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Abstract

Annihilation dynamics plays a fundamental role in the baryon–antibaryon interaction (B–B) at low-
energy and its strength and range are crucial in the assessment of possible baryonic bound states.
Experimental data on annihilation cross sections are available for the p–p system but not in the
low relative momentum region. Data regarding the B–B interaction with strange degrees of free-
dom are extremely scarce, hence the modeling of the annihilation contributions is mainly based on
nucleon–antinucleon (N–N) results, when available. In this letter we present a measurement of the
p–p, p–Λ⊕p–Λ and Λ–Λ interaction using correlation functions in the relative momentum space in
high-multiplicity triggered pp collisions at

√
s = 13 TeV recorded by ALICE at the LHC. In the p–p

system the couplings to the mesonic channels in different partial waves are extracted by adopting
a coupled-channel approach with recent χEFT potentials. The inclusion of these inelastic channels
provides good agreement with the data, showing a significant presence of the annihilation term down
to zero momentum. Predictions obtained using the Lednický–Lyuboshits formula and scattering
parameters obtained from heavy-ion collisions, hence mainly sensitive to elastic processes, are com-
pared with the experimental p–Λ⊕ p–Λ and Λ–Λ correlations. The model describes the Λ–Λ data
and underestimates the p–Λ⊕ p–Λ data in the region of momenta below 200 MeV/c. The observed
deviation indicates a different contribution of annihilation channels to the two systems containing
strange hadrons.

*See Appendix B for the list of collaboration members

ar
X

iv
:2

10
5.

05
19

0v
3 

 [
nu

cl
-e

x]
  9

 D
ec

 2
02

2

http://creativecommons.org/licenses/by/4.0


Investigating the role of strangeness in baryon–antibaryon annihilation ALICE Collaboration

1 Introduction and physics motivation

The baryon–antibaryon interaction (B–B) is dominated at low energies by annihilation processes, in
which transitions from a state, typically composed of only mesons, to a B–B state and vice versa are
occurring. Since the first measurement of the proton-antiproton (p–p) cross section [1], a rich sample of
experimental data has become available, mainly in the nucleon–antinucleon (N–N) sector. Low-energy
scattering experiments [2–4] delivered data on the total cross section, on the elastic (pp→ pp) and charge-
exchange (pp→ nn) cross sections, down to laboratory momenta plab ≈ 200 MeV/c. Measurements of
the annihilation cross section reach even lower momenta but are affected by significant uncertainties
and in particular the momentum region close to the p–p threshold is currently lacking any experimental
constraint. This region is however of particular interest for the theoretical modeling of p–p interaction
since the interplay between the Coulomb and the annihilation dynamics is dominant.
At threshold, measurements of the energy level shifts and widths of p–p atoms [5] enabled the extraction
of the spin-averaged scattering parameters, confirming a non-zero imaginary part of the scattering length
related to the presence of inelastic channels due to the annihilation processes.
Great effort was made in the theoretical description of the short-range interaction (below 1 fm) of p–p
systems since a stronger elastic attraction, with respect to the p–p case, is expected to occur in some spin-
isospin channels, leading to predictions of the existence of bound states (baryonia) [5, 6]. Findings of
broad resonances and enhancements in the p–p invariant mass [7–10] measured in the decays of charmed
and bottom mesons were reported but no clear evidence of such bound states has been found yet. A
precise understanding of the annihilation dynamics is required to assess the existence of such states since
the bound spectrum could be washed out by the B–B annihilation part of the interaction. The annihilation
term in the N–N sector is typically described in chiral-effective potentials [11], meson-exchange [12–14]
and quark models [15] by means of phenomenological optical potentials and contact interactions with
parameters to be fixed from the available data. The search for baryonia states for B–B systems in the
strangeness sector with hyperons (Y) and antihyperons (Y), e.g. N–Y, Y–Y is even more challenging
since the experimental informations are very scarce, with pp→ ΛΛ being the only measured strangeness
exchange process [5]. Consequently, the modeling of the annihilation for systems as Y–Y (e.g. Λ–Λ)
is mainly based on the N–N interaction [16–19]. Measurements of the p–Λ invariant mass spectra in
photoproduction processes γp→ ΛΛp will become available in the next years [20], but currently no
experimental informations neither theoretical predictions are present for B–B interactions involving a
nucleon (antinucleon) and an antihyperon (hyperon) such as p–Λ.
The study of annihilation in B–B systems with strangeness is also of great interest for the modeling of
the re-scattering phase in heavy-ion collisions (HIC). Several observables as particle spectra and yields
strongly depend on the processes occuring at this stage of the HIC evolution, the B–B annihilation
processes above all. Currently in HIC, the annihilation interaction for pairs containing strangeness is
either modeled assuming scattering parameters similar to p–p or with an ad-hoc suppression of the cross
section with respect to the p–p counterpart [21, 22].
The present theoretical understanding of the B–B interaction requires additional precise data particularly
in the low-momentum region, where the inelastic contributions from annihilation are relevant. This
would shed light on the presence of baryonia bound states and on how the annihilation dynamics changes
for systems with strangeness.
A step in this direction has recently been achieved with the measurements of two-particle correlations
in the momentum space for p–p, p–Λ and Λ–Λ pairs performed in ultra-relativistic Pb–Pb collisions
at LHC [23]. The extracted spin-averaged scattering parameters are in agreement for all B–B pairs
indicating that the annihilation part for all B–B pairs is similar at the same relative momentum. The p–Λ

pairs were also measured in Au–Au collisions at RHIC [24], but these results might be biased by the
neglected residual correlations [21]. Measurements of hadron–hadron correlations have been performed
in small colliding systems such as pp and p–Pb, and they delivered the most precise data on baryon–
baryon and meson–baryon pairs, enabling access to the short-range strong interaction [25–31]. This kind
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of measurements in pp collisions can probe inter-particle distances of around 1 fm and are sensitive to
the presence of inelastic channels, below and above threshold [27, 32, 33].
In this letter we present the measurements of the correlation functions of p–p, p–Λ⊕p–Λ and Λ–Λ pairs
in pp collisions at

√
s = 13 TeV with the ALICE detector [34, 35]. To better constrain the interaction,

a differential analysis in pair-transverse-mass (mT) intervals has been performed for the p–Λ⊕p–Λ and
Λ–Λ pairs. The work presented in this Letter delivers the most precise data at low momenta for p–p,
p–Λ and Λ–Λ systems and provides additional experimental constraints for the modeling of the B–B
interaction.

2 Data analysis

The main ALICE subdetectors [34, 35] used in this analysis are: the V0 detectors [36] used as trig-
ger detectors, the Inner Tracking System (ITS) [37], the Time Projection Chamber (TPC) [38] and the
Time-of-Flight (TOF) detector [39]. The last three are used to track and identify charged particles. The
high-multiplicity (HM) sample used in this analysis corresponds to 0.17% of all inelastic pp collisions
with at least one measured charged particle within |η | < 1 (referred to as INEL>0) [29, 30]. The cor-
responding HM trigger is defined by coincident hits in both V0 detectors synchronous with the collider
bunch crossing and by requiring as well that the sum of the measured signal amplitudes in the V0 exceeds
a multiple of the average value in minimum bias collisions. The rejection of pile-up events have been
applied by evaluating the presence of additional event vertices as done in [29,31] and a total of 1.0×109

HM events are selected.
Protons and antiprotons are reconstructed using the procedure described in Refs. [29, 31]. Primary pro-
tons and antiprotons are selected in the transverse momentum range 0.5 < pT < 4.05 GeV/c and pseu-
dorapidity |η | < 0.8. A minimum of 80 out of the 159 available spatial points (hits) inside the TPC
are required to obtain high-quality tracks. The TPC and TOF detectors select p (p) candidates by the
deviation nσ between the signal hypothesis for the considered particle and the experimental measure-
ment, normalized by the detector resolution σ [29, 31]. For candidates with p < 0.75 GeV/c, the particle
identification (PID) is performed with the TPC only. For larger momenta, the PID information of TPC
and TOF are combined. The candidates are accepted if their |nσ | < 3. To reject non-primary protons
(antiprotons), the distance of closest approach (DCA) of the candidates tracks to the primary vertex is
required to be less than 0.1 cm in the xy-plane and less than 0.2 cm along the beam axis. Contributions
of secondary (anti)protons stemming from weak decays and misidentified candidates are extracted using
Monte Carlo (MC) template fits to the measured distance of closest approach (DCA) distributions of the
to the primary vertex [25]. The resulting p (p) purity is 99.4% (98.9%). The corresponding fraction of
primary particles is 82.2% (82.3%).
The reconstruction of the Λ (Λ) candidates, via their weak decay Λ→ pπ

− (Λ→ pπ
+) [40], is per-

formed following the procedures described in Refs. [29, 31]. A final selection is applied based on the
reconstructed invariant mass [29, 31]. The obtained Λ (Λ) purity is 95.2% (96.1%). Primary and sec-
ondary contributions for Λ and Λ are extracted in a similar way as for protons, via fits to the cosine of
the pointing angle distributions using MC templates. The fraction of primary Λ (Λ) hyperons is about
57%. Secondary contributions from weak decays of neutral and charged Ξ baryons amount to 22%. The
remaining fractions are attributed to Σ0 (Σ0) particles. Systematic uncertainties on the data are evaluated
by varying the kinematic and topological selection criteria following [29, 31].

3 Analysis of the correlation function

The main observable in the analysis presented here is the two-particle correlation function C(k∗), which
depends on the relative momentum k∗ evaluated in the pair rest frame [25]. In femtoscopy measurements,
the final state is fixed to the measured particle pair and the corresponding correlation function is sensitive
to all the available initial, elastic and inelastic, channels produced in the collision [32, 33]. For the study
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of the B–B interaction, the single-channel Koonin-Pratt equation [41] has to be modified in order to
accommodate the inelastic contributions stemming from the annihilation channels [32, 33].
Assuming that the interaction of the pair in the final state i is affected by the inelastic channels j, the
Koonin-Pratt formula is modified by the introduction of an additive term related to the processes j→
i [32, 33, 42]:

Ci(k∗) =
∫

d3r∗S(r∗)|ψi(k∗,r∗)|2 +
N

∑
j 6=i

ω j

∫
d3r∗S(r∗)|ψ j(k∗,r∗)|2. (1)

The first integral on the right-hand side describes the elastic contribution where initial and final state
coincide, while the second integral is responsible for the remaining inelastic processes j→ i. This last
integral depends on two main ingredients: the wave function ψ j(k∗,r∗) for channel j going to the final
state i and the conversion weights ω j. These latter quantities can be written as ω j = ωs

j×ω
prod
j , in which

ω
prod
j is related to the amount of j pairs produced in the initial collision and kinematically available to be

converted to the final measured state. Quantitative estimates on these production weights can be obtained
combining thermal model calculations of particle yields [43] with kinematics constraints from transport
models [44]. If the assumed inelastic wave function ψ j(k∗,r∗) is properly accounting for the coupling
strength, the corresponding ωs

j weight is equal to unity.
Recent femtoscopic measurements by the ALICE Collaboration performed on K−–p pairs in pp [27] and
in Pb–Pb collisions [45] showed that by changing the colliding system, and hence the size of the emitting
source S(r∗), the effects on the C(k∗) due to the inelastic contributions given by the last term in Eq. (1)
are enhanced or suppressed. The wave functions ψ j(k∗,r∗) related to the inelastic channels are localized
at distances r∗ approximately below 1.5-2 fm and equal to zero above. Hence, performing femtoscopic
measurements with a large emitting source, as it occurs in central heavy-ion collisions (r∗ above 5 fm),
results in a correlation function mainly dominated by the elastic contribution, given by the first term of
Eq. (1). For this reason, the C(k∗) measured in Pb–Pb can be modeled with the single-channel Led-
nický–Lyuboshits formula [42] assuming a complex scattering length f0, in which the imaginary part
I f0 accounts for an average inelastic contribution from all j channels.
These inelastic contributions become more relevant when performing the same measurement in small
colliding systems as pp, where the emitting source size is of the order of 1 fm [46] and the modeling
of the C(k∗) requires the knowledge of the exact elastic ψi(k∗,r∗) and inelastic ψ j(k∗,r∗) wave func-
tions obtained from the solution of a coupled-channel approach [46]. If the theoretical modeling of the
interaction properly accounts for the inelastic channels (ωs

j = 1), the use of the modified Koonin-Pratt

formula in Eq. (1) with a proper estimate of the production weights ω
prod
j will describe the data in both

small and large colliding systems as shown in [45] for the K−–p system. The use of the single-channel
Lednický–Lyuboshits model will only be applicable if the wave functions ψ j(k∗,r∗) would be strongly
suppressed, corresponding to a very weak coupling to the inelastic channels.
The B–B interaction investigated in this work is less known with respect to the K−–p case in [27, 45],
hence two different approaches have been used to calculate the theoretical correlation for the p–p and the
Λ–Λ, p–Λ pairs, respectively. For both approaches the CATS framework is used [47].
The genuine p–p correlation is modeled either by assuming a Coulomb-only interaction or by also includ-
ing a strong interaction from N–N chiral effective (χEFT) potentials at next-to-next-to-next-to-leading
order (N3LO) [11]. The p–p wave functions, available for S (1S0,3S1) and P (1P1,3P0,3P1,3P2) partial-
waves (PW), have been evaluated within a coupled-channel formalism in which only the coupling to
the charge-exchange n–n channel is explicitly included. The formula in Eq. (1) is used for the genuine
p–p correlation function with the chiral wave functions for the elastic i = p–p and the charge-exchange
channel j = n–n [11]. The wave functions ψPW

X→pp, accounting for the multi-meson annihilation channels
j = X , are not currently available. The annihilation contribution is implicitly present in the χEFT poten-
tials in [11] since the parameters of the model are constrained to the most-recent partial-wave analysis
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on the available p–p and N–N cross sections [4].
The Migdal-Watson approximation [48] is used as an approximate way to explicitly include the ad-
ditional j = X annihilation channels. This approximation relies on the fact that these X multi-meson
channels open below the p–p threshold and hence the momentum dependence of the annihilation poten-
tial VX→pp around the p–p threshold can be neglected. The wave functions ψPW

X→pp for each PW can be
rewritten in terms of the elastic component as ωPWψPW

pp→pp, with the weights ωPW to be determined from
data. These latter weights are directly connected to the conversion weights ω j in Eq. (1) with the strong
coupling term ωs

j extended to the different PW states. A detailed estimate of the yields and kinematics of

the annihilation channels (ωprod
j ), necessary to isolate the strong coupling term in each PW, is not trivial

since it involves contributions stemming from multi-pions channels and it should include also intermedi-
ate states of resonances strongly decaying into pions. For this reason, the extracted weights ωPW in this
work contain informations not only on the coupling strength of the mesonic channels to p–p, but also on
the abundances of the contributing multi-meson channels produced in the initial state.
The modeled correlation function reads [33]:

Cp–p(k∗) =
∫

S(r∗)|ψpp→pp|2d3r∗+
∫

S(r∗)|ψnn→pp|2d3r∗+∑
PW

ρPWωPW

∫
S(r∗)|ψPW

pp→pp|2d3r∗

=Cpp→pp(k∗)+Cnn→pp(k∗)+∑
PW

CPW
X→pp(k

∗). (2)

The first and second terms describe the elastic and n–n contributions, while the last term accounts for
the annihilation channels. The degeneracy in spin and angular momentum is embedded in the statistical
factors ρPW. To reduce the number of ωPW weights to be fitted, a study on the shape of the single inelastic
correlation terms CPW

X→pp(k
∗) is performed in each partial wave. The correlations with a different profile

in k∗ are selected, allowing to determine three representative contributions: the 1S0 for S states, the 1P1
and 3P0 for P states.
For the two systems containing strangeness, p–Λ and Λ–Λ, no theoretical wave functions are currently
available, hence the single-channel Lednický–Lyuboshits analytical formula with a complex scattering
length f0 is used to evaluate the theoretical correlations [23, 42]. As mentioned above, in this single-
channel approach, only the elastic contributions are explicitly accounted for in the R f0, corresponding
to the first term in Eq. 1. The imaginary part I f0 accounts for an average over all the inelastic con-
tributions of the B–B interaction, mainly dominated by annihilation. The same approach has been used
in the ALICE femtoscopic measurements in Pb–Pb collisions [23], which delivered the only available
scattering parameters on both the p–Λ and Λ–Λ interaction. For the latter, theoretical predictions are
available [16], providing values for the scattering parameters compatible with the ALICE Pb–Pb re-
sults [23].
The emitting source in Eq. 1 can be determined as a function of the pair-transverse-mass mT with a
data-driven model based on proton-proton correlations [31]. This allows us to investigate the interaction
for different particle pairs. The properties of the underlying interaction in p–Λ and Λ–Λ systems do
not depend on mT and can hence be better constrained using a mT differential analysis. Considering the
available sample, 6 and 3 mT intervals are used for the p–Λ and Λ–Λ measured correlations, respectively.
These experimental correlations are compared, in each mT interval, to the Lednický–Lyuboshits model
by assuming at first the scattering parameters obtained in the Pb–Pb analysis [23]. Secondly, a simulta-
neous fit for each pair in all the available mT bins is performed leaving the I f0 to vary in order to test if
a better agreement with the data is achieved. Further discussions on the two different fitting procedures
can be found in the next section.

Experimentally, the correlation function is defined as
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C(k∗) = N
NSE(k∗)
NME(k∗)

k∗→∞−−−→ 1. (3)

Here NSE(k∗) is the distribution of pairs measured in the same event, NME(k∗) is the reference distribu-
tion of uncorrelated pairs sampled from different (mixed) events and N is a normalization parameter
determined by requiring that particle pairs with large k∗ are not correlated. The mixed-event sample is
obtained by pairing particles stemming from events with a similar number of charged particles at midra-
pidity and a close-by primary vertex position along the beam direction as done in [27, 29, 30]. The
correlation functions of baryon–antibaryon and antibaryon–baryon pairs are combined to enhance the
statistical significance for the p–Λ pairs, hence in the following p–Λ denotes the sum p–Λ⊕ p–Λ. The
p–p, p–Λ and Λ–Λ data are fitted with a total correlation function

Ctot(k∗) = ND×Cmodel(k∗)×Cbackground(k∗), (4)

where ND is a normalization constant fitted to data. The default fit range is 0< k∗< 500 MeV/c. The mod-
eled Cmodel(k∗) = 1+∑i λi×(Ci(k∗)−1) includes the genuine (i= p–p,p–Λ,Λ–Λ) correlation, estimated
from Eq. 2 and using the Lednický–Lyuboshits model, and the residual secondary contributions weighted
by the λi parameters [25]. The genuine contributions for p–p, p–Λ and Λ–Λ amount to λp–p = 66.5%,
λp–Λ

= 45.8% and λ
Λ–Λ

= 30.9%, respectively. Residual contributions involving pairs measured in this
work are modeled assuming the corresponding theoretical predictions mentioned above. Contributions
involving Σ±,0 (Σ±,0) and Ξ−,0 (Ξ+,0) are considered to be constant in k∗ due to the limited theoretical
knowledge, and amount to 10.1%, 44.6% and 65.7% for p–p, p–Λ and Λ–Λ, respectively. A crosscheck
on these residuals by assuming a strong interaction based on the scattering parameters extracted in Pb–Pb
measurements [23] was performed and differences in the extracted results with respect to the constant
assumption are found to be negligible.
A variation of ±10% to the upper limit of the default fit range is applied for evaluating the systematic
uncertainties. Additionally, the systematic uncertainties related to the λi parameters are evaluated based
on variations of the amount of secondary contributions to each measured particle species, where the
largest source of uncertainty stems from the ratio Σ0:Λ = 0.33±0.07 [31, 43, 49–51]. In addition to the
feed-down contributions, a correction for finite experimental momentum resolution has to be taken into
account for a direct comparison with data [25].
The size of the emitting source employed in the calculation of Cmodel(k∗) for the three B–B pairs is
fixed from the data-driven analysis of p–p pairs, which demonstrates the existence of a common Gaus-
sian core as a function of mT for all baryon–baryon pairs when contributions from short-lived strongly
decaying resonances are properly included [31]. For the p–p pairs, the core source size at the correspond-
ing 〈mT〉 = 1.45 GeV/c2 is rcore = 1.06± 0.04 fm and the associated effective Gaussian source size is
r0 = 1.22 fm. The core radii for the p–Λ and Λ–Λ mT bins presented in this letter are rcore(〈mT〉 =
1.75 GeV/c2) = 0.95± 0.04 fm (r0 = 1.15 fm) and rcore(〈mT〉 = 2.12 GeV/c2) = 0.87± 0.04 fm
(r0 = 1.11 fm), respectively.
The second term in Eq. 4, Cbackground(k∗), accounts for non-femtoscopic effects due to energy-momentum
conservation at large k∗ [25] and to minijet phenomena arising from hard processes at the parton level,
largely present in the measurement of B–B correlations:

Cbackground(k∗) =Cminijet(k∗)+Cbaseline(k∗)

= [wCCC(k∗)+(1−wC)CNC(k∗)]+(a+bk∗). (5)
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A data-driven approach is employed using PYTHIA 8.2 [52] to model the mini-jet part contained in
Cbackground(k∗). The particle production in such simulations is associated to two processes: particles
stemming from a common parton (common ancestors), leading to the minijet component, and particles
coming from different partons (non-common ancestors), responsible for the non-jet part. The Cminijet(k∗)
in Eq. (5) is given by a linear combination of the common (CC(k∗)) and non-common (CNC(k∗)) contri-
butions weighted by a factor wC and (1−wC), respectively. The ancestor weight wC is a free parameter in
the fit of Ctot(k∗) to the data. The common and non-common correlations obtained from PYTHIA 8.2 are
fitted with a product of three Gaussian functions up to k∗ = 2500 MeV/c, providing good agreement with
the simulated data. To account for remaining non-femtoscopic effects at large k∗ [25], a linear baseline
Cbaseline(k∗) = a+ bk∗ is added to the ancestors term in Eq. (5). The coefficients a and b are fixed by
fitting Cbackground(k∗) to the data in the region of 400 < k∗ < 2500 MeV/c. The results for p–p pairs are
shown in Fig. 1. The band represents the 1σ uncertainty associated to the template fitting. The shape
of Cbackground(k∗) agrees within uncertainties with the data in the region above k∗ ≈ 200 MeV/c, where
the non-flat behavior of minijet contributions is visible. A change of ±10% in this range and a quadratic
polynomial are included to estimate the systematic uncertainty related to the total background. Similar
results and conclusions are obtained for the p–Λ and Λ–Λ systems.

0 100 200 300 400 500 600

)c (MeV/k*

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

)
k*(

C

Data

backgroundC

 = 13 TeVsALICE pp 
0.17% INEL > 0)−High Mult. (0

 pairsp−p
 inclusiveTm

Figure 1: (Color online) Measured p–p correlation function (empty points) with statistical (line) and systematic
(grey boxes) uncertainties. The band represents the Cbackground(k∗) fit as described in the text.

4 Results

The correlation functions for p–p and for two representative mT bins of p–Λ and Λ–Λ are shown in Fig. 2
and in Fig. 3, respectively. The results for the remaining mT bins are presented in Figs. A.1, A.2 of Ap-
pendix A.1. The lower panels show the statistical deviation between data and model expressed in terms
of numbers of standard deviation nσ . The width of the band represents the total uncertainty of the fit.
The grey boxes correspond to the systematic uncertainties of the data. They are maximal at the lowest k∗

bin and amount to 1%, 4% and 10% for p–p, p–Λ and Λ–Λ pairs, respectively. The Cp–p(k∗) correlation
is compared first to a Coulomb-only interaction and secondly to a Coulomb + strong interaction from
N–N χEFT potentials with wave functions for the n–n→ p–p process explicitly included [11]. Results
for this latter scenario are obtained by evaluating the genuine p–p correlation in Eq. (2) with only the
first two terms and shown in blue in Fig. 2. The opening of the n–n channel above threshold, expected
as a cusp structure in the C(k∗) at k∗ ≈ 50 MeV/c, is not visible in agreement with the weak coupling
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already measured in scattering experiments [4]. The chiral model underestimates the data in the region
below 200 MeV/c and it cannot reproduce the enhancement above unity of the C(k∗) as k∗ approaches
zero. This increase is not described either by assuming only the Coulomb attraction (green band), show-
ing that annihilation is largely present close to threshold as k∗ → 0 MeV/c. The contributions to the
p–p correlation from the multi-meson annihilation channels, produced as initial states which feed into
the measured p–p system, are not explicitly accounted for in the chiral potential and hence the last term
∑PW CPW

X→pp(k
∗) in Eq.(2) is currently missing in the fit shown by the blue band.

The red band in Fig. 2 represents the results obtained from the explicit inclusion of the annihilation
channels in the third term of Eq. (2) via the Migdal-Watson approximation. The corresponding fit pro-
vides a better description of the data in the low k∗ region where annihilation is dominant. The ex-
tracted coupling weights ωPW from this femtoscopic fit are ω1S0

= 1.19± 0.10(stat)±0.19(syst) and
ω3P0

= 40.04±4.06(stat)±4.24(syst), while ω1P1
is compatible with zero. The hierarchy of the coupling

weights in the different PW agrees with the inelasticity parameters η obtained in the recent partial-wave
analysis [4].

0 50 100 150 200 250 300 350 400)c* (MeV/k

1

1.5

2
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3

3.5

4

4.5)
k*(

C

 inclusiveTm p−p

/NDF = 314.8)2χLO + Coulomb (3EFT Nχ
no ann. ch.

/NDF = 6.5)2χLO + Coulomb (3EFT Nχ
)0P3 1P1 0S1with ann. ch. (

backgroundC

/NDF = 83.3)2χCoulomb (

 = 13 TeVsALICE pp 
0.17% INEL > 0)−High Mult. (0

Gaussian core + resonances source

0 50 100 150 200 250 300 350 400
)c (MeV/k* 

40−

20−

0
20
40σn 

Figure 2: (Color online) Measured correlation function of p–p pairs. Statistical (bars) and systematic (boxes)
uncertainties are shown separately. The Coulomb only interaction is shown by the green band. The blue band
represents the fit performed using N3LO χEFT potentials [11] with elastic and n–n coupled-channel. The inclusion
of annihilation channels is shown by the red band, along with the Cbackground(k∗), multiplied by the normalization
constant ND obtained in the fit. The reported average χ2/NDF is evaluated in the k∗ interval [0,400] MeV/c and
it includes correlations between the data points. Lower panel: nσ deviation between data and model in terms of
numbers of statistical standard deviations.

For the systems containing strangeness, the Migdal-Watson approach cannot be employed since only
scattering parameters for the p–Λ and Λ–Λ interaction are available [23]. The values of R f0 and I f0
obtained in Pb–Pb measurements are employed in the Lednický–Lyuboshits analytical formula [23, 42]
to model the p–Λ and Λ–Λ genuine correlation functions. In Fig. 3, the results obtained modeling
the p–Λ and Λ–Λ theoretical correlations with the Lednický–Lyuboshits model described in Sec. 3 are
shown. The first tested scenario assumes the scattering parameters extracted from Pb–Pb results [23]
and the results are denoted by light green bands. It can be expected that if the direct contributions of
the annihilation channels are negligible, the values extracted in Pb–Pb will reproduce well also the pp
data in this analysis. As can be seen from the right panel in Fig. 3, this first approach reproduces the
measured Λ–Λ correlation function, with an average χ2/NDF = 2.8 evaluated in the k∗ interval [0,400]
MeV/c but it clearly underestimates the p–Λ correlation data in the k∗ region below 200 MeV/c. A similar
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trend is observed when performing the fit to the p–p measured correlation with the Lednický–Lyuboshits
approach used in the Pb–Pb results [23] as shown in Fig. A.3 in the Appendix A.2. The discrepancy
hence, as in the p–p case, has to be attributed to a larger amount of annihilation channels feeding into
the p–Λ system with respect to the Λ–Λ pairs. To validate this interpretation, a simultaneous fit in all the
mT bins is performed leaving free to vary the imaginary part of the scattering length I f0, accounting
for inelastic channels, and the effective range d0. The negative real part of the scattering length R f0,
indicating either a repulsive elastic interaction or a possible bound state, is kept fixed to the Pb–Pb
results [23]. To reach a reasonable agreement of the model with p–Λ data, I f0 has to be increased by
approximately a factor 5.3, while the change in the extracted d0 is negligible. Such a discrepancy can be
attributed to the failure of the single-channel Lednický–Lyuboshits model to properly accommodate the
direct contribution of inelastic channels (last term in Eq. (1)). A similar fit is applied to the Λ–Λ system
and values of I f0 and d0 compatible with the Pb–Pb measurements are found, implying a negligible
effect of the direct contribution of annihilation channels. The corresponding results are shown in Fig 3
(orange band), for p–Λ (left panel) and Λ–Λ (right panel). A similar trend is obtained in the remaining
mT intervals and shown in Appendix A.1.
The different results for the p–Λ and Λ–Λ systems may also be related to a different amount of initially
produced multi-meson states feeding into the two B–B pairs. To substantiate this scenario, a study of
the two-meson channel contributions (ππ, πK) is performed using the EPOS transport model [44]. The
fraction of two–mesons pairs f2M→BB produced in the initial collision and kinematically available to
produce B–B pairs with low k∗ is estimated. The latter is obtained by dividing the amount of meson–
meson pairs initially produced, having a center-of-mass energy above the B–B threshold and leading to
B–B pairs at low k∗, by the total number of produced two–meson pairs kinematically allowed to create
the B–B pairs. Based on this study and considering these kinematics considerations, a similar amount
(≈ 6.4%) is found for p–Λ and Λ–Λ pairs, indicating that the above effect is related to the properties of
the p–Λ and Λ–Λ interaction. To quantify the final relative amount of annihilation channels feeding to
the p–Λ and Λ–Λ systems, the fractions have to be multiplied by the corresponding coupling constant g,
obtained within an SU(3) Lagrangian by evaluating the trace of the meson–baryon interaction term [53].
Within this simplified calculations, the coupling strength for the p–Λ system is found to be approximately
3.3 times larger than for the Λ–Λ pairs.
The estimated contribution g× f2M→BB, although limited to only two-meson channels, for p–Λ pairs
is found to be about 6 times larger than for Λ–Λ pairs, indicating a different annihilation contributions
occurring in p–Λ and Λ–Λ interaction which is confirmed by the measured correlation functions in Fig. 3.
These estimations, even though based on a qualitative approach, clearly indicates that the annihilation
for the Λ–Λ interaction is present but it should not be largely dominant over the elastic part. More input
from theory is needed in order to claim if such a condition is ideal for the formation of bound-states in
the Λ–Λ system. The results for the p–Λ system, however, clearly point to a much larger presence of the
annihilation channels, which might reduce the possibility to create baryonia. The data presented in Fig. 3
represent the most precise data currently available on p–Λ and Λ–Λ pairs and can provide constraints for
theoretical models on these interactions.

In conclusion, femtoscopic techniques have been adopted to study the annihilation dynamics in p–p,
p–Λ and Λ–Λ systems. A quantitative determination of the effective coupling weights, connected to the
annihilation channels present in p–p, has been obtained adopting a coupled-channel approach with N3LO
χEFT potentials [11]. The largest couplings have been obtained in the spin triplet P (3P0) and singlet
S (1S0) state. The inclusion of these inelastic channels leads to a better agreement between data and
model in the region of k∗ below 50 MeV/c, indicating a wide presence of annihilation channels close to
threshold. The scattering parameters obtained in Pb–Pb collisions [23] have been used to model the p–Λ

and Λ–Λ data using the Lednický–Lyuboshits formula. A consistent description of the Λ–Λ correlation is
achieved while an increase of the I f0 in the p–Λ interaction is needed to improve the agreement with the
p–Λ data. These results, confirmed by kinematics and SU(3) flavor symmetry considerations, indicate
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Figure 3: (Color online) Measured correlation function of p–Λ (left) and Λ–Λ (right) pairs for two representative
mT bins. Statistical (bars) and systematic (boxes) uncertainties are shown separately. Results using the Lednický–
Lyuboshits formula with Pb–Pb scattering parameters [23] are shown in light green. Orange bands are the results
with d0 and I f0 as free parameters. In grey the corresponding Cbackground(k∗), multiplied by the normalization
constant ND, is shown. The reported average χ2/NDF is evaluated in the k∗ interval [0,400] MeV/c and it includes
correlations between the data points. Lower panel: same as in Fig. 2.

a larger contribution in p–Λ from annihilation channels in comparison to Λ–Λ. The ALICE data shown
in this work delivered the most precise measurements on p–p, p–Λ and Λ–Λ systems at low momenta
and suggest that baryonia are unlikely to occur in p–p and p–Λ systems due to the large annihilation
contributions present for these pairs. A modeling of the B–B interaction for systems as p–Λ, based on
optical potentials, and a quantitative estimate of production of the multi-meson annihilation channels in
the collisions, can provide a better understanding of the elastic and the annihilation term which can help
to strengthen final conclusions on possible bound states.
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A Additional material

A.1 p–Λ and Λ–Λ results in mT intervals
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Figure A.1: (Color online) Measured correlation function of p–Λ pairs for remaining mT bins. Same description
as in Fig. 3.
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Figure A.2: (Color online) Measured correlation function of Λ–Λ pairs for remaining mT bins. Same description
as in Fig. 3.

A.2 Results on p–p pairs with the Lednický–Lyuboshits model

0 50 100 150 200 250 300 350 400)c* (MeV/k

1

1.5

2

2.5

3

3.5

4

4.5)
k*(

C

 inclusiveTm p−p

/NDF = 72.8)2χ-Lyuboshits model (yLednick

backgroundC

 = 13 TeVsALICE pp 
0.17% INEL > 0)−High Mult. (0

Gaussian core + resonances source

0 50 100 150 200 250 300 350 400
)c (MeV/k* 

40−

20−

0
20
40σn 

Figure A.3: (Color online) Measured correlation function of p–p pairs. Statistical (bars) and systematic (boxes)
uncertainties are shown separately. The results assuming the Lednický–Lyuboshits model with Coulomb included,
as in [23], are shown by the violet band. The scattering parameters used as input for the Lednický–Lyuboshits
calculations include only the n–n contribution as coupled-channel [54–56]. The model completely underestimates
the k∗ region from 50 to 150 MeV/c. As can be seen in Fig. 2, the annihilation channels play a role in this
intermediate region and a better description of the data is achieved when using the Migdal-Watson approximation
to include them. This is a clear indication that the multi-meson channels are explicitly needed to model the current
measured p–p correlation function. The Lednický–Lyuboshits calculation also overestimates the coupling to the
n–n channel, as can be seen from the large cusp structure at k∗ ≈ 50 MeV/c not present in the data. Lower panel:
nσ deviation between data and model in terms of numbers of statistical standard deviations.

16



Investigating the role of strangeness in baryon–antibaryon annihilation ALICE Collaboration

B The ALICE Collaboration
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31 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione
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117 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
118 Suranaree University of Technology, Nakhon Ratchasima, Thailand
119 Technical University of Košice, Košice, Slovakia
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129 University of Kansas, Lawrence, Kansas, United States
130 University of Liverpool, Liverpool, United Kingdom
131 University of Science and Technology of China, Hefei, China
132 University of South-Eastern Norway, Tonsberg, Norway
133 University of Tennessee, Knoxville, Tennessee, United States
134 University of the Witwatersrand, Johannesburg, South Africa
135 University of Tokyo, Tokyo, Japan
136 University of Tsukuba, Tsukuba, Japan
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