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Abstract

Measurements of elliptic (v2) and triangular (v3) flow coefficients of π±, K±, p+p, K0
S, and Λ+Λ

obtained with the scalar product method in Xe–Xe collisions at
√

sNN = 5.44 TeV are presented. The
results are obtained in the rapidity range |y|< 0.5 and reported as a function of transverse momentum,
pT, for several collision centrality classes. The flow coefficients exhibit a particle mass dependence
for pT < 3 GeV/c, while a grouping according to particle type (i.e., meson and baryon) is found at
intermediate transverse momenta (3 < pT < 8 GeV/c). The magnitude of the baryon v2 is larger than
that of mesons up to pT = 6 GeV/c. The centrality dependence of the shape evolution of the pT-
differential v2 is studied for the various hadron species. The v2 coefficients of π±, K±, and p+p are
reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model (UrQMD)
for pT < 1 GeV/c. A comparison with vn measurements in the corresponding centrality intervals in
Pb–Pb collisions at

√
sNN = 5.02 TeV yields an enhanced v2 in central collisions and diminished

value in semicentral collisions.

*See Appendix A for the list of collaboration members
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1 Introduction

Collisions of ultra-relativistic nuclei provide the opportunity to study in the laboratory the quark–gluon
plasma (QGP), a state of deconfined quarks and gluons [1]. An important feature of the QGP is the
collective expansion, called flow, due to pressure gradients in the geometrically overlapping matter in
the collisions of nuclei. A direct experimental evidence of this collective flow is the observation of
anisotropic flow [2], which arises from the asymmetry in the initial geometry of the collision combined
with the initial state inhomogeneities of the system’s energy density. Its magnitude is usually quantified
by the harmonic coefficients vn in a Fourier decomposition of the azimuthal distribution of particles with
respect to the collision symmetry plane [3, 4]

dN
dϕ

∝ 1+2
∞

∑
n=1

vn cos[n(ϕ−Ψn)], (1)

where ϕ is the azimuthal angle of the produced particle and Ψn is the n-th harmonic symmetry-plane
angle in the collision. The second (v2) and third (v3) coefficients are called elliptic and triangular flow,
respectively. While v2 directly reflects the almond-shaped geometry of the interaction volume being
the largest contribution to the asymmetry in non-central collisions, v3 is generated by fluctuations in
the initial distribution of nucleons in the overlap region [5–9]. For light and strange particles, both
coefficients scale approximately linearly with the corresponding eccentricities εn (vn ≈ κnεn) [10], which
govern the shape of the initial collision geometry. The coefficients κn are sensitive to the macroscopic
properties of the QGP, such as the shear viscosity to entropy density ratio (η/s), and the lifetime of the
system. A greater sensitivity to η/s is expected for higher-order flow coefficients [11, 12].

Measurements of anisotropic flow performed in Au–Au collisions at the Relativistic Heavy Ion Collider
(RHIC) [13–16] and in Pb–Pb collisions at the Large Hadron Collider (LHC) [17–20] indicate that the
QGP is strongly-coupled (i.e. constituents have small mean free path) and behaves like a nearly per-
fect fluid as the extracted η/s is close to the lower limit predicted by the anti-de Sitter/conformal field
theory (AdS/CFT) correspondence of 1/(4π) (setting } = kB = 1) [21]. Recently, the vn coefficients of
unidentified charged particles have been measured in Xe–Xe collisions at the center-of-mass energy per
nucleon pair

√
sNN = 5.44 TeV [22–24]. These measurements further constrain the transport coefficients

of the medium, such as η/s and bulk viscosity to entropy density ratio (ζ/s), and initial state models.
Furthermore, comparisons of the v2 measurements in semicentral Xe–Xe collisions with those from Pb–
Pb collisions in the same centrality intervals could provide direct information on the η/s. For these
collisions, the two systems have similar ε2 coefficients [25, 26] but different sizes, thus the influence of
the initial state on η/s mostly cancels out in ratios of Xe–Xe/Pb–Pb v2 and a finite η/s suppresses κ2
by 1/R, where R corresponds to the transverse size of the system [25]. Centrality estimates the degree
of overlap between two colliding nuclei and is expressed as percentiles of the inelastic cross section,
with low percentage values corresponding to the most central collisions. Stronger constraints can be
placed by studying anisotropic flow of identified particles since the κn coefficients depend on particle
mass, type, and kinematics [27]. In addition to probing η/s and ζ/s, the anisotropic flow of identified
particles provides valuable information on the particle production mechanism in different transverse mo-
mentum, pT, regions. For pT . 3 GeV/c, the characteristic mass ordering (i.e., lighter particles having a
larger vn than that of heavier particles at fixed pT), which arises from the interplay between radial flow
(isotropic expansion) and anisotropic flow [28, 29], is described by hydrodynamic calculations [30–34].
This mass ordering provides constraints on both η/s and ζ/s as the magnitude of vn depends on η/s,
while the mass ordering is affected by ζ/s through its influence on radial flow. At intermediate pT,
3 < pT < 8 GeV/c, a grouping of vn of mesons and baryons is observed, with the flow of baryons be-
ing larger than that of mesons [32, 35–37]. While this supports the hypothesis of hadronization through
quark coalescence (involving the combination of a quark and anti-quark to form a meson and three quarks
to form a baryon) [38–40], alternate explanations are attempted in models in which particle production
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includes interactions of jet fragments with bulk matter [41]. To test the hypothesis of particle production
via quark coalescence it was suggested to divide both vn and pT by the number of constituent quarks
since it is assumed that the spectrum of produced particles is proportional to the product of the spectra
of their constituents [42, 43]. However, deviations from the exact scaling at the level of ±20% are seen
in Pb–Pb collisions at the LHC [30–32], while it only holds approximately at RHIC [37]. This scaling
can be further tested using measurements of identified particle vn in Xe–Xe collisions.

The pT-differential elliptic flow coefficient, v2(pT), of π±, K±, p+p, K0
S, and Λ+Λ as well as the pT-

differential triangular flow coefficient, v3(pT), of π±, K±, and p+p, measured in Xe–Xe collisions at√
sNN = 5.44 TeV are presented in this paper. The results are reported for pT < 8.5 GeV/c within the

rapidity range |y|< 0.5 at different collision centralities in the 0–60% range, where vn can be measured
accurately. The scalar product method [44–46] is employed with a pseudorapidity gap of |∆η | > 2.0
between the identified particles under study and the reference charged particles. The vn coefficients
denote the average between results for positive and negative particles as they are compatible within
uncertainties for most pT and centrality intervals. Any residual difference has been included into the
systematic uncertainties.

This paper is organized as follows. A brief description of the ALICE detector, analysis details, particle
identification, reconstruction methods, and flow measurement techniques is given in Sec. 2. Section 3
outlines the evaluation of systematic uncertainties, while the results are reported in Sec. 4. Finally,
conclusions are drawn in Sec. 5.

2 Experimental setup and analysis details

A full overview of the ALICE detector and its performance can be found in Refs. [47, 48]. The Inner
Tracking System (ITS) [49], the Time Projection Chamber (TPC) [50], the Time of Flight (TOF) [51],
and the V0 [52] are the main subsystems used in this analysis and are briefly described below. These de-
tectors are located inside a solenoid magnet which provides a nominal magnetic field of 0.5 T. However,
the field was reduced to 0.2 T for Xe–Xe collisions in order to extend particle tracking and identification
to the lowest possible momenta. The ITS, TPC, and TOF detectors cover the full azimuth within the
pseudorapidity range |η | < 0.9. The ITS consists of six layers of silicon detectors and is employed for
tracking, vertex reconstruction, and event selection. The TPC, being the main tracking detector, is used
to reconstruct charged-particle tracks but also to identify particles via the measurement of the specific
energy loss, dE/dx. The TOF detector provides particle identification based on the measurement of
flight time from the collision point using a start time given by the T0 detector [53], which consists of two
arrays of Cherenkov counters located at −3.3 < η <−3.0 (T0C) and 4.5 < η < 4.9 (T0A). The V0 de-
tector, two arrays of 32 scintillator tiles each (four rings in the radial direction with each ring divided into
eight sectors in the azimuthal direction) covering −3.7 < η <−1.7 (V0C) and 2.8 < η < 5.1 (V0A), is
used for triggering, event selection, and the determination of centrality [54] and Qn vectors (see below).
Two tungsten-quartz neutron Zero Degree Calorimeters (ZDCs) [55], installed 112.5 meters from the
interaction point on each side, are also used for event selection.

The analyzed data set was recorded by the ALICE detector during the Xe–Xe run at
√

sNN = 5.44 TeV
in 2017. The minimum-bias trigger requires signals in both V0A and V0C detectors in coincidence with
signals in the two neutron ZDCs, the latter condition suppressing contamination from electromagnetic
interactions. In addition, the beam-induced background (i.e., beam–gas events) and pileup events are
removed using an offline event selection. The former is rejected utilizing the V0 and ZDC timing in-
formation, while pileup events are removed by comparing charged particle multiplicity estimates from
the V0 detector with those of tracking detectors at midrapidity, exploiting the difference in readout times
between the systems. The remaining contribution of such interactions is estimated to be negligible. The
primary vertex position is determined from tracks reconstructed in the ITS and TPC as described in
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Ref. [48]. Approximately 9×105 Xe–Xe events in the 0–60% centrality interval, with a primary vertex
position within ±10 cm from the nominal interaction point along the beam direction, are used in the
analysis. Centrality is estimated from the energy deposition measured in the V0 detector [54].

The charged particle tracks used to determine the flow coefficients of π±, K±, and p+p are reconstructed
using the ITS and TPC within |η |< 0.8 and 0.4 < pT < 8.5 GeV/c. Each track is required to cross at least
70 TPC readout rows (out of a maximum of 159), to have a minimum number of 70 TPC space points
with a χ2 per TPC space point lower than 4, and to have the ratio between the number of space points
and the number of crossed rows in the TPC larger than 0.8. The selected tracks are also required to have
at least 2 ITS hits, of which at least one in the two innermost layers, and a χ2 per ITS hit smaller than 36.
Only tracks with a distance of closest approach (DCA) to the reconstructed vertex position smaller than
2 cm in the longitudinal direction (z) are accepted. In the transverse plane (xy), a pT-dependent selection
is applied: |DCAxy| < 7σDCAxy , where σDCAxy is the resolution of the DCAxy in each pT interval. These
selection criteria reduce the contamination from secondary charged particles (i.e., particles originating
from weak decays, conversions, and secondary hadronic interactions in the detector material) and fake
tracks (random associations of space points) and ensure a track momentum resolution better than 4% for
the considered pT range [56].

The particle identification for π±, K±, and p+p is performed using signals from the TPC and TOF
detectors following the procedure described in Ref. [32]. For pT < 4 GeV/c, particle identification is
done track-by-track evaluating the difference between the measured and expected dE/dx and time-of-
flight for a given species in units of the standard deviation (σTPC,σTOF) from the most probable value.
Particles are selected combining the TPC and TOF information (nσPID =

√
n2

σTPC
+n2

σTOF
) and requiring

nσPID < 3 for each species. When this condition is fulfilled by more than one species, the smallest nσPID is
used to assign the identity. To exclude contamination in the sample from secondary protons originating
from the detector material, only p are considered for pT < 2 GeV/c. For pT > 4 GeV/c, only π± and p+p
are identified using the TPC dE/dx by selecting them from the upper part of the pion dE/dx distribution
and from the lower part of the proton dE/dx distribution, respectively. For example, pion selection varies
in the range 0.3σ to 2σ .

The remaining contamination from secondary particles originating in weak decays, studied using the
procedure described in Ref. [57], is negligible for K± and decreases with increasing pT from about 5%
to 0.5% for π± and from about 40% to 5% for p+p in the pT range 0.4–4.0 GeV/c. The vn coefficients
are not corrected for these contaminations. Their effect on vn, estimated from the correlation between
vn and contamination for various DCAxy selections in each pT interval, is negligible for π± and K± and
up to 20% and 5% for central and peripheral collisions, respectively, for v2 of p+p at pT ∼ 0.5 GeV/c.
The contamination from other particle species is below 2% and 25% at pT > 4.0 GeV/c for π± and p+p,
respectively. The contamination from fake tracks is negligible.

The K0
S and Λ+Λ are reconstructed in the K0

S → π+ + π− and Λ → p + π− (Λ → p + π+) channels.
An offline selection is used to identify secondary vertices (called V0s), from which two particles of
opposite charge originate. The selection of V0 candidates is done with an invariant mass between 0.4
and 0.6 GeV/c2 for K0

S and 1.07 and 1.17 GeV/c2 for Λ+Λ. Daughter particles, identified using the TPC
(|nσTPC | < 3), are assumed to be either a π+–π− pair or a p–π− (p–π+) pair in the calculation of the
invariant mass of the V0. The TPC track quality requirements described above for charged tracks are
also imposed on daughter particles. In addition, the maximum DCA of daughter tracks to the secondary
vertex is 0.5 cm and the minimum DCA of daughter tracks to the primary vertex is 0.1 cm. Secondary
vertices created by decays into more than two particles are rejected requiring the cosine of the pointing
angle θp to be larger than 0.998. This angle is defined as the angle between the momentum-vector of
the V0 assessed at its decay position and the line connecting the V0 decay vertex to the primary vertex
and has to be close to 0 as a result of momentum conservation. Only V0 candidates produced at a radial
distance between 5 and 100 cm from the beam line are accepted. Finally, a selection in the Armenteros–
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Podolanski variables [58] is applied for the K0
S candidates to asses the systematic uncertainty related to

contamination from Λ+Λ and electron–positron pairs coming from γ conversions. Earlier studies have
shown that contaminations from higher mass baryons (Ξ±, Ω±) have a negligible effect on the measured
vn [30]. More details about this selection can be found in Ref. [32].

The scalar product (SP) method [44–46] is used to measure the flow coefficients vn, written as

vn{SP}= 〈〈un,kQ∗n〉〉

/√
〈QnQA∗

n 〉〈QnQB∗
n 〉

〈QA
n QB∗

n 〉
, (2)

where un,k = exp(inϕk) is the unit flow vector of the particle of interest k with azimuthal angle ϕk, Qn
is the event flow vector, and n is the harmonic number. Brackets 〈· · · 〉 denote an average over all events,
the double brackets 〈〈· · · 〉〉 an average over all particles in all events, and ∗ the complex conjugate. The
vector Qn is obtained from the azimuthal distribution of the energy deposition measured in the V0A,
with the x and y components given by

Qn,x = ∑
j

wj cos(nϕj), Qn,y = ∑
j

wj sin(nϕj), (3)

where the sum runs over the 32 channels j of the V0A detector, ϕj is the azimuthal angle of channel
j, and wj is the amplitude measured in channel j. The vectors QA

n and QB
n are determined from the

azimuthal distribution of the energy deposition measured in the V0C and the azimuthal distribution of
the tracks reconstructed in the ITS and TPC, respectively. Any non-uniform detector response is taken
into account by adjusting the components of the Qn vectors using a recentering procedure (i.e. subtraction
of the Qn vector averaged over many events from the Qn vector of each event) [59]. The large gap in
pseudorapidity between un,k and Qn (|∆η | > 2.0) greatly suppresses short-range correlations unrelated
to the common symmetry planes Ψn (“non-flow"), such as those due to resonances, jets, and quantum
statistics correlations.

As the V0s cannot be identified on a track-by-track basis, Eq. 2 cannot be used to measure directly vn of
K0

S and Λ+Λ. Instead, a statistical approach is employed, with the vtot
n of the candidate V0s being written

as the weighted sum of vn(pT) of the true V0s, vsig
n , and that of the background pairs, vbg

n [60]

vtot
n (Md+d−) = vsig

n
Nsig

Nsig +Nbg (Md+d−)+ vbg
n (Md+d−)

Nbg

Nsig +Nbg (Md+d−), (4)

where signal (Nsig) and background (Nbg) yields are extracted by integration of the Gaussian distribution
and the third-order polynomial function used to parametrize the invariant mass (Md+d−) distribution at
the given pT, respectively. The latter accounts for residual contaminations that are present in the K0

S and
Λ+Λ signals after passing the selection criteria. The vtot

n (Md+d−) obtained according to Eq. 2 is fitted
using Eq. 4 with one parameter for the vsig

n and a second-order polynomial function to parametrize the
vbg

n . This procedure is illustrated in Fig. 1 where the invariant mass distribution of the K0
S and a fit of the

vtot
2 (Mπ+π−) distribution are shown in the top and bottom panels, respectively.

The π± and p+p v2 and v3 are reported for 0.4 < pT < 8.5 GeV/c and 0.4 < pT < 6.0 GeV/c, respec-
tively, while K± vn are presented for 0.4 < pT < 4.0 GeV/c. The v2 of K0

S and Λ+Λ are reported for
0.5 < pT < 6.0 GeV/c and 0.8 < pT < 6.0 GeV/c, respectively. All measurements are performed in the
rapidity range |y|< 0.5.

3 Systematic uncertainties

The systematic uncertainties are evaluated by varying the event and charged particle tracking selection
criteria, the particle identification approach, the V0 finding strategy, and the vn(pT) extraction. The
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Figure 1: (color online) Top panel: invariant mass distribution of opposite-sign pion pairs belonging to candidate
K0

S in the centrality range 10–20% and pT interval 0.5 < pπ+π−
T < 0.8 GeV/c. Bottom panel: a fit of Eq. 4 to the

mass-dependent v2 distribution.

default result is compared to a variation on the nominal measurement. If the value of the variation it-
self differs from the main result by more than 1σ , which is evaluated based on the recommendations
in Ref. [61], it is considered to be a systematic uncertainty. For various checks performed to quantify
the effect of one systematic uncertainty (e.g., using different values for the minimum number of TPC
space points employed in the reconstruction to estimate an uncertainty in tracking), the maximum sig-
nificant deviation found between the nominal measurement and the systematic variations is assigned as
a systematic uncertainty. The total systematic uncertainties are estimated by summing in quadrature the
systematic uncertainties from the independent sources (if applicable) for all particle species, vn(pT), and
centrality intervals. A pT-dependent systematic uncertainty is assigned to vn of π±, K±, and p+p, while
a pT-independent average uncertainty is reported for v2 of K0

S and Λ+Λ. For each particle species, a
summary of the magnitude of the relative systematic uncertainties on the values of v2 and v3 are given in
Tables [1] and [2], respectively.

Systematic uncertainties related to event selection criteria are estimated by using an alternative centrality
estimator based either on the number of hits in the first or second layer of the ITS; by requiring the
reconstructed primary vertex position alternatively within±12 cm,±7 cm, and±5 cm from the nominal
interaction point along the beam direction; by imposing a stricter pileup rejection than the default selec-
tion (i.e., stronger constraints on the consistency of different event multiplicity estimators) or accepting
all events with tracks regardless the pileup selection. The limited size of the Xe–Xe data sample does not
allow for testing the effects from centrality fluctuations by measuring the vn of π±, K±, and p+p in 1%
wide centrality intervals as done in Refs. [22, 32]. However, the systematic uncertainties estimated for
this check in the vn analysis of unidentified charged particles [22] are applied to the ones for vn of π±,
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Table 1: Summary of systematic uncertainties for the v2 of π±, K±, p+p, K0
S, and Λ+Λ. Uncertainties are given as

intervals between the minimum and maximum values for all pT and centrality ranges. Empty fields indicate that a
given check does not apply, while the field marked negl. for negligible implies that the tested uncertainty cannot
be resolved within the statistical precision.

Uncertainty source π± K± p+p K0
S Λ+Λ

Vertex position 0–3% 0–2% 1–3% 1–2% 1–2%
1% wide centrality intervals 0–2% 0–2% 0–2%
Centrality estimator 0–4% 0–2% 1–4% 2–3% 1–3%
Pileup rejection 0–1% 0–1% 0–1% 0–1% 0–1%
Tracking mode 0–2% 0–3% 0–5%
Number of TPC space points 0–1% 0–2% 0–3% 0–1% 0–1%
Track quality 0–1% 0–1% 0–1% 0–2% 1–2%
ITS χ2 negl. 0–1% 0–1%
Particle identification purity 1–2% 1–2% 1–3% 1–3% 1–2%
Number of TPC clusters used for dE/dx 0–1% 0–1% 0–1% 1–3% 1–3%
Exclusive particle identification negl. negl. negl.
Decay vertex (radial position) 1–2% 1–4%
Armenteros–Podolanski variables 1–2%
DCA decay products to primary vertex 0–2% 1–2%
DCA between decay products 1–2% 1–2%
Pointing angle cos θp 0–1% negl.
Minimum pT of daughter tracks 1–2% 0–1%
dE/dx contamination for K0

S 0–2%
V0 online selection 1–3% 0–2%
Peak shape 0–1% 0–1%
Residual background in yield 1–2% 0–1%
Positive and negative rapidities 1–2% 1–2% 1–3% 2–3% 1–3%
Opposite charges 0–2% 0–2% 0–2%
vbg

n parametrization 0–1% 1–2%
vtot

n fit ranges 0–1% 0–2%

Table 2: Summary of systematic uncertainties for the v3 of π±, K±, and p+p. Uncertainties are given as intervals
between the minimum and maximum values for all pT and centrality ranges. The field marked negl. for negligible
implies that the tested uncertainty cannot be resolved within the statistical precision.

Uncertainty source π± K± p+p
Vertex position 1–3% 1–2% 1–3%
1% wide centrality intervals 0–2% 0–2% 0–2%
Centrality estimator 2–4% 1–3% 2–4%
Pileup rejection 0–1% 0–1% 0–1%
Tracking mode 0–2% 0–4% 0–4%
Number of TPC space points 0–1% 0–3% 0–2%
Track quality 0–1% 0–1% 0–1%
ITS χ2 0–1% 0–1% 0–1%
Particle identification purity 1–3% 1–2% 2–3%
Number of TPC clusters used for dE/dx 0–2% 0–1% 0–2%
Exclusive particle identification negl. negl. negl.
Positive and negative rapidities 1–3% 1–2% 1–3%
Opposite charges 0–2% 0–2% 0–2%
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K±, and p+p.

The variations for the track selection criteria are: changing the ITS hit requirements (referred to as
tracking mode in Tabs. 1 and 2); varying the minimum number of TPC space points from 70 to 60, 80,
and 90; changing the χ2 per ITS hit; increasing the minimum number of crossed TPC readout rows from
70 to 120 and the ratio between the number of space points and the number of crossed rows in the TPC
from 0.8 to 0.9 (these two checks are combined and referred to as track quality in Tabs. 1 and 2).

The uncertainties related to particle identification are evaluated by changing the required minimum num-
ber of TPC clusters from 70 to 60, 80, and 90 to estimate the effect on the dE/dx; varying the maximum
value of the nσPID from 3 to 1, 2, and 4 for pT < 4 GeV/c; rejecting tracks that satisfy the particle identifi-
cation criterion for more than one particle species simultaneously for pT < 4 GeV/c; changing the nσTPC

ranges for pT > 4 GeV/c.

The systematic uncertainty related to the V0 finding strategy includes contributions from the topolog-
ical selection criteria on the V0s themselves and requirements imposed on their daughter tracks. The
latter consists of the following variations: requiring in addition pT > 0.2 GeV/c for each daughter track;
changing the minimum number of TPC space points from 70 to 60 and 80; varying the minimum number
of crossed TPC readout rows from 70 to 60 and 80; increasing the ratio between the number of space
points and the number of crossed rows in the TPC from 0.8 to 0.9; varying the minimum DCA of the
V0 daughter tracks to the primary vertex from 0.1 cm to 0.05 cm and 0.3 cm; changing the maximum
DCA of the V0 daughter tracks to the secondary vertex from 0.5 cm to 0.3 cm and 0.7 cm; requesting
at least 60 and 90 TPC clusters instead of 70 to estimate the effect on the dE/dx; varying the maximum
absolute value of the nσTPC from 3 to 1 and 4. Concerning the V0s selection, the following variations are
investigated: changing the minimum value of the cosθp from 0.998 to 0.98; requesting a minimum radial
distance to the beam line at which the V0 can be produced of 1 cm and 15 cm instead of 5 cm; changing
the maximum radial distance to the beam pipe at which the V0 can be produced from 100 cm to 50 cm
and 150 cm; suppressing the contamination from Λ+Λ and electron–positron pairs coming from γ con-
versions to the K0

S sample by limiting the value of the Armenteros–Podolanski variables and excluding
electrons by only selecting V0 daughter tracks with a dE/dx value 2σ away from the expected electron
dE/dx. Finally, the yield extraction is varied by using polynomials of different orders as parametriza-
tion of the residual background in the invariant mass spectra and employing a sum of two Gaussian
distributions with the same mean for the parametrization of the K0

S and Λ+Λ invariant mass yield.

The uncertainties associated with the determination of vn(pT) are estimated by performing the analysis
for positive and negative rapidities independently; performing the analysis for π±, K±, and p+p for
positive and negative charges independently; varying the Md+d− range over which Eq. 4 is fitted; changing
the vbg

2 parametrization from a second-order polynomial to a linear or constant function.

4 Results and discussion

4.1 Centrality and pT dependence of flow coefficients

The v2(pT) of π±, K±, p+p, K0
S, and Λ+Λ is presented in Fig. 2 for various centrality intervals in the

0–60% range. The measured v2 of all particle species, being mainly driven by the collision geometry,
increases strongly with decreasing centrality up to the 40–50% centrality interval. This evolution is
expected since v2 scales approximately linearly with the eccentricity of the overlap zone of the colliding
nuclei [10]. For the 50–60% centrality class, the value of v2 is similar to that measured in the previous
centrality interval within uncertainties, which is expected due to a shorter lifetime of the system in
more peripheral collisions. This together with the reduced contribution of eccentricity fluctuations and
hadronic interactions inhibit the generation of large v2 [62, 63]. The v2(pT) increases up to pT ∼ 3–
4 GeV/c, where a maximum is reached, and then decreases with increasing pT. The position of this
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Figure 2: (color online) Centrality dependence of v2(pT) for π±, K±, p+p, K0
S, and Λ+Λ. Bars (boxes) denote

statistical (systematic) uncertainties.
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Figure 3: (color online) Centrality dependence of v3(pT) for π±, K±, and p+p. Bars (boxes) denote statistical
(systematic) uncertainties.

maximum depends weakly on centrality and is located at smaller pT for lighter compared to heavier
particles, over the various centrality intervals studied. The observed phenomenon finds an explanation in
the changes in parton density and the centrality dependence of radial flow [32], which will be detailed in
Sec. 4.3. The evolution of v2 with pT and centrality is similar to that reported in Pb–Pb collisions [30–32].

Unlike v2, the third-order flow coefficient v3 originates from event-by-event fluctuations in the initial nu-
cleon density distribution [5–9]. A stronger decrease of v3 compared to v2 is expected due to the damp-
ening effect of η/s, which implies that v3 is more sensitive to transport coefficients than v2 [11, 12]. The
limited size of the Xe–Xe data sample does not allow for v3 to be measured accurately in the centrality
intervals used for v2. Therefore, these measurements have been combined in larger centrality classes
using the pT-differential yields [64] as weights. Figure 3 presents the v3(pT) of π±, K±, and p+p for the
0–10%, 10–30%, and 30–50% centrality intervals. The measured v3 is non-zero, positive for most of the
pT ranges and increases with pT up to 3–4 GeV/c. The coefficient v3 shows a weak centrality dependence
with a magnitude significantly smaller than that of v2, except for the 0–10% centrality interval. These
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Figure 4: (color online) The pT-differential v2 of π±, K±, p+p, K0
S, and Λ+Λ in a given centrality interval. Bars

(boxes) denote statistical (systematic) uncertainties.
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Figure 5: (color online) The pT-differential v3 of π±, K±, and p+p in a given centrality interval. Bars (boxes)
denote statistical (systematic) uncertainties.

findings illustrate that v3 originates from fluctuations of the initial geometry of the system.

Figure 4 shows comparisons of the v2(pT) for all particle species in a given centrality interval arranged
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into panels of various centrality classes. For pT < 2–3 GeV/c, v2 of the different particle species exhibits
a mass ordering, meaning that heavier particles have a smaller v2 than that of lighter particles at the same
pT. This behaviour can be attributed to the interplay of elliptic flow with radial flow which imposes an
isotropic velocity boost equal for all particles, thus pushing heavier particles towards higher pT [28, 29].
For 3 < pT < 8 GeV/c, the v2 of baryons becomes larger than that of mesons, indicating that the particle
type dependence persists out to high pT. This grouping according to the number of constituent quarks
supports the hypothesis of particle production via quark coalescence [38]. The crossing between meson
and baryon v2 depends on particle species and centrality, occurring at lower pT values for peripheral
than central collisions as a result of the smaller radial flow in the former. Comparing the K± and K0

S v2,

there is a hint of vK0
S

2 < vK±
2 in the 0–10% centrality range, while the measurements are compatible within

statistical uncertainties in the 10–60% centrality interval. One should note that a difference in v2(pT) of
K± and K0

S was reported by ALICE in Pb–Pb collisions [30, 32].

Figure 5 presents the v3(pT) of π±, K±, and p+p in a given centrality interval. The v3 of different particle
species is mass ordered at pT < 2–3 GeV/c, indicating the interplay between triangular and radial flow.
For 3 < pT < 6 GeV/c, the p+p v3 is slightly larger than that of π±. The crossing between v3 values of
pions and protons shows a weak centrality dependence.

4.2 Scaling properties

Scaling with the number of constituent quarks (NCQ) of vn has been suggested to test the hypothesis of
particle production via quark coalescence at intermediate pT, which would lead to a meson and baryon vn
grouping [38–40]. This can be achieved by dividing both vn and pT by the number of constituent quarks
(nq) independently for each particle species. Figures 6 and 7 present the v2/nq and v3/nq as function
of pT/nq for π±, K±, p+p, K0

S, and Λ+Λ, for various centrality classes. For 1 < pT/nq < 3 GeV/c, the
region where quark coalescence is hypothesized to be the dominant process [38, 39], a deviation from
the exact scaling of ± 20% is found for v2, similar to the one reported in Pb–Pb collisions [30–32]. This
deviation is quantified by dividing the pT/nq dependence of v2/nq by a cubic spline fit to the p+p v2/nq.
The scaling for v3 seems to hold within the relatively large uncertainties.

4.3 Shape evolution of v2(pT) as function of centrality

The centrality dependence of the shape evolution of v2(pT) is studied as in Ref. [32] by choosing the
v2 measured in the 20–30% centrality interval as reference. It is quantified by dividing the v2(pT) in a
given centrality interval by this reference and denoted as v2(pT)ratio to 20−30% in the following. The ratio
of the pT-integrated v2 value obtained in the 20–30% centrality interval to that in the centrality interval
of interest is used as a normalization factor in order for v2(pT)ratio to 20−30% to be unity in the absence
of centrality-dependent variations. The shape evolution of elliptic flow for π±, K±, p+p, and inclusive
charged hadrons (the latter taken from Ref. [22]) is presented in Fig. 8. Variations in shape of about 10%
are observed for inclusive charged hadrons throughout the considered pT range within uncertainties. The
evolution of the shape of the v2(pT) shows different trends for π±, K±, and p+p for pT < 2 GeV/c and
no particle type dependence within uncertainties for pT ≥ 2 GeV/c. The variations are more pronounced
for p+p v2(pT)ratio to 20−30%, reaching around 60% at low pT in peripheral collisions. The elliptic flow
of K± varies up to 40% for pT < 1 GeV/c, while the v2(pT)ratio to 20−30% of π± follows the results for
inclusive charged particles. Radial flow and transverse quark density should play important roles in this
mass dependence for pT < 2 GeV/c as both depend on centrality, having larger values in central than
peripheral collisions. The latter influences the peak value of vn(pT) in the coalescence model [65], while
the effect of the former on vn of heavier particles is greater than on the lighter particles at low pT.

An alternative way of quantifying the shape of the v2(pT) is the position of the maximum v2. It is
expected to be located at higher pT in central than peripheral collisions as the quark density depends on
centrality. Its centrality dependence, quantified by the pT where v2(pT) reaches a maximum divided by
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Figure 6: (color online) The pT/nq dependence of v2/nq of π±, K±, p+p, K0
S, and Λ+Λ for various centrality

classes. Bars (boxes) denote statistical (systematic) uncertainties.
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Figure 7: (color online) The pT/nq dependence of v3/nq of π±, K±, and p+p for various centrality classes. Bars
(boxes) denote statistical (systematic) uncertainties.

the number of constituent quarks nq, is reported in Fig. 9 for π± and p+p. The K±, K0
S, and Λ+Λ are

not included since the kinematic range and granularity of the measurements do not allow for a reliable

12



PID flow in Xe–Xe collisions ALICE Collaboration

0 1 2 3 4 5 6 7
)c (GeV/

T
p 

0.5

1

1.5

2
 

ra
tio

 to
 2

0-
30

%
|>

2}
η∆

{2
, |

2
v 

5%−0

0 1 2 3 4 5 6 7
)c (GeV/

T
p 

0.5

1

1.5

 
ra

tio
 to

 2
0-

30
%

|>
2}

η∆
{2

, |
2

v 

10%−5

0 1 2 3 4 5 6 7
)c (GeV/

T
p 

0.5

1

1.5

 
ra

tio
 to

 2
0-

30
%

|>
2}

η∆
{2

, |
2

v 

30%−20

0 1 2 3 4 5 6 7
)c (GeV/

T
p 

0.5

1

1.5

 
ra

tio
 to

 2
0-

30
%

|>
2}

η∆
{2

, |
2

v 

50%−40

±h
±π
±K
pp+

 = 5.44 TeVNNsXe −ALICE Xe

| < 0.5y|

0 1 2 3 4 5 6 7
)c (GeV/

T
p 

0.5

1

1.5

 
ra

tio
 to

 2
0-

30
%

|>
2}

η∆
{2

, |
2

v 

20%−10

0 1 2 3 4 5 6 7
)c (GeV/

T
p 

0.5

1

1.5

 
ra

tio
 to

 2
0-

30
%

|>
2}

η∆
{2

, |
2

v 
40%−30

0 1 2 3 4 5 6 7
)c (GeV/

T
p 

0.5

1

1.5

 
ra

tio
 to

 2
0-

30
%

|>
2}

η∆
{2

, |
2

v 

60%−50

Figure 8: (color online) Centrality dependence of v2(pT)ratio to 20−30% for π±, K±, p+p, and inclusive charged
hadrons (h±) [22]. Bars (boxes) denote statistical (systematic) uncertainties.

extraction of a maximum. The pT/nq at which v2(pT) reaches a maximum, denoted as pT|vmax
2

, shows a
weak centrality dependence with a decreasing trend from central to peripheral collisions. This behavior
is expected from the hypothesis of hadronization through coalescence where an increase in the transverse
density of quarks, as in more central collisions, results in a higher value of pT|vmax

2
[65]. The observed

pT|vmax
2

is compatible between π± and p+p for all centrality intervals within uncertainties. The systematic
uncertainties presented in Fig. 9 are evaluated directly on pT|vmax

2
to accurately take into account that some

systematic uncertainties can be point-by-point correlated in pT.

If v2 exhibits a power law dependence on p2
T up to pT ∼M for particles with mass M as in the scenario

of ideal hydrodynamics [66], ratios of the form |v2|1/2/pT should be constant. Previous measurements
performed by ALICE in Pb–Pb collisions [32] have shown that the v2 ∝ pT

2 scaling is broken for π± and
the inclusive charged particles for all centrality intervals. However, this scaling holds up to pT ≈ 1 GeV/c
for K± and K0

S, and up to pT ≈ 2 GeV/c for p+p and Λ+Λ for central and semicentral collisions [32]. It
should be noted, however, that the kinematic constraints imposed on the measurement preclude testing
the scaling hypothesis in the full relevant momentum region for π± and the inclusive charged particles.
Figure 10 shows |v2|1/2/pT for inclusive charged particles [22], π±, K±, p+p, K0

S, and Λ+Λ as a function
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Figure 10: (color online) |v2|1/2/pT of inclusive charged hadrons (h±) [22], π±, K±, p+p, K0
S, and Λ+Λ as function

of pT for various centrality intervals. Bars (boxes) denote statistical (systematic) uncertainties.

of pT in various centrality intervals. The ratios |v2|1/2/pT show a strong pT dependence for π± and the
inclusive charged particles, while they exhibit a weak (if any) pT dependence up to pT ≈ 1 GeV/c for
K± and K0

S, and up to pT ≈ 2 GeV/c for p+p and Λ+Λ for the 0–5% and 10–20% centrality intervals.

4.4 Comparison with hydrodynamic calculations

Figure 11 presents the pT-differential v2 of π±, K±, and p+p for various centrality intervals compared
with predictions from MUSIC hydrodynamic simulations [67]. MUSIC [68], an event-by-event 3+1
dimensional viscous hydrodynamic model, uses the IP-Glasma model [69, 70] to describe the initial
conditions of the collision and is coupled to a hadronic cascade model (UrQMD) [71, 72], which allows
one to study the influence of the hadronic phase on the development of anisotropic flow for different
particle species. The starting time for the hydrodynamic evolution and the switching energy between
hydrodynamics and the microscopic transport evolution are set to τ0 = 0.4 fm/c and esw = 0.18 GeV/fm3,
respectively. A value of η/s = 0.12 and a temperature dependent ζ/s are also employed in this model.
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Figure 11: (color online) The pT-differential v2 of π±, K±, and p+p for various centrality classes compared to
hydrodynamic calculations from MUSIC model using IP-Glasma initial conditions (colored curves) [67]. Bars
(boxes) denote statistical (systematic) uncertainties. The uncertainties of the hydrodynamic calculations are de-
picted by the thickness of the curves. The ratios of the measured v2 to a fit to the hydrodynamic calculations are
also presented for clarity.

It should be noted that these parameters do not depend on collision system or centrality.

Figure 11 shows that the MUSIC calculations qualitatively reproduce the mass ordering. The predictions
are in agreement with the measured v2(pT) of π±, K±, and p+p for pT < 1 GeV/c, while they overestimate
the data points at higher pT. However, the v2 of p+p is more accurately described than that of π± and K±

for pT ≥ 1 GeV/c in all centrality intervals. A better agreement with the data points is found in central
than in peripheral collisions. The differences between the data points and model are also illustrated in
Fig. 11 as the ratios of the measured v2 to a fit to the theoretical calculations.

4.5 Comparison with vn of identified particles in Pb–Pb collisions at√sNN = 5.02 TeV

As mentioned in Sec. 1, the initial state models and transport properties can be further constrained by
comparing anisotropic flow coefficients measured in Xe–Xe collisions with those from Pb–Pb collisions.
Figures 12 and 13 show the v2(pT) and v3(pT) of π±, K±, p+p, K0

S, and Λ+Λ compared with ALICE
measurements performed in Pb–Pb collisions at

√
sNN = 5.02 TeV [32] for various centrality intervals.

The vn coefficients from Pb–Pb collisions were measured employing the same procedure as described in
Sec. 2, resulting in similar non-flow contributions to vn. Ratios of the measurements presented in this
paper to a cubic spline fit to the ones performed in Pb–Pb collisions are also given in the figures for each
presented centrality interval. The uncertainties in these ratios are obtained by summing the statistical
and systematic uncertainties on the Xe–Xe and Pb–Pb measurements in quadrature, and propagating the
obtained uncertainties as uncorrelated.
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Figure 13: (color online) The pT-differential v3 of π±, K±, and p+p (black markers) compared to ALICE mea-
surements performed in Pb–Pb collisions at

√
sNN = 5.02 TeV [32] (red markers) for the 0–10% (top panels),

10–30% (middle panels), and 30–50% (bottom panels) centrality classes. The ratios of Xe–Xe measurements to a
cubic spline fit to Pb–Pb measurements are also presented for clarity. Bars (boxes) denote statistical (systematic)
uncertainties.
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Figure 14: (color online) The pT|vmax
2

for π± and p+p (black markers) compared to ALICE measurements per-
formed in Pb–Pb collisions at

√
sNN = 5.02 TeV [32] (red markers) as a function of centrality (left) and charged-

particle density (right) [73, 74]. The Pb–Pb points are slightly shifted along the horizontal axis for better visibility
in both panels. Bars (boxes) denote statistical (systematic) uncertainties.
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The vn coefficients at low pT are expected to be smaller in Pb–Pb collisions than the corresponding
Xe–Xe results due to a larger radial flow in the former, an effect which would be most pronounced in
central collisions and for heavier particles. However, the v2 of all particle species in Xe–Xe collisions is
systematically above that from Pb–Pb in the entire pT range in the 0–5% centrality class. The ratios do
not depend significantly on pT and particle species within uncertainties, showing ∼37% larger Xe–Xe
values. In terms of the initial state, two effects can be responsible for this behaviour. The first relates to
the fact that the 208Pb nucleus is spherical while the 129Xe nucleus is deformed with parameters of the
nuclear-charge density distribution not yet measured directly but extrapolated from neighboring isotopes
or predicted (the deformation parameter β2 is predicted to be 0.162 in Ref. [75] and extrapolated to
0.18±0.02 in Ref. [54]). The second involves initial-state fluctuations being proportional to A−1/2 [76],
where A is the mass number, and the dependence of εn{2} on the number of sources contributing to
it which decreases when the number of sources increases [76, 77]. These effects imply larger values
of ε2{2} for central Xe–Xe collisions than central Pb–Pb collisions, which in turn induce larger v2.
However, viscosity is expected to be larger for Xe–Xe collisions as it is proportional to A−1/3 [78]
which will decrease v2 [79]. For the 10–20% centrality interval, the measurements are compatible within
uncertainties for the different particle species although a possible suppression of p+p v2 from Pb–Pb
collisions can be seen for pT < 1.5 GeV/c. For the 40–50% centrality class, no differences are observed
between the K0

S and Λ+Λ v2(pT) measured in the two systems within uncertainties, while the v2 of π±,
K±, and p+p from Xe–Xe collisions is∼8% lower than the corresponding Pb–Pb results. This difference
is almost independent of pT within uncertainties although a possible gradual decrease with increasing pT
up to 2 GeV/c can be seen for p+p. The larger v2 values in Pb–Pb collisions might be explained by viscous
effects related to the different radial flow and transverse size of the systems since the ε2{2} coefficients
are similar in this centrality interval (differences within 1%) [25, 26]. Although v3 is expected to be
larger in Xe–Xe compared to Pb–Pb due to larger values of ε3{2} in the same centrality interval [25, 26],
the precision of the results does not allow for conclusions to be drawn. The ratios are close to 1 with no
significant pT dependence within uncertainties, except for π± and p+p v3 for pT < 2 GeV/c in the 0–10%
centrality class.

The v2(pT) of π±, K±, and p+p measured in Xe–Xe and Pb–Pb collisions is also compared with MUSIC
hydrodynamic calculations [67] in Fig. 12. It is worth noting that these calculations employ the same
parameters for Xe–Xe and Pb–Pb collisions (see Sec. 4.4). The Pb–Pb calculations show similar trends to
those reported for Xe–Xe collisions: they are in agreement with the measurements for pT < 1 GeV/c and
overestimate the data points at higher pT. However, the MUSIC Xe–Xe/Pb–Pb v2 ratios quantitatively
reproduce the ones of the measurements up to pT = 3 GeV/c. This points to similar differences between
the data points and model for both systems. Two potential sources might be responsible for this behavior:
improper δ f corrections, which are introduced in hydrodynamic models to account for non equilibrium
processes at freeze-out and are highly model dependent [80], or sub-optimal tunes of η/s and ζ/s.

Figure 14 shows the value of pT|vmax
2

of π± and p+p and compares these to the ALICE measurements
performed in Pb–Pb collisions at

√
sNN = 5.02 TeV [32] as function of centrality and charged-particle

density [73, 74]. For all centrality intervals, the pT|vmax
2

of p+p has similar values in the two collision
systems, within uncertainties. The pT|vmax

2
of π± is slightly lower in Xe–Xe collisions in the 5–40%

centrality range. This can be attributed to a different quark density and radial flow at the same centrality
in the two systems. Indeed, the pT|vmax

2
is the same in Xe–Xe and Pb–Pb collisions for the different

particle species within uncertainties when reported as function of charged-particle density.

5 Summary

The elliptic and triangular flow coefficients of π±, K±, p+p, K0
S, and Λ+Λ were measured in Xe–Xe

collisions at
√

sNN = 5.44 TeV. The magnitude of v2 increases strongly with decreasing centrality up
to the 40–50% centrality interval for all particle species, while v3 shows a weak centrality dependence
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with a smaller increase than for v2. This indicates that collision geometry dominates the generation of
elliptic flow while triangular flow is generated by event-by-event fluctuations in the initial nucleon and
gluon densities. For pT < 3 GeV/c, the vn coefficients show a mass ordering which can be attributed
to the interplay between anisotropic flow and radial flow. In this transverse momentum range, MUSIC
hydrodynamic calculations reproduce the measured v2 of π±, K±, and p+p for pT < 1 GeV/c. At in-
termediate transverse momenta (3 < pT < 8 GeV/c), the baryon vn has a magnitude larger than that of
mesons, indicating that the particle type dependence persists up to high pT. Furthermore, particles show
an approximate grouping by the number of constituent quarks at the level of ±20% for v2. The cen-
trality dependence of the shape evolution of v2(pT) is different for π±, K±, and p+p for pT < 2 GeV/c,
being more pronounced for p+p, but shows no particle type dependence within uncertainties for pT ≥ 2
GeV/c. Comparing these measurements to those from Pb–Pb collisions at

√
sNN = 5.02 TeV, v2 is larger

in central collisions at the same centrality and it has smaller value in peripheral collisions.
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