Radikalionen, **79** [1, 2]

ESR-Nachweis von Tetra(methylthio)thiophen- und Tetra(methylthio)ethen-Radikalkationen bei der oxidativen Schwefelung von $H_3CS-C\equiv C-SCH_3$ mit $S_2Cl_2/AlCl_3$ und $H_3CSCl/AlCl_3$

Radical Ions, 79 [1, 2]

ESR Evidence for Tetra(methylthio)thiophene and Tetra(methylthio)ethene Radical Cations During the Oxidative Sulfuration of $H_3CS-C\equiv C-SCH_3$ by $S_2Cl_2/AlCl_3$ and $H_3CSCl/AlCl_3$

H. Bock* und P. Rittmeyer [2]

Chemische Institute der Universität Frankfurt, Niederurseler Hang, D-6000 Frankfurt (M) 50, FRG

Z. Naturforsch. 43b, 419-426 (1988); eingegangen am 16. November 1987

Radical Ions, ESR Spectra, Tetra(methylthio)thiophene

Di(methylthio)acetylene $H_3CS-C\equiv C-SCH_3$ reacts with S_2Cl_2 in $AlCl_3/H_2CCl_2$ solution to the tetra(thiomethyl)thiophene radical cation $(H_3CS)_4C_4S^{\odot}$ and with H_3CSCl to the tetra(thiomethyl)ethene radical cation $(H_3CS)_2C^{\oplus}C(SCH_3)_3$. Their ESR spectra are assigned by comparison with literature data or those of analogous products obtained from other acetylene derivatives $R-C\equiv C-R$ with $R = SCH_2CH_3$, CH_3 , C_6H_5 as well as based on HMO arguments. The possible course of the oxidative sulfuration is discussed.

Das unsubstituierte 1,2-Dithiet-Radikalkation $(HC)_2S_2^{\oplus}$ ist bereits mehrfach ESR-spektroskopisch identifiziert worden (1): So nach Oxidation eines Bis-(dithioglyoxyl)nickel-Komplexes mit H_2SO_4/H_3CNO_2 [3] oder nach Umsetzung von Glykolaldehyd mit Na₂S in konzentrierter Schwefelsäure [4]. In den ESR-Spektren der resultierenden Lösungen erscheinen bei höherem Feld zusätzlich die Signale des 1,4-Dithiin-Radikalkations (1), welches auch aus 1,4-Dithiin mit verschiedenartigen Oxidationsmitteln wie H_2SO_4 [5] oder AlCl₃/H₃CNO₂ [6] erzeugt werden kann. Diesen seit langem literaturbekannten Darstellungen konnten unterdessen drei hinzugefügt werden: Die Umsetzungen von 1,1,2,2-Tetrabromethan oder von *trans*-1,2-Dichlorethan mit Na₂S₂ und AlCl₃ in H₂CCl₂ eignen sich auch zur ³³S-Isotopenmarkierung mit dem leicht herstellbaren Na₂³³S₂ [7]. Überraschend gelingt es, Acetylen mit S₂Cl₂ und AlCl₃ in H₂CCl₂ zum 1,2-Dithiet-Radikalkation umzusetzen, welches ESR-spektroskopisch durch ein markantes ¹H-Triplett und die in natürlicher Häufigkeit von nur 0,76% meßbaren ³³S-Satelliten-Signale gekennzeichnet ist. Mit zeitlicher Verzögerung erscheint bei hö-

Sonderdruckanforderungen an Prof. Dr. H. Bock.

herem Feld (g = 2,0153 - 2,0089 = 0,064 [7]) zusätzlich das ¹H-Quintett des 1,4-Dithiin-Radikalkations.

Die elegante "Acetylen-Route" eignet sich auch zur Erzeugung Alkyl- und Aryl-substituierter 1,2-Dithiet-Radikalkationen, z.B. [7]:

Verlag der Zeitschrift für Naturforschung, D-7400 Tübingen 0932-0776/88/0400-0419/\$ 01.00/0

Die ausgewählten Beispiele (2) bis (4) seien wie folgt erläutert:

1,2-Dithiet-Derivate, die durch raumerfüllende Alkylgruppen in 3,4-Stellung "kinetisch stabilisiert" sind (2), lassen sich über mehrstufige Synthesen [8] in Substanz darstellen. Gegenüber dem durch 2F3C-Akzeptorsubstituenten elektronisch stabilisierten 3,4-Bis(trifluormethyl)-1,2-dithiet mit IE₁ = 10,2 eV[9] sind ihre ersten Ionisierungsenergien auf 7,95 eV [9] erniedrigt, und sie können daher mit dem Sauerstoff-freien und selektiven Einelektronentransfer-System AlCl₃/H₂CCl₂, das in H₂CCl₂/0,1 M R₄N[⊕]-Lösung ein Oxidationspotential von +1,6 V aufweist [10], in ihre Radikalkationen überführt werden [11]. Das Gegenanion X^{\ominus} ist – wie in Substanz isolierte Radikalkation-Salze belegen [12] - Tetrachloroaluminat AlCl4[©]. Umsetzung von Di(tert-butyl)acetylen mit S₂Cl₂ in AlCl₃/H₂CCl₂-Lösung führt zu einem identischen ESR-Spektrum [7, 11].

Die oxidative Schwefelung von *tert*-Butyl-acetylen (3) liefert über das ESR-spektroskopisch charakterisierte Dithiet-Radikalkation-Zwischenprodukt ein Gemisch der isomeren 2,3- und 2,6-Di(*tert*-butyl)-1,2-dithiin-Radikalkationen [7], welches unter gleichen Bedingungen auch aus isoliertem 2,5-Di(*tert*-butyl)-1,2-dithiin erhalten wird [7]: Die *tert*-Butyl-Gruppen können somit AlCl₃-katalysiert wandern.

Aus Phenyl-ethyl-acetylen (4) entsteht mit $S_2Cl_2/AlCl_3/H_2CCl_2$ demgegenüber – möglicherweise wegen sterischer Überfüllung – nur das symmetrisch substituierte 1,4-Dithiin-Radikalkation. Überraschenderweise wird von beiden möglichen Angriffspunkten die C=C-Dreifachbindung bevorzugt, obwohl Benzol-Derivate nach umfangreichen ESR-Untersuchungen über 1,2-Benzodithiet- zu energetisch günstigen Thianthren-Radikalkationen abreagieren können [13–15]:

Im folgenden wird über Umsetzungen von Di(methylthio)acetylen mit S_2Cl_2 und mit H_3CSCl unter den Bedingungen der oxidativen Schwefelung in AlCl₃/H₂CCl₂-Lösungen berichtet.

Die oxidative Schwefelung von Alkylthio-substituierten Acetylenen

Di(methylthio)acetylen wird zusammen mit S_2Cl_2 im ESR-Proberöhrchen auf eine bei 77 K ausgefrorene Schicht H₂CCl₂ aufgebracht, welche vorher eingefülltes AlCl₃ bedeckt. Bei langsamen Auftauen tritt bei etwa 250 K Dunkelfärbung auf und es läßt sich ein ESR-Spektrum (Abb. 1) registrieren, welches bei weiterem Erwärmen auf Raumtemperatur unverändert bleibt.

Das einfache ESR-Signalmuster des entstandenen Radikalkations ist um den, in Anbetracht des Schwefelgehaltes relativ niedrigen g-Faktor 2,0067 zentriert und zeigt unerwartet 2 Protonen-Septetts im angenäherten Intensitätsverhältnis 1:6:15:20:15:6:1 mit den Kopplungskonstanten $a_{H_1} = 0,367$ mT und $a_{H_2} =$ 0,071 mT. Es kann daher im Gegensatz zu (1) bis (4) weder das per(methylthio)substituierte 1,2-Dithiet-Radikalkation noch sein 1,4-Dithiin-Folgeprodukt entstanden sein, welche entweder 6 oder 12 äquivalente Methylwasserstoffe aufweisen sollten:

Abb. 1. ESR-Spektrum von Tetra(methylthio)thiophen-Radikalkation aus der Umsetzung von $H_3CS-C\equiv C-SCH_3$ mit S₂Cl₂/AlCl₃/H₂CCl₂ (zur Zuordnung vgl. Text).

tern stabilisieren, liegt es nahe, das Entstehen (6) eines Tetra(methylthio)thiophen-Radikalkations anzunehmen. Hiermit sind alle ESR-Daten in Einklang: HMO-Rechnungen mit Standard-Parametern [15] sagen für die 2,5-Positionen eine mehr als vierfache Spindichte als für die 3,4-Zentren voraus; gefunden werden 2 Septetts für je 6 äquivalente Methylwasserstoffe im Kopplungskonstanten-Verhältnis von 5:1. ESR-Daten bekannter 2,5-Di(alkylthio)-

Ausgehend vom literaturbekannten Befund [16], daß elektronenreiche 1,4-Dithiin-Derivate mit formal 8π -Elektronen und einem daher entlang der S…S-Achse geknickten Molekülgerüst (Diederwinkel 137° [17]) sich häufig unter Schwefelabspaltung zu Thiophenen als planaren 6-Elektronen-Perimethiophen-Radikalkationen [18] stützen mit Methylprotonen-Kopplungen $a_H^{SCH_3}$ von 0,38 mT und 0,44 mT (*anti*-Konformeres) sowie 0,43 mT (*syn*-Konformeres) die Zuordnung der größeren Kopplung zu den H₃CS-Substituenten in 2,5-Stellung. Auch die g-Faktoren weisen mit 2,0065 [18] und 2,0067 (Abb. 1) vergleichbare Beträge auf, während die von 1,4-Dithiin-Radikalkationen mit $\tilde{g} \sim 2,009$ [7] und insbesondere die von 1,2-Dithiet-Radikalkationen mit $\tilde{g} \sim 2,015$ [7] erheblich größer sind.

In gleicher Weise umgesetztes Di(ethylthio)acetylen liefert ein paramagnetisches Reaktionsprodukt, dessen ESR-Spektrum ebenfalls um g = 2,0067 zentriert ist und erwartungsgemäß 2 Quintetts für je 4 äquivalente Methylengruppen-Protonen mit $a_{\rm H}^{2.5}$ = 0,38 mT und $a_{\rm H}^{3.4} \sim 0,05$ mT aufweist. Auch hier ist demzufolge ein per(ethylthio)substituiertes Thiophen-Radikalkation entstanden.

Umsetzungen von Acetylenen mit H₃CSCl in AlCl₃/H₂CCl₂-Lösung

Di(methylthio)acetylen reagiert mit H₃CSCl/AlCl₃ in H₂CCl₂ im abgeschmolzenen ESR-Proberöhrchen oberhalb 240 K zu einer tiefblau gefärbten, paramagnetischen Lösung. Ein nach Abkühlung auf 200 K aufgenommenes ESR-Spektrum (Abb. 2: (A)) zeigt ein Signalmuster aus zwei Septett-Kopplungen, welches stark temperaturabhängig ist: Bei 290 K wird ein Tridezett mit stark verbreiterten Linien beobachtet (Abb. 2: (B)); erneutes Abkühlen der Probe belegt die Reversibilität des Temperatureffektes.

Ein Vergleich des g-Faktors 2,0097 und der ¹H-Kopplungskonstanten von 0,422 mT und 0,093 mT (190 K) sowie 0,269 mT (290 K) mit Literaturangaben [19, 20] belegt zweifelsfrei, daß das Radikalkation von Tetra(methylthio)ethen entstanden ist:

Das Tetra(methylthio)ethylen-Radikalkation läßt sich auch durch Einelektronen-Oxidation des Neutralmoleküls [19] oder durch Umsetzung von Hexa-(methylthio)ethan mit AlCl₃/H₂CCl [20], bei der Dimethyldisulfid abgespalten wird (7), erzeugen. Die Temperaturabhängigkeit seines ESR-Spektrums ist auf die bei 200 K noch eingefrorene (Abb. 2: (3))

Abb. 2. ESR-Spektren des Tetra(methylthio)ethylen-Radikalkations, erzeugt durch Umsetzung von Di(methylthio)acetylen mit H₃CSCl/AlCl₃ in H₂CCl₂ bei 200 K (a) und bei 290 K (b).

Rotation der Methylthio-Gruppen um die SC-Bindungen zur C^{\cong}C-Einheit zurückzuführen [19]. Im Konformeren-Gleichgewicht (Abb. 2: ^(B)) wird für das ¹H-Tridezett eine Kopplungskonstante a_H^{MO} = 0,28 mT berechnet [11, 20], in zufriedenstellender Übereinstimmung mit dem experimentellen Wert von 0,269 mT.

Die Anwendungsbreite der Reaktion von Acetylenen mit Methylsulfenylchlorid H₃CSCl in AlCl₃/ H₂CCl₂-Lösung wird durch Umsetzung je eines Dialkyl- und Diaryl-acetylens und die ESR-spektroskopische Charakterisierung der entstehenden Methylthiosubstituierten Ethen-Radikalkationen abgesteckt.

Aus Butin-(2) entsteht bei Umsetzung mit H₃CSCl/ AlCl₃ in H₂CCl₂ ein temperaturlabiles Radikalkation, dessen ESR-Signal oberhalb 245 K verschwin-

Abb. 3. ESR-Spektrum des 2,3-Di(methylthio)buten-(2)-Radikalkations (\mathfrak{A}), erzeugt durch Umsetzung von Butin-(2) mit H₃CSCl/AlCl₃ in H₂CCl₂, und seine Computersimulation (\mathfrak{B}).

det. Das ESR-Spektrum (Abb. 3: (A)) besteht, wie die Computersimulation (Abb. 3: (B)) belegt, aus zwei Septetts mit den nur geringfügig verschiedenen Kopplungskonstanten $a_{H_1} = 0,623$ mT und $a_{H_2} = 0,531$ mT; der g-Faktor beträgt 2,0091. Die ESR-Daten sprechen somit für das erwartete Entstehen von 2,3-Di(methylthio)buten-(2)-Radikalkation; eine weitergehende Zuordnung der beiden ¹H-Kopplungen insbesondere zu einer E- oder Z-Konfiguration der C⁽⁼⁾C-Substituenten (Abb. 3: ?) sind ohne zusätzliche Isotopenmarkierung nicht möglich.

Bei der Umsetzung von Diphenylacetylen mit $H_3CSCl/AlCl_3$ in H_2CCl_2 bilden sich nach Ausweis des ESR-Spektrums (Abb. 4) zwei paramagnetische Reaktionsprodukte in unterschiedlichen Konzentrationen: Die 7 intensiven Signale im Abstand von $a_H = 0,615$ mT lassen sich durch Vergleich mit der größeren Kopplung $a_H = 0,623$ mT des 2,3-Di(methyl-thio)buten-(2)-Radikalkations (vgl. Abb. 3) den beiden Methylthio-Gruppen eines analogen Diphenyl-Derivates zuordnen. Jede der Septett-Linien ist

Abb. 4. ESR-Spektrum der Reaktionsprodukte aus der Umsetzung von Diphenylacetylen mit $H_3CSCl/AlCl_3$ in H_2CCl_2 bei 250 K.

durch Kopplungen mit Phenyl-Protonen von etwa 0,03 mT weiter aufgespalten. Auch der g-Faktor 2,0094 ist dem des Dimethyl-substituierten Radikalkations 2,0091 vergleichbar. Die zwischen den Hauptlinien erkennbaren Signale einer weiteren Radikal-Species könnten – wie die vergleichbaren Linienabstände vermuten lassen – möglicherweise auf das Z-isomere 1,2-Diphenyl-1,2-di(methylthio)ethen-Radikalkation zurückzuführen sein.

Zusammenfassend ist festzuhalten, daß sich bei Umsetzungen 1,2-disubstituierter Acetylene mit $H_3CSCI/AICl_3$ in H_2CCl_2 das Entstehen von 1,2-Di-(methylthio)ethen-Radikalkationen ESR-spektroskopisch in Konzentrationen von mindestens 10^{-5} mol/l nachweisen läßt.

$$\begin{array}{c} \mathsf{R} - \mathsf{C} \equiv \mathsf{C} - \mathsf{R} + \mathsf{H}_{3} \mathsf{C} \mathsf{S} \mathsf{C} \mathsf{I} \xrightarrow{\mathsf{A} \mathsf{I} \mathsf{C} \mathsf{I}_{3} / \mathsf{H}_{2} \mathsf{C} \mathsf{C} \mathsf{I}_{2}} \\ \left(\mathsf{R} = \mathsf{S} \mathsf{C} \mathsf{H}_{3}, \mathsf{C} \mathsf{H}_{3}, \mathsf{C}_{6} \mathsf{H}_{5} \right) \end{array} \xrightarrow{\mathsf{A} \mathsf{I} \mathsf{C} \mathsf{I}_{3} / \mathsf{H}_{2} \mathsf{C} \mathsf{C} \mathsf{I}_{2}} \begin{array}{c} \mathsf{H}_{3} \mathsf{C} \mathsf{S} \\ \mathsf{C} \equiv \mathsf{C} \\ \mathsf{R} \\ \mathsf{X}^{\Theta} \\ \mathsf{S} \mathsf{C} \mathsf{H}_{3} \end{array} \tag{8}$$

Zur Bildung von Dithiet-Radikalkationen

Dithiet-Radikalkationen (RC)₂S₂^{.⊕}, in denen nach den weitgehend von Substituenten R unabhängigen ESR-Daten, g~2,015 und a_{33_5} ~0,8 mT [1-7, 11, 13], Spin wie Ladung überwiegend und energetisch günstig in der eingeebneten elektronenreichen Disulfid-Gruppierung lokalisiert sind, entstehen auf zahlreichen verschiedenartigen Wegen (1) bis (4). Zu ihrem ungeklärten Bildungsmechanismus tragen die vorstehenden Untersuchungen folgende Teilaspekte bei: Für die Untersuchungen von Acetylenen mit H₃CSCl/AlCl₃ in H₂CCl₂, bei denen Di(methylthio)-substituierte Ethen-Radikalkationen (8) ESR-spek-

troskopisch nachgewiesen werden (Abb. 2, 3 und 4), liegt die Annahme eines elektrophilen Angriffs durch H_3CS^{\oplus} nahe [22]:

$$\begin{array}{c} \mathsf{R} \\ \mathsf{I} \\ \mathsf{I} \\ \mathsf{C} \\ \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{H}_3 \mathsf{CS}^{\oplus}[\mathsf{AlCl}_4^{\ominus}]} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{R}_{\mathsf{S}} \mathsf{CH}_3} \xrightarrow{\mathsf{H}_3 \mathsf{CSCl}} \xrightarrow{\mathsf{H}_3 \mathsf{CSCH}_3} \xrightarrow{\mathsf{H}_3 \mathsf{CSCH}_3} \xrightarrow{\mathsf{R}_{\mathsf{S}} \mathsf{CH}_3} \left(\begin{array}{c} \mathsf{R} \\ \mathsf{C} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{S} \\ \mathsf{CH}_3 \end{array} \right) \begin{bmatrix} \mathsf{AlCl}_4^{\ominus} \end{bmatrix}$$
(9)

An die resultierenden und möglicherweise durch "Episulfenium"-Verbrückung stabilisierten Kationen könnte sich H₃CSCl anlagern und unter Cl⁻-Abstraktion z. B. mit Beteiligung des Lösungsmittels (2 H₂CCl₂ \rightarrow Cl₂HC-CHCl₂ + 2 H) das Radikalkation-Endprodukt (8: R = SCH₃, CH₃, C₆H₅) bilden. Hierbei würde die insgesamt erforderliche Einelektronen-Reduktion – aus R-C=C-R + 2 H₃CS^{\oplus} sollte das Dikation entstehen –, die in der oxidierenden AlCl₃/H₂CCl₂-Lösung ($\epsilon^{0x} \sim +1.6$ V) [10] ablaufen müßte, durch Cl⁻Abstraktion aus dem durch H₃CSCl-Anlagerung an das Methylthioethen-Kation gebildeten Reaktionskomplex erfolgen.

Die spekulativen Annahmen (9) ließen sich zwanglos auf die Umsetzungen von Acetylenen mit S_2Cl_2 in AlCl₃/H₂CCl₂-Lösung (1) bis (4) übertragen:

$$\begin{array}{c} \mathsf{R} \\ \mathsf{C} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{R} \end{array} \xrightarrow{\mathsf{C} \times \mathsf{S}} \left[\mathsf{AlCl}_{\mathsf{A}}^{\Theta} \right] \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{R} \\ \mathsf{C} \\ \mathsf{R} \\ \mathsf$$

Um z. B. für R = H (1) ein Radikalkation (HC)₂S₂^{.⊕} mit 21 Valenzelektronen zu erzeugen, ist an HC≡CH formal ein Bruchstück S₂^{.⊕} mit 11 Valenzelektronen anzulagern. Sowohl die Reduktion eines durch S₂^{⊕⊕}-Addition entstandenen Dikation-Zwischenproduktes (HC)₂S₂^{⊕⊕} in der oxidierenden AlCl₃/H₂CCl₂-Lösung wie die Oxidation eines neutralen Dithiets (HC)₂S₂, dessen Lebensdauer in der Gasphase nur etwa 2 Sekunden beträgt [23] und das ein für AlCl₃/H₂CCl₂-Oxidation [10] zu hohes Ionisationspotential IE^Y₁ = 9,05 eV [24] aufweist, dürften weniger wahrscheinlich sein als die vorgeschlagene Cl'-Eliminierung unter Beteiligung des Lösungsmittels H₂CCl₂. Auch für die Bildung Alkyl- oder Arylsubstituierter Dithiet-Radikalkationen (2) bis (4) böte sich (10) zur Erläuterung an. Im Gegensatz hierzu sind für die Umsetzungen von C₂-Derivaten mit Na₂S_x zu (HC)₂S₂^{.⊕} (1) oder von Benzol mit S₂Cl₂/AlCl₃/H₂CCl₂ zu H₄C₆S₂^{.⊕} (5) zusätzliche Oxidationsreaktionen erforderlich, die möglicherweise über dimere Zwischenprodukte erfolgen [2], z. B.:

Werden getrennt hergestellte H_2CCl_2 -Lösungen von Bis(*o*-phenylen)tetrasulfid und AlCl₃ vereinigt, so ist unmittelbar ein intensives ESR-Signal von Benzodithiet-Radikalkation zu beobachten [2].

Wird dem S₂Cl₂/AlCl₃/H₂CCl₂-Reaktionsgemisch wie z.B. im Phenylethylacetylen (3) sowohl die C=C-Dreifachbindung wie der Benzolring zur Bildung eines Dithiet-Radikalkations angeboten, so erfolgt nach Ausweis der ESR-Spektren [7] ausschließlich Addition an die Acetylenbindung:

Eine Phenyl-Substitution kann wegen der notwendigen Wasserstoff-Abstraktion nicht nach dem vorgeschlagenen einfachen Schema (10) erfolgen. Auch in diesem Zusammenhang ist jedoch darauf hinzuweisen, daß die ESR-Analytik sehr empfindlich ist und die Nachweisgrenze für die erzeugten und anhand ihrer ESR-spektroskopischen Signalmuster charakterisierten Radikalkationen etwa 10^{-5} mol/l beträgt [25].

Experimenteller Teil

Di(methylthio)acetylen [26] wird durch Umsetzung von 1,2-Dichlorethen mit LiNH₂ und Dimethyldisulfid in flüssigem Ammoniak dargestellt. Ausbeute: 22% d.Th. mit Sdp. = 75-76 °C/13 mbar. ¹H-NMR (CDCl₃): δ = 2,44 (s).

Di(ethylthio)acetylen [26] wird analog dargestellt. Ausbeute 10% d. Th. mit Sdp. = 72-74 °C/5 mbar (Lit.: 88 °C/9 mbar). ¹H-NMR (CDCl₃): $\delta = 1,36$ (t, 6H, -CH₃); 2,63 (q, 4H, -CH₂).

- 78. Mitteilung: H. Bock, B. L. Chenard, P. Rittmeyer und U. Stein, Z. Naturforsch. 43b, 117 (1988).
- [2] Teil der Dissertation P. Rittmeyer, Universität Frankfurt (1986).
- [3] G. N. Schrauzer und H. N. Rabinowitz, J. Am. Chem. Soc. 92, 5769 (1970).
- [4] G. A. Russell, R. Tanikaga und E. R. Talaty, J. Am. Chem. Soc. 94, 6125 (1972).
- [5] Vgl. z. B. E. A. C. Lucken, Theor. Chim. Acta 1, 397 (1963).
- [6] Vgl. z. B. P. D. Sullivan, J. Am. Chem. Soc. 90, 3618 (1968).

Methylsulfenchlorid [27] wird durch Chlorierung von Dimethylsulfid bei 0 bis -10 °C erhalten. Das feuchtigkeitsempfindliche Produkt läßt sich etwa bei 60 mbar/30 °C über eine Kolonne fraktionieren und ist auch im Tiefkühlschrank unter Schutzgas nur wenige Tage stabil.

Erzeugung der Radikalkationen: Methylenchlorid wird zweimal über P_4O_{10} -Granulat destilliert, anschließend mehrere Tage bei 10^{-4} Torr sorgfältig entgast und in einem Hochvakuum-Kolben über AlCl₃ aufbewahrt. Das als Oxidationsmittel verwendete AlCl₃ (p. a. Fluka AG) wird unter trockenem Reinstickstoff aufbewahrt.

Zur Darstellung von Radikalkationen durch Reaktion eines ungesättigten Kohlenwasserstoffes mit $S_2Cl_2/AlCl_3$ in H_2CCl_2 bewährt sich folgendes Vorgehen: Nach Einbringen von AlCl_3 in das ausgeflämmte ESR-Proberöhrchen wird zunächst das Lösungsmittel einkondensiert und ausgefroren. Unter N₂-Schutz werden mit Hilfe langer Pasteur-Pipetten jeweils ein Tropfen S_2Cl_2 sowie des Kohlenwasserstoffes zugetropft und das ESR-Proberöhrchen abgeschmolzen.

ESR-Spektren werden mit einem Spektrometer Varian E-9 aufgenommen. Die Messungen erfolgen bei etwa 9,1 GHz und einer Feldstärke von etwa 333 mT bei 100 kHz Feldmodulation. Die Meßtemperatur wird durch eine Temperier-Einheit Bruker ER 4111 VT gewährleistet. Zur Eichung der Spektren dient eine Doppelcavity mit dem Perylen-Radikalanion (g = 2,002656) als Referenz.

ESR-Spektrensimulationen erfolgen mit dem Programm ESPLOT, eine für große Kernzahlen erweiterte Version des Programms ESIM [28].

Die Untersuchungen wurden vom Land Hessen, der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie gefördert. P. Rittmeyer dankt der Hermann-Schlosser-Stiftung für das gewährte Stipendium.

[7] H. Bock, P. Rittmeyer und U. Stein, Chem. Ber. 119, 3766 (1986).

- [8] Vgl. z. B. A. Krebs, H. Colberg, U. Höpfner, H. Kimling und J. Odenthal, Heterocycles **12**, 1153 (1979) oder B. Köpke und J. Voß, J. Chem. Res. Synop. **11**, 314 (1982).
- [9] W. Jian-qi, M. Mohraz, E. Heilbronner, A. Krebs, K. Schütz, J. Voß und B. Köpke, Helv. Chim. Acta 66, 801 (1983).
- [10] H. Bock und U. Lechner-Knoblauch, J. Organomet. Chem. 294, 295 (1985) und Lit. zit.
- [11] H. Bock, P. Rittmeyer, A. Krebs, K. Schütz, J. Voß

und B. Köpke, Phosphorus Sulfur **19**, 131 (1984) und Lit. zit.

- [12] Vgl. z.B. O. Graalmann, M. Hesse, U. Klingebiel, W. Clegg, M. Haase und G. M. Sheldrick, Angew. Chem. **95**, 630 (1983); Angew. Chem., Int. Ed. Engl. **22**, 621 (1983).
- [13] H. Bock, U. Stein und P. Rittmeyer, Angew. Chem.
 94, 540 (1982); Angew. Chem., Int. Ed. Engl. 21, 533 (1982); vgl. auch [1] und [2] sowie Dissertation U. Stein, Universität Frankfurt (1980).
- [14] J. Giordan und H. Bock, Chem. Ber. **115**, 2548 (1982).
- [15] Vgl. auch H. Bock und B. Roth, Phosphorus Sulfur 14, 211 (1983).
- [16] Vgl. z. B. B. P. Stark und A. J. Duke, Extrusion Reactions, Pergamon Press, Oxford (1967) und Lit. zit.
- [17] P. Laur, in A. Senning (ed.): Sulfur in Organic and Inorganic Chemistry, Vol. 3, S. 126 und Lit. zit., Marcel Dekker Inc., New York (1972).
- [18] C. M. Camaggi, L. Lumazzi und G. Placucci, J. Chem. Soc. Perkin II **1973**, 1491.
- [19] D. H. Geske und M. V. Merritt, J. Am. Chem. Soc. 91, 6921 (1969).

- [20] H. Bock, G. Brähler, U. Henkel, R. Schlenker und D. Seebach, Chem. Ber. **113**, 289 (1980).
- [21] Vgl. hierzu H. Bock, B. Roth und R. Schumaker, Phosphorus Sulfur 21, 79 (1984).
- [22] Vgl. z. B. E. Block, Reactions of Organosulfur Compounds, S. 128 ff., Academic Press, New York (1978).
- [23] M. Rodler und A. Bauder, Chem. Phys. Lett. 114, 575 (1985), bestimmten Mikrowellen-spektroskopisch die Struktur mit einem SS-Bindungsabstand von 209,6 pm.
- [24] R. Schulz, A. Schweig, K. Hartke und J. Köster, J. Am. Chem. Soc. **105**, 4519 (1983); vgl. auch M. Breitenstein, R. Schulz und A. Schweig, J. Org. Chem. **47**, 1979 (1982) oder Dissertation S. Aygen, Universität Frankfurt am Main (1983).
- [25] Die aus tert-Butylacetylen gebildeten isomeren 1,4-Dithiine können nach reduktiver Aufarbeitung des Reaktionsgemisches gaschromatographisch getrennt und isoliert werden [7].
- [26] J. R. Nooi und J. F. Arens, Rec. Trav. Chim. Pays-Bas 80, 244 (1961).
- [27] E. Kühle, Synthesis 1970, 561.
- [28] Dissertation W. Kaim, Universität Frankfurt (1977).