higher
multiplicity events. An opposite trend is observed for electrons at higher pT, where the yield is lower
in low multiplicity events and increases at higher multiplicities. The increase of the slope with pT is
influenced by the momentum dependence of jet fragmentation affecting the measured multiplicity at
midrapidity, and the momentum dependence of the fraction of electrons from charm and beauty hadron
decays. The relative fraction of electrons from beauty hadron decays increases with pT and becomes the
main source of heavy-flavour hadron decay electrons at high pT (pT > 5 GeV/c) [106, 107, 173].

In the right panel of Fig. 10, the double ratio of the self-normalised electron yield to the self-normalised
multiplicity in pp collisions is presented. The double ratio is observed to increase with multiplicity. The

21



Electrons from heavy-flavour hadron decays in pp and p–Pb collisions ALICE Collaboration

increase is weaker for low-pT electrons than for high-pT electrons. A linear function was used to fit the
multiplicity dependence of the double ratio, which was found to describe the data reasonably well for all
pT intervals. This indicates that in the measured pT range the yield grows approximately with the square
of the multiplicity with a slope increasing with pT.
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Figure 11: Comparison of the self-normalised yield of electrons from heavy-flavour hadron decays as a function
of multiplicity measured in pp collisions at

√
s = 13 TeV for different pT intervals with PYTHIA 8.2 Monash

tune (left) and PYTHIA 8.2 with CR mode 2 (right). The width of the band is the statistical uncertainty from
PYTHIA simulations. The bottom panel shows the ratio of data with respect to the MC predictions. The vertical
bars correspond to the propagated statistical error from the data and the MC predictions, and the boxes correspond
to systematical uncertainties from the data.

The self-normalised yield of electrons from heavy-flavour hadron decays is compared in Fig. 11 with
PYTHIA 8.2 simulations using different tunes. In the PYTHIA 8.2 framework, multiparton interactions
(MPI) and the colour reconnection (CR) mechanism are implemented, which reproduce the charged-
particle multiplicity distribution measured at the LHC [111, 174]. These mechanisms are important in
order to describe the stronger than linear increase of charm and beauty production with multiplicity as
demonstrated in [106]. The charged-particle multiplicity also includes particles directly produced in
the same hard partonic scattering process in which the heavy quark is created, making them strongly
related. These dependencies come from the initial- and final-state radiations, decays of heavy-flavour
hadrons, and charged particles produced in the jet fragmentation and are known as auto-correlation ef-
fects. A study of the self-normalised yield of heavy-flavour particles using the PYTHIA 8.2 generator
shows that the stronger than linear increase of the yield of heavy-flavour particles is mainly driven by
auto-correlation effects. In the absence of auto-correlation effects the increase of the yield of particles
produced in hard scattering processes is weaker than linear for multiplicities exceeding about three times
the mean multiplicity [173]. In PYTHIA 8.2, the pT dependence of the increase of the self-normalised
yield with multiplicity is also due to auto-correlation effects introduced by the parton fragmentation be-
cause high momentum partons are accompanied by a larger number of fragments which contribute to the
multiplicity. In the case of electrons from heavy-flavour hadron decays, the high-pT part of the spectra
is dominated by beauty decay electrons, whose yield was demonstrated to have a more pronounced in-
crease with multiplicity due to the larger jet activity [173]. In the left panel of Fig. 11, the measured
self-normalised yield of electrons from heavy-flavour hadron decays is compared to calculations with
the PYTHIA 8.2 Monash tune that describe the overall trend in data, but the slope is overestimated at
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high pT. In the right panel of Fig. 11, an improved tune which includes string formation beyond the
leading-colour approximation i.e. PYTHIA 8.2 with CR mode 2 [101, 175], is shown to reproduce the
pT dependence, however the slope is underestimated at high pT.

Figure 12: Comparison of self-normalised yield of electrons from heavy-flavour hadron decays as a function of
multiplicity measured in pp collisions at

√
s = 13 TeV for different pT intervals with EPOS 3 hydro calculations.

The width of the band is the statistical uncertainty from EPOS simulations. The bottom panel shows the ratio of
data with respect to the MC predictions. The vertical bars correspond to the propagated statistical error from the
data and the MC predictions, and the boxes correspond to systematical uncertainties from the data. The ratio for
the lowest multiplicity point for 15 < pT < 30 GeV/c (not shown in the figure) is 13±18.

Calculations with the EPOS 3 event generator [117] are able to reproduce the data well, except for the
highest measured pT interval, as can be seen in Fig. 12. In the EPOS 3 model, the elementary scat-
tering objects are pomerons, which are exchanged between the partons participating in the collision.
The pomerons consist of a hard pQCD scattering vertex, accompanied by initial (space-like) and final
(time-like) state parton emission. The production of a hard probe is more likely from events with hard
pomeron exchanges. This implies that for a given charged-particle multiplicity the presence of heavy-
flavour hadrons favours events with fewer but harder pomerons, which leads to a stronger than linear
increase of heavy-flavour production with charged-particle multiplicity. The increase also gets stronger
with the increasing pT, which, as discussed above for the case of PYTHIA 8.2 simulations, is related
to the hardness of the partonic scattering and the accompanying jet activity in the event. The subse-
quent hydrodynamic evolution of the system then amplifies the increase because the charged-particle
multiplicity is reduced by the hydrodynamic expansion, in contrast to the heavy-flavour production. The
charged-particle multiplicity is reduced because part of the available energy goes into flow rather than
particle production [176].

The trend of the self-normalised yield of electrons in pp collisions as a function of self-normalised
multiplicity is compared in Fig 13 with the self-normalised yield of other particles measured by the
ALICE Collaboration, namely J/ψ [107], charged particles [114], strange hadrons [177] in pp collisions
at
√

s = 13 TeV, and D mesons [106] in pp collisions at
√

s = 7 TeV. The self-normalised yields for
strange hadrons were calculated using the multiplicity-dependent cross section measurements reported
in [177]. These self-normalised yields allow a direct comparison of multiplicity-dependent production of
different particle species, with the advantage that the charged-particle pseudorapidity density is measured
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Figure 13: Comparison of the self-normalised yield of electrons from heavy-flavour hadron decays measured in
pp collisions at

√
s = 13 TeV with the self-normalised yields of J/ψ in pp collisions at

√
s = 13 TeV (top left),

charged particles in pp collisions at
√

s = 13 TeV (top right), D mesons in pp collisions at
√

s = 7 TeV (bottom
left) and strange particles in pp collisions at

√
s = 13 TeV (bottom right), in comparable pT bins.

using the same detector and procedure. The pT ranges of electrons are selected to be similar to the
measured pT range of the compared particles, with a caveat that the pT interval of electron parents (heavy-
flavour hadrons) is considerably broader and shifted towards higher pT values compared to the one of the
electrons. The slope of the increase of the self-normalised yield of electrons from heavy-flavour hadron
decays as a function of self-normalised multiplicity at midrapidity is similar to that measured for J/ψ ,
charged particles, strange mesons, and D mesons in similar pT ranges. At high and intermediate pT, the
production of hadrons is dominated by hard partonic scattering processes, independent of the particle
species, accompanied by jet activity in the event. For heavy-flavour particles this is also true at low
pT due to the large charm and beauty quark masses. As it was discussed above, in PYTHIA 8.2, the
particle production associated with jet activity leads to strong auto-correlation effects, which give rise
to the observed stronger than linear increase of particle yields, making the self-normalised yield of the
different particles reported here compatible with each other.

The self-normalised yield of electrons from heavy-flavour hadron decays as a function of the self-
normalised charged-particle pseudorapidity density for p–Pb collisions at

√
sNN = 8.16 TeV is presented

in Fig 14. The results are self-normalised to the INEL> 0 event class, similarly to pp collisions. The
dashed line is a linear function with a slope of unity as shown in the figure. The measurements were per-
formed in five pT intervals from 0.5 GeV/c to 26 GeV/c. Events with multiplicity more than four times
larger than the average multiplicity in p–Pb collisions are studied. The self-normalised yield of electrons
from heavy-flavour hadron decays grows faster than linear with the self-normalised multiplicity. The
measurements in pT intervals show no pT dependence within the uncertainties of the measurement. The
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yield increase is approximately a factor of seven for multiplicities four times larger than the average
multiplicity.
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Figure 14: Self-normalised yield of electrons from heavy-flavour hadron decays as a function of self-normalised
charged-particle pseudorapidity density at midrapidity measured in p–Pb collisions at

√
sNN = 8.16 TeV in differ-

ent pT intervals. The position of the points on the x-axis are shifted horizontally by δx to improve the visibility.

In the left panel of Fig. 15, the ratios of the self-normalised yield of electrons from heavy-flavour hadron
decays in various pT intervals with respect to the one measured in the 3 < pT < 6 GeV/c interval are
shown. Contrary to the pp collision case, within the uncertainties no pT dependence is observed. The
right panel of Fig. 15 shows the double ratio of the self-normalised heavy-flavour hadron decay electron
yield to the self-normalised multiplicity. The double ratio increases with multiplicity, with no dependence
on pT. The double ratio was fitted with a linear function, which reasonably describes the data for all pT
intervals. This indicates that in the measured pT range the yield increases approximately with the square
of the multiplicity with a similar coefficient for all pT intervals.
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Figure 15: Ratio of the self-normalised yield in different pT intervals with respect to that in the 3 < pT < 6 GeV/c
interval (left). Double ratio of the self-normalised yield of heavy-flavour hadron decay electrons to the self-
normalised multiplicity in p–Pb collisions at

√
sNN = 8.16 TeV in three pT ranges (right).

Though the self-normalised yields of electrons from heavy-flavour hadron decays in pp and p–Pb colli-
sions show similar features in their increase with multiplicity, a quantitative comparison of the measure-
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ments between the two systems is not straightforward. In pp collisions, a high multiplicity event arises
mostly from hard events, with multiparton interactions and jets fragmenting in multiple hadrons. In p–Pb
collisions, the multiplicity dependence of heavy-flavour production is also driven by the presence of mul-
tiple binary nucleon–nucleon interactions, which make the contribution from possible auto-correlation
effects smaller in such collisions. In p–Pb collisions, an event with a high multiplicity value similar to
those in pp collisions can come from the superposition of a few soft nucleon–nucleon collisions. There-
fore, for similar multiplicity, the hardness of the event is not the same in the two systems.

The self-normalised yield of electrons from heavy-flavour hadron decays is compared in Fig. 16 with
EPOS 2.592 simulations [117, 178]. The measurements in two pT intervals are compared with the EPOS
model without the hydrodynamic component, as provided by the authors. The EPOS model shows no
pT dependence similar to the observations in the data, but underpredicts the data at high multiplicity,
showing an almost linear increase.
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Figure 16: Self-normalised yields of electrons from heavy-flavour hadron decays as a function of self-normalised
charged-particle pseudorapidity density at midrapidity measured in p–Pb collisions at

√
sNN = 8.16 TeV compared

with EPOS 2.592 without-hydrodynamics in two pT intervals 0.5 < pT < 3 GeV/c and 3 < pT < 6 GeV/c. The
width of the band is the statistical uncertainty from EPOS simulations. The bottom panel shows the ratio of data
with respect to the MC predictions. The vertical bars correspond to the propagated statistical uncertainties from
the data and the MC predictions, and the boxes correspond to systematical uncertainties from the data.

The self-normalised electron yields in p–Pb collisions in different pT ranges are also compared with the
normalised yields of D mesons [111] in p–Pb collisions at

√
sNN = 5.02 TeV in Fig. 17. Similar to the

observation in pp collisions, the self-normalised yield of electrons from heavy-flavour hadron decays as
a function of the self-normalised multiplicity shows a trend compatible with the one of D mesons. Also
the multiplicity dependence of D meson yields in p–Pb collisions does not show a pT dependence, which
gives a hint that the production mechanisms of charm and beauty as a function of the multiplicity in p–Pb
collisions are similar.

7 Summary

Heavy-flavour production at midrapidity was studied using electrons from heavy-flavour hadron decays
in pp collisions at

√
s = 13 TeV and in p–Pb collisions at

√
sNN = 8.16 TeV with the ALICE detector

at the LHC. The pT-differential production cross section of electrons from heavy-flavour hadron decays
in pp collisions was compared with FONLL and GM-VFNS (b → B → D → e, b → B → e, c → D
→ e) pQCD calculations. The data are observed to lie on the upper edge of the FONLL uncertainties.
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Figure 17: Self-normalised yields of electrons from heavy-flavour hadron decays measured in p–Pb collisions at
√

sNN = 8.16 TeV for different pT intervals compared with self-normalised yields of D mesons in p–Pb collisions
at
√

sNN = 5.02 TeV. The position of the points for p–Pb collisions at
√

sNN = 5.02 TeV on the x-axis are shifted
horizontally by δx to improve the visibility.

The GM-VFNS calculation underestimates the cross section at low pT but describes the data within the
uncertainties for pT > 5 GeV/c. The nuclear modification factor in p–Pb collisions, RpPb, was computed
and is consistent with unity within the statistical and systematic uncertainties. The RpPb measurement
shows no effects that could signal the formation of a hot medium and no significant cold nuclear matter
effects within the uncertainties of the data in the measured pT range. The RpPb at

√
sNN = 8.16 TeV is

consistent with that measured at
√

sNN = 5.02 TeV.

The multiplicity-dependent production of electrons from heavy-flavour hadron decays was measured us-
ing the self-normalised yield as a function of self-normalised charged-particle pseudorapidity density
at midrapidity in pp and p–Pb collisions as a function of transverse momentum. A faster than linear
increase was observed in both pp and p–Pb collisions. While in p–Pb collisions, no pT dependence is
observed within uncertainties, in pp collisions a strong pT dependence is seen with high-pT electrons
showing a faster increase as a function of the self-normalised multiplicity. The measurement of self-
normalised yield of electrons from heavy-flavour hadron decays in pp collisions was compared with
PYTHIA 8.2 and EPOS 3 simulations, which describe the data. The measurement in p–Pb collisions
was compared with the EPOS 2.592 model without hydrodynamics, which underestimates the data. The
comparison of self-normalised yields of heavy-flavour and light-flavour particles show a similar stronger
than linearly increasing trend in both colliding systems. In pp collisions the stronger than linear increase
of heavy-flavour particles is mainly driven by auto-correlation effects which are independent of particle
species, whereas in the case of p–Pb collisions, it is difficult to draw any conclusion since the multiplic-
ity dependence of heavy-flavour production is also largely affected by the presence of multiple binary
nucleon–nucleon interactions.
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V. Kozhuharov 36, I. Králik 59, A. Kravčáková 37, L. Krcal 32,38, M. Krivda 100,59, F. Krizek 86,
K. Krizkova Gajdosova 32, M. Kroesen 94, M. Krüger 63, D.M. Krupova 35, E. Kryshen 140,
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126 Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France
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