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Abstract

Two-particle angular correlations are measured in high-multiplicity proton–proton collisions at
√

s =
13 TeV by the ALICE Collaboration. The yields of particle pairs at short-(∆η ∼ 0) and long-range
(1.6 < |∆η |< 1.8) in pseudorapidity are extracted on the near-side (∆ϕ ∼ 0). They are reported as a
function of transverse momentum (pT) in the range 1 < pT < 4 GeV/c. Furthermore, the event-scale
dependence is studied for the first time by requiring the presence of high-pT leading particles and jets
for varying pT thresholds. The results demonstrate that the long-range “ridge” yield, possibly related
to the collective behavior of the system, is present in events with high-pT processes. The magnitudes
of the short- and long-range yields are found to grow with the event scale. The results are compared
to EPOS LHC and PYTHIA 8 calculations, with and without string-shoving interactions. It is found
that while both models describe the qualitative trends in the data, calculations from EPOS LHC show
a better quantitative agreement, in particular for the pT and event-scale dependencies.

*See Appendix A for the list of collaboration members
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1 Introduction

In high-energy nucleus–nucleus collisions at RHIC [1–4] and LHC [5–7], significant correlations are
observed between particles emitted over a wide pseudorapidity range. The origin of these observations
are collective effects, which are related to the formation of a strongly interacting quark–gluon plasma
(QGP), which exhibits hydrodynamic behavior (see the reviews [8–10]). Recent theoretical [11–13] and
experimental [14–17] advancements have contributed significantly to the understanding of the transport
properties of the QGP. Similar long-range correlations are also observed in high-multiplicity proton–
proton (pp) [18–21], proton–nucleus (p–A) [22–25], and light nucleus–nucleus collisions [26, 27]. The
fact that these correlations extend over a large range in pseudorapidity implies that they originate from
early times in these collisions and thus suggest that hydrodynamic behavior is present even in these
small systems, although the volume and lifetime of the medium produced in such a collision system are
expected to be small, and there are other mechanisms which can produce similar flow-like signals [28,
29].

Measurements of two-particle angular correlations provide information on many physical effects, includ-
ing collectivity, hadronization, fragmentation, and femtoscopic effects [30], and are typically quantified
as a function of ∆η , the relative pseudorapidity, and ∆ϕ , the separation in azimuthal angle, of particle
pairs. The long-range structure of two-particle angular correlations is well suited to analyze collective
effects, since it is not created by resonance decays nor fragmentation of high-momentum partons. A
typical source of long-range correlations in Monte Carlo pp generators is the momentum conservation.
The enhancement in the yield of two-particle correlations at small ∆ϕ that extends over a large ∆η is
dubbed “ridge” due to its characteristic shape in the ∆η–∆ϕ plane. The shape of these ∆ϕ correlations
can be studied via a Fourier decomposition [31, 32]. The second and third order terms are the dominant
harmonic coefficients. In heavy-ion collisions, harmonic coefficients can be related to the collision ge-
ometry and density fluctuations of the colliding nuclei [33–35] and to transport properties of the QGP in
relativistic viscous hydrodynamic models [11–13, 36, 37].

The ridge structures in high-multiplicity pp and p–Pb events have been attributed to initial-state or final-
state effects. Initial-state effects, usually attributed to gluon saturation [38, 39], can form long-range
correlations along the longitudinal direction. The final-state effects might be parton-induced interac-
tions [40] or collective phenomena due to hydrodynamic behavior of the produced matter arising in a
high-density system possibly formed in these collisions [41, 42]. Hybrid models implementing both
effects are generally used in hydrodynamic simulations [43, 44]. EPOS LHC describes collectivity in
small systems with a parameterized hydrodynamic evolution of the high-energy density region, so called
“core”, formed by many color string fields [45]. The proton shape and its fluctuations are also important
to model small systems [44]. To understand the influence of initial- or final-state effects, and to possibly
disentangle the two, a quantitative description of the measurements in small systems [46, 47] needs to
account for details of the initial state. Systematic studies of these correlation effects from small to large
systems are being performed, both experimentally [21] and theoretically [47]. However, the quantita-
tive description of the full set of experimental data has not been achieved yet. A summary of various
explanations for the observed correlations in small systems is given in [29, 48, 49, 49].

Besides the hybrid models mentioned above, alternative approaches were developed to describe col-
lectivity in small systems. A microscopic model for collectivity was implemented in the PYTHIA 8
event generator, which is based on interacting strings (string shoving) and is called the “string shov-
ing model” [50]. In this model, strings repel each other in the transverse direction, which results in
microscopic transverse pressure and, consequently, in long-range correlations. PYTHIA 8 with string
shoving can qualitatively reproduce the near-side (∆ϕ ∼ 0) ridge yield measured by the CMS Collabora-
tion [20]. This challenges the hydrodynamic picture and predicts modifications of the jet fragmentation
properties [51].
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It is expected that final-state interactions affect also produced jets if they are the source of collectivity
in small systems. Proving the presence of jet quenching [52, 53] would be another crucial evidence
of the existence of a high-density strongly-interacting system, possibly a QGP, in high-multiplicity pp
collisions. However, there is no evidence observed so far for the jet quenching effect in high-multiplicity
pp and p–Pb collisions [54–57]. Jet fragmentation can be studied in two-particle angular correlations in
short-range correlations around (∆η , ∆ϕ) = (0,0) [58].

To further investigate the interplay of jet production and collective effects in small systems, long- and
short-range correlations are studied simultaneously in high-multiplicity pp collisions at

√
s = 13 TeV

using the ALICE LHC Run 2 data collected with the high-multiplicity event trigger in 2016–2018. In
this article, the near-side per-trigger yield at large pseudorapidity separation is presented as a function
of transverse momentum. The results are compared with previous measurements by the CMS Collabo-
ration [19]. In addition, the ridge yield and near-side jet-like correlations with the event-scale selection
are reported. The event-scale selection is done by requiring a minimum transverse momentum of the
leading particle or the reconstructed jet at midrapidity, which is expected to bias the impact parame-
ter of pp collisions to be smaller on average [59, 60]. At the same time, the transverse momentum of
the leading particle or the reconstructed jet is a measure of the momentum transfer in the hard parton
scattering [61, 62].

The experimental setup and analysis method are described in Sec. 2 and 3, respectively. The sources of
systematic uncertainties are discussed in Sec. 4. The results and comparisons with model calculations of
the measurements are presented in Sec. 5. Finally, results are summarized in Sec. 6.

2 Experimental setup

The analysis is carried out with data samples of pp collisions at
√

s = 13 TeV collected from 2016 to
2018 during the LHC Run 2 period. The full description of the ALICE detector and its performance in
the LHC Run 2 can be found in [63, 64]. The present analysis utilizes the V0 [65], the Inner Tracking
System (ITS) [66], and the Time Projection Chamber (TPC) [67] detectors.

The V0 detector consists of stations placed on both sides of the interaction point, V0A and V0C, each
made of 32 scintillator tiles, covering the full azimuthal angle within the pseudorapidity intervals 2.8 <
η < 5.1 and −3.7 < η < −1.7, respectively. The V0 is used to provide a minimum bias (MB) and a
high-multiplicity (HM) trigger. The minimum bias trigger is obtained by a time coincidence of V0A
and V0C signals. The event activity selection is done on the sum of the V0A and V0C signals, which is
denoted as V0M. The high-multiplicity trigger requires that the V0M signal exceeds 5 times the mean
value measured in minimum bias collisions, selecting the 0.1% of MB events that have the largest V0
multiplicity. The analyzed data samples of minimum bias and high-multiplicity pp events at

√
s = 13

TeV correspond to integrated luminosities of 19 nb−1 and 11 pb−1, respectively [68].

The primary vertex position is reconstructed from the measured signals in the Silicon Pixel Detector
(SPD), which forms the innermost two layers of the ITS. Reconstructed primary vertices of selected
events are required to be located within 8 cm from the center of the detector along the beam direction.
The probability of pileup events is about 0.6% in MB events. Pileup events can be resolved and are
rejected if the longitudinal displacement of their primary vertices is larger than 0.8 cm.

Charged-particle tracks are reconstructed by the ITS and TPC, which are operated in a uniform solenoidal
magnetic field of 0.5 T along the beam direction. The ITS is a silicon tracker with six layers of silicon
sensors where the two innermost ones are formed by the SPD [69], the next two layers called the Silicon
Drift Detector (SDD), and the outermost layers named the Silicon Strip Detector (SSD). The ITS and
TPC, covering the full azimuthal region, have acceptances up to |η | < 1.4 and 0.9, respectively, for
detection of charged particles emitted within 8 cm from the primary vertex position (zvtx) along the
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beam direction. The tracking of charged particles is done with the combined information of the ITS
and TPC that enables the reconstruction of tracks down to 0.15 GeV/c with about 65% efficiency. The
efficiency reaches 80% for intermediate transverse momentum, 1 to 5 GeV/c. The transverse momentum
resolution is around 1% for primary tracks with pT < 1 GeV/c, and linearly increases up to 6% at pT ∼
40 GeV/c [70].

The charged particle selection criteria are optimized to make the efficiency uniform over the full TPC
volume to mitigate the effect of small regions where some of the ITS layers are inactive. The selection
consists of two track classes. Those belonging to the first class are required to have at least one hit in the
SPD. Tracks from the second class do not have any SPD associated hit and their initial point is instead
constrained to the primary vertex [71].

3 Analysis procedure

The two-particle correlation function is measured as a function of the relative pseudorapidity (∆η) and
the azimuthal angle difference (∆ϕ) between the trigger and the associated particles,

1
Ntrig

d2Npair

d∆ηd∆ϕ
= B(0,0)

S(∆η ,∆ϕ)

B(∆η ,∆ϕ)

∣∣∣
pT, trig, pT,assoc

, (1)

where pT, trig and pT,assoc (pT, trig > pT,assoc) are the transverse momenta of the trigger and associated parti-
cles, respectively, Ntrig is the number of trigger particles, and Npair is the number of trigger-associated par-
ticle pairs. The average number of pairs in the same event and in mixed events are denoted as S(∆η ,∆ϕ)
and B(∆η ,∆ϕ), respectively. Normalization of B(∆η ,∆ϕ) is done with its value at ∆η and ∆ϕ = 0,
represented as B(0,0). Acceptance effects are corrected by dividing S(∆η ,∆ϕ) with B(∆η ,∆ϕ)/B(0,0).
The right-hand side of Eq. (1) is corrected for the track reconstruction efficiency, which is mainly rel-
evant for the associated particles, as a function of transverse momentum and pseudorapidity. Primary
vertices of events to be mixed are required to be within the same, 2 cm wide, zvtx interval [58, 72] for
each multiplicity class. The final per-trigger yield is constructed by averaging correlation functions over
these primary vertex bins.

Ridge yields at large ∆η are extracted for various multiplicity classes and transverse momentum inter-
vals. The large ∆η range is selected as 1.6 < |∆η | < 1.8, which is the range where the tracking quality
– efficiency and precision – is the best. The ridge yield is only reported for pT > 1 GeV/c. Below
1 GeV/c, the jet-like contribution to the correlation function extends into the region where the ridge yield
is measured, 1.6 < |∆η | < 1.8. In this region, the ∆ϕ distribution, or the so-called per-trigger yield, is
expressed as

1
Ntrig

dNpair

d∆ϕ
=
∫

1.6<|∆η |<1.8

(
1

Ntrig

d2Npair

d∆ηd∆ϕ

)
1

δ∆η

d∆η−CZYAM , (2)

where δ∆η = 0.4 is the normalization factor to get the per-trigger yield per unit of pseudorapidity.

The baseline of the correlation is subtracted by means of the Zero-Yield-At-Minimum (ZYAM) proce-
dure [73]. The minimum yield (CZYAM) at ∆ϕ = ∆ϕmin in the ∆ϕ projection (note that the value of
∆ϕmin can be different in data and in models) is obtained from a fit function, which fits the data with
a Fourier series up to the third harmonic. By construction, the yield at ∆ϕmin is zero after subtracting
CZYAM from the ∆ϕ projection. The ridge yield (Y ridge) is obtained by integrating the near-side peak of
the ∆ϕ projection over |∆ϕ|< |∆ϕmin| after the ZYAM procedure,

Y ridge =
∫
|∆ϕ|<|∆ϕmin|

1
Ntrig

dNpair

d∆ϕ
d∆ϕ. (3)
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The ridge yield is further studied in events having a hard jet or a high-pT leading particle in the midra-
pidity region. Such a requirement is expected to bias the impact parameter of pp collisions to be smaller
on average [59, 60]. This event scale is set by requiring a minimum transverse momentum of the leading
track (pT,LP) or the reconstructed jet (pch

T, jet) at midrapidity. The leading track is selected within |η |< 0.9
and the full azimuthal angle. Jets are reconstructed with charged particles only (track-based jets) with
the anti-kT algorithm [74, 75] and the resolution parameter R = 0.4. The recombination scheme used
in this article is the pT scheme. Jets are selected in |ηjet| < 0.4 and in the full azimuthal angle. The
transverse momentum of jets pch

T, jet is corrected for the underlying event density that is measured using
the kT algorithm with R = 0.2 [76].

To quantify the variation of the near-side jet-like peak with event-scale selections with a minimum pT,LP
or pch

T, jet, the near-side jet-like peak yield is extracted from the near-side ∆η correlations. The near-side
is defined as |∆ϕ| < 1.28, where the correlation function is projected on the ∆η axis. The projection
range, 1.28, is chosen to fully cover ∆ϕmin. The near-side ∆η correlations are then constructed as

1
Ntrig

dNpair

d∆η
=
∫
|∆ϕ|<1.28

(
1

Ntrig

d2Npair

d∆ηd∆ϕ

)
1

δ∆ϕ

d∆ϕ−DZYAM , (4)

where δ∆ϕ = 2.56 is the normalization factor to get per-trigger yield per unit of azimuthal angle. The
minimum yield (DZYAM) of the ∆η correlations is found within |∆η |< 1.6 and used for the subtraction
from the ∆η correlations, which results in zero-yield at the minimum. The near-side jet-like peak yield
(Y near) is measured by integrating the ∆η correlations over |∆η |< 1.6,

Y near =
∫
|∆η |<1.6

(
1

Ntrig

dNpair

d∆η

)
d∆η (5)

.

4 Systematic uncertainties of the measured yields

The systematic uncertainties of Y ridge and Y near are estimated by varying the analysis selection criteria
and corrections and are summarized in Tab. 1.

Table 1: The relative systematic uncertainty of Y ridge and Y near. Numbers given in ranges correspond to minimum
and maximum uncertainties.

Sources
Systematic uncertainty (%)

Y ridge Y near

Pileup rejection ±0.8–3.9 ±0.2–2.2
Primary vertex ±0.5–2.4 ±1.1

Tracking ±2.0–4.0 ±1.5–3.4
ZYAM ±2.1–5.1 ±2.2–4.8

Event mixing ±1.0–4.4 ±0.5–1.7
Efficiency correction ±2.5 ±3.1

Jet contamination −18.8–25.9 (pT < 2 GeV/c) N.A.
Total (in quadrature) +4.9–9.4

−19.4–21.0 ±3.9–7.3

The systematic uncertainties are independent of the event-scale selection except for DZYAM (see below),
as expected, since the multiplicity is weakly dependent on the event scale and the ALICE detector is
optimized for much higher multiplicities (Pb–Pb collisions), this is in agreement with our expectations.

The uncertainty associated to the pileup rejection is estimated by measuring the changes of results with
different rejection criteria from the default one. It is mainly estimated by varying the minimal number
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of track contributors required for reconstruction of pileup event vertices from 3 to 5. The estimated
uncertainty of Y ridge is 0.8-3.9%. The corresponding uncertainty of Y near is estimated to be 0.2–2.2%.

Another source of systematic uncertainty is related to the selected range of the primary vertex. The
accepted range is changed from |zvtx| < 8 cm to |zvtx| < 6 cm. The narrower primary vertex selection
allows one to test acceptance effects on the measurement. The estimated uncertainty of Y ridge is 0.5–
2.4%. The uncertainty for Y near is estimated to be 1.1%.

An additional source of systematic uncertainty is related to the track selection criteria. The corresponding
uncertainty is estimated by employing other track selection criteria, denoted global tracks, which are
optimized for particle identification. The selection criteria of the global tracks are almost identical to the
hybrid tracks. Each global track is required to have at least one SPD hit. Due to inefficient parts of the
SPD, the azimuthal distribution of global tracks is not uniform. The uncertainties associated with the
track selection are estimated to be 2.0–4.0% and 1.5–3.4% for Y ridge and Y near, respectively.

The systematic uncertainty of Y ridge resulting from the ZYAM procedure is estimated by varying the
range of the fit, which is used to find the minimum, from |∆ϕ|< π/2 down to |∆ϕ|< 1.2. The estimated
uncertainty of Y ridge is 2.1–5.1%. The corresponding uncertainty on Y near is estimated by varying the
range from |∆η |< 1.6 to |∆η |< 1.5 and 1.7. The estimated uncertainty of Y near is 2.2% for the unbiased
case and increases to 4.8% for the largest event-scale selections. This is the only systematic uncertainty
for which a significant dependence on the event scale is observed, reflecting a non-negligible dependence
of the near-side magnitude and shape on the event-scale selection.

The source of systematic uncertainty is associated to the choice of the width of zvtx bins that are used
in the event mixing method. The default value of 2 cm is changed to 1 cm. The resulting uncertainty
of Y ridge is 1.0–4.4%. The uncertainty for Y near is about 0.5–1.7%. The uncertainty from the efficiency
correction for charged particles is estimated by comparing correlation functions of true particles with
correlations functions of reconstructed tracks with the efficiency correction in simulation. The estimated
uncertainties are 2.5% and 3.1% for Y ridge and Y near, respectively.

In the limited η-acceptance of ALICE, the ridge structure is not flat in ∆η suggesting that jet-like correla-
tions (non-flow) could contribute, implying that they would impact the ridge-yield extraction. We stress
that the models used for comparisons also contain such a non-flow effect, but differences in jet-like cor-
relations between data and MC models could influence the interpretation. To account for the related
uncertainty, the variation of the yield with ∆η between 1.5 and 1.8, which should be an upper limit of the
residual jet-like contamination, is used as a systematic uncertainty of the ridge yield. The estimated upper
limit of the uncertainty is −25.9% for the 1.0 < pT < 1.5 GeV/c range, −18.8% for the 1.5 < pT < 2.0
GeV/c range, −18.9% for the 1.0 < pT < 2.0 GeV/c range, and negligible for pT > 2.0 GeV/c. This
uncertainty is considered only for the measured ridge yields.

5 Results

5.1 Ridge yield

Figure 1 shows the per-trigger yield obtained from Eq. (1) for 1 < pT, trig (pT,assoc) < 2 GeV/c in pp
collisions at

√
s =13 TeV for minimum bias events (left) and high-multiplicity events (right). It is worth

noting that the z-axes for the yield of the correlations is properly scaled in order to zoom in the ridge
yield, as a result, the jet peaks are sheared off in both figures. The ridge structure is clearly observed in
the high-multiplicity class while it is less significant in the minimum bias events. The away-side yield is
populated mostly by back-to-back jet correlations.

Figure 2 shows ∆ϕ projections of the two-particle correlation functions obtained in the range 1.6 <
|∆η |< 1.8 for several track pT intervals after the ZYAM subtraction (see Eq. (2)). The results are shown
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for various pT intervals in the minimum bias class (upper) and the high-multiplicity class (lower) down
to 1 GeV/c where the non-flow contamination is negligible. The near-side (∆ϕ ∼ 0) ridge in the high-
multiplicity class is clearly observed for pT < 3 GeV/c while there is no definitive signal in the minimum
bias class. Within the range of analyzed particle pT, the yield in the near-side ridge decreases with
increasing pT in the high-multiplicity class.

The measurements in the high-multiplicity class are compared with the results published by the CMS
Collaboration [19]. In case of the CMS measurement, the charged particle multiplicity was obtained
by counting the number of particles satisfying pT > 0.4 GeV/c in |η | < 2.4. In our analysis, event
multiplicity is determined from the forward V0 detectors. The difference in multiplicity selection be-
tween ALICE (forward) and CMS (midrapidity) is studied using PYTHIA 8 simulations and it is found
that the calculated multiplicity using the CMS procedure is about 20% larger than the one from ALICE
when compared in the acceptance region of the measurements reported in this article, |η | < 0.9. Near-
side ridges in all transverse momentum ranges are comparable. The larger away-side yields observed
in Fig. 2 for the CMS results can be attributed to the overlap in η acceptance between the multiplicity
selection and the correlation function measurement.

In Fig. 2, the ALICE measurements are also compared with model predictions where a comparable high-
multiplicity selection and ∆η projection range are applied. The selection of high-multiplicity events in
the models is done by requiring a minimal number of charged particles emitted within the V0M detector
acceptance. In case of PYTHIA8Tune4C, the 0–0.1% centrality threshold is 105 charged particles. The
threshold for EPOS LHC and PYTHIA8 String Shoving are 110 and 108, respectively. The magnitude
of string shoving (g) is set to 3.0 in this study. The statistical uncertainties due to the limited number
of events for the model calculations are shown as bands in each figure. The PYTHIA8 String Shoving
provides good estimates of the near-side ridge yield and slightly overestimates the away-side yield for
the interval 1 < pT < 2 GeV/c. However, the PYTHIA8 String Shoving model underestimates the near-
side ridge yield for pT > 2 GeV/c. The PYTHIA8Tune4C model does not show any near-side ridge
as expected. It slightly underestimates the away-side peak for 1 < pT < 2 GeV/c and provides good
estimates for pT > 2 GeV/c. On the other hand, EPOS LHC describes the shape of the ridge yield
quantitatively better in the 2 < pT, trig(assoc) < 4 GeV/c range, while overestimating the near-side ridge
yield for pT, trig(assoc) < 2 GeV/c range.

Figure 3 shows the near-side ridge yield measured in high-multiplicity events as a function of pT, trig(assoc).
The measurement is compared with the result from CMS [19]. Considering the differences in acceptance
and the chosen multiplicity estimator of both measurements, perfect agreement between the two sets of
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results is not expected. The measurement is also compared with model calculations. As expected, the
PYTHIA 8 model with Tune 4C does not produce a near-side ridge because it is not designed to account
for this effect. The PYTHIA8 String Shoving model describes the yield qualitatively, however the pre-
dicted yield decreases more rapidly than the measured one for increasing pT, trig(assoc). The EPOS LHC
model, unlike the PYTHIA8 String Shoving model, describes well the pT dependence of the ridge yield
for the range pT > 2 GeV/c , while predicting larger yields for pT < 2 GeV/c.

5.2 Event-scale dependence of the ridge yield
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Fig. 4: Two-dimensional correlation functions as a function of ∆η and ∆ϕ in high-multiplicity events including
a selection on the event-scale. The interval of pT, trig and pT,assoc is 1 < pT, trig(assoc) < 2 GeV/c. Left: HM events
with a pT,LP > 9 GeV/c leading track. Right: HM events with a pch

T, jet > 10 GeV/c.

The ridge yield is further studied with respect to two different event-scales. In the first measurement,
the event-scale is set by requiring a minimum pT cutoff on the leading particle in each event (denoted as
pT,LP), while in the second measurement, a minimum pT cutoff is imposed on the leading jet (denoted
as pch

T, jet).

Figure 4 shows that the ridge structure for 1 < pT, trig (pT,assoc)< 2 GeV/c still persists in high-multiplicity
pp collisions with pT,LP > 9 GeV/c (left) and pch

T, jet > 10 GeV/c (right). It is worth noting that the corre-
lation function obtained with the minimum pch

T, jet selection has a double peak structure which is oriented
along the ∆η axis at ∆ϕ = π . This structure emerges due to the restricted acceptance of the jet tagging,
|ηjet|< 0.4.

Figure 5 shows projected ∆ϕ distributions of the correlation functions in 1.6 < |∆η | < 1.8 with the
minimum pT,LP (lower) and pch

T, jet (upper) requirement. Even with the event-scale selection, the ridge
is still visible on the near-side. The near-side ridge peak increases as the thresholds of pT,LP and pch

T, jet
increase compared to the one measured in unbiased events in Sec. 5.1. The results are compared with
PYTHIA8 String Shoving, PYTHIA8Tune4C, and EPOS LHC calculations. The near-side ridge peaks
are qualitatively reproduced by PYTHIA8 String Shoving and EPOS LHC models. On the other hand,
the PYTHIA8Tune4C does not show the near-side ridge peak for neither of the two event-scale se-
lections, but it gives compatible results for the away-side yield just like the PYTHIA8 String Shoving
model.

The ridge yields as function of the minimum pT,LP (pLP
T,min) and pch

T, jet (pjet
T,min) selections are shown

in Fig. 6. High-multiplicity events with imposed event-scale bias exhibit increased ridge yields when
compared to unbiased HM events. A small increase of the ridge yields as a function of pT,LP or pch

T, jet
is observed and there is no difference between the two event-scale selections within the uncertainties.
Comparisons to model calculations show that PYTHIA8 String Shoving provides a comparable trend
with data, but underestimates the ridge yield. On the other hand, EPOS LHC overestimates the ridge
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Fig. 5: One-dimensional ∆ϕ projections of the correlation functions constrained to 1.6 < |∆η |< 1.8 in HM events
with an additional event-scale bias. Top: with an imposed selection on the leading jet pT, bottom: with an imposed
selection on the leading particle pT. ALICE data are compared with prediction of models.
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Fig. 6: Near-side ridge yield as a function of the pLP
T,min (left) and pJet

T,min (right). Data points (filled circles) show
the ALICE measurement. The statistical and systematic uncertainties are shown as vertical bars and boxes, re-
spectively. As the ridge yield is obtained in the same operational way for data and models, the upper limit of
the systematic uncertainty due to jet contamination, which is 18.9%, is not included in the figure. The data are
compared with predictions of models which are represented by colored bands. The bottom panel shows a ratio of
the models to the data. The uncertainty of the data is represented by the gray band centered around unity.

yield while providing a trend comparable with the data. The origin of the enhanced ridge yields for
higher momentum jet-tagged events is not clear to date but it might be related to the expected smaller
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impact parameters for dijet or multi-jet production events as studied in [60].
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Fig. 7: Near-side jet-like peak yield as a function of the pLP
T,min (left) and pjet

T,min (right). The filled cir-
cles show measurement with ALICE. The statistical and systematic uncertainties are shown as vertical bars
and boxes, respectively. The measurements are compared with model descriptions from PYTHIA8Tune4C,
PYTHIA8 String Shoving, and EPOS LHC for both selections. The total uncertainty of the ratio is represented by
the gray band centered around unity.

Finally, the near-side jet-like peak yield is measured as a function of minimum pT,LP and pch
T, jet in Fig. 7

to further test the models that aim to describe the near-side ridge. EPOS LHC provides comparable
estimates of the near-side jet-like peak yield, while PYTHIA8Tune4C and PYTHIA8 String Shoving
overestimate the near-side yields for both event selections.

In all models if the ridge is due to final-state interactions, e.g., EPOS LHC and PYTHIA 8 String Shov-
ing, one also expects the near-side jet-like peak yield to be affected. This can be observed when compar-
ing the measured near-side jet yields with PYTHIA 8 calculations with and without String Shoving. The
new ALICE results therefore provide constraints beyond traditional ridge measurements that challenge
existing models.

6 Conclusions

Long- and short-range correlations for pairs of charged particles with 1 < pT < 4 GeV/c are studied in
pp collisions at

√
s = 13 TeV with a focus on high-multiplicity events. The ridge and near-side jet yields

are extracted and their event scale dependence have been studied. The obtained long-range ridge yields
are compatible to those observed by the CMS Collaboration [19]. The PYTHIA8 String Shoving model
describes the observed yields qualitatively but the yields it predicts decrease more rapidly with increasing
pT, trig(assoc) than those measured. On the other hand, the EPOS LHC model gives a better description for
the pT, trig(assoc) dependence while overestimating the ridge yield for pT, trig(assoc) < 2 GeV/c. Finally, no
long-range ridge is formed in the PYTHIA8Tune4C model.

The ridge yields are further studied in high-multiplicity events biased with additional event-scale se-
lections, which impose a minimum transverse momentum cutoff on a leading track or jet. The ridge
structure still persists with both selection criteria. The ridge yield increases as pT,LP and pch

T, jet increase.
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PYTHIA8 String Shoving and EPOS LHC estimate qualitatively the trends for the event-scale selec-
tions. However, the former underestimates and the latter overestimates it. The model predictions are also
compared with the yield of the near-side jet-like correlation measured in the biased events. The evolu-
tion of the near-side jet yield as a function of event-scale pT is better captured by EPOS LHC, while the
PYTHIA8 String Shoving calculation tends to overshoot the data. The results might open a new way of
studying the impact parameter dependence of small systems with jet tagged events in the future and will
help to constrain the physical origins of long-range correlations.
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