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Abstract: Hepatocellular carcinoma (HCC) is the most frequent type of primary liver cancer. Low
numbers of HCC patients being suitable for liver resection or transplantation and multidrug resistance
development during pharmacotherapy leads to high death rates for HCC patients. Understanding
the molecular mechanisms of HCC etiology may contribute to the development of novel therapeutic
strategies for prevention and treatment of HCC. UDP-glucose ceramide glycosyltransferase (UGCG),
a key enzyme in glycosphingolipid metabolism, generates glucosylceramide (GlcCer), which is
the precursor for all glycosphingolipids (GSLs). Since UGCG gene expression is altered in 0.8% of
HCC tumors, GSLs may play a role in cellular processes in liver cancer cells. Here, we discuss the
current literature about GSLs and their abundance in normal liver cells, Gaucher disease and HCC.
Furthermore, we review the involvement of UGCG/GlcCer in multidrug resistance development,
globosides as a potential prognostic marker for HCC, gangliosides as a potential liver cancer stem
cell marker, and the role of sulfatides in tumor metastasis. Only a limited number of molecular
mechanisms executed by GSLs in HCC are known, which we summarize here briefly. Overall, the
role GSLs play in HCC progression and their ability to serve as biomarkers or prognostic indicators
for HCC, requires further investigation.

Keywords: glycolysis; GEMs; oxidative phosphorylation; UGCG; glucosylceramide; normal liver
cells; globosides; gangliosides; lacto/neo-lacto series GSLs; sulfatides

1. Background

Liver cancer is the third leading cause of cancer-related deaths worldwide [1]. In 2020,
there were more than 900,000 new cases and 800,000 deaths attributed to this malignancy [1].
Unsettlingly, the incidence of this cancer type is growing, and it is estimated that more
than 1 million new cases will be diagnosed per year worldwide by 2025 [2]. Hepatocellular
carcinoma (HCC) is the most frequent type of primary liver cancer, accounting for 75–90%
of all cases [1,2]. The greatest risk factors for HCC are viral infections by hepatitis B,
which accounts for more than half of all liver cancer cases and deaths, and hepatitis
C [1,2]. In the West, hepatic injury leading to non-alcoholic steatohepatitis (NASH) is
becoming a more prominent risk factor for HCC due to increased rates of obesity, diabetes,
and metabolic syndrome [2]. Treatment options for advanced HCC (which accounts
for 40% of HCCs at diagnosis) are limited to supportive care and systemic therapies
including the multi-tyrosine kinase inhibitors sorafenib, lenvatinib, cabozantinib, and
regorafenib [3,4]; immune checkpoint inhibitors; and monoclonal antibodies [2]. The
recently approved combination therapy employing antibodies against programmed cell
death 1 ligand 1 (atezolizumab) and vascular endothelial growth factor (bevacizumab)
has led to a marked improvement in progression-free and overall survival compared
with the standard of care agent, sorafenib [2]. Despite increased incidence of serious
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adverse events (reviewed in [5]), atezolizumab plus bevacizumab is currently the first-line
treatment for HCC patients (reviewed in [6]). Although novel therapeutic approaches have
been developed, palliative care applies to many HCC patients. Therefore, investigating
the molecular mechanisms underpinning HCC initiation and progression may provide
vital clues to aid the development of novel therapeutic strategies for the prevention and
treatment of HCC. As such, new therapeutics for the treatment of liver cancer are highly
desired and are a global health priority.

Glycosphingolipids (GSLs) contain lipid and sugar moieties. They are important com-
ponents of the cellular membrane and act as signaling molecules in cellular processes such
as apoptosis [7]. Uridine diphosphate (UDP)-glucose ceramide glucosyltransferase (UGCG) cat-
alyzes the first glycosylation step in the synthesis of GSLs. By transferring UDP-glucose to
ceramide, glucosylceramide (GlcCer, cerebroside) is produced, which is the precursor for all
complex GSLs. Therefore, UGCG, which resides in the Golgi apparatus, is the key enzyme
of GSL metabolism. For more detailed insight into GSL production, we refer to our review
from 2020 [8]. By adding a galactose molecule to GlcCer, lactosylceramide (globoside) is
synthesized. More complex GSLs, known as globosides, such as globotriaosylceramide
(Gb3) and gangliosides such as monosialodihexosylganglioside (GM3) are produced by
adding monosaccharides to lactosylceramide (reviewed in [9]). The precursor for sulfatide
(glycosphingolipid sulfate) is galactosylceramide, which is produced in the endoplasmic
reticulum (ER). Sulfatides carry a sulfate ester group attached to the carbohydrate moiety.

Previous studies have demonstrated that UGCG gene expression is altered in 0.8%
of HCC tumors (TCGA, Firehose Legacy) [10,11], and UGCG overexpression is linked to
multidrug resistance development in cancer cells (reviewed in [12]). In hepatoma cells,
UGCG silencing or pharmacological inhibition restored cell sensitivity to sorafenib [13].
Accordingly, glycosphingolipids may play a role in HCC and resistance to sorafenib. With
that said, it is surprising that only a limited number of studies have investigated the role of
UGCG in HCC. Furthermore, most studies investigate complex GSLs, and only recently
(since 2010) has there been an increased number of published studies relating to GSLs
in HCC (Figure 1A). Of interest, novel therapeutic approaches for HCC patients such as
artificial GSLs are currently under investigation. Okuda et al. showed that immunization
with artificial GSLs leads to production of antibodies against α-fetoprotein-L3, which
is an HCC-specific antigen [14]. Another study showed that combination therapy with
an anti-PD-1 antibody and α-galactosylceramide leads to activation of dendritic cells
in Hepa1-6-1 tumors resulting in checkpoint blockade [15]. Clinical trials are currently
underway with α-galactosylceramide in other cancer types such as melanoma and lung
cancer (reviewed in [16]).

In this review, we discuss UGCG in normal liver cells and mention briefly how UGCG
and GSLs influence cells affected by Gaucher disease, an inherited genetic disorder caused
by the deficiency of the enzyme glucocerebrosidase (GBA). Furthermore, we summarize
how GSL species levels are altered in HCC. We will not cover chronic liver diseases such
as NASH, which is an important driver of HCC, since this is already covered in depth
here [19].



Int. J. Mol. Sci. 2022, 23, 4477 3 of 13Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. GSLs and HCC related publications and ceramide concentrations in glycosphingolipid-
enriched microdomains (GEMs) in NMuLi/UGCG OE and control cells. (A) Publications identified 
by the key word combinations HCC glucosylceramide, HCC glycosphingolipids, Gaucher HCC, Gaucher 
liver cancer, liver cancer glycosphingolipids, hepatocellular carcinoma gangliosides, hepatocellular carcinoma 
globosides, hepatocellular carcinoma hexosylceramide, and hepatocellular carcinoma lactosylceramide be-
tween 1967 and 2021 [17]. Notably, the majority of these studies were identified by the keywords 
liver, cancer, and glycosphingolipids. Blue bars represent years 2010 to 2021 (increase in published 
studies). (B) GEMs were isolated by sucrose density centrifugation and GEMs verified by cholesterol 
and GlcCer concentration determination. NMuLi/EV-2 = empty vector control; NMuLi/UGCG OE = 
UGCG overexpressing cells. The GEM verification for these samples is published in [18]. Data are 
represented as a mean of n = 3 ± SEM. Unpaired t test with Welch’s correction. ** p < 0.01. 

Figure 1. GSLs and HCC related publications and ceramide concentrations in glycosphingolipid-
enriched microdomains (GEMs) in NMuLi/UGCG OE and control cells. (A) Publications identified
by the key word combinations HCC glucosylceramide, HCC glycosphingolipids, Gaucher HCC, Gaucher
liver cancer, liver cancer glycosphingolipids, hepatocellular carcinoma gangliosides, hepatocellular carcinoma
globosides, hepatocellular carcinoma hexosylceramide, and hepatocellular carcinoma lactosylceramide be-
tween 1967 and 2021 [17]. Notably, the majority of these studies were identified by the keywords
liver, cancer, and glycosphingolipids. Blue bars represent years 2010 to 2021 (increase in published
studies). (B) GEMs were isolated by sucrose density centrifugation and GEMs verified by cholesterol
and GlcCer concentration determination. NMuLi/EV-2 = empty vector control; NMuLi/UGCG
OE = UGCG overexpressing cells. The GEM verification for these samples is published in [18]. Data
are represented as a mean of n = 3 ± SEM. Unpaired t test with Welch’s correction. ** p < 0.01.
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2. UGCG in Normal Liver Cells

To investigate early onset of UGCG-mediated pro-cancerous changes in normal liver
cells, we overexpressed UGCG in NMuLi (normal murine liver) cells (NMuLi/UGCG
OE) [18]. Overexpression (OE) in NMuLi cells leads to decreased mitochondrial respi-
ration and was rescued by treatment with the UGCG inhibitor EtDO-P4 [18]. The effect
was mediated through accumulation of UGCG-derived GlcCer and lactosylceramide in
ER/mitochondria fractions, which induced mitochondrial superoxide [18]. Other studies
support the finding that GSLs are related to mitochondrial dysfunction (reviewed in [8]).
However, this effect might also be induced by dihydroceramide since dihydroceramide
levels were elevated in ER/mitochondria fractions of UGCG OE liver cells. Siddique et al.
showed that increased dihydroceramide impairs ATP production [20]. However, glycolysis
was also decreased in NMuLi/UGCG OE cells (rescued following EtDO-P4 treatment),
which might be mediated through decreased phosphorylation and subsequent deactivation
of AMP-activated protein kinase (AMPK) α (P-Thr172). This leads to inhibition of energy
producing pathways such as glycolysis [21]. In neural cells (primary astrocytes) activa-
tion of AMPK prevents de novo synthesis of ceramide which prevents rapidly accelerated
fibrosarcoma 1 (Raf-1)/extracellular signal-regulated kinase activation, and apoptosis induc-
tion [22]. Since AMPKα is less phosphorylated, we expected an increase in ceramide levels
in NMuLi/UGCG OE cells. Interestingly, ceramide is lower in glycosphingolipid-enriched
microdomains (GEMs) (fractions 2 and 3, GEMs verification published in [18]) of UGCG over-
expressing normal liver cells compared to control cells (Figure 1B); disproving the described
effect of AMPK on the de novo ceramide synthesis in, at least, normal liver cells. The reduc-
tion in ceramide levels might be due to increased GlcCer production leading to ceramide
clearance. In addition, the expression levels of the liver cancer stem cell (LCSC) markers
(reviewed in [23]) EPCAM, CD13, CD133, CD90.1, and CD44 were lower in NMuLi/UGCG
OE cells compared to control cells [18]. Interestingly, mice without hepatic expression
of acetyl-CoA carboxylase (executes the first step of de novo lipogenesis in the cytosol)
develop liver tumors [24]. A connection between UGCG and acetyl-CoA carboxylase in
murine fibroblasts has been shown by Ishibashi and Hirabayashi [25]. AMPK-induced
phosphorylation and subsequent inhibition of acetyl-CoA carboxylase leads to decreased
UGCG activity and lowered GlcCer levels. Inhibition of acetyl-CoA carboxylase lowers the
production of malonyl-CoA, which is essential for fatty acid synthesis [26]. However, we
could not detect a clear trend to determine whether UGCG and acetyl-CoA carboxylase are
connected in the context of liver tumor development [18]. In summary, overexpression of
UGCG/GlcCer in normal liver cells did not induce pro-cancerous cellular processes.

3. UGCG and Gaucher Disease

Mutation of the glucocerebrosidase (GBA) gene results in GlcCer accumulation and is de-
scribed as the lysosomal storage disease Morbus Gaucher [27]. More than 450 gene mutations
for GBA1 have been identified. Gaucher disease patients exhibit heterogeneous phenotypes.
The age of onset and the absence/presence or extent of neurological complications defines
the clinical Gaucher disease type. Type 1 is defined as non-neurological, Type 2 as acute
neuronopathic, and type 3 as chronic neuronopathic (reviewed in [28]). Morbus Gaucher
patients exhibit hypermetabolism [27] (reviewed in [29]) and an increased risk for liver
cancer [30]. Therefore, it is noteworthy to identify the role of GlcCer in liver cell metabolism
and how GlcCer contributes to the pathology of liver tumors. Tumor development in
Gaucher disease patients is linked to chronic cell and tissue inflammation. Accordingly, the
immune system is dysregulated (reviewed in [31,32]). In addition, autophagic processes are
changed in Gaucher disease patient cells (reviewed in [31]). Future studies with immune
cell infiltration experiments following grafting of UGCG overexpressing cells in mice would
be helpful to elucidate molecular mechanisms induced by UGCG. We recommend reading
the review from Wątek et al. for detailed information about how GlcCer accumulation
influences immunomodulatory functions and therefore contributes to carcinogenesis in-
duction in Gaucher disease patient cells [33]. An alternative metabolic pathway leads to
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lyso-GlcCer (glucosylsphingosine) in a Gaucher disease mouse model (reviewed in [34]).
We suggest reading the review from Stirnemann et al. for detailed information about how
the biomarker lyso-GlcCer for Gaucher disease patients contributes to Gaucher disease
pathology (reviewed in [34]).

4. Glycosphingolipids in HCC
4.1. UGCG/GlcCer

Previous studies have shown that UGCG expression is altered in 0.8% of HCC tumors
(TCGA, Firehose Legacy) [10,11]. UGCG gene expression is increased in HCC tissue
compared to non-cancerous tissue [10,11,34] and Li et al. showed upregulation of GlcCer
(hexosylceramide) in serum samples of HCC patients [35] (Table 1). Interestingly, in a review
by Simon et al. it was reported that during HCC development, cellular ceramide levels
decrease, and sphingosine-1-phosphate (S1P) levels increase [19]. This decrease in ceramide
supports tumor growth and inhibits apoptosis, which correlates with the high proliferative
capacity of HCC (reviewed in [19]). Besides S1P production, ceramide clearance is also
achieved by UGCG, which again poses the question of how GSLs are involved in HCC
development. Jennemann et al. showed delayed tumor growth in diethylnitrosamine (DEN)-
induced liver tumors in mice, which exhibit a liver specific UGCG knockout (KO) [36]. The
effect is mediated by decelerated cytokinesis, but the precise molecular mechanisms are
unknown. Interestingly, the sphingomyelin concentration is increased in normal liver and
tumor tissues of liver specific UGCG KO mice, which could be a cellular mechanism to
avoid ceramide induced apoptosis [36]. Since a lack of GSLs per se does not prevent liver
tumor development, other proteins/pathways, beside UGCG, may play a role in HCC
development. Indeed, UGCG mRNA expression and GlcCer levels are increased in the
livers of mice with mechanistic target of rapamycin (mTOR)-activated HCC tumors, and
UGCG inhibition reduced proliferation of hepatocytes, tumor burden, and markers of liver
damage [37]. These data suggest that UGCG is indeed involved in tumor development,
but only when carcinogenesis was already activated.

Table 1. Glycosphingolipid deregulation in HCC.

Glycosphingolipid
Species Change Effect References

GlcCer ↑
Unknown [10,11,35,36]

tumor development via mTOR [37]
Sorafenib resistance [13]

Lactosylceramide ↑ Unknown [35,38,39]
DSGG, Gb3, Gb2 ↑ Unknown [40]

Gb3, Gb4 ↓ Unknown [39]

Globo H ↑ Unknown [41]
Liver CSC [42]

Iso-Gb4 ↑ Unknown [43]
GM2 ↑ Unknown [44,45]
GM3 ↓ Unknown [44]
GM3 ↑ Cell migration [46–48]

Gangliosides in general ↑ Liver progenitor-like cells and
liver CSC [49]

GM1 ↑ In EpCAM positive CSC-like
HCC cell line JHH7 [49]

Gangliosides in general ↑ Natrin-induced apoptosis [50]
Fucosyl GM1 ↑ Unknown [40]

GD3 ↑ Inhibition of survival pathways [51,52]
GD1α ↑ Unknown [44]

CD75s- and
iso-CD75s-gangliosides ↑ Unknown [53]
NeuGcGM3 ganglioside ↑ Unknown [54]

Fucosylated GSLs ↑ Unknown [41]
Sulfatides ↑ Tumor metastasis [55–57]

Table legend: GSLs = glycosphingolipids, CSC = cancer stem cells, EpCAM = epithelial cellular adhesion molecule,
HCC = hepatocellular carcinoma, GlcCer = glucosylceramide, mTOR = mechanistic Target of Rapamycin.



Int. J. Mol. Sci. 2022, 23, 4477 6 of 13

The role of UGCG in liver tumorigenesis is likely mTOR-dependent and mTORC2
might be a potential target to treat HCC. Another study showed sorafenib induced UGCG
expression leading to sorafenib resistance in liver cancer cells [13]. However, following
UGCG inhibition, no alterations in phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)
and RAF)/mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase
signaling were detected in liver cancer cells [30]. These, compared to normal liver cells,
are contradictory study results. This contradiction could be related to the induction of the
mentioned signaling pathways rather in the onset of carcinogenesis than to the induction
of these signaling pathways in established cancer cells. Interestingly, downregulation of
ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) in the human liver cancer cell line
HepG2 led to increased levels of GlcCer (C16, C22, C24:0) and downregulation of ORMDL1
also led to an increase in GlcCer levels (C16, C20, C22, C24) to an even greater extent [58].
Furthermore, irritant-induced inflammation decreased ORMDL protein expression and
increased GlcCer levels (C22, C24) in the livers of mice. These data indicate that ORMDLs
may be involved in regulation of ceramides during interleukin-1-mediated sterile inflam-
mation in liver cancer cells [58]. Ying et al. utilized data from the UALCAN web resource
to show that the expression of glucosylceramidase beta 3 (GBA3) is significantly decreased in
HCC tissues [59], leading to GlcCer accumulation. In contrast to GBA1 (lysosomal) and
GBA2 (extra-lysosomal), GBA3 is localized in the cytosol and exhibits its highest activity
at neutral pH (GBA3 identified by Hayashi et al. [60]). GBA3 mRNA expression is signifi-
cantly lower in HCC than in non-tumor liver tissue (328 HCC samples, 151 non-tumorous
liver tissues) [59]. Furthermore, HCC patients with low GBA3 expression have a shorter
survival time and a poor prognosis. Accordingly, high GBA3 expression (lower GlcCer
levels) in HCC may favor a better prognosis.

4.2. Globoside Lactosylceramide

There is a limited number of published studies about lactosylceramide and how they
impact HCC (Table 1). One study identified lactosylceramide as a biomarker in five types
of HCC cell lines [38]. Another study analyzed serum samples of HCC patients and
showed that lactosylceramide is increased [35]. Souady et al. also showed enrichment of
lactosylceramide in cancerous liver tissue compared to healthy tissue [39]. Further research
is needed to clarify whether this GSL species might be a novel therapeutic target in HCC.

4.3. Globosides (DSSG, Gb3, Gb2, Globo H, Gb4, iso-Gb4)

Disialosyl galactosyl globoside (DSGG), Gb3, and Gb2 are increased in the serum of HCC
patients compared to the serum of healthy individuals [40]; therefore, they may serve as
prognostic markers for this disease (Table 1). This is the first time DSGG has been shown
to be highly expressed in HCC [40]. DSSG has been linked to metastatic potential in renal
cell carcinoma [61]. Contradictory data from Souady et al. showed reduced expression of
Gb3 and Gb4 in malignant liver tissue [39]. However, Globo H (Fucosyl-Gb5) might be a
potential prognostic marker for HCC patients as well, since Zhu et al. showed that Globo H
is only expressed in human HCC tissues, but not in peritumoral tissues [41]. Furthermore,
Su et al. showed that Globo H is expressed on cancer stem cells generated from Hepa-1
cells [42], while Ariga et al. showed accumulation of iso-Gb4 in female rat hepatomas [43].
Thus, globosides may play a role in HCC development and serve as markers for malignant
liver tissue.

4.4. Gangliosides (GM1, GM2, GM3, GD3, NeuGcGM3 Ganglioside)

Very early studies showed that GM2 levels are increased in two HCC samples com-
pared to normal liver tissue [44,45] and that GM3 levels are decreased in two HCC samples
compared to normal liver tissue [44]. However, GM3 is involved in cell migration, which is
an important step in the process of metastasis. Li et al. showed that GM3, but not GM2,
inhibited epidermal growth factor-stimulated cell migration and promoted the hepatocyte
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growth factor-stimulated migration in Hepa1–6 cells (Figure 2A). These effects are mediated
through the activation of the PI3K/Akt signaling pathway [46–48].
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Su et al. showed that ganglioside synthesis is increased in the livers of mice in an ani-
mal model featuring activation and expansion of liver progenitor-like cells and liver cancer
(stem) cells [49]. Together with elevated ganglioside synthesis, the expansion of mouse
hepatic stem/progenitor cells was increased. Furthermore, GM1 ganglioside levels were
significantly higher in the epithelial cellular adhesion molecule (EpCAM) positive cancer stem
cell (CSC)-like HCC cell line JHH7 (Table 1 and Figure 2B). D-threo-1-phenyl-2-decanoylamino-
3-morpholino-1-propanol (D-PDMP), an inhibitor of UGCG, decreased ganglioside synthesis
and suppressed cell proliferation and spheroid growth of JHH7cells; whereas apoptotic
and necrotic cell death were not impacted [49]. PDMP effects were attributed to decreased
expression of Aurora kinase A, Aurora kinase B, protein kinase TKK, kinetochore protein
NDC80 homolog, Ki67, and CCNB1; whereas p53 was increased (Figure 2B). Accordingly,
p53 may have led to the decrease in expression of the aforementioned cell cycle/cytoskeletal-
regulatory proteins. Interestingly, the inhibition of ganglioside synthesis also changed the
lipid composition of liver cancer cells [49]. The authors conclude that blocking ganglioside
synthesis might be a novel therapeutic option for HCC patients [49]. However, since PDMP
blocks UGCG at the first key step in GSL synthesis, the study results from Su et al. do not
clearly indicate that the described effect is ascribable to gangliosides or possibly GlcCers.

Interestingly (and contrary to other studies), natrin (purified from snake venom
and a member of the cysteine-rich secretory protein (CRISP) family) exhibits anticancer
activity in HCC by inhibiting cell proliferation and inducing apoptosis. Lu et al. identified
gangliosides as potential biomarkers for natrin-induced apoptosis [50]. Following natrin
treatment, gangliosides increased in concentration, as well as the ratio of Bax to Bcl-2, which
indicates higher susceptibility of cells to apoptosis. Since UGCG/gangliosides are increased
in HCC, the question arises whether cells might reach a point of excessive ganglioside
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accumulation and therefore apoptosis would be induced. Additionally, more research is
required about which specific ganglioside species are changed in HCC.

Another important parameter to consider is the immune response in HCC develop-
ment. Zhu et al. investigated immune responses based on the HCC cohort of The Cancer
Genome Atlas (TCGA) database [62]. By assigning immune cell types to three different
immunity groups (low, medium, and high) and following Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis, the authors showed that the immunity groups differ in
gene expression of ganglio series GSL producing proteins [62] (Figure 2B). This poses the
question as to whether the immune response (immune cell infiltration of the tumor) can be
influenced and therefore immunotherapy enhanced.

Wu et al. showed increased fucosyl GM1 levels in the serum of HCC patients, which
indicates a potential prognostic marker function of this ganglioside [40]. However, during
induction of rat hepatoma by DEN, GD3 increased in malignant tissues compared to
normal tissue, as well as the appearance of precancerous hepatocytes [51]. Furthermore,
the ganglioside GD3 induces cell death by targeting mitochondria and engagement of
the apoptosome leading to inhibition of survival pathways in HCC, which is reviewed
here [52]. However, GD1α is increased in two HCC samples compared to normal liver
tissue [44].

CD75s-(Neu5Acα6Galβ4GlcNAcβ3Galβ4Glcβ1Cer) and iso-CD75s-gangliosides
(Neu5Acα3Galβ4GlcNAcβ3Galβ4Glcβ1Cer) are increased in HCC tissue, but independent
of ST6GAL1 and ST3GAL6 expression [53]. NeuGcGM3 ganglioside is overexpressed in
HCC as well [54]; therefore it might be a potential target for HCC therapy. Additionally, gan-
glioside depletion reduces integrin-mediated cell adhesiveness of rat hepatoma cells [63].

4.5. Lacto/Neo-Lacto Series Glycosphingolipids

Zhu et al. showed that fucosylated GSLs are overexpressed in HCC samples compared
to the adjacent tissue [41]. In detail, Fuc(Hex)3HexNAc-Cer (Fucα2Galβ3GlcNAcβ3Galβ4
Glcβ1Cer, Fucα2Galβ4GlcNAcβ3Galβ4Glcβ1Cer (H5-2), Fucα3(Galβ4)GlcNAcβ3Galβ4
Glcβ1Cer, Fucα4(Galβ3)GlcNAcβ3Galβ4Glcβ1Cer), Fuc2(Hex)3HexNAc-Cer (Fucα2Galβ3
(Fucα4)GlcNAcβ3Galβ4Glcβ1Cer (Leb-6), Fucα2Galβ4(Fucα3)GlcNAcβ3Galβ4Glcβ1Cer
(Ley-6)), and Fuc(Hex)4HexNAc-Cer (Fucα2Galβ3GalNAcβ3Galα4Galβ4Glcβ1Cer) are ex-
pressed in HCC samples [41]. More research is needed to shed light on the role of the
fucosylated lacto/neo-lacto series GSLs in HCC and in cancer in general.

4.6. Sulfatides (Glycosphingolipid Sulfates)

Sulfatides are highly expressed in HCC [55] and regulate integrin αV expression and
cell adhesion in hepatoma cells [56]. The regulatory mechanisms are based on complexing
of sulfatide with paired amphipathic helix protein (SIN3B) leading to reduced binding affinity
of SIN3B to histone deacetylase 2 (HDAC2). Subsequently, HDAC2 recruitment to the integrin
αV gene promoter is reduced and the promoter thereby activated. This leads to enhanced
tumor metastasis [57] (Table 1).

5. Conclusions

UGCG/GlcCer is potentially involved in the development of sorafenib resistance
in HCC (Table 1). The complex GSL species globoside, which Globo H belongs to, may
serve as a prognostic marker for HCC (Table 1). Gangliosides such as GM1 might act as a
potential liver cancer stem cell marker in HCC therapy and sulfatides are involved in tumor
metastasis (Table 1). Gaucher disease patients are treated either with an enzyme replacement
therapy (ERT) or substrate reduction therapy (SRT). SRT encompasses treatment with the
UGCG inhibitors eliglustat (first-line therapy) [64] or miglustat. Currently, venglustat is
under phase III clinical trials for Fabry disease, autosomal dominant polycystic kidney
disease, and other diseases [65]. However, the application of UGCG inhibitors in HCC
and in general in cancer patients is limited since a systemic UGCG blockage has severe
effects on the organism. Inhibition of the key enzyme of the GSL metabolism interrupts the
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complete GSL production and results in apoptosis. This might be the reason why only a
limited number of studies about miglustat and its application in tumors are published.

Only recently Jenneman et al. conducted a study using the UGCG inhibitor Genz-
123346 in a colorectal tumor mouse model [66]. Mice fed Genz-123346 developed fewer
and smaller tumors and exhibited a lower count of Ki67-positive cells in tumor-free colon
crypts. Respectively, Genz-123346 may present a novel therapeutic approach for colorectal
cancer. However, it is important to investigate the role of specific GSL species in HCC,
which is challenging since the analytical methods, such as LC-MS/MS, are limited in the
ability to differentiate between all GLS species. The detection of galactose and glucose
fractions in GSLs still needs to be optimized (hexosylceramides). Furthermore, inhibitors
for specific GSL species are not available. In the case of the Gb3 synthase (A4GALT), the
reason is the unknown crystal structure of the protein (reviewed in [67]). A more promising
approach for using GSLs in cancer therapy would be to use them for tumor tissue labeling.

Many cancer types overexpress certain GSL species such as GD2 and Gb3. GD2 is
almost not expressed in normal tissue (reviewed in [68]). Being shed from cancer cells,
GD2 influences immune response. Studies show that GD2 blocking through antibody
binding (cancer immunotherapy) leads to apoptotic cell death (reviewed in [68]). Gb3
functions as a receptor for the Shiga toxin. Artificially altered Shiga toxins can be used for
labeling the tumor tissue and delivering drugs to the tumor tissues in the patient (reviewed
in [69]). Furthermore, antibody-conjugated nanoparticles, targeted against certain GSL
species, could also be used for targeted drug delivery. However, the role of GSLs in cancer
development, and opportunities to target them or use them as cancer biomarkers remains
unclear and warrants further investigation.
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AKT phosphatidylinositol 3-kinase (PI3K)/protein kinase B
AMPK AMP-activated protein kinase
CRISP cysteine-rich secretory protein
CSC cancer stem cell
DEN diethylnitrosamine
D-PDMP D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol
DSGG disialosyl galactosyl globoside
EpCAM epithelial cellular adhesion molecule
ER endoplasmic reticulum
ERT enzyme replacement therapy
GBA glucocerebrosidase
GBA3 glucosylceramidase beta 3
Gb3 globotriaosylceramide
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GEMs glycosphingolipid-enriched microdomains
GlcCer glucosylceramide
GM3 monosialodihexosylganglioside
GSLs glycosphingolipids
HCC Hepatocellular carcinoma
HDAC2 histone deacetylase 2
KEGG Kyoto Encyclopedia of Genes and Genomes
KO knockout
LCSC liver cancer stem cell
lyso-GlcCer glucosylsphingosine
MAPK mitogen-activated protein kinase
mTOR mechanistic Target of Rapamycin
NASH non-alcoholic steatohepatitis
OE Overexpression
ORMDL3 ORMDL sphingolipid biosynthesis regulator 3
RAF rapidly accelerated fibrosarcoma
S1P sphingosine-1-phosphate
SIN3B paired amphipathic helix protein
SRT substrate reduction therapy
TCGA The Cancer Genome Atlas
UGCG UDP-glucose ceramide glycosyltransferase
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