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Abstract
Lightning climate change projections show large uncertainties caused by limited empirical knowledge and strong assumptions 
inherent to coarse-grid climate modeling. This study addresses the latter issue by implementing and applying the lightning 
potential index parameterization (LPI) into a fine-grid convection-permitting regional climate model (CPM). This setup 
takes advantage of the explicit representation of deep convection in CPMs and allows for process-oriented LPI inputs such 
as vertical velocity within convective cells and coexistence of microphysical hydrometeor types, which are known to con-
tribute to charge separation mechanisms. The LPI output is compared to output from a simpler flash rate parameterization, 
namely the CAPE × PREC parameterization, applied in a non-CPM on a coarser grid. The LPI’s implementation into the 
regional climate model COSMO-CLM successfully reproduces the observed lightning climatology, including its latitudinal 
gradient, its daily and hourly probability distributions, and its diurnal and annual cycles. Besides, the simulated temperature 
dependence of lightning reflects the observed dependency. The LPI outperforms the CAPE × PREC parameterization in all 
applied diagnostics. Based on this satisfactory evaluation, we used the LPI to a climate change projection under the RCP8.5 
scenario. For the domain under investigation centered over Germany, the LPI projects a decrease of 4.8% in flash rate by 
the end of the century, in opposition to a projected increase of 17.4% as projected using the CAPE × PREC parameteriza-
tion. The future decrease of LPI occurs mostly during the summer afternoons and is related to (i) a change in convection 
occurrence and (ii) changes in the microphysical mixing. The two parameterizations differ because of different convection 
occurrences in the CPM and non-CPM and because of changes in the microphysical mixing, which is only represented in 
the LPI lightning parameterization.
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1  Introduction

Current lightning climate simulations mainly rely on 
parameterizations, which relate climate model output to 
observed lightning (Clark et al. 2017), but rarely closely 
reflect the physical mechanisms leading to lightning. 
Indeed the complexity, the spatio-temporal scales, and the 
diversity of mechanisms related to lightning flashes do not 
allow global climate models for its explicit representation. 

As an example, the mechanism dominating thunderstorm 
electrification is known as the non-inductive charging 
mechanism (Reynolds et al. 1957; Takahashi 1978; Saun-
ders 1993; Saunders and Peck 1998; Latham et al. 2007). 
It implies electric charge separation through rebounding 
collision between small ice crystals growing by water 
vapor diffusion and graupel pellets growing by accretion 
of supercooled water droplets (Yair 2008). The sign and 
the magnitude of the charge exchanged between ice crys-
tals and graupel pellets depend on many parameters (e.g., 
temperature, cloud water content, rime accretion rate, etc. 
- Jayaratne et al. 1983; Saunders 2008). Once the charge 
is exchanged, the ice particles are dispersed in the clouds 
through gravitational processes, with heavy graupel pellets 
moving downward relatively to the ice crystals (Williams 
1988; Houze 2014). On the macro scale, the cloud will, 
therefore, be characterized by multiple large cloud layers 
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with homogeneous polarities (Stolzenburg et al. 1998a, 
b, c).

The non-inductive process is mainly occurring in areas 
with convective activity. Therefore, many parametrizations 
relate the occurrence, and sometimes the intensity, of the 
convective activity to derive flash densities (Finney et al. 
2016). An example of such a parameterization is the con-
vective available potential energy times the precipitation 
rates ( CAPE × PREC ) used to derive the lightning flash 
rate. With these simple and easily accessible variables, it 
is possible to obtain both the location where flashes are 
likely to occur, but also the intensity of the flash activity as 
high CAPE and high precipitation rate indicate high con-
vective activity. Over the contiguous United States, Romps 
et al. (2014) found that this parameterization explains 
77% of the temporal variance in the lightning flash rate. 
Another approach commonly used for parameterizing 
lightning in climate models is based on the observed rela-
tionship between the cloud top height (CTH) and the flash 
rates (Price and Rind 1992), the cloud height being a good 
indicator for the occurrence and the intensity of convec-
tive activity. While such a relationship compares well to 
current observations, it is unknown whether it will hold in 
a different climate. For example, while CTH is expected 
to increase in a warmer climate, so does the cloud base 
height (Chepfer et al. 2014), which may result in constant 
cloud depth. Yoshida et al. (2009) used cold cloud height 
to tackle this issue, but all these parameterizations are still 
highly dependent on the empirical relationship and may 
be far away from representing the electrification process, 
notably the non-inductive one.

Closer to the theoretical mechanism, some more advanced 
lightning parameterizations have been implemented by intro-
ducing variables accounting for the microscale processes. 
For example, the ice mass flux scheme (Finney et al. 2014, 
2018) uses the upward cloud ice flux at 440 hPa. Although 
the variables selected in more complex parameterizations 
are uncommon GCM output, they allow for clear improve-
ments both spatially and temporally, over parameterization 
essentially based on the convective activity (Finney et al. 
2014). Moreover, while most of the convective activity-
based parameterizations shows an increase in lightning 
flashes in a warmer climate (e.g., 12 ± 5% per ◦C increase 
for CAPE × PREC (Romps et al. 2014) or from 7 to 13% per 
◦C increase for CTH (Krause et al. 2014; Clark et al. 2017)), 
the first flash rate climate projection based on the ice mass 
flux scheme parameterization (Finney et al. 2018) show 
decreasing lightning toward the end of the century follow-
ing the RCP 8.5. These results are promising for the climate 
community, but the ice mass flux scheme still suffers from 
significant inadequacies (Finney et al. 2018). First, account-
ing for the ice flux on a single level is still far from repre-
senting the non-inductive charging mechanism. Second, the 

variables from which the ice flux scheme is based on, are 
still strongly parameterized in current GCM.

For example, the variability of hydrometeors or that of 
convective up/down-drafts have scales that are currently far 
from being explicitly represented in global climate models 
(Prein et al. 2015). The updraft is particularly critical as it 
conditions hydrometeors’ transport, the growth of graupel 
through riming, and the chances for collisions between ice 
crystals and graupel pellets (Houze 1993). Microphysical 
processes will remain parameterized in the next genera-
tion of global climate projections. Recently, Lopez (2016) 
developed a new lightning parameterization for the global 
convection-parameterizing NWP model IFS of ECMWF. It 
employs diagnosed vertical profiles of graupel and super-
cooled liquid from within the convection parameterization 
and CAPE to form an estimator for the flash rate. While 
physically more sound, its possible performance in current 
coarse-grid GCMs is not clear.

However, the first convection-permitting projections pro-
duced by regional climate models are now available (Prein 
et al. 2015). These models show realistic representations 
of convective processes in general (Leutwyler et al. 2017). 
On the hourly and sub-hourly scales, convection-permitting 
models (CPM) improved the representation of spatial pre-
cipitation patterns and extremes values (Prein et al. 2013; 
Brisson et al. 2016, 2018). The representation of convective 
clouds also shows improved features (Brisson et al. 2016; 
Keller et al. 2016). Interestingly, the sensitivity of convective 
related variables derived from CPM to global warming does 
not always match that derived from coarser climate models, 
as observed by, e.g., Kendon et al. (2014), Vanden Broucke 
et al. (2019), Helsen et al. (2020).

Besides, the improved representation of convective pro-
cesses allows for more complex parameterizations (Fierro 
et al. 2013). In McCaul et al. (2009), the flash rate is esti-
mated based on the resolved upward flux of graupel in the 
mixed-phased region at −15 ◦ C and the integration of solid 
hydrometeors over the full storm depth. This parameteriza-
tion is related to that established latter in Finney et al. (2014) 
but fits closely to the non-inductive process as it focuses on 
graupel and not anymore on the full ice content. Further-
more, it is applied at a specific temperature level instead of 
a pressure one. One step further into the complexity is the 
lightning potential index (LPI). The LPI accounts not only 
for the presence of solid hydrometeors but also for the pres-
ence of both solid (with a stress on graupel) and supercooled 
liquid hydrometeors. Besides, it uses all atmospheric levels 
ranging from −20 to 0 ◦ C. Proposed by Yair et al. (2010), this 
parameterization was applied to several case studies with 
CPMs. The LPI shows a high correlation with observed 
lightning (Yair et al. 2010; Lynn and Yair 2010; Lagasio 
et al. 2017). To the authors’ knowledge, the output of such 
parameterization has only been applied to short periods 
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for numerical weather prediction purposes. With the rise 
of multi-decadal CPM simulations, such parameterization 
could now be applied on a climate time scale. According 
to Kendon et al. (2016), the climate community expects an 
improved representation of lightning with CPMs and that 
further developments/research are needed in that direction.

This study aims in this direction. While many paths are 
open, we choose to start with the following questions: Can 
more complex parameterizations such as the LPI provide 
a realistic representation of lightning? What is the added 
value of these parameterizations applied to CPMs when 
compared to simpler parameterization used in non-CPMs? 
Do the projections of flash rates as represented by such com-
plex parameterizations differ from that of simpler non-CPM 
parameterizations? To provide elements of answers to these 
questions, the lightning potential index (LPI) will be imple-
mented and applied in a CPM and compared to the CAPE × 
PREC parameterization applied to a non-CPM. The models 
and their parameterizations are detailed in the methods sec-
tion, together with an observational dataset. Such an indirect 
comparison of a CPM with one lightning parameterization 
and a non-CPM using another might appear to be not ideal 
at first glance. The fact is that LPI is not easy to implement 
in a non-CPM (lack of explicit convective updrafts, super-
cooled liquid, and graupel), while CAPE × PREC has severe 
problems in a CPM (CAPE-removal by explicit convection 
leads to a null CAPE where there is PREC and vice versa). 
The validation of the parameterizations against observations 
and an investigation on flash rate projections are described 
in the result section. The added value of a parameterization 
like the LPI compared to current GCM parameterizations 
is discussed but is not the main focus of this paper. Finally, 
the conclusion provides elements of answers to the research 
questions listed above.

2 � Methods

2.1 � Model setup and lightning parameterizations

All simulations investigated in this study were performed 
using the Consortium for Small-scale Modelling in climate 
mode (COSMO-CLM) model. The COSMO-CLM model is 
a non-hydrostatic limited-area climate model, based on the 
COSMO model (Steppeler et al. 2003; Doms et al. 2011), 
a model designed by the Deutsche Wetterdienst (DWD) for 
operational weather predictions. The climate limited-area 
modeling (CLM) community adapted this model to perform 
climate projections (Böhm et al. 2006; Rockel et al. 2008). 
We used the version COSMO5.0 clm7.

In all COSMO-CLM simulations performed in this study, 
we use the 5th order Runga-Kutta split-explicit time-stepping 
scheme (Wicker and Skamarock 2002), the lower boundary 

fluxes provided by the TERRA model (Doms et al. 2011), 
the radiative scheme after Ritter and Geleyn (1992), and the 
one-moment microphysical scheme (Steppeler et al. 2003; 
Doms et al. 2011). Besides, as recommended by Brisson 
et al. (2016), in the CPM, the one-moment microphysical 
scheme predicts the mass evolution of graupel, in addition 
to the four standard hydrometeor types (i.e., cloud droplets, 
raindrops, cloud ice, snow). Such configuration is close to 
the operational convection-allowing limited area configura-
tion COSMO-DE of DWD (Baldauf et al. 2011). Finally, 
in the CPM parent nest, the wind’s horizontal components, 
together with the temperature, are spectrally nudged to 
reduce boundary effect.

The finest nest is centered over central Germany (Fig. 1) at 
a resolution of 0.025◦ ( ∼ 3 km). A double-step one-way nesting 
strategy is applied to reach this resolution. The global fields, 
i.e., ERA-Interim for the hindcast simulation (1981–2015), and 
the EC-Earth ensemble member r12i1p1 for both the historical 
period (1975–2005) and the RCP8.5 projection (2071–2100), 
are used to drive a 0.22◦ ( ∼ 25 km) grid mesh COSMO-CLM 
simulation over a limited-area centered over Europe. In a sec-
ond step, the resulting hourly outputs of this simulation are 
used to drive the 0.025◦ COSMO-CLM simulation. While the 
0.22◦ simulations are performed with a parameterization of 
deep and shallow convection following Tiedtke (1989), in the 
0.025◦ simulations, only the shallow (non-precipitating) part 
of that convection parameterization is activated, allowing for 
the explicit simulation of convective cells with their associated 
strong up- and downdrafts and microphysical mixed-phase 
precipitation formation processes.

Fig. 1   Domain of the 0.025◦ simulation. The red polygon indicates 
the area where observations are available and, therefore, also the eval-
uation domain. The black rectangle shows the domain used for the 
analyses other than the evaluation
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In the innermost convection-allowing COSMO domain, 
we adopt the LPI parameterization of Lynn and Yair (2010) 
and Yair et al. (2010) as described in Sect. 2.1.1. This param-
eterization uses the local microphysical conditions for charge 
separation in updrafts as a necessary condition for lightning, 
in a relatively simple and computationally cheap way.

There are more accurate schemes in the literature, which 
explicitly predict charged hydrometeors, the dynamics of 
atmospheric charge distribution, and associated lightning dis-
charge when the electric potential between any two points in 
space rises above a threshold, e.g., Barthe and Pinty (2007), 
Barthe et al. (2012). However, such schemes would have been 
much too computationally expensive for the present study.

2.1.1 � The lightning potential index (LPI) parameterization

This parameterization is based on the LPI parameterization 
proposed by Lynn and Yair (2010) and Yair et al. (2010) was 
adapted and implemented into the COSMO model by one of 
the authors (U. Blahak) in 2014. Subsequently, it has been 
evaluated in an NWP context by Lopez (2016) and found to 
be a useful COSMO diagnostic for lightning forecasting. The 
LPI is defined as

and represents the kinetic energy of the updraft - derived 
from the vertical wind speed - scaled by the potential for 
charge separation inherent to the microphysical mixing. The 
latter is given by the function

with

where qc , qr , qi , qs and qg are the mixing ratios of cloud 
water, rain water, cloud ice, snow and graupel, respec-
tively. qL is the sum of the liquid species, while qF repre-
sents (weighted) contributions of the frozen hydrometeors. 
In essence, � is the ratio of the geometric to the arithmetic 
mean of two quantities. It also appears twice in qF.

� takes a value of 1 when the liquid water and the solid 
hydrometeors masses are equal to 0 when all the water is 
in the same phase (e.g., solid or liquid). These values are 
vertically averaged over the primary charging zone, ranging 

(1)LPI = f1f2
1

H−20◦C − H0◦C

H−20◦C

∫
H0◦C

� w2 g(w) dz

(2)� = 2

√

qL qF

qL + qF

(3)qL =qc + qr

(4)qF =qg

�
√

qi qg

qi + qg
+

√

qs qg

qs + qg

�

.

from 0 ◦C to −20 ◦C . Moreover, non-zero values can only 
be attained if – besides the supercooled liquid water – grau-
pel, and a second non-rimed species (in our case qi or qs ), 
are present at the same time, representing the non-inductive 
charge separation mechanism.

In addition, the boolean function

restricts the vertical averaging to grid boxes having updrafts 
above a threshold of 0.5 m/s (Lynn and Yair 2010).

To prevent spurious and unrealistic LPI signals in areas 
of weak, isolated updraft columns as well as in deep oro-
graphic gravity wave clouds (lenticularis), two additional 
filter functions f1 and f2 are applied. These functions are not 
directly related to the parameterized physical mechanisms 
of charge separation in the LPI and are briefly described in 
Appendices A and B.

The LPI has to be calibrated by observations to be an 
estimator for the flash rate.

2.1.2 � The CAPE × PREC parameterization

The convection-permitting model’s performance using LPI 
in representing lightning is compared to that of the coarser 
0.22◦ model. Applying the LPI parameterization is impos-
sible in this non-CPM due to the lack of strong updrafts and 
graupel hydrometeors. Another parameterization, namely the 
CAPE × PREC product as a flash rate estimator, is applied 
here. This parameterization performed well in represent-
ing flash rates over the contiguous United States (Romps 
et al. 2014) and is the only parameterization which could be 
derived from the available output of our 0.22◦ simulation.

As mentioned before, please note that the CAPE × PREC 
parameterization can hardly be directly applied to a CPM, as 
CAPE is rapidly depleted at locations of convective cells by 
latent heat release in moist adiabatic updrafts and evapora-
tive cooling in precipitation below the cloud base. Therefore, 
a direct comparison of both parameterizations in the CPM 
framework is rarely applied in this study.

To a lesser degree, this depletion also happens in the 
Tiedtke parameterization of deep convection. Precipitation 
is produced simultaneously as the instability is gradually 
removed from the atmosphere leading to a lower CAPE in 
the grid column where convective precipitation is produced. 
Thus, multiplying the hourly CAPE with the hourly accu-
mulated precipitation as output by the model results in rela-
tively low CAPE × PREC values. To tackle this issue, the 
CAPE at time t was multiplied by the precipitation accumu-
lated from time t to t + 1 h . This method was selected as it 
shows the closest fit to observed flash rates when compared 

(5)g(w) =

{

1 if w ≥ 0.5m/s

0 else

}
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to other methods (e.g., using daily average, using precipita-
tion accumulated from time t − 30min to t + 30min).

Similarly, The CAPE × PREC values have to be calibrated 
by observations to be an estimator for the flash rate.

2.2 � Validation dataset

The lightning observations were extracted from the BLIDS 
dataset (Blitz Information Dienst Siemens (2019)). The raw 
spatial resolution of the BLIDS data ranges from 200 m to 
700 m, and the temporal resolution is 1 ms. The BLIDS net-
work measures lightning since 1992 and improved several 
times since then (Schulz and Diendorfer 2004). Besides, the 
observation sensors were upgraded in 1999, resulting in an 
improved detection of strokes, especially intra-clouds ones 
(Schulz and Diendorfer 2004). This upgrade led to temporal 
inhomogeneities when integrating over the full period (i.e., 
before and after the upgrade of the sensors). To avoid these 
inhomogeneities, the model simulations are evaluated for the 
period 2000 to 2013 only. Besides, the evaluation domain 
was restricted to areas for which the German regional agen-
cies TLUG (Thüringen), LAU (Sachsen-Anhalt), HLNUG 
(Hessen), and FAWF (Rheinland-Pfalz) provided us with the 
BLIDS dataset over each corresponding region.

2.3 � Analysis method

2.3.1 � Adjustment of parameterizations output

The observations and the output of lightning parameteriza-
tions do not match directly in terms of units, spatial and tem-
poral scales. This mismatch prevents the comparison of the 
parameterization output directly with the observations. This 
issue is tackled by remapping the observations to the CPM 
grid using a conservative remapping. Besides, the flashes are 
grouped into 15-min bins for the LPI parameterization and 
into hourly bins for the CAPE × PREC parameterization by 
deriving the number of flashes occurring during a given time 
interval (i.e., ±7.5 min for the LPI, which was output every 
15 minutes and ±30 min for the CAPE × PREC, which was 
output every hour).

Finally, we converted the parameterization’s output to 
flash rates in a two-step procedure. First, the lowest values of 
the parameterization’s output are set to 0, so that the occur-
rence of values above zero is adjusted to that of the observa-
tion. Second, a simple linear model is built that relates the 
observed flash rates to the parameterization output. The use 
of a linear adjustment is motivated by the high correlation 
found in Romps et al. (2014) suggesting a linear relation 
for the CAPExPREC parameterization. Besides, such lin-
ear models are not likely to result in overfitting with only 
two parameters to calibrate, having a large sample size. The 

adjusted values are therefore derived based on the following 
equations:

where X is the parameterization output, and a, b, and c 
are three coefficients, which were calibrated using the 
accumulated observed flashes rates for each grid-point 
and the parameterization output from the ERA-Interim 
driven simulations. For the period 2000-2013, a = 0.405 , 
b = −0.073 and, c = 0.33 for the LPI parameterization and 
a = 0.000172 , b = 0.0118 and, c = 15.85 for the CAPE×
PREC parameterization provide the best adjustments (i.e., 
the lowest root mean square error between the observed and 
simulated flash rate probability density). In addition, note 
that the adjustment does not alter the climate change signal 
described in Sect. 3.2. The latter is of similar amplitude for 
both the LPI and the LPIadj.

As defined above, the Xadj provides a number of flashes 
per grid-cell. To avoid a dependency of the flash rate to cell 
size, two strategies were adopted. First, the unit flash rate per 
km2 per time period is adopted through all this manuscript. 
Second, the evaluation was mostly performed using spatial 
averaging over the full domain. While this may limit the 
analysis of high local values (e.g., flashes from local storms), 
it strengthens the analysis’ robustness. Besides, it allows for 
a fair comparison between the two parameterizations, which 
are applied to different spatial resolutions.

The Xadj is written as X unless specified otherwise in this 
manuscript to ease the reading.

2.3.2 � Skill scores

The performance of the model is evaluated using the mean 
square skill score (MSSS, Murphy (1988)), which is derived 
as

where s and o respectively represent the simulation and 
observational datasets, n the sample size, and w the weight-
ing function. In this manuscript, the weighting function is 
set to one unless specified otherwise. The MSSS is equal to 
1 when the simulation is identical to the observation and is 
greater than 0 when the simulation is more realistic than the 
observed climatology ( ̄o).

In addition, the probability density functions (PDFs) are 
evaluated using the Perkins skill score (PSS, Perkins et al. 
2007), which measures the common area between two PDFs 
by calculating their cumulative minimum for each group of 
binned values,

(6)

{

Xadj = aX + b if X ≥ c

Xadj = 0 else

(7)MSSS = 1 −

∑n

i=1
wi(si − oi)

2

∑n

i=1
wi(ō − oi)

2



2042	 E. Brisson et al.

1 3

where i is the bin index, n is the total number of bins, and 
Zs(i) and Zo(i) are the simulation- and observation-proba-
bility masses, respectively. Two PDFs are identical when 
the PSS is equal to 1. Besides, Perkins et al. (2007) suggests 
that two PDFs differ significantly from each other when their 
PSS is lower than ∼ 0.7.

2.3.3 � Uncertainty and significance

The flash rate uncertainty is estimated through bootstrapping 
with replacement. This bootstrapping is performed by ran-
domly selecting blocks from the original time series to create 
a new time series of similar length, hereafter referred to as 
bootstrap. Blocks of one month are selected to keep the tem-
poral dependency of the data. Also, an equal number of each 
month is selected in each bootstrap (e.g., n January, n Feb-
ruary, n March, etc.), to account for the seasonal variability. 
The uncertainty is derived using 100 bootstraps by taking the 
range between the 2.5th and 97.5th percentiles of the studied 
quantity.

These bootstraps are also used to assess whether two simu-
lations significantly differ from each other. For each of the two 
sets of 100 bootstraps, the studied quantity is derived (e.g., the 
average value for a given month). The differences between 
all pairs from these two sets are then computed, resulting in 
10,000 values. A significant change at the l level is detected 
when the l/2 and the 100 − l∕2 percentiles of these 10,000 
values are respectively greater or smaller than 0 such as

(8)PSS =

n
∑

i=1

min(Zs(i),Zo(i)),

(9)0 ∉ [percentilel∕2, percentile100−l∕2].

3 � Results

3.1 � Evaluation

Figure 2 compares the probability densities of the modeled 
daily lightning flash rate computed from the two param-
eterizations with the observations. Both parameterizations 
fairly reproduce the observed hourly and daily flash rate 
probability densities over the domain where observations 
are available. Still, the LPI outperforms the CAPE × PREC 
resulting in PSSs of respectively 0.93 and 0.77 for the hourly 
timescale and 0.84 and 0.73 for the daily timescale.

The observed flash rate is spatially heterogeneous 
(Fig. 3a). High flash rates are observed along the Rhine val-
ley ( ∼ 9◦E , ∼ 49 to 52◦N ), as well as an area over near the 
southeastern corner of the evaluation domain while lower 
flash rates are found in the north and between 10 and 12◦E . 
A negative north to south gradient is also observed. The 
small scale spatial variability is poorly reproduced by both 
parameterizations (MSSS of −0.14 for the LPI and -0.25 for 
the CAPE × PREC). However, the north to south gradient 
is well captured by LPI with an MSSS of 0.61 (Fig. 4). The 
CAPE × PREC parameterization produces a north to south 
gradient that is too steep, resulting in a bias larger than the 
observed climatology, as indicated by the MSSS of −1.66.

One of the main challenges in non-CPM simulations is 
the representation of the convective activity’s diurnal cycle. 
CPMs generally improve the representation of the diurnal 
cycle of convective precipitation (Prein et al. 2015). Here, 
the diurnal cycle of the LPI follows closely that of the obser-
vation with a minimum hourly flash rates in the morning and 
a maximum in the mid-afternoon (Fig. 5 - MSSS = 0.95 ) as 
opposed to the CAPE × PREC ( MSSS = 0.41 ). Indeed, the 
CAPE × PREC diurnal cycle shows a flatter mid-afternoon 

1e−02

1e+00

1e+02

1e−04 1e−03 1e−02 1e−01

Hourly mean FLR [km−2 ⋅ hour−1]

Pr
ob

ab
ilit

y 
de

ns
ity

 [k
m

2
⋅h

ou
r] Observation

LPI
CAPExPREC

(a)

1e−02

1e+00

1e+02

1e−04 1e−03 1e−02 1e−01 1e+00

Daily mean FLR [km−2 ⋅ day−1]

Pr
ob

ab
ilit

y 
de

ns
ity

 [k
m

2
⋅d

ay
] Observation

LPI
CAPExPREC

(b)

Fig. 2   Probability densities of the domain average a hourly and b 
daily flash rates as observed (solid line), as represented by the LPI 
(short-dashed line), and by the CAPE × PREC (long-dashed line) 

parameterizations. The shaded areas represent the uncertainty derived 
through the bootstrapping technique with replacement introduced in 
the method section
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peak with too early occurrence of flash rates. The LPI largely 
corrects these biases with an improved timing of the mid-
afternoon peak that falls within the sampling uncertainty. 
The difference in performance between the two param-
eterizations is similar to that found for precipitation when 

comparing CPM and non-CPM (Ban et al. 2014; Brisson 
et al. 2016).

The investigations described above focus on the flash 
rate parameterizations performance in modeling the current 

Fig. 3   Spatial distribution 
of daily averaged observed 
and modeled flash rate (Flash 
m

−2 hour−1 ) over the period 
2000–2013
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Fig. 4   Latitudinal dependence of the daily flash rates for the period 
2000–2013. The solid line indicates the observation while the dashed 
lines show the parameterizations output (short dash for the LPI and 
long dash for the CAPE × PREC). The shaded areas provide the sam-
pling uncertainty derived from 100 bootstraps with replacement
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Fig. 5   Diurnal cycle of the hourly flash rate averaged over the evalu-
ation domain and the period 2000-2013. The solid line indicates the 
observation, while the short-dashed line shows the LPI, and the long-
dashed line shows the CAPE×PREC diurnal cycles. The shaded areas 
provide the sampling uncertainty derived from 100 bootstraps with 
replacement
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climatology of lightning. However, limited information is 
provided on the model’s robustness to provide reliable flash 
rate climatologies for different climates. As an indication 
of robustness, we studied the scaling of flash rates with 2 
m temperature. As shown in Fig. 6 the temperature scaling 
of the observed flash rates can roughly be decomposed into 
three parts, each of them characterized by different expo-
nential growth. The two related breakpoints occur at about 
273 K and 294 K.

The LPI reproduces well the observed temperature scal-
ing with similar exponential growth rates and breakpoints. 
However, the model overestimates the mean daily flash rate 
for the lowest temperatures and simulated a drop of flash 
rates for the highest temperature (higher than 301 K) as 
opposed to observed rates resulting in an MSSS of 0.18. 
However, for these highest temperatures mean rates, the 
sampling size is small, as shown by the rug in Fig. 6. When 
weighting the MSSS with the sampling size of each bin, the 
MSSS increases to 0.83. A robust estimation of this possible 
misbehavior of the model would require a longer sampling 
period.

The CAPE × PREC is worse at reproducing the observed 
temperature scaling than the LPI resulting in a weighted 
MSSS of 0.57. Still, CAPE × PREC reproduces the tipping 
points and the general behavior of the temperature scaling. 
It should be noted that for the lowest and highest tempera-
ture bins, no flashes are produced by the CAPE × PREC 
as opposed to the LPI. Generally, the observed frequency 
of days with flash occurrence ( 61.8% ) is underestimated by 

both parameterization, with a larger underestimation for the 
CAPE × PREC ( 43.5% ) compared to that of the LPI 49.7%.

3.2 � Climate projections

In this subsection, the evolution of the LPI and CAPE × 
PREC parameterizations with time under the RCP8.5 sce-
nario is investigated. For this, the parameterizations are 
applied to COSMO-CLM driven by a historical (1975 to 
2005) and a future (RCP8.5 from 2071 to 2100) simulation. 
These simulations are used to compare the climate change 
signal derived from the two parameterizations. While the 
wording projection is used in the following section, these 
simulations do not robustly indicate the evolution of light-
ning under a warmer climate for Germany, which would 
require a larger simulation ensemble. When comparing the 
future with the historical simulations, the two parameteri-
zations show significantly different changes at the 5% level 
with a decrease of −4.8% for the LPI and an increase of 
+17.4% for the CAPE × PREC. Note that the changes for 
both parameterizations are independent of the latitude (Fig. 
S1 in supplemental material).

Figure 7 shows that the climate change signal is not 
equally distributed on the full range of flash rates. For most 
of the flash rate range, no climate change signal is found. 
In contrast, the probability for high flash rates (i.e., flash 
rates above the historical 95th percentiles) increases for both 
parameterizations on both the daily and the hourly timescale. 
This increase is more substantial for the CAPE × PREC than 
for the LPI (e.g., the significant change at the 5% level of 
the 99.9th percentiles is 64% for the CAPE × PREC against 
16% for the LPI).

As shown by the representation of the annual cycle 
(Fig. 8), the highest flash rates are mostly occurring in sum-
mer. For both parameterizations, the highest increase in 
flash rate is occurring in July. However, significant changes 
between the historical and the RCP8.5 simulations are found 
for other months (May for the LPI and January, February, 
October, and December for CAPE×PREC). The changes are 
of opposite signs with a decrease for the LPI and an increase 
for the CAPE×PREC.

While the annual cycles for the two historical and RCP8.5 
simulations are relatively similar to each other (Fig. 8), the 
representation of the diurnal cycle by these two sets of simu-
lations largely differ (Fig. 9) with differences throughout 
the day except in the early morning with both parameteri-
zations showing an increase in flash rate. The increasing 
occurrence of large-scale driven convection, which tends to 
occur homogeneously throughout the day in central Europe, 
or the occurrence of convective events that favors flash rate 
occurrence could explain this increase. The development of 
resampling techniques (e.g., resampling based on weather 
types), which are outside the scope of this study, may help 
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Fig. 6   The dependency of domain-averaged daily mean flash rates 
with daily temperature for the period 2000–2013. The observation 
(green squares) and the parameterizations (orange circle for the LPI 
and blue triangle for the CAPE × PREC) are binned to temperature 
classes (i.e., one value per 1 K class). In addition, the corresponding 
bars provide the sampling uncertainty derived from 100 bootstraps 
with replacement when the sample size is larger than one. The rug at 
the bottom of the plot shows the simulated temperature values for the 
investigated period
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test these hypotheses. During the afternoon, the two param-
eterizations disagree on the projection with a significant 
decrease for the LPI and a significant increase for the CAPE 
× PREC. This disagreement is observed for most months 
featuring a mid-afternoon peak in flash rate (Fig. 10).

The increase of temperature between the historical and 
the RCP8.5 simulations is 3.3 K (in both the CPS and the 
0.22◦ simulations) for the full year and of similar ampli-
tude for the convective season (here taken from April to 
September included − 3.3 K). Assuming that the tem-
perature scaling described in Sect. 3.1 stays unchanged 
in the RCP8.5 scenario, the temperature increase found 

in the RCP8.5 scenario should result in increased flash 
rates. This assumption mostly holds for the CAPE × 
PREC resulting in the total increase described in previous 
paragraphs. In contrast, the LPI scaling with temperature 
significantly differs in the RCP8.5 simulations (Fig. 11) 
compared to that in the historical simulation with lower 
flash rates for a given temperature. Most of the significant 
changes occur for temperatures ranging from 278 K to 
294 K. This decrease in the scaling occurs mainly in the 
afternoon, while the decrease is limited to a few bins in the 
morning (Fig. S2 in supplemental material).

Fig. 7   Probability densities 
of the domain average hourly 
flash rates a and domain 
average daily flash rates b as 
represented by the LPI and 
the CAPE × PREC param-
eterizations for EC-Earth 
driven simulations. The shaded 
areas represent the uncertainty 
and are derived through the 
bootstrapping technique with 
replacement introduced in the 
method section
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Fig. 8   Annual cycle of the 
daily mean flash rate for the 
COSMO EC-Earth historical 
(green) and the EC-Earth future 
driven simulations (purple). 
The shaded areas are indica-
tors of the uncertainty and are 
derived through the bootstrap-
ping technique with replace-
ment introduced in the method 
section. Stars indicate months 
with significant change at the 
5% level

******

* * * *** ** ******* ** ****** *** *

LPI CAPExPREC

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
0.00

0.01

0.02

0.03

0.04

0.05

Month of the year [month]

D
ai

ly
 m

ea
n 

FL
R

 [k
m

−2
⋅ d

ay
−1

]

Historical
RCP8.5



2046	 E. Brisson et al.

1 3

* * * * * * * * * * * *
*
*
* *

* *

* * * *
*

* * * * *

LPI CAPExPREC

0 5 10 15 20 0 5 10 15 20

0.00025

0.00050

0.00075

0.00100

0.00125

Time of the day [hour (UTC)]

H
ou

rly
 m

ea
n 

FL
R

 [k
m

−2
⋅h

ou
r−

1 ]

Historical
RCP8.5

Fig. 9   Diurnal cycle of the hourly mean flash rate for the COSMO 
EC-Earth historical (green) and the EC-Earth future driven simula-
tions (purple). The output of the LPI parameterization is shown on 
the left, while that of the CAPE×PREC is shown on the right. The 

shaded areas indicate the uncertainty derived through the bootstrap-
ping technique with replacement introduced in the method section. 
Stars indicate hours with a significant change at the 5% level

Fig. 10   Diurnal cycle of the 
hourly mean flash rate for the 
COSMO EC-Earth historical 
(green) and the EC-Earth future 
driven simulations (purple). 
The output of the LPI param-
eterization is shown on the left, 
while that of the CAPE×PREC 
is shown on the right. Besides, 
each row shows the diurnal 
cycle for a given convectively 
active month (i.e., from April 
to September). The shaded 
areas indicate the uncertainty 
derived through the bootstrap-
ping technique with replace-
ment introduced in the method 
section. Stars indicate hours 
with a significant change at the 
5% level
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4 � Discussion

Section 3.2 describes the disagreement in the flash rate projec-
tion as represented by the LPI and the CAPE × PREC param-
eterizations. The CAPE × PREC parameterization produces a 
spatiotemporally homogeneous increase in the flash rate that 
can be related to the temperature change. In contrast, the LPI 
shows unexpected results, with (i) a decrease of summer after-
noon flash rates and (ii) a change of the projected flash rate 
temperature scaling compared to that of the historical simula-
tion. In this section, the plausible causes for these unexpected 
results are investigated. For this, each input variable used in the 
LPI and the CAPE×PREC parameterizations was generated 
for three years (the years with the lowest, median and highest 
averaged LPI) in each EC-Earth driven simulation. While the 
comparison of these years is not long enough to reflect a cli-
matology, it can still help to understand how the different input 
variables may influence the LPI. As a simple analysis of each 
input variable may lead to inconsistent results due to the non-
linear properties of the LPI parameterization, the role of each 
input variable is investigated using the following formulas:

(10)LPIbase =f1f2
1

H−20◦C − H0◦C

H−20◦C

∫
H0◦C

g(w) dz

(11)LPIno � =f1f2
1

H−20◦C − H0◦C

H−20◦C

∫
H0◦C

w2 g(w) dz

(12)LPInow2 =f1f2
1

H−20◦C − H0◦C

H−20◦C

∫
H0◦C

� g(w) dz

All of these formulas are similar to that of the original 
parameterization except for the factors that are set to one. 
The LPIbase has the w and � set equal to one and therefore 
mainly represent the effect of the different filters. LPIno � 
and LPInow2 have � and w, respectively, set to one so that 
the effect of the vertical updraft or the microphysics can be 
investigated independently. Each formula is applied to the 
three-year simulations mentioned above. These results are 
then averaged both spatially and temporally.

Applying this method results in the following: The LPIbase 
decreases by 14.1% (Table 1) in the RCP8.5 simulation com-
pared to that historical. The filters, which select the con-
vective activity that favors lightning occurrence, therefore, 
tend to project a decrease of LPI. Adding the effect of the 
updraft results (i.e., using LPIno � ) in a reduced decrease of 
10.9% . Finally, adding the effect of the microphysics (i.e., 
using LPInow2 ) results in a further decrease of 18.8% . Based 
on these results, we hypothesize that both the filter and 
the microphysics factors of the LPI parameterization are 
responsible for the decrease in the projected LPI described 
in Section 3.2. In contrast, the updraft factor mitigates this 
decrease. In fact, for the three-year simulations, the full LPI 
parameterization results in a decrease of 5.6% , showing that 
for grid-points with high epsilon, the future simulation pro-
duces even higher updraft speed for the future simulation 
compared to that historical.
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Fig. 11   The dependency of the mean daily flash rate with daily mean 
temperature for the COSMO EC-Earth historical driven simulation 
(green) and the EC-Earth future driven simulation (purple). The rugs 
at the bottom and the top of the plot show the occurrence of a given 
temperature for the corresponding simulation. Flash rates are binned 

to temperature values (i.e., one point per 1 K). These values are plot-
ted for both the LPI (left column) and the CAPE×PREC (right col-
umn) parameterizations. Stars indicate significant differences between 
the two simulations at the 5% level. This significance is only indicated 
for points for which the sample size exceeds 100 days

Table 1   Projected change between the historical and the RCP8.5 
three-year simulations for different formulas related to the LPI param-
eterization

LPI LPI
base

LPI
no �

LPI
now2

−5.6% −14.1% −10.9% −18.8%



2048	 E. Brisson et al.

1 3

Similarly, the CAPE×PREC parameterizations can be 
decomposed into different factors. It notably shows a high 
degree of similarity with the LPIno � ; it incorporates a filter, 
through precipitation occurrence, and an indicator of the 
updraft intensity, through both precipitation intensity and 
CAPE. For the two selections of three years, the CAPE and 
precipitation variables were generated by both the 0.22◦ 
RCM and the CPM. The occurrence of precipitation’s accu-
mulation greater than 1.5mm/hour , a threshold that results 
in an equivalent modeled number of precipitation events as 
events with flashes for the evaluation period, is decreasing 
by 3.8% (Table 2) in the CPM projection. For these events, 
the mean CAPE increases by 7.8% in the CPM projection, 
resulting in a CAPE × PREC increase of 8.7% . In opposition 
to the CPM, in the 0.22◦ RCM projection, the precipitation 
occurrence above 1.5mm/hour shows an increase of 4.0% . 
Besides, the CAPE, for the events above 1.5mm/hour , shows 
a more substantial increase in the 0.22◦ RCM projection 
compared to that in the CPM, with +37.9% change resulting 
in a change of CAPE × PREC of +31.3% . This result sug-
gests that the CPM, as opposed to the 0.22◦ RCM, is partly 
responsible for the disagreement observed in Section 3.2 
between the LPI and the CAPE × PREC.

Therefore, our results support the use of a CPM, as well 
as accounting for the microphysical mixing for projecting 
flash rates. Accounting for the microphysical mixing makes 
the LPI one of the most physically consistent flash rate 
parameterizations applied on climate scale at the convec-
tion-permitting scale. Interestingly, it provides a different 
climate change signal than the CAPE × PREC in this study. 
Generally, the present study agrees with previous findings. 
Indeed, while the literature considering convective activ-
ity as a proxy for lightning suggested a global increase in 
lightning activity under a warmer climate ranging from 5 to 
10% increase per degree of warming (Price and Rind 1994; 
Price 2009; Krause et al. 2014; Romps et al. 2014; Rädler 
et al. 2019), the few studies using a scheme, which include 
microphysics related parameters showed little increase or 
even a global decrease in lightning activity (Jacobson and 
Streets 2009; Finney et al. 2018, 2020). However, the litera-
ture also highlights heterogeneous lightning changes around 
the globe. For example, for the area under investigation in 
the present study, Krause et al. (2014) find a small decrease 
in lightning despite considering convective activity as a 

proxy for lightning. Besides, the use of a single simulation 
and, therefore, single CPMs/GCMs significantly weakens 
the robustness of the projections computed in this study. 
Large ensembles of simulations that encompass multiple 
CPM and GCM combinations would be needed to validate 
the divergence of the two types of lightning schemes (i.e., 
scheme with or without microphysical parameters) under a 
warmer climate.

While the LPI may sound more advanced than a more 
simple parameterization, and therefore, more trustworthy, it 
is still suffering from some weaknesses. First, although being 
more physically consistent than other parameterizations, the 
LPI is still not fully representing the cloud electrification. 
Thus, more complex and more realistic parameterizations 
are needed. Second, the microphysics parameterizations 
still suffer from fundamental limitations in climate models 
even at convection-permitting scales. The use of different 
microphysics schemes, in addition to different lightning 
parameterizations, may be required to provide more robust 
conclusions as well as realistic projection ensembles of flash 
rates for the future.

5 � Conclusion

Representing lightning in climate models is still a chal-
lenge. While many parameterizations exist, they strongly 
rely on the representation of convective cloud properties. 
Since about a decade, CPMs are applicable to climate time 
scales. These CPMs allow lightning parameterizations closer 
to process understanding than coarser-grid climate models 
that rely on a deep convection parameterization. In this 
study, such a lightning parameterization, namely the LPI, 
was implemented in the regional climate model COSMO-
CLM. This model configuration was applied to perform 
three simulations on a convection-permitting scale. The first 
simulation uses ERA-Interim as driving data to adjust the 
LPI to observed flash rates and an evaluation at different 
spatiotemporal scales. The additional two additional simu-
lations use EC-Earth global climate simulations as driving 
data allowing for the investigation of the LPI evolution under 
the RCP8.5 scenario. The output of the LPI parameteriza-
tion for these simulations was compared to another flash 
rate parametrization, namely the CAPE × PREC, that was 
derived for non-CPM corresponding simulations.

Our results show that the LPI parameterizations repro-
duce the present-day daily and hourly probability densi-
ties, the latitudinal dependency, and the diurnal cycle of 
the observed flash rates. While the CAPE × PREC param-
eterization produces correct representations of the temporal 
probability densities and the latitudinal dependency, these 
representations are not as skillful as those derived with the 
LPI. Furthermore, the diurnal cycle is poorly represented 

Table 2   Projected change between the historical and the 
RCP8.5 three-year simulations for different factors related to the 
CAPE × PREC parameterization

Model Resolution CAPE × PREC CAPE PREC occurrence

0.22
◦

31.3% 37.9% 4.0%

0.025
◦ (CPM) 8.7% 7.8% −3.8%



2049Contrasting lightning projection using the lightning potential index adapted in a…

1 3

by the CAPE × PREC parameterization. Both parameteriza-
tions underestimate spatial heterogeneity. Finally, most of 
the observed temperature-scaling is realistically reproduced 
for both parameterizations, confirming their applicability to 
climate projections.

A comparison of the EC-Earth driven simulations (his-
torical 1975–2005 versus RCP8.5 2071–2100) indicates 
a climate change signal in mean flash rate by −4.8% as 
projected by the LPI and by +17.4% as projected by the 
CAPE × PREC. Both parameterizations generate more fre-
quent extremely high flash rates (99.9th percentile), but this 
increase is more substantial for the CAPE × PREC. Both 
historical and future simulations show similar annual cycles 
with higher flash rates in summer than in winter. However, 
the LPI projects a decrease in flash rates while the CAPE 
× PREC shows a change of opposite sign. This decrease is 
related to a decrease in flash rates produced during mid-
afternoon convection. Finally, the increase of flash rate 
found for the CAPE × PREC can be related to the tempera-
ture increase as the CAPE × PREC temperature-scaling of 
flash rates remains identical for both simulations. For the 
LPI, the temperature scaling is altered in the RCP8.5 simu-
lation showing possible limitations of temperature based 
rescaling techniques for downscaling flash rates.

The investigation of potential sources of flash rate reduc-
tion revealed that both the use of a CPM and accounting 
for microphysical mixing changes are likely causes for the 
projected disagreements between the two flash rates param-
eterizations. Changes in the updraft velocity partly compen-
sate for the changes induced by the microphysical mixing. 
These findings fit with the projected change in flash rate 
as simulated by the CAPE × PREC for which the increase 
in the vertical velocity is carried through the increase in 
CAPE and precipitation accumulation, but does not have 
any factors that can carry the signal of the microphysics 
mixing. Besides, applying the CAPE×PREC at the convec-
tion-permitting scale does not result in a convergence of the 
projected flash rate with the LPI. This absence of conver-
gence points at the influence of the CPM on the differences 
observed between the two flash rates parameterizations. 
Quantifying this influence is an important question that still 
has to be answered. The use of a broader range of parameter-
izations applied in both multiple CPM and non-CPM model 
may help to provide elements of answers to this question.

Besides, applying the CAPE×PREC at the convection-
permitting scale does not result in a convergence of the 
projected flash rate with the LPI. This absence of conver-
gence points at the influence of the CPM on the differences 
observed between the two flash rate parameterizations. 
Quantifying this influence is an important question that still 
has to be answered. The use of a broader range of param-
eterizations applied in both multiple CPMs and non-CPMs 
may help to provide elements of answers to this question. 

Furthermore, using a single CPM/RCM driven, by only one 
global climate model and one reanalysis, of one parameteri-
zation, and for a specific region does not allow for deriving 
robust lightning climate projections. Still, this study shows 
that explicitly accounting for the microphysics in flash rate 
parameterizations as well as representing explicitly and more 
robustly convective processes using convection-permitting 
models potentially improve current climate projections of 
lightning.

A filtering of noisy weak LPI signals ( f
1
)

As already noted in Yair et al. (2010), weak and noisy LPI 
signals caused by isolated single-grid-column updrafts may 
occur in km-scale models, which do not fully resolve small-
scale convective updrafts. Because such situations do not 
really represent physically coherent convective updrafts, 
valid positive LPI values are restricted to grid-points for 
which the majority of grid columns in a certain horizontal 
neighborhood exhibits a maximum updraft speed above a 
certain threshold (Yair et al. 2010). This criterion is adapted 
in the boolean filter function f1 in Eq. (1)

with the area fraction a in a 10 × 10 km2 neighbourhood with 
column maximum updrafts larger than a threshold w(max,0),

w(max,0) is set to 1.1 m/s in our application, a value which 
was found to produce reasonable spatial LPI distributions 
in comparison to observed flash rates.

B Filtering of false LPI signals in strong 
orographic gravity wave clouds ( f

2
)

The filter f1 is not enough to prevent spurious LPI signals in 
deep orographic wave clouds, which have been noted during 
the implementation work, for example, during Föhn events 
in the Alps in winter time. Large-amplitude gravity waves 
embedded in moist flow may lead to small but spurious grau-
pel formation in cloud microphysics schemes, which in turn 
leads to false LPI signals. To prevent this, a second boolean 
function f2 has been added, which is based on the fact that 
gravity waves require a rather stable stratification through-
out the troposphere. f2 is defined as the column-integrated 
buoyancy in a 20 × 20 km2 neighbourhood:

(13)f1 =

{

1 if a ≥ 0.5

0 else

}

(14)a =

∬
S=10×10 km2

{

1 ifmax(w(z)) ≥ w(max,0)

0 else

}

dx dy

∬
S=10×10 km2

dx dy
.
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with

where p is the pressure, ps the surface pressure, Rd the gas 
constant of dry air, Tv,parcel the virtual temperature of a moist 
adiabatic parcel ascent starting from 50 hPa above ground 
with average properties of the lowermost 100 hPa and Tv,s 
local virtual temperature. BML is formally similar to mixed 
layer CAPE, but with fixed integration over a 500 hPa layer 
starting at 50 hPa above ground. BML is approximately 0 or 
slightly negative at locations of explicitly simulated con-
vective cells, but attains large negative values for the stable 
conditions associated with orographic mountain waves. The 
threshold value and B0 = − 1500 J/kg2 was found by experi-
mentation to reasonably separate these two regimes for our 
CPM domain over Central Europe.
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(15)f2 =

{

1 ifBML ≥ B0

0 else

}

(16)

BML =

∬
S=20×20 km2

∫ ps−50 hPa

ps−550 hPa
Rd(Tv,parcel − Tv,s) d ln p dx dy

∬
S=20×20 km2

dx dy
.
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