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Abstract
Objectives Evaluation of surgical and non-surgical air-polishing in vitro efficacy for implant surface decontamination.
Material and methods One hundred eighty implants were distributed to three differently angulated bone defect models (30°, 60°,
90°). Biofilm was imitated using indelible red color. Sixty implants were used for each defect, 20 of which were air-polished with
three different types of glycine air powder abrasion (GAPA1–3) combinations. Within 20 equally air-polished implants, a
surgical and non-surgical (with/without mucosa mask) procedure were simulated. All implants were photographed to determine
the uncleaned surface. Changes in surface morphology were assessed using scanning electron micrographs (SEM).
Results Cleaning efficacy did not show any significant differences between GAPA1–3 for surgical and non-surgical application.
Within a cleaning method significant (p< 0.001) differences for GAPA2 between 30° (11.77 ± 2.73%) and 90° (7.25 ± 1.42%) in the
non-surgical and 30° (8.26 ± 1.02%) and 60° (5.02 ± 0.84%) in the surgical simulation occurred. The surgical use of air-polishing (6.68
± 1.66%) was significantly superior (p < 0.001) to the non-surgical (10.13 ± 2.75%). SEM micrographs showed no surface damages
after use of GAPA.
Conclusions Air-polishing is an efficient, surface protective method for surgical and non-surgical implant surface decontamina-
tion in this in vitro model. No method resulted in a complete cleaning of the implant surface.
Clinical relevance Air-polishing appears to be promising for implant surface decontamination regardless of the device.
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Introduction

There is clear evidence that plaque is the primary etiological
factor for the development of peri-implant mucositis or peri-
implantitis [1] as it was compiled at the 2017 classification
workshop for periodontal and peri-implant diseases [2]. Thus,
prevention and therapy of these diseases aims to disrupt the
biofilm on the implant surface as a cause. In addition to an
ineffective plaque control [3], there are other risk factors such
as smoking [4], history of periodontitis [5, 6], and irregular
maintenance [7, 8]. Non-surgical treatment of peri-implant
mucositis has turned out to be the method of choice [9–11],
while in peri-implantitis non-surgical treatment alone is large-
ly not effective [1, 9, 12] due to the re-maturing of plaque. In
contrast, the surgical intervention with direct insight to the
defect, better accessibility, and the possibility to avoid recol-
onization due to resective or regenerative procedures has
proven to be superior [13, 14]. Nevertheless, the implant ge-
ometry with its micro- and/or macro-threads and the rough
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surface morphology with an individual surface roughness re-
main difficult to clean in daily routine even with good insight
and improved accessibility [15, 16]. Rigid instruments such as
curettes and (ultra)sonic scalers with steel tips have recently
failed to convince in both non-surgical and surgical simulated
in vitro experiments [17–19]. Although these in vitro results
seem clear, current clinical evidence does not show clear data
for or against the use of these instruments [20]. Alternatives
such as lasers and air-polishing systems partly offer beneficial
results when used on complex implant surfaces [21, 22].
However, this benefit seems to be limited depending on defect
morphology and extension [9, 20, 23]. Using the laser, this
limitation additionally seems to be due to its rigid tip, which
impairs the application of the laser beam, and the consequent-
ly poorer accessibility [24]. When using air-polishing, the
powder particles have the advantage of being able to be
reflected in the typically shaped peri-implant bone defects,
which probably leads to a cleaning effect even in areas that
are difficult to access [17, 25]. The use of glycine-based pow-
der, which is a human protein component, has the advantage
of being absorbable and not remaining in a wound as a foreign
body. On the other hand, scanning electron microscope
(SEM) images have recently shown that glycine-based pow-
der has a less abrasive effect on implant surfaces compared to
sodium bicarbonate powder [26–28].

The use of air-polishingwith glycine powder has proven to be
superior in both the surgical [17, 19] and the non-surgical [18]
in vitro approach compared to steel curettes and (ultra)sonic scal-
er with steel tips. Consequently, this study aims to compare
different air-polishing methods in both approaches for three de-
fect configurations [30°, 60° (intraosseous defects), 90°
(supraosseous defect)] in order (i) to expand the available data
on efficacy of surgical and non-surgical air-polishing application
and (ii) to compare the efficacy of different air-polishing devices
in both, a surgical and non-surgical in vitro simulation. The null
hypothesis was that all air-polishing device combinations
showed statistically different outcomes in terms of percentage
of color remnants on the implant surface according to the type
of approach and defect morphology and that different surface
alterations resulted after cleaning. To the best of the authors’
knowledge, no further in vitro investigation is known that com-
pares the efficacy of different glycine-based air powder abrasion
devices for implant surface decontamination.

Materials and methods

Implant preparation and model

The study was largely based on the set-up by Ronay et al. [18]
and also follows approaches from Sahrmann et al. [19] and
Keim et al. [17].

One hundred and eighty tissue-level implants with a
subcrestal length of 12 mm and a diameter of 4.1 mm
(OKTAGON® Dental Implant System—made by Meisinger,
DENTAL RATIO®, Langenfeld, Germany) were dipped for
5 s into red color (Staedler permanent lumocolor, Nuremberg,
Germany) and air-dried for 24 h to imitate a plaque-covered
surface. All parts of the surface were completely and homoge-
neously covered. The implant consisted of a 2.3-mm machined
surface in the supracrestal part and a rough sand-blasted and
etched surface with a mean surface roughness of 1.69 μm in
the subcrestal part. The macrostructure of the rough implant sur-
face was made of 0.35mm high threads arranged at a distance of
1.25 mm from each other.

The in vitro defect model was computer-aided designed
and manufactured in acrylic glass with 30° and 60° defect
angulations as intraosseous defects and a 90° defect angula-
tion as supraosseous defect (Figs. 1 and 2). The implants in the
intraosseous defect simulation were placed 12 mm (complete
rough implant surface) into the models in order to simulate a
supracrestal position of the machined surface. The defect
depth in the intraosseous defects was 6 mm. Therefore, the
supraosseous defect simulation resulted in a supracrestal po-
sition of the machined and the rough implant surface [17–19].
Every implant was surrounded by acrylic glass in the apical
6 mm (Fig. 1). The defect models were uncovered to simulate
the surgical/open approach and covered with an individually
manufactured nontransparent mucosa mask (Adisil® rosé 1:1,
Siladent, Goslar, Germany) in order to prevent visual control
of the cleaning procedure for the non-surgical/covered ap-
proach simulation (Fig. 3) [18].

Simulation procedure

A total of 180 implants were examined. Each of the three
different cleaningmethods was tested on 20 of the 60 implants
per defect angle. The 20 implants were again separated into 10
implants that were treated in a surgical approach and 10 im-
plants that were treated in a non-surgical approach. Each of
the three simulation models had a correspondingly individu-
alized mucosal mask that was reused for all 30 implants that
were cleaned in this model non-surgically. In the process, the
following air powder abrasion and glycine powder type com-
binations (GAPA, glycine air powder abrasion) for surface
decontamination were used (Fig. 3):

GAPA1: Air-Flow® Handy 2+ (EMS GmbH, Munich,
Germany) with a PERIO-FLOW® handpiece (EMS)
using glycine powder (3M™ Clinpro™ Glycine Prophy
Powder, 3M Germany GmbH, Neuss, Germany) and an
attached PERIO-FLOW® nozzle tip (EMS) as frequently
studied combination [29–32].
GAPA2: Air-Flow® Handy 2+ (EMS) with a PERIO-
FLOW® handpiece (EMS) using glycine powder
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(AIRFLOW® PERIO, EMS) and an attached PERIO-
FLOW® nozzle tip (EMS) as manufacturer combination
GAPA3: Perio-Mate (NSK Europe GmbH, Eschborn,
Germany) with glycine powder (Perio-Mate™ Powder,
NSK) and attached Perio-Mate nozzle tip (NSK) using
the medium ejection setting for powder and water spray
volume as manufacturer combination.

Settings for the amount of water and powder emission were
not freely selectable for GAPA1 and 2. Air pressure could not
be adjusted on any of the selected devices. For each air-
polishing device, combination settings were measured three
times post-hoc with attached nozzle tip and then averaged: (1)
water ejection [water was collected for 1 min and measured
(ml/min)], (2) powder emission rate [the chamber of the air-
polishing device was filled to the maximum, this amount was
weighed and after 1 min of use it was weighed again and the
difference was calculated (g/min)], and (3) the drive air-
pressure [a multi-gauge was connected and read between the
air-polishing device and the connection to the dental unit
(bar)]. The nozzle tip for all combinations was used only once
for every implant. All powder types had amean particle size of
~ 25 μm and were water-soluble.

All implants were cleaned with or without mucosa mask
for 2 min by the same operator (VT). Working distance and
working angle were individually selected by the operator.
After each instrumentation, the mucosa mask, if used, and
the implant were removed. Dissolved color remnants were
removed with a gentile air-water rinse for 10 s [17, 19].

Photo documentation and analysis

Photo documentation was performed in accordance with
Sahrmann et al. [19] and Keim et al. [17]. Implants were
removed individually without surface contact from the model
and fixed (Implant Driver, OKTAGON Dental Implant
System) in an individually fabricated immovable holder.
Afterwards, both sides (180°) of the implants were digitally
photographed in a standardized manner [(Canon EOS 70D,
Tokyo, Japan) 31.4 cm distance, ISO 100, aperture f/32, ex-
posure time 1/250 s) by the same examiner (VT) in an uni-
formly illuminated photo tent (proxistar, Kastl, Germany)
with ring flash (Canon ring flash MR-14, Tokyo, Japan)]
(Fig. 4) [17, 19].

All photos were analyzed (VT) using photo editing free-
ware (ImageJ 1.52a, U.S. National Institutes of Health,

Fig. 2 Drawings of the three different defect models a 30°, b 60°, and c
90° with mucosal mask each with an exemplary inserted schematic draft
of an untreated OKTAGON 4.1 × 12 mm (OKTAGON® Dental Implant
System—made by Meisinger, DENTAL RATIO®, Langenfeld,

Germany) implant with 0.35 mm thread depth and 1.25 mm thread dis-
tance (macro-thread). A gingival thickness of 3 mm was simulated in the
non-surgical approach

Fig. 1 Lateral view of the three
different defect angulations a 30°,
b 60°, and c 90° without mucosal
mask
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Bethesda, MD, USA; https://imagej.nih.gov/ij/). First a
consistent region of interest (ROI) for each side of the implant
was defined (HP). The ROI (output in pixels) corresponded to
the implant surface of the respective site without the apical
part (6 mm), which was included circumferentially in all
models. Then, the relevant implant surface was, according to
the photographed side, selected by overlay of the correspond-
ing ROI. The remaining red color was markedwithin this area,
and the number of pixels of the red color remnants was
displayed. This number was multiplied by 100 and divided
by the total number of pixels in the ROI resulting in a percent-
age (%). This procedure was repeated for the second side of
the implant. The mean of both percentages was then calculat-
ed in order to obtain a total value of color remnants (%) of the
whole selected implant surface. Basic values (brightness, con-
trast, sharpness) were not changed during the entire procedure.

In addition, SEM images (Philips XL 30 with lanthanum
hexaboride cathode, 20kv, 10 mm distance, Philips,
Amsterdam, The Netherlands) were exemplarily obtained af-
ter instrumentation of the machined and rough surfaces of one
untreated (reference) and one non-surgically and surgically
treated implant for each air-polishing method (GAPA1–3)
(CR; magnification 1 × 1000 and 1 × 10,000) [17]. All sam-
ples were gold coated with a layer thickness of approximately
50 nm using an automatic sputtercoater (MSC2, KDF
Electronic & Vacuum Services Inc., New Jersey, USA)
(Figs. 5 and 6).

Statistical evaluation

The statistical evaluation followed the protocol by Keim et al.
[17]. The implant was considered as statistical unit. The

Fig. 4 Detailed images of the
cleaned surfaces according to
treatment modality (GAPA 1–3)
and defect angle

Fig. 3 Use of both air-polishing
devices (PERIO-FLOW® by
EMS, Perio-Mate by NSK) with
the respective nozzle tip supplied
by the manufacturer is shown: a
Perio-Mate with attached Perio-
Mate nozzle (NSK) in a surgical
and b non-surgical approach, c
frontal, d lateral view of Perio-
Mate nozzle tip (NSK) with two
outlets (1x towards the front and
1x towards the apical direction); e
PERIO-FLOW® with attached
PERIO-FLOW® nozzle tip
(EMS) in a surgical and f non-
surgical approach, g frontal, and h
lateral view of PERIO-FLOW®

nozzle tip (EMS) with three out-
lets (1x towards the front and 2x
opposite towards the side)
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percentage of non-cleaned surface was calculated for each
implant (VT). First, the data were tested for normal distribu-
tion using the Kolmogorov-Smirnov test. Depending on this,
descriptive data [mean value, medians, lower/upper quartiles,
interquartile ranges (IR) and standard deviation] were ana-
lyzed for the cleaning methods and defect angulations accord-
ing to the surgical or non-surgical simulation. Group

comparisons were carried out using Kruskal-Wallis test for
non-normally distributed data. The distribution of color rem-
nants according to the different air-polishing device combina-
tions (Fig. 7) and to the non-surgical and surgical approach
(Fig. 8) are shown as box plot diagrams (wide black line,
median; box, 25–75% range of all values; whiskers, range of
all values without outliers; circle, outliers; asterisk, extreme

Fig. 5 a Scanning electron
microscopy images of untreated
(reference) and non-surgically
treated macro-threads of the im-
plant surfaces by different instru-
ments at magnification of × 1000
and × 10.000. b Scanning elec-
tron microscopy images of un-
treated (reference) and non-
surgically treated machined collar
of the implant by different instru-
ments at magnification of × 1000
and × 10.000

Fig. 6 a Scanning electron
microscopy images of untreated
(reference) and non-surgically
treated macro-threads of the im-
plant surfaces by different instru-
ments at magnification of × 1000
and × 10.000. b Scanning elec-
tron microscopy images of un-
treated (reference) and non-
surgically treated machined collar
of the implant by different instru-
ments at magnification of × 1000
and × 10.000
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outlier). By defining a p value < 0.001 as the significance
level, multiple testing (Bonferroni correction [33]; 36 compar-
isons in the surgical or non-surgical group) was addressed.
Group comparisons between the entirety of all surgical and
non-surgical procedures were carried out byMann-WhitneyU
test.

The statistical evaluation was carried out using the IBM®

SPSS® Statistics 26 software package (IBM, Chicago, Illinois,
USA).

The study was planned in compliance with the appropriate
EQUATOR guidelines.

Results

The results of the post-hoc testing of the device settings are
shown in Table 1.

The overall comparison of the non-surgical approaches
[mean ± standard deviation, 10.13 ± 2.75% (median,
9.68%; IR, 3.49)] with the surgical approaches [6.68 ±
1.66% (6.57%; IR, 2.53)] is significantly (p < 0.001) in
favor of the surgical approach (Fig. 8). The box plot dia-
grams show no trend in cleaning efficacy regarding the
applied air-polishing device combinations for either the
non-surgical or the surgical approach (Fig. 7a/b).
Nevertheless, the average smaller range of color remnants
in Figs. 7b and 8 (range surgical approach: 3.27–10.62%)
indicate a higher reproducibility of the cleaning results
compared to the larger range (range non-surgical approach,
5.85–17.37%) in Figs. 7a and 8.

None of the investigated implant surfaces were
completely free (0%) of color remnants. Residual color
on the lower 6 mm of the implants was the result of a
non-accessible area for cleaning because the implants were
surrounded by the models in this part (Figs. 1 and 2).

Fig. 7 a Distribution of color
remnants for different non-
surgical treatment methods
according to each defect
angulation. bDistribution of color
remnants for surgical different
treatment methods according to
each defect angle

1748 Clin Oral Invest (2021) 25:1743–1754



The cleaning efficiency did not show any significant dif-
ference (p < 0.001) for each surgical or non-surgical cleaning
method within each defect configuration (Table 2a/b). Within
the individual air-polishing device combinations, there was
only a significant difference between GAPA2 in the non-
surgical approach (Table 2a) between 30° (median, 10.77%;
IR, 5.48) and 90° (6.71%; IR, 1.77) and in the surgical ap-
proach (Table 2b) between 30° (8.25%; IR, 1.77) and 60°
(5.10%; IR, 1.29).

Consequently, for the majority of all comparisons within
the various air-polishing device combinations and within the
three different defect angulations, no differences in cleaning
efficacy were shown. The null hypothesis was rejected.

All SEM images confirm the complex surface morphology
of the selected implant system. Cleaning with air-polishing
devices showed no serious surface damage in the obtained
SEM images, neither in the area of the machined nor in the
area of the rough implant surface (Figs. 5 and 6). The ma-
chined rings were smoothened after air-polishing indicating
a slight modification of the surface.

Discussion

The aim of this study was to compare the efficacy of three dif-
ferent combinations of air-polishing methods for implant surface
decontamination in different non-surgical and surgical in vitro
defect models (30°, 60°, 90°). Overall, the surgical approaches
were significantly superior (p< 0.001) to the non-surgical ones.
The low color remnant value for all methods and approaches
indicates a good cleaning efficacy, even if no implant could be
completely freed (0%) from the color. Among the three investi-
gated methods (GAPA1–3), no significant differences occurred.
Only GAPA2 showed significant differences (p< 0.001) within
themethods in the non-surgical (30°–90°) and surgical procedure
(30°–60°). The null hypothesis was rejected.

The main reason for the use of nozzle tips in the non-
surgical as well as in the surgical approach was the compara-
bility to other studies [17, 19]. In addition, peri-implant de-
fects are typically shaped around implants in spite of flap
mobilization and, depending on the depth, a nozzle tip may
still facilitate better accessibility.

Fig. 8 Distribution of color
remnants according to each
treatment approach

Table 1 Post-hoc testing of air-polishing device settings

Post-hoc testing of air-polishing device settings

Air-polishing device combination Water ejection
(ml/min)

Powder emission rate
(g/min)

Drive air-pressure
(bar)

I II III Mean ± SD I II III Mean ± SD I II III Mean ± SD

GAPA1 49.0 56.0 65.0 56.7 ± 8.02 3.54 3.51 2.26 4.28 ± 0.73 3.4 3.5 3.5 3.47 ± 0.06

GAPA2 60.0 65.0 63.0 62.7 ± 2.52 2.80 2.29 2.51 2.53 ± 0.26 3.5 3.6 3.5 3.53 ± 0.06

GAPA3 56.0 56.0 57.0 56.3 ± 0.58 3.86 4.82 3.81 4.16 ± 0.57 3.5 3.6 3.6 3.57 ± 0.06

SD= standard deviation
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The authors want to anticipate that, according to the current
state of affairs, the surgical application of air-polishing de-
vices represents an off-label use due to the lack of sterility,
which is why an in vitro investigation was initially carried out.

As Petersilka in 2011 described [34], air-polishing with its
powder-water ejection is subject to the so-called ricochet ef-
fect, which may have an influence on the cleaning efficacy.
For particles that hit a hard surface, this effect describes an
uncontrolled rebound, bounce, or skip off a surface depending
on its texture. The fact that there were no significant differ-
ences within the respective defect angulations suggests that
neither the powder used nor the geometry of the nozzle ap-
plied have a major influence on the results achieved. Also, the
defect geometry obviously no longer plays a major role in the
uniform use of air-polishing devices. Only the GAPA2 com-
bination showed significant differences (p < 0.001) in
cleaning efficiency (non-surgical, 30°–90°; surgical, 30°–
60°). On the one hand, this may be due to the narrow defect
angle of 30° involved in both cases, which may be more dif-
ficult to access. On the other hand, the slightly different post-
hoc tests of the device settings of GAPA2 compared to
GAPA1 and GAPA3 could have influenced this.

The superiority of air-polishing methods [35], but especial-
ly of glycine-based air-polishing devices, over the use of rigid
instruments (e.g. steel curettes, sonic scaler) with regard to
cleaning efficacy and less surface damage in non-surgical/
covered and surgical/open in vitro models has recently been
repeatedly proven [17, 18, 25, 36]. Therefore, the present
in vitro study deals with the efficacy of different glycine-
based air-polishing methods in two simulated treatment ap-
proaches (non-surgical/covered and surgical/open).

With regard to the non-surgical procedure, 20 implants per
angulation were cleaned with glycine-based air-polishing in a
very similar study [18]. The implant systems used were also
very similar in micro and macro structure. However, the results
are significantly different, when considering both the data based
on the use of the same instruments (GAPA2) and the overall
average data. While Ronay et al. [18] found 40.15 ± 10.40%
(30°), 40.30 ± 7.12% (60°), and 21.20 ± 8.96% (90°) color rem-
nants, the average values of our investigation were 11.08 ±
2.28% (30°), 9.60 ± 1.80 (60°), and 9.72 ± 3.65% (90°).

Regarding the surgical procedure, the comparison to
Sahrmann et al. [19] and Keim et al. [17] can be made, who
also used similar experimental setups. The former investiga-
tion reports 16.1 ± 3.7% (30°), 12.7 ± 2.8% (60°), or 5.0 ±
1.4% (90°) color remnant, and Keim et al. [17] showed color
remnants in 8.03 ± 2.43% (30°), 0.13 ± 0.26% (60°), and 0.58
± 0.88% (90°) on the corresponding implants. The present
study found on average 7.05 ± 1.70% (30°), 6.52 ± 1.66%
(60°), and 6.48 ± 1.61% (90°) color remnants on the implant
surfaces after the surgical/open approach.

In the non-surgical comparison, a different implant system
was used in this study than in Ronay et al. [18]. Both implants

are similar with a machined implant shoulder (Ronay et al.
[18], 1.0 mm; present study, 1.8 mm) and a rough part under-
neath with macro-threads at quite similar distances (Ronay
et al. [18], 1.0 mm; present study, 1.25mm) and with the same
thread depth (0.35 mm). Nevertheless, the two systems dif-
fered in their surface properties. The surface roughness of the
sand-blasted thermal acid-etched implants used by Ronay
et al. [18] is Ra = 2.35 μm. In the present study, the sand-
blasted and acid-etched implants had an average roughness
of Ra = 1.69 μm. This different surface roughness may partial-
ly explain the different results. Due to the rougher surface in
Ronay et al. [18], the adhesion of the color used may have
been more pronounced than in the present study and therefore
was more difficult to remove. Another important difference
between the two studies is that Ronay et al. [18] carried out the
procedure randomly, while there was no randomization in this
study and only one examiner carried out all cleaning proce-
dures and analyses.

Both studies used mucosa masks made from different ma-
terials, so that the rigidity and thus the resistance to the instru-
ments inserted between the implant and the mask were differ-
ent. The width of the bone defect models and thus the thick-
ness of the mucosal mask may play an important role, which
was not specified in either study. The thicker it was, the less
firmly it was pressed onto the implant surface during cleaning
(while it was held by the examiner). Too much pressure could
position the respective nozzle incorrectly and the cleaning
effect could suffer. The adaptation of the mucosal mask on
the model was identical (it was just put over the model).
Furthermore, the material used for the mucosal mask is differ-
ent. Ronay et al. have used a material more similar to human
tissue (ballistic gelatine), but in combination with the above-
mentioned pressure the effect cannot be clearly distinguished.

Looking at the surgical/open procedure, it can be seen that
the results in these studies overall are closer together [17, 19].
Nevertheless, differences can also be found here. The implants
were quite similar in macroscopic structure (Sahrmann et al.,
[19]: thread distance 1.25 mm, thread depth 0.35 mm, ma-
chined collar 1.8 mm; Keim et al. [17]: thread distance
0.6 mm, thread depth 0.32 mm, machined collar 1.5 mm;
present study: thread distance 1.25 mm, thread depth
0.35 mm, machined collar 1.8 mm). However, the study with
the highest color remnant values used the implant system with
the highest surface roughness (Sahrmann et al. [19]: 2.93 μm;
Keim et al. [17]: 0.76 μm; present study: 1.69 μm; values
were presented by Sammonos et al. [37]). The results of
Keim et al. [17] and this study are less different, which may
be due to the fact that each implant was used only once in both
studies. Sahrmann et al. [19] have used the implants several
times, which could possibly have influenced their surface
roughness/texture [38].

In general, the studies by Ronay et al. [18] and Sahrmann
et al. [19] differ from those of Keim [17] and the present
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investigation in that no uniform method for analyzing the
color remnants was applied. In addition, the device settings
(drive air-pressure, water ejection, powder emission) as well
as the depth, the design, and movement of the nozzle play an
important role in the defect to be cleaned [39]. The device
settings were measured post-hoc, but cannot be compared
because they are not reported in the other studies [17–19].
The nozzle used in the combinations GAPA1 and GAPA2
has more stable walls than the nozzle from the combination
GAPA3 and three outlet openings (2x laterally, 1x vertically)
for the powder-water jet mixture, while the nozzle from the
GAPA3 combination has two outlet openings (1x laterally, 1x
vertically). With the GAPA1 and GAPA2 nozzle, the powder-
water jet mixture hits the implant surface directly through a
side outlet, while with the GAPA3 nozzle it does not directly
hit the implant surface but emerges laterally from it. With the
GAPA3 nozzle, a mixture is not ejected; instead, water and
powder are guided separately within the nozzle. The water
finally emerges vertically, and the powder emerges laterally.
Due to its slim design, the GAPA3 nozzle rotates laterally
when performing the non-surgical procedure, as soon as it is
inserted into the pocket. This is not the case with the nozzle
used in the GAPA 1 and GAPA2 combination due to its
higher rigidity.

In general, various systematic reviews [9, 11, 21] as
well as recent clinical studies [23, 40] show advantageous
results in the use of glycine-based air-polishing devices for
the (non-)surgical treatment of peri-implantitis. However,
their ability to restore the biocompatibility of the implant
surface [41] and to maintain achieved results in the long
term [42] are questioned. Assuming that more effective
surface decontamination would also mean clinically better
results, then air-polishing would probably lead to im-
proved therapy results. However, the extrapolation of these
in vitro results to the clinic is not allowed.

The present study presupposed that removal of the
suprastructure from the implants for a more straightforward
accessibility of the implant surface is possible. Otherwise
poorer results due to the limited accessibility may have been
achieved [43]. In everyday clinical practice, missing remov-
ability of a cemented suprastructure should be considered.

SEM images of this study confirm other investigations
showing only slight changes of implant surface morphology
after application of glycine-based air-polishing devices
[17–19, 26–28, 41].

A current review on the in vitro efficacy of air-polishing
devices on titanium implant surface damages concludes
that they are less damaging compared to harder and
larger-sized powders such as sodium bicarbonate especial-
ly when using glycine-based powder types [41]. These re-
sults are confirmed by recent in vitro [26, 27] and in vivo
[28] studies. On the other hand, there are indications that
coarser powder types can achieve a higher cleaning

efficacy than finer ones [27]. Although the ability of
glycine-based powders to maintain biocompatibility when
applied to titanium surfaces is questioned [41], it still ap-
pears more likely than with major damages such as, e.g.
caused by steel curettes [17–19].

A limitation of the present study is biofilm imitation by use
of color without simulation of further oral cavity-specific in-
fluences. Nevertheless, this type of in vitro model and the use
of color as “artificial plaque” have prevailed [17–19, 25].
Further, the rigidity and re-use of the mucosa mask differ from
the oral mucosa which may lead to results different from the
oral cavity. Photographic analysis from a single angle may
cause less accurate differentiation of color remnants on the
apically and coronally facing site of the threads than in previ-
ous investigations [16, 25]. The fact that one examiner (VT)
did both the implant cleaning and the subsequent analysis
without randomization may lead to bias.

In summary, the results of this in vitro study show that the
use of glycine-based air-polishing devices, regardless of the
manufacturer and largely also of the defect geometry, achieves
in a non-surgical/covered and surgical/open approach a high
cleaning efficacy according to the chosen implant system.
Nevertheless, a complete surface decontamination was not
achieved with any device.
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