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Abstract

This Letter reports on the first measurements of transverse momentum dependent flow angle Ψn and
flow magnitude vn fluctuations, determined using new four-particle correlators. The measurements
are performed for various centralities in Pb–Pb collisions at a centre-of-mass energy of √sNN = 5.02
TeV with ALICE at the LHC. Both flow angle and flow magnitude fluctuations are observed in
the presented centrality ranges and are strongest in the most central collisions and for a transverse
momentum pT > 2 GeV/c. Comparison with theoretical models, including iEBE-VISHNU, MUSIC,
and AMPT, show that the measurements bring novel insights into the fluctuating initial conditions
that are not well known. In addition, these new results exhibit unique sensitivities to the specific shear
viscosity, η/s, of the quark–gluon plasma (QGP) and to the initial state of the heavy-ion collisions.
As such fluctuations are getting stronger with increasing pT, a re-examination of existing models is
needed to have a more precise and unbiased extraction of properties of the QGP.
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In ultrarelativistic collisions of heavy ions, such as those at the Relativistic Heavy-Ion Collider (RHIC)
and the Large Hadron Collider (LHC), a deconfined state of strongly interacting matter, commonly re-
ferred to as quark–gluon plasma (QGP), is predicted to be created under extreme conditions of temper-
ature and energy densities [1, 2]. Many experimental results indicate that a strongly-coupled QGP is
formed in heavy-ion collisions [3–7]. Initial anisotropies of the geometric overlap of the colliding nu-
clei and spatial inhomogeneities in the energy density drive the collective expansion of the QGP and are
transformed through the evolution of the QGP into a momentum anisotropy in the final state [8–10]. This
momentum anisotropy is characterised by a Fourier expansion of the distribution of the azimuthal angle,
ϕ , of emitted particles [11]

d2N
dpTdϕ

=
dN

2πdpT

(
1+2

∞

∑
n=1

vn(pT)cos[n(ϕ−Ψn(pT))]

)
, (1)

where vn(pT) and Ψn(pT) correspond to the magnitude and angle, respectively, of the nth-order harmonic
flow vector ~Vn(pT) = vn(pT)einΨn(pT). Here the transverse momentum, pT, dependence of both the flow
magnitude and flow angle has been made explicit. The flow vector quantifies the orientation and mag-
nitude of the anisotropic flow, and the flow angle Ψn is the angle of the symmetry plane of the nth-order
flow vector.

Typically, the largest flow coefficient is the elliptic flow v2, since it is largely determined by the geomet-
rical overlap of nuclei colliding at a finite impact parameter, the distance between the nuclei centres in
the transverse plane. However, fluctuations in the position of the colliding nuclei and in the position of
nucleons within the nuclei can induce more complex geometrical shapes, which will give rise to non-
zero flow coefficients with n > 2 [12–15], such as the triangular flow v3. Both elliptic and triangular flow
coefficients have been measured extensively at RHIC [16–19] and at the LHC [20–30]. The comparison
of measurements of vn at low pT with hydrodynamical calculations has been used to constrain the initial
conditions of the heavy-ion collisions and the transport properties of the QGP, such as the specific shear
viscosity η/s. These comparisons indicate that the system behaves as a strongly-coupled low-viscosity
fluid [10, 31–33]. Studies probing the collective expansion of the system using hard probes, such as mea-
surements of the anisotropic flow of charged and identified hadrons at high pT [34–39], or of hadrons
containing heavy quarks [40–52], rely on the comparison of theoretical model calculations to experi-
mental data to extract the QGP properties, such as the path-length dependence of the heavy-quark energy
loss [53, 54]. In this Letter, the observation of separate flow angle and flow magnitude fluctuations in
heavy-ion data is presented. It is argued that the notion of a common symmetry plane, widely used in
various flow measurements, does not hold in measurements that correlate particles at high pT (> 2 GeV)
with the common symmetry plane determined mainly by low pT particles.

Fluctuations of both the flow angle Ψn and the flow magnitude vn have been shown to be present in
hydrodynamical models [55, 56]. The flow angle fluctuations are the fluctuations of the symmetry plane
determined by a subset of the particles, in this case, those at a specific pT, with respect to the symme-
try plane determined by the total set of particles. In heavy-ion collisions, the produced particle yield is
typically dominated by low pT particles. The flow magnitude fluctuations can be understood as the fluc-
tuations of the vn coefficients at different transverse momentum ranges. Measurements at the LHC have
reported the existence of pT-dependent flow vector fluctuations [57–60]. However, those measurements
rely on observables constructed from two-particle correlations, which intrinsically contain contributions
from both the flow angle and magnitude fluctuations with no way to separate the two experimentally. A
Principal Component Analysis (PCA) has been used for the extraction of leading and subleading modes
of flow fluctuations in heavy-ion collisions [61–64]. However, these analyses were also based on infor-
mation retrieved from two-particle correlations and cannot be used to separate the individual components
of the flow vector fluctuations. In this Letter, we propose new four-particle correlation functions to sep-
arate the pT-dependent fluctuations of the flow angle and flow magnitude. The flow angle fluctuations
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can be quantified by

Af
n =
〈〈cosn[ϕa

1 +ϕa
2−ϕ3−ϕ4]〉〉

〈〈cosn[ϕa
1 +ϕ2−ϕa

3−ϕ4]〉〉
=
〈v2

n(pa
T) v2

n cos2n[Ψn(pa
T)−Ψn]〉

〈v2
n(pa

T)v2
n〉

' 〈cos2n [Ψn(pa
T)−Ψn]〉w, (2)

where the a superscript refers to an associate particle selected from a narrow transverse momentum
range pa

T and the w means that Af
n is averaged over the event ensemble with each event having a weight

of the fourth power of vn [65]. The double brackets refer to an average over all particles and all events,
and the single brackets refer to an average over all events. A value of Af

n < 1 indicates the presence of
pT-dependent flow angle fluctuations. A larger deviation from unity suggests that the symmetry plane at
a specific pT is more decorrelated with respect to the common symmetry plane. On the other hand, the
flow magnitude fluctuations can be studied with the double ratio

Mf
n =
〈〈cosn[ϕa

1 +ϕ2−ϕa
3−ϕ4]〉〉/

(
〈〈cosn[ϕa

1−ϕa
3 ]〉〉〈〈cosn[ϕ2−ϕ4]〉〉

)
〈〈cosn[ϕ1 +ϕ2−ϕ3−ϕ4]〉〉/〈〈cosn[ϕ1−ϕ2]〉〉2

=
〈v2

n(pa
T)v

2
n〉/〈v2

n(pa
T)〉〈v2

n〉
〈v4

n〉/〈v2
n〉2

.

(3)

A deviation of Mf
n from unity indicates the presence of pT-dependent flow magnitude fluctuations. The

magnitude of the deviation will show how strongly the flow magnitude is decorrelated at a specific pT
range with respect to the integrated flow. These new correlators probe a higher moment of the distribution
of flow fluctuations compared to correlators traditionally used in studies of flow and flow fluctuations
using two-particle techniques [57–59]. The lower-order moments of the flow angle and flow magnitude
fluctuations cannot be measured separately in experiments but can be approximated by constructing the
lower and upper limits of the first moment of flow angle and magnitude fluctuations, respectively. The
lower limit of the first-moment flow angle fluctuations 〈cosn [Ψn(pa

T)−Ψn]〉 can be calculated as√
Af

n +1
2
≥ 〈cosn[Ψn(pa

T)−Ψn]〉. (4)

The overall flow vector fluctuations can be probed by the ratio of the pT-differential flow coefficient
vn{2} = 〈vn(pa

T)vn cosn[Ψn(pa
T)−Ψn]〉/

√
〈v2

n〉 and the pT-integrated flow coefficient in a narrow pT
interval vn[2] =

√
〈v2

n(pa
T)〉 [55]. Taking the ratio of Eq. (4) and the flow vector fluctuations

vn{2}/vn[2] =
〈vn(pa

T) vn cosn [Ψn(pa
T)−Ψn]〉√

〈v2
n(pa

T)〉)
√
〈v2

n〉
, (5)

enables the calculation of the upper limit of the first-order flow magnitude fluctuations

vn{2}/vn[2]√
(Af

n +1)/2
≤

〈vn(pa
T) vn〉√

〈v2
n(pa

T)〉
√
〈v2

n〉
. (6)

The limits on the first-moment flow angle and magnitude fluctuations connect the study of the separated
fluctuations with the previous studies of flow vector fluctuations using only two-particle correlations [57–
59]. All the above correlators are calculated with the generic framework [66, 67], which corrects the
non-uniformities in the acceptance of the detector. As the correlations in Eqs. (2) and (3) are themselves
correlated, the statistical uncertainty is estimated by the bootstrap method of random sampling with
replacement.

The correlators Af
2 and Mf

2 are measured in approximately 54 million Pb–Pb collisions collected in 2015
at a centre-of-mass energy per nucleon pair of √sNN = 5.02 TeV. Experimentally, events are selected
based on a minimum bias trigger achieved by requiring a coincidence of signals in the two V0 scin-
tillator arrays, V0A with a pseudorapidity range 2.8 < η < 5.1, and V0C with a pesudorapidity range
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−3.7 < η < −1.7. Additionally, a reconstructed primary vertex within ±10 cm of the nominal interac-
tion point along the beam axis is required. Rejection of pileup events, which are events close in time
to the triggered event due to the high luminosity, is based on the correlation between tracks measured
with different detectors. A variation of the criteria for pileup rejection is considered for the systematic
uncertainties [68]. The centrality of the events is measured using a fit of the V0A and V0C signal ampli-
tude sum, with a two-component model for particle production and a Glauber Monte Carlo model of the
collision geometry [69]. Charged tracks are reconstructed using the Inner Tracking System (ITS) [70]
and the Time Projection Chamber (TPC) [71]. Tracks are selected with at least 70 TPC space points
out of 159 points, and a χ2 per TPC cluster less than 4 [72]. To reduce contamination from secondary
particles, tracks are selected with a distance of closest approach to the primary vertex of less than 2 cm
in the longitudinal direction and a pT-dependent selection ranging from 0.2 cm at pT = 0.2 GeV/c to
0.018 cm at pT = 4.0 GeV/c in the transverse direction. Additionally, charged particle tracks are se-
lected within the kinematic range |η | < 0.8 and 0.2 < pT < 5 GeV/c. In order to suppress non-flow
correlation contributions, which are not related to collective behaviour, such as resonance decays and
jets, a gap in pseudorapidity is introduced between the correlated particles. An η-gap of |∆η | > 0.8 is
used for two-particle correlations and |∆η | > 0 for four-particle correlations in order to ensure optimal
balance between the statistical precision and non-flow suppression. To further investigate the non-flow
suppression, the analysis was also performed with only particles of same-sign charge and with increas-
ing pseudorapidity gaps between the subevents of correlated particles. Additional Monte Carlo studies
using HIJING [73], a model that does not feature collective effects, but involves particle correlations
arising from other sources, indicate that non-flow is sufficiently suppressed with the applied pseudora-
pidity gaps. Based on these model studies, the non-flow correlation contributions to the correlators are
less than 1% of the measured value across the presented centralities.

Systematic uncertainties are evaluated by varying the event and track selection criteria. Since the system-
atic uncertainty may depend on the collision centrality and the pT of particles, only the largest contribu-
tion from each source is mentioned below. The systematic uncertainty associated to the event selection
criteria is evaluated by varying the selection on the vertex position along the beam direction (from 10
cm to 7, 8, or 9 cm), the magnetic field polarity, and the criteria for selecting pileup events, and is below
1%. Possible biases from the centrality determination were investigated by repeating the analysis using
the centrality estimated at midrapidity from hits in the Silicon Pixel Detector (SPD) instead of the V0,
resulting in a negligible difference. Uncertainties related to track selection are estimated by considering
different track reconstruction and track quality selection criteria. Changing the track reconstruction to in-
clude tracks without hits in the SPD leads to a variation of at most 1.7%. The quality of the reconstructed
tracks is varied by changing the minimum number of TPC space points to 80 and 90, which leads to a
difference of 1.5% on the measured correlators. Uncertainties related to the variations in the distance of
closest approach in both longitudinal and transverse directions are negligible, indicating that the effect
of contaminations from secondary particles on the measurements is insignificant. Finally, tightening the
χ2 per number of TPC clusters from 4 to 2.5 gives an uncertainty of at most 3%. The total systematic
uncertainty is calculated as the quadratic sum of the individual sources that have a statistically significant
contribution according to a statistical test [74].

The Af
2 measurements as a function of the associate particle transverse momentum pa

T in centrality classes
0–5%, 10–20%, and 30–40% are shown in Fig. 1. The results are presented from 0.2 GeV/c up to 4
GeV/c, since the requirement of two particles at high pa

T for the four-particle correlations limits the
available data sample at higher transverse momentum. In the most central collisions 0–5%, a large de-
viation from unity is observed starting from pa

T ≈ 2.5 GeV/c, which increases towards higher pa
T range.

As previously mentioned, this deviation cannot be attributed to non-flow effects, whose contributions
are negligible. With more than 5σ significance of the deviation at high pa

T across the presented cen-
tralities, these measurements provide the first observation of pT-dependent flow angle fluctuations in
Pb–Pb collisions at √sNN = 5.02 TeV. In centralities 10–20% and 30–40%, the fluctuation weakens and
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Figure 1: The flow angle fluctuation Af
2 in Pb–Pb collisions at √sNN = 5.02 TeV as a function of the associate

particle transverse momentum, pa
T, in centrality classes 0–5% (left), 10–20% (middle), and 30–40% (right). Com-

parison with iEBE-VISHNU with TRENTo initial conditions and η/s(T ) [76], iEBE-VISHNU with AMPT initial
conditions and η/s = 0.08 [76] and η/s = 0.20, CoLBT [77], and AMPT [78] are shown as coloured bands.

reaches around 5–7% deviation from unity at high pa
T ≈ 3.5 GeV/c in comparison to 0–5% most central

collisions. The increasing deviation from unity with pa
T above 3 GeV/c observed in data suggests that

the elliptic flow at large transverse momentum (pT > 2.5 GeV/c) may not be correlated with a common
symmetry plane. This will affect the comparison of measurements relying on a common symmetry plane
between particles at high and low pT with theoretical models that do not feature flow angle fluctuations,
e.g. measurements of the flow of charmed hadrons, used to constrain the path-length dependence of
in-medium energy loss of the heavy-quarks [53, 54] and their transport properties [75].

Theoretical calculations from iEBE-VISHNU [79], MUSIC [80, 81] as well as AMPT [78, 82] models
are, when available, compared to the data in Fig. 1. The iEBE-VISHNU model is a (2+1)D viscous
hydrodynamical model coupled to the hadronic cascade model UrQMD [83]. This model has been suc-
cessful in describing collective phenomena in different systems and event-by-event fluctuations [76, 84].
The iEBE-VISHNU model is used with TRENTo initial conditions and has a temperature-dependent
specific shear viscosity η/s(T ) [85]. The model is limited to pT ranges below 3 GeV/c. The MUSIC
model is an event-by-event (3+1D) viscous hydrodynamic model and is used with both Glauber [86] and
TRENTo [87] initial conditions. Different values of the specific shear viscosity of 0.08, 0.12 and 0.16 are
used with TRENTo initial conditions [88]. The AMPT transport model uses partonic interactions with
string melting, and a quark coalescence model is used to simulate the formation of hadrons, which are
then transported through a hadronic cascade model [89]. It is tuned to measurements of dN/dη , pT-
spectra and elliptic flow of charged pions, kaons and protons from the ALICE experiment [78, 90]. The
iEBE-VISHNU calculation underestimates the deviation of Af

2 from unity at above 2.5 GeV/c across the
presented centralities with the largest difference in the 0–5% most central collisions. The iEBE-VISHNU
model with TRENTo initial conditions uses parameters extracted from a Bayesian analysis [85] in con-
trast to the MUSIC models which use standard TRENTo initial conditions [87]. The Bayesian TRENTo
represents the current best understanding of the initial conditions and QGP transport properties, so these
measurements bring further constraints on the state-of-the-art models. The comparison of the MUSIC
calculations with Glauber and TRENTo initial conditions shows that Af

2 is sensitive to the fluctuations
in the initial state with little sensitivity to the different values of specific shear viscosity. The AMPT
calculation describes the data well in the 0–5% most central collisions and captures the deviation from
unity in the highest pa

T bin. At higher centralities the AMPT calculation overestimates the deviation from
unity at high pa

T.

The measurements of the pT-dependent fluctuations of the flow magnitude, Mf
2, as a function of the

transverse momentum, pa
T, in centrality classes 0–5%, 10–20%, and 30–40% are shown in Fig. 2. A
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Figure 2: The flow magnitude fluctuation Mf
2 in Pb–Pb collisions at √sNN = 5.02 TeV as a function of the asso-

ciate particle transverse momentum, pa
T, in centrality classes 0–5% (left), 10–20% (middle), and 30–40% (right).

Comparison with iEBE-VISHNU with TRENTo initial conditions and η/s(T ) [76], MUSIC with Glauber initial
conditions and η/s = 0.08 [88], MUSIC with TRENTo initial conditions and η/s = 0.08,0.12,0.16 [88], and
AMPT [78] are shown as coloured bands.

substantial deviation of Mf
2 from unity is observed in the 0–5% most central collisions. This deviation

by more than 5σ significance in the highest bin of pa
T reveals the first observation of pT-dependent flow

magnitude fluctuations in Pb–Pb collisions at √sNN = 5.02 TeV. In centrality 0–5%, where the initial
state fluctuations are most significant, the flow magnitude deviates from unity for pa

T above 2 GeV/c and
the deviation increases with increasing pa

T. The deviation from unity is more pronounced in the central
collisions 0–5% compared to 10–20% and 30–40%. By construction, Mf

2 is not restricted to be below
unity as seen in Fig. 2 at 30–40% centrality. This is in contrast to the flow vector fluctuations measured
with two-particle correlations and the flow angle fluctuations measured with Af

2, which can only be larger
than unity due to non-flow effects [56]. Model studies with HIJING and the studies of the correlators with
same-sign charge and larger pseudorapidity gaps show that non-flow correlations are negligible for Mf

2,
so the deviation from unity must be due to the fluctuations of the flow magnitude. The iEBE-VISHNU
calculations underestimate the effect in 0–5% centrality showing almost no pT dependence. In the 10–
20% and 30–40% centrality intervals, the model captures the increasing trend with pa

T and, consequently,
describes the data. The MUSIC models show strong sensitivity to the specific shear viscosity in 0–5%
most central collisions, and also a sensitivity to the different initial conditions. In the 10–20% and
30–40% centrality intervals, Mf

2 shows no sensitivity to the specific shear viscosity, but is still affected
by the different initial conditions. The MUSIC models overestimate the deviation of Mf

2 from unity.
The comparison of the measurements with these models reveals that the flow magnitude fluctuations
are driven by initial state fluctuations, and that in most central collisions they are also affected by the
transport properties of the QGP. The AMPT transport model calculation succeeds in describing the flow
magnitude fluctuations in the most central collisions, where it also describes the flow angle fluctuations
(Fig. 1 left). At higher centralities, the AMPT model significantly overestimates the data even at low pa

T,
but it qualitatively captures the increasing trend of Mf

2 in the data in the 30–40% centrality interval.

In order to connect the four-particle correlation observables to the previously measured flow vector fluc-
tuations, the limits from Eqs. (4) and (6) are compared to the flow vector fluctuations probed by Eq. (5).
Thus the lower moments of the flow angle fluctuations and flow magnitude fluctuations, which cannot be
directly accessed in experiments, can be explored. The lower limit on the first-order flow angle fluctua-
tions, the upper limit on the first-order flow magnitude fluctuations, and the total flow vector fluctuations
are shown as a function of centrality in the 3 < pa

T < 4 GeV/c range in Fig. 3. In central collisions, the
upper limit on the flow magnitude fluctuations is higher than the lower limit of the flow angle fluctuations
up to 10% centrality. For the 10–30% centrality interval, the limits are similar, and above 30% centrality,
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Figure 3: The lower limit of the first-order flow angle fluctuations, upper limit of the first-order flow magnitude
fluctuations, and the flow vector fluctuations as a function of centrality for the 3.0 < pa

T < 4.0 GeV/c. The lower
and upper limits are denoted by the arrows. The top panel shows the absolute contribution and the bottom panel
the contribution relative to the overall flow vector fluctuations. Comparisons to AMPT [78] are shown as coloured
bands.

the flow magnitude upper limits are much smaller, and the flow angle fluctuations dominate the overall
flow vector fluctuations completely. This is consistent with the measurements shown in Figs. 1 and 2,
where Mf

2 approaches unity faster with increasing centrality than Af
2 and even goes above unity in semi-

central collisions. While pT-dependent flow angle and flow magnitude fluctuations are both present in
central Pb–Pb collisions, the effects of flow angle fluctuations are consistently present across the shown
centralities compared to the much smaller flow magnitude fluctuations in non-central collisions. The
AMPT transport model calculations overestimate the flow vector fluctuations v2{2}/v2[2] as well as the
limits of the first-order flow angle and flow magnitude fluctuations in the central collisions. At higher
centralities, AMPT describes the lower and upper limits well, whereas the flow vector fluctuations are
still overestimated by the model as in central collisions.

In summary, the pT-dependent flow angle fluctuations and flow magnitude fluctuations of the second-
order flow vector ~V2 are measured in Pb–Pb collisions at √sNN = 5.02 TeV with the correlators Af

2 and
Mf

2 as function of the associate particle momentum in centrality intervals 0–5%, 10–20%, and 30–40%.
Large deviations from unity of both Af

2 (∼20%) and Mf
2 (∼10%) are observed in central collisions, where

the event-by-event fluctuations of the position of the colliding nucleons dominate over the geometric re-
sponse. In semicentral collisions, both flow angle and flow magnitude fluctuations decrease. The flow
angle fluctuations reach 5–7% and the flow magnitude fluctuations reach around 2% and are above unity
in 30–40% centrality. The flow magnitude fluctuations decrease faster than the flow angle fluctuations up
to 40% centrality, where the flow vector fluctuations are almost solely due to flow angle fluctuations. The
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proposed correlators decompose the flow vector fluctuations into constituent flow angle and flow mag-
nitude fluctuations. The observation of flow angle and flow magnitude fluctuations gives further insight
into the nature of event-by-event fluctuations in the initial state of heavy-ion collisions and comparison
with theoretical models provides further constraints on the initial conditions and even the QGP transport
coefficient η/s in central collisions. The flow angle fluctuations and flow magnitude fluctuations are
most pronounced at high pT and will affect measurements that assume a common symmetry plane, such
as high-pT azimuthal correlations, which is the typical method for high-pT flow measurements. The
measurements provide further constraints on existing models, which are necessary to avoid biasing the
extraction of QGP transport properties, such as the jet transport coefficient, q̂, with flow measurements.
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