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Measurement of the inclusive isolated photon production cross section in
pp collisions at

√
s = 7 TeV

ALICE Collaboration*

Abstract

The production cross section of inclusive isolated photons has been measured by the ALICE ex-
periment at the CERN LHC in pp collisions at a centre-of-momentum energy of

√
s = 7 TeV. The

measurement is performed with the electromagnetic calorimeter EMCal and the central tracking
detectors, covering a range of |η | < 0.27 in pseudorapidity and a transverse momentum range of
10 < pγ

T < 60 GeV/c. The result extends the pT coverage of previously published results of the
ATLAS and CMS experiments at the same collision energy to smaller pT.

The measurement is compared to next-to-leading order perturbative QCD calculations and to the
results from the ATLAS and CMS experiments. All measurements and theory predictions are in
agreement with each other.

*See Appendix A for the list of collaboration members
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1 Introduction

In high-energy particle collisions, direct photons are those photons which are directly produced in el-
ementary processes, and as such are not products from hadronic decays. In proton-proton and nuclear
collisions, direct photons are colourless probes of QCD processes. Photons originating from hard scatter-
ings of partons from the incoming hadrons are called prompt photons. They provide a handle for testing
perturbative QCD (pQCD) predictions, and they are probes of the initial state of protons or nuclei. At the
lowest order (LO) in pQCD, prompt photons are produced via two processes: (i) quark-gluon Compton
scattering, qg→ qγ , (ii) quark-antiquark annihilation, qq̄→ gγ , and, with a much smaller contribution,
qq̄→ γγ . In addition, prompt photons are produced by higher-order processes, like fragmentation or
bremsstrahlung [1]. The collinear part of such processes has been shown to contribute effectively also at
LO.

A discussion of early prompt photon measurements can be found in [2], and measurements are also
available from experiments at the SPS collider [3], the Tevatron [4, 5] and RHIC [6]. Recently, mea-
surements have been performed at the LHC by the ATLAS and CMS collaborations in pp collisions at
various energies [7–15].

These measurements allow one to study a wide range of transverse momentum (pT) of prompt photon
production from 15 to 1000 GeV/c, the lowest limit being partially defined by the use of a high-energy
photon trigger. A more fundamental limitation for direct photon measurements is imposed by the general
experimental conditions. In particular, photon conversions in detector material imply a worsening of
momentum resolution and signal reduction that is especially important at low momentum. For converted
photons, the original energy may even be recovered for very high momentum, but a strong bias will be
introduced at low transverse momentum. The low material budget in the ALICE experiment (X/X0 =
0.7−0.9 in front of the photon detector) makes photon measurements at low pT more reliable and allows
one to move the pγ

T reach to a lower value.

In some of the above-mentioned references, the term “direct prompt photons” is introduced to denote
photons from the 2→ 2 processes and is contrasted in particular with fragmentation or bremsstrahlung
photons emitted directly from partons. We follow a nomenclature that was adopted in a CERN Yel-
low Report [16] where direct photons referred to all photons that do not originate from hadronic de-
cays and prompt photons to all photons that are directly emerging from a hard process or produced by
bremsstrahlung, in any order of perturbative QCD. When needed, we speak explicitly of “photons from
2→ 2 processes” in this paper.

Photons from 2→ 2 processes provide clear constraints of the underlying parton kinematics, but making
a clean separation between the different types of prompt photons is difficult.

In a consistent theoretical description, the separate treatment of certain diagrams is somewhat arbitrary
and only justified quantitatively to reach a desired accuracy in a given calculation. A physical definition
of a subset of photons has to be related to measurable criteria. This has led to the prescription of so-called
“isolated photons”. An isolation criterion is applied on photon candidates, where one requires the sum
of the transverse energies (or transverse momenta) of produced particles in a cone around the photon
direction to be smaller than a given threshold value – this can be done both in the experiment and in
theoretical calculations. Fragmentation and bremsstrahlung photons are expected to be accompanied by
fragments of the parton that has been close in phase space, while photons from 2→ 2 processes should be
free of such associated fragments. Thus, an isolation cut should significantly suppress fragmentation and
bremsstrahlung, while it should affect the 2→ 2 processes only marginally [17]. A strong additional mo-
tivation of an isolation cut is to reduce the background of decay photons in the measured signal. This can
be achieved, because hadrons at reasonably high pT would in general be produced in jet fragmentation
and would thus be accompanied in their vicinity by other jet fragments.
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Measurements of prompt and in particular isolated photons provide constraints on the proton [17] and nu-
clear [18] Parton Distribution Functions (PDFs). At the LHC, because of the high centre-of-momentum
energy (

√
s), such PDF studies are potentially sensitive to very small values of the longitudinal momen-

tum fraction x of the initial-state parton. For a 2→ 2 process with the two particles (3 and 4) in the final
state being emitted at similar rapidities y3 ≈ y4 ≈ y, which is the dominant contribution to the inclusive
single particle cross section, the x values in the initial state can to a good approximation be calculated as:

x1,2 ≈
2pT√

s
exp(±y)≡ xT exp(±y), (1)

where pT is the transverse momentum and y the rapidity of the final state particles. The variable xT
defined here is often used to compare transverse momentum distributions for different beam energies. For
photons measured at mid-rapidity (y≈ 0), it is closely related to the Bjorken x-values: xT ≈ x1 ≈ x2 ≡ x.
At the LHC, the most important contribution to photon production, the quark-gluon Compton diagram,
where the above relation can be applied, has the additional advantage to be directly sensitive to the gluon
density, which has the largest uncertainty among the PDFs. These 2→ 2 processes, which should be
enriched in the measurement via the isolation cut, should therefore probe the low-x gluon content of
one of the incoming hadrons. Any higher order effects will weaken the kinematic constraints, and in
particular, fragmentation photons will be sensitive to much larger values of x. Also, when measuring
only one of the final-state particles, the uncertainty on the rapidity of the other particles will lead to a
broadening of the distribution of x values probed.

To get a better understanding of the ranges of kinematic parameters of the partonic processes that are
explored in prompt photon measurements, we have performed a study of photon production with the
PYTHIA 8 generator (version 8.235 [19] with Monash 2013 Tune [20]), where we extract the values
of factorisation scale Q and parton momentum fractions x1 and x2 directly as specified in the PYTHIA
event record. PYTHIA does not contain all effects of higher orders in QCD systematically, but has some
important enhancements beyond pure LO via initial- and final-state radiation. In this calculation, we
have not implemented an isolation cut, but we assume that for the purpose of this study, it is equivalent
to simulating only the LO processes for partonic photon production. Fig. 1 shows the results of this
calculation.

The value of the scale Q (left panel) is approximately proportional to pT. The momentum fractions x of
the two partons are shown in the right panel. Here, we include both partons, because for a midrapidity
measurement x1 and x2 should be approximately equivalent. For comparison, the LO estimates from
Eq. (1) are also shown in the figure. The overall dependence of the values of x on pT is very similar, and
they show the expected increase with pT.

These results suggest that, for most of the pT range for a photon measurement at midrapidity, the LO
estimate is a reasonably good description of the overall behaviour of the kinematics. However, there
is a significant width to the distributions. For example, while a photon of pT = 10 GeV/c should be
dominantly sensitive to values of x ≈ 2 ·10−3, there should be significant contributions up to x ≈ 10−2.
Similar behaviour is expected for other probes, e.g. hadrons, but the latter will have a larger spread in
their kinematic sensitivity and will in general probe larger values of x due to fragmentation, and they will
thus be less selective in terms of the kinematics. This behaviour motivates the measurement of isolated
photons at the lowest possible values of pT.

Direct photon measurements can provide additional information in high-energy nuclear collisions. Prompt
photon measurements in nucleus-nucleus collisions can yield a reference for the medium-induced mod-
ification of strongly-interacting probes. In particular, jets and high transverse momentum hadrons are
suppressed in such collisions [21–23], while photons, similar to W and Z0 bosons, should be unaffected
by the strongly interacting medium, consistent with the first measurements of prompt photons in AA
collisions [9, 24]. Measurements in pp collisions provide a baseline for the latter.

3



Isolated photon production in ALICE ALICE Collaboration

20 40 60
) c (GeV/

T
pPhoton 

0

20

40

60

)
 (

G
eV

Q

PYTHIA 8 simulation

 = 7 TeVspp, 

 < 0.27y-0.27 < 
Median
68% and 90% C.L.

20 40 60
) c (GeV/

T
pPhoton 

3−10

2−10

1−10

 
x

LO estimate

 = 0.0y

 = 0.27y

PYTHIA 8 simulation = 7 TeVspp, 

 < 0.27y-0.27 < 
Median
68% and 90% C.L.

Fig. 1: (colour online) The scale Q (left), and the fraction x (right) of longitudinal momentum of the initial state
partons of the hard process for photon production at midrapidity versus photon pT for pp collisions at

√
s = 7 TeV,

from a PYTHIA 8 [19] simulation. The x values of both partons are used here. The solid red line shows the median
of the distribution in the parameters, while the red bands indicate the 68% and 90% confidence level intervals. The
right plot shows for comparison the LO estimate for x according to Eq. (1) for the rapidity range studied here.

At lower pT, other sources of direct photons than prompt photons exist, in particular in high-energy
nuclear collisions, where e.g. thermal photons are produced from the thermalised system. These are
important probes of the quark-gluon plasma. Their contribution has been measured by experiments at
the SPS [25], RHIC [26], and the LHC [27].

In this paper, results of the ALICE experiment on isolated photon measurements in pp collisions at√
s = 7TeV are presented. The paper is organised as follows: Section 2 presents the detector setup and

data sample analysed, the analysis procedure and uncertainties are described in Sect. 3 and 4 and finally,
results and conclusions are presented in Sect. 5 and 6, respectively.

2 Detector description and data selection

A comprehensive description of the ALICE experiment and its performance is provided in Refs. [28,
29]. Photon reconstruction was performed using the Electromagnetic Calorimeter (EMCal) [30] while
charged particles are reconstructed with the combination of the Inner Tracking System (ITS) [31] and
the Time Projection Chamber (TPC) [32], which are part of the ALICE central tracking detectors.

The ITS consists of six layers of silicon detectors and surrounds the interaction point, covering full
azimuth. The two innermost layers consist of the Silicon Pixel Detector (SPD) and are positioned at
radial distances of 3.9 cm and 7.6 cm. They are surrounded by the two layers of the Silicon Drift
Detector (SDD) at 15.0 cm and 23.9 cm, and by those of the Silicon Strip Detector (SSD) at 38.0 cm
and 43.0 cm. While the two SPD layers cover |η |< 2 and |η |< 1.4, respectively, the SDD and the SSD
subtend |η | < 0.9 and |η | < 1.0, respectively. The TPC is a large (≈ 85 m3) cylindrical drift detector
filled with a Ne/CO2 gas mixture. It covers |η | < 0.9 over the full azimuth angle, with a maximum of
159 reconstructed space points along the track path. The TPC and ITS tracking points are matched when
possible, forming tracks with an associated momentum.

The EMCal is a lead-scintillator sampling electromagnetic calorimeter used to measure photons, elec-
trons and the neutral part of jets via the electromagnetic showers that the different particles produce
in cells of the calorimeter. The scintillating light is collected by optical fibres coupled to Avalanche
Photo Diodes (APD) that amplify the signal. The energy resolution is σE/E = A⊕B/

√
E⊕C/E with
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A = (1.7± 0.3)%, B = (11.3± 0.5)%, C = (4.8± 0.8)% and energy E in units of GeV [33]. The EM-
Cal was installed at a radial distance of 4.28 m from the ALICE interaction point. During the period in
which the analysed dataset was collected, the EMCal consisted of 10 supermodules with a total aperture
of |η | < 0.7 in pseudorapidity and 80◦ < ϕ < 180◦ in azimuthal angle. The supermodules are subdi-
vided into 24× 48 cells, each cell with transverse size of 6× 6 cm2 which corresponds to ∆η ×∆ϕ

= 0.0143×0.0143 rad, approximately twice the Molière radius. Thus, most of the energy of a single
photon is deposited in a single cell plus some adjacent ones. The minimum bias interaction trigger was
based on the response of the V0 detector, consisting of two arrays of 32 plastic scintillators, located at
2.8 < η < 5.1 (V0A) and −3.7 < η <−1.7 (V0C) [34].

The data used for the present analysis were collected during the 2011 LHC data taking period with pp
collisions at the centre-of-momentum energy of

√
s = 7 TeV. The analysed data were selected by the

EMCal Level-0 (L0) trigger requiring energy deposition larger than 5.5 GeV in a tile of 2×2 adjacent
cells, in addition to the Minimum Bias trigger condition (MB, a hit in either V0A, V0C or SPD). The
L0 decision, issued at latest 1.2 µs after the collision, is based on the analog charge sum of the cell tiles
evaluated with a sliding window algorithm within each physical Trigger Region Unit (TRU) spanning
4×24 cells.

The integrated luminosity taken with the EMCal trigger (L ) has been determined using the expression

L =
Nevt R
σMB

(2)

where Nevt = 8.85 ·106 is the number of events selected with the EMCal trigger and σMB = 53.7±2.0 mb
[35] the measured minimum bias trigger cross section for the year 2011 sample.

Furthermore, R is the trigger rejection factor, which quantifies the fraction of interaction triggers which
are rejected by the additional EMCal L0 trigger condition. It has been corrected for in-bunch pile-
up (average number of collisions per bunch crossing) and amounts to R = 2941± 174. The resulting
sampled luminosity of the current measurement is L = 473±28 (stat) ±17 (syst) nb−1.

3 Isolated photon reconstruction and corrections

Direct photon identification used in this analysis is based on three steps: (a) particle reconstruction in the
calorimeter; (b) photon identification via track-cluster matching cuts and the study of the shower shape
produced by the particle; and (c) selection of isolated photons.

The detector response is modelled by Monte Carlo (MC) simulations reproducing the same detector
conditions as for the data taking period. The corrections discussed in the next subsections are obtained
using PYTHIA 6 (version 6.421 [36], with Perugia 2011 tune [37] and CTEQ5L for PDF [38] ) as particle
generator simulations, generating processes in bins of transverse momentum of the hard scattering with
two jets (jet-jet) or a direct photon and a jet (γ-jet, mainly Compton and annihilation processes) as
final state, and GEANT3 [39] for particle transport in the detector material. In the case of γ-jet event
generation, the event is accepted when the direct photon enters the EMCal acceptance. In the case of
jet-jet event generation, the event is accepted when at least one jet produces a high-pT photon originating
from a hadron decay in the EMCal acceptance. To enhance the number of such photons, which are the
main background in this analysis, two sub-samples have been used in the jet-jet simulation, each with
different event selection, where it is ensured that a decay photon with pT > 3.5 or 7 GeV/c is present in
the EMCal acceptance.
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3.1 Cluster reconstruction and selection

Particles deposit their energy in several calorimeter cells, forming a cluster. Clusters are obtained by
grouping all cells with common sides whose energy is above 100 MeV, starting from a seed cell with at
least 300 MeV. Furthermore, a cluster must contain at least two cells to ensure a minimum cluster size and
to remove single-cell electronic noise fluctuations. In order to limit energy leakage at the supermodule
borders, a distance of at least one cell of the highest-energy cell in the cluster to the supermodule border is
required. These requirements lead to an acceptance of |η |< 0.67 in pseudorapidity and 82◦ < ϕ < 178◦

in azimuth. During the 2011 data taking period, the LHC delivered events in bunches separated by
50 ns. Therefore, to ensure the selection of clusters from the main bunch crossing, the timing of the
highest-energy cell in the clusters relative to the main bunch crossing has to satisfy ∆t < 30 ns.

Finally, an energy non-linearity correction derived from electron test beam data [40], of about 7% at
0.5 GeV and negligible above 3 GeV, is applied to the reconstructed cluster energy.

Nuclear interactions occurring in the APD, in particular those involving neutrons, induce an abnormal
signal [41]. Such a signal is most frequently observed as a single high-energy cell with a few surrounding
low-energy cells, and can be removed by comparing the amplitudes in adjacent cells to the cell with
maximum amplitude Emax. To reject these signals, one requires that the ratio F+ ≡ 1−E+/Emax, where
E+ is the sum of the amplitude of the four surrounding cells that share a common edge with the maximum
cell, satisfies F+ < 97%.

Contamination of the cluster sample by charged particles is suppressed by a charged particle veto (CPV).
It is provided by TPC tracks constrained to the vertex, selected so that the distance of closest approach
to the primary vertex is less than 2.4 cm in the plane transverse to the beam, and less than 3.0 cm in the
beam direction. The separation of the position of the track extrapolated to the EMCal surface from the
cluster position must fulfil the conditions

∆η
residual > 0.010+(ptrack

T +4.07)−2.5 and ∆ϕ
residual > 0.015+(ptrack

T +3.65)−2 rad (3)

where ∆ϕ residual = |ϕ track−ϕcluster|, ∆η residual = |η track−ηcluster| and the track transverse momentum
(ptrack

T ) is in GeV/c units as detailed in [42]. The track-to-cluster matching efficiency amounts to about
92% for primary charged hadrons and electrons at cluster energies of E ' 1 GeV, up to 96% for clusters
of 10 GeV.

From now on, clusters that pass the previous selection cuts are called “neutral clusters”.

3.2 Shower shape and photon identification

The neutral cluster can have a wider shape, if one or several additional particles deposit their energy
nearby in the detector. The most frequent case is a two-particle cluster that has an elongated shape. If
the distance between particles is larger than two cells, one can observe cells with local maxima in the
energy distribution of the cluster, where a local maximum is defined as a cell with a signal higher than
the neighbouring cells.

For an increasing number of local maxima (NLM), the cluster will in general get wider. Direct photons
generate clusters with NLM = 1, except if they suffer conversion in the material in front of the EMCal.
The two decay photons from high-pT π0 and η mesons with energy above 6 and 24 GeV, respectively,
likely merge into a single cluster as observed in simulations. Merged clusters from π0 mesons below 15
GeV and η mesons below 60 GeV most often have NLM = 2. With increasing energy the two-photon
opening angle decreases, leading to merged clusters with mainly NLM = 1 above 25 GeV for π0 mesons
and above 100 GeV for η mesons.

We reject clusters with NLM > 2 in this analysis, as these clusters are the major contribution to the
background and contributions from more than 2 particles are not perfectly reproduced in Monte-Carlo
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simulations. Contribution of clusters with NLM = 2 is especially large in case of wide showers, and are
crucial for the estimate of the contamination of the direct photon sample, as explained in Sect. 3.4.

Merged and single photon clusters can be discriminated based on the shower shape using the width
parameter σ2

long, the square of the larger eigenvalue of the energy distribution in the η−ϕ plane [29, 42,
43], that can be calculated as:

σ
2
long = (σ2

ϕϕ +σ
2
ηη)/2+

√
(σ2

ϕϕ −σ2
ηη)

2/4+σ4
ηϕ , (4)

where σ2
xz =

〈
xz
〉
−
〈
x
〉〈

z
〉

and
〈
x
〉
= (1/wtot)∑wixi are weighted over all cells associated with the

cluster in the ϕ or η direction.

The weights wi depend logarithmically on the ratio of the energy Ei of the i-th cell to the cluster energy, as
wi = max(0,4.5+ ln(Ei/Ecluster)) and wtot = ∑wi [44]. The neutral clusters σ2

long distributions as a func-
tion of pT in data and simulation are shown in Fig. 2. Most of the pure single photons are reconstructed
as clusters with σ2

long ≈ 0.25, other cases contribute to higher values as seen in simulation in Fig. 2,
right. Above the higher limit in σ2

long (defined by the solid line), a clear pT-dependent band populated by
merged π0-decay photons can be observed as shown in Fig. 2, left. The value of σ2

long for merged decay
photons decreases with increasing energy, which leads to an overlap with single photon showers. In this
analysis, “photon candidates” refer to clusters with a narrow shape 0.1 < σ2

long < σ2
max with σ2

max = 0.4
in 10 < pγ

T < 14 GeV/c, σ2
max = 0.35 in 14 < pγ

T < 16 GeV/c and σ2
max = 0.3 for pγ

T > 16 GeV/c.

A comparison of the shower shape parameter σ2
long distribution in data and Monte-Carlo simulations is

shown in Fig. 3. The single photon peak in data compared to simulations has a stronger tail towards
larger values of σ2

long, i.e. specifically in the region 0.3≤ σ2
long ≤ 0.4.

The main reason for this was identified as a cross-talk between cells belonging to the same EMCal
readout card, called T-Card, which serves 2×8 cells (in η×ϕ). The cross-talk results in an increase of
the amplitude in cells close to the highest-energy cell of the cluster and in the same T-Card, with a few
percent of Emax, which in turn leads to a modification of the cluster shape. This effect was modelled in
the simulation and a good agreement between data and simulation was achieved, as seen in Fig. 3 for
two neutral cluster pT intervals.

3.3 Isolated photon selection

Direct photons emitted in 2→ 2 processes are mostly isolated, i.e. have no hadronic activity in their
vicinity except for the underlying event of the collision, in contrast to other photon sources like photons
from parton fragmentation or decays of hadrons which have a high probability to be accompanied by
other fragments [17].

An isolation criterion is applied to direct photon candidates to increase the purity of 2→ 2 processes. As
a consequence for a comparison with theory, one has to make sure to implement an equivalent cut in the
theoretical calculations.

The isolation criterion is based on the so-called “isolation momentum” piso
T , i.e. the transverse momen-

tum of all particles measured inside a cone around the photon candidate, located at ηγ and ϕγ . The cone
radius used is defined as:

R =
√

(η−ηγ)2 +(ϕ−ϕγ)2 (5)

We chose R = 0.4 as cone radius as it contains the dominant fraction of the jet energy [45] and is
sufficiently large to contain both decay products of neutral meson decays. In addition it is fully contained
within the acceptance of the electromagnetic calorimeter.
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Fig. 2: (color online) Left: Shower shape parameter σ2
long versus neutral cluster pT. The band limited by the black

dashed lines indicates the area populated by single photons and defines the photon selection cuts (narrow clusters)
used in the analysis. Right: Distributions of the shower shape parameter for different types of clusters produced
by single photons (red bullets) or overlapped photons from π0 decays (black bullets) for different cluster energies
from PYTHIA 6 γ-jet and jet-jet simulations with GEANT3 tuned for cross-talk emulation. A line at σ2

long = 0.3
represents the cut used to select narrow clusters at pγ

T > 18 GeV/c. All distributions are normalised to an integral
of 1. In the left plot each pT bin is separately normalised to 1.
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Fig. 3: (colour online) Distributions of the shower shape parameter σ2
long of neutral clusters in data and simulations

as used in this analysis. The different panels show different neutral cluster pT intervals. All distributions are
normalised to the integral. Data are shown as black histograms and simulations, PYTHIA 6 jet-jet + γ-jet events,
with GEANT3 default settings in blue. The red histograms are also simulations based on GEANT3, but tuned to
reproduce the cross-talk observed in the EMCal electronics.

The isolation momentum is the sum of the transverse momenta of all neutral clusters (pcluster
T ) in the

calorimeter, excluding the candidate photon, and of the transverse momenta of all charged tracks that fall
into the cone:

piso
T = ∑ pcluster

T +∑ ptrack
T . (6)

The candidate photon is declared isolated if piso
T < 2 GeV/c. This value was chosen after studying

the efficiency, background rejection and purity performances, and optimizing these quantities. In order
to have full coverage of the cone in the calorimeter, the photon candidate is restricted to a fiducial
acceptance corresponding to |ηγ |< 0.27 in pseudorapidity and 103◦ < ϕγ < 157◦ in azimuth.

Charged particles used in the calculation of the isolation momentum are reconstructed in a hybrid ap-

8



Isolated photon production in ALICE ALICE Collaboration

proach using ITS and TPC, which reduces local inefficiencies potentially caused by non-functioning
elements of the ITS. Two distinct track classes are accepted in this method [29]: (i) tracks containing at
least three hits in the ITS, including at least one hit in the SPD, with momentum determined without the
primary vertex constraint, and (ii) tracks containing less than three hits in the ITS or no hit in the SPD,
with the primary vertex included in the momentum determination. Class (ii) is used only when layers
of the SPD are inactive in the acceptance. Class (i) contributes 90% and class (ii) 10% of all accepted
tracks, independently of pT. The same constraints to the vertex as for TPC tracks discussed before are
required. Accepted tracks satisfy |η track|< 0.9 and ptrack

T > 0.2 GeV/c.

3.4 Purity of the isolated photon sample

The isolated photon candidate sample still has a non-negligible contribution from background clusters,
mainly from neutral meson decay photons. To estimate the background contamination, different classes
of measured clusters were used: (1) classes based on the shower shape σ2

long, i.e. narrow, photon-like
and wide (most often elongated, i.e. non-circular), and (2) classes defined by the isolation momentum
piso

T , i.e. isolated (iso) and non-isolated (iso). The different classes are denoted by sub- and superscripts,
e.g. isolated, narrow clusters are given as X iso

n and non-isolated, wide cluster are given as X iso
w . The

σ2
long parameter values for narrow and wide clusters correspond to the signal and background clusters

indicated in Sect. 3.2. The wide clusters use 0.55 < σ2
long < 1.75 for pγ

T < 12 GeV/c, 0.5 < σ2
long < 1.7

for 12 < pγ

T < 14 GeV/c, 0.45 < σ2
long < 1.65 for 14 < pγ

T < 16 GeV/c and 0.4 < σ2
long < 1.6 for pγ

T >
16 GeV/c.

The isolation criterion corresponds to piso
T < 2 GeV/c whereas the anti-isolation corresponds to piso

T > 3 GeV/c.
The yield of isolated photon candidates in this nomenclature is Niso

n . It consists of signal (S) and back-
ground (B) contributions: Niso

n = Siso
n +Biso

n .

This class is labelled with the letter A in Fig. 4, which illustrates the parameter space used in this proce-
dure. The three other classes that can be defined (labelled as B, C, and D in the figure) should dominantly
contain background clusters. The notation A, B, C and D is analogous to the one used by the ATLAS
experiment for their contamination estimate [12]. The contamination of the candidate sample is then
C = Biso

n /Niso
n , or respectively, the purity is then P≡ 1−C. Assuming that the ratios of isolated over non

isolated background in the narrow cluster areas is the same as in the wide cluster areas so that

Biso
n /Biso

n

Biso
w /Biso

w
= 1, (7)

and assuming that the proportion of signal in the control regions (B, C and D) is negligible compared to
the proportion of background, the purity is derived in a data-driven approach (dd) as

Pdd = 1− Biso
n /Niso

n

Biso
w /Biso

w
= 1− Niso

n /Niso
n

Niso
w /Niso

w
. (8)

Unfortunately, both assumptions are valid only approximately, especially Eq. (7). In simulations with
two jets in the final state that contribute only to background in all of the four zones, an evaluation of
Eq. (7) gives values of the order of 0.8 at pγ

T = 10 GeV/c, increasing to about 1.7 for pγ

T > 40 GeV/c,
thus the ratio is in general different from unity.

In part, this is due to the fact that single photons from meson decays can have a higher value of piso
T than

merged decay photons at the same pT, because of the presence of the second photon from the meson
decay in the isolation cone.

Also, fluctuations in the cluster distributions, e.g. caused by overlapping showers from close particles
originating from the same hard process, may lead to some energy contribution either to be included in
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Fig. 4: (colour online) Illustration of the parametric-space of the photon isolation momentum and the shower
width parameter (σ2

long), used to estimate the background yield in the signal region (A) from the observed yields in
the three control regions (B, C, D). The red regions indicate areas dominated by background and the blue regions
those that contain the photon signal. The colour gradient between these regions illustrates the presence of a signal
contribution in the three background zones.

the cluster candidate and increase its width, or not to be included and increase the isolation momentum,
causing an anti-correlation of the two parameters.

Since these effects are purely due to particle kinematics and detector response, we use the simulation to
estimate the bias this causes via (

Biso
n /Biso

n

Biso
w /Biso

w

)
data

=

(
Biso

n /Biso
n

Biso
w /Biso

w

)
MC

, (9)

where MC contains both jet-jet and γ-jet events scaled to their respective cross sections. This implies
replacing Eq. (7) by the relation given by Eq. (9) leading to the expression of the MC-corrected purity

P = 1−
(

Niso
n /Niso

n

Niso
w /Niso

w

)
data
×
(

Biso
n /Niso

n

Niso
w /Niso

w

)
MC
≡ 1−

(
Niso

n /Niso
n

Niso
w /Niso

w

)
data
×αMC. (10)

The difference between the degree of the correlation among isolation momentum and shower shape
distribution in data and in Monte-Carlo is another potential source of bias, as it influences the validity of
Eq. (9). To check this, the dependence of the double ratio(

Niso/Niso
)data

(
Niso/Niso

)MC = f
(
σ

2
long
)

(11)

on the shower shape width σ2
longis studied in a region where the signal contribution is expected to be

negligible. If the correlation between the two variables is correctly reproduced in the simulation, the
double ratio is independent of σ2

long, i.e. it would be the same for wide and narrow clusters. The double
ratio was found to be above unity, indicating a larger isolation probability in data than in simulations.
This is mainly due to an imperfect calibration of charged particle tracks which leads to some discrepancy
between data and simulations in the estimate of the isolation energy from charged particle. However,
since the correction introduced in Eq. (10) relies on a narrow-over-wide ratio, the overall normalisation
in the double ratio of Eq. (11) does not enter the correction.

10
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The double ratio was found to be consistent with a constant, but a possible residual bias between data
and MC has been estimated via extrapolations by linear fits of the dependence on σ2

long instead of the
assumption of a constant value. This consists of replacing the MC correction in Eq. (10) by a modified
term:

αMC 7−→ αMC×

(
p0 +σ2

long,n.p1

p0 +σ2
long,w.p1

)
, (12)

where σ2
long,n and σ2

long,w are the median values of the neutral cluster σ2
long distribution in the narrow and

wide ranges, respectively, and p0 and p1 are the parameters of the linear fit of the double ratio f (σ2
long).

These extrapolations have then been used in the estimate of the mean value and uncertainties of the
purity. In this procedure, also a variation of the value of the isolation momentum required for non-
isolated clusters has been included for the Monte Carlo correction, in order to check the variations due
to the discrepancy of isolation fractions in data and in simulation (the overall normalisation). Finally,
the dependence of the results on the isolation momentum calculation is tested using only tracks when
computing the isolation momentum (piso

T = ∑ ptrack
T ) and using an isolation criterion of piso

T < 1.9 GeV/c
and an anti-isolation cut of piso

T > 2.9 GeV/c. These values have been chosen after comparing the isolated
photon spectrum at generator level obtained using either neutral and charged particles or charged particles
only in γ-jet simulations. The final purity is calculated as the mean value of all the results obtained from
the different estimates varying:

– the isolation momentum definition (including or ignoring the contribution of ∑ pcluster
T ),

– the dependence of the isolation probability on the shower shape σ2
long (extrapolation of f (σ2

long)),

– the MC anti-isolation criterion (normalisation of f (σ2
long)).

Fig. 5 shows the purity calculated using Eq. (10) and averaged over the different approaches listed above
using also Eq. (12). The boxes indicate the systematic uncertainty whose estimation is explained in the
next section. There is a large contamination at pγ

T = 10 GeV/c of 80% that decreases and saturates at
40–50% for pγ

T > 18 GeV/c. The contamination level defines the lower pγ

T that can be reached. Most of
the contamination is due to π0 clusters (merged decay photons). Below 18 GeV/c, this contamination is
dominated by single (i.e. unmerged) decay photons from π0 mesons, the remaining contributors being
mainly photons from η mesons decay. Above 18 GeV/c, a fraction of the merged π0 decay clusters have
a narrow shower that satisfy the condition for the single photon signal, as illustrated in Fig. 2 (right). The
pγ

T dependence of the purity is caused by an interplay of physics and detector effects. On one hand, the
pT spectra of prompt photons are harder than those of neutral pions, mainly because the latter undergo
fragmentation, as also was found in pQCD calculations [16, 33]. For this reason, the γdir/π0 yield ratio
rises with pT, and the photon purity increases as well. Also, the probability to tag a photon as isolated
varies with pT. At higher pT, isolation is less probable for a fixed isolation momentum. On the other
hand, due to the decreasing opening angle at high pT the contamination from π0 mesons increases with
pT. At pT = 20 GeV/c, 5% of the π0 decay photons are found in the narrow shower shape region, and
beyond 40 GeV/c this contribution rises to more than 25%. The combined effect of these mechanisms
leads to the rise of the purity at low pT and a saturation for pT > 18 GeV/c.

The results obtained for the purity are comparable with those reported by CMS [7, 8] in the overlapping
pT range, whereas the purity obtained by ATLAS [11, 12] is significantly higher than our measurement
due to the very high granularity of the first layers of its electromagnetic calorimeter, allowing a very good
separation of single photon and π0 decay photon showers.
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Fig. 5: Isolated photon purity as a function of photon pT.

3.5 Efficiency

The photon reconstruction, identification and isolation efficiency has been computed using PYTHIA 6
simulations of γ-jet processes in which, for each event, a direct photon is emitted in the EMCal accep-
tance but, only those falling in the fiducial acceptance are considered in the efficiency calculation.

The different analysis cuts contribute to the overall efficiency and the contributions are presented in the
left panel of Fig. 6. They are calculated as the ratio of spectra, where the denominator is the number
of generated photons dNgen

γ /dpgen
T , and the numerators are the reconstructed spectra after different cuts,

dNrec
cut/dprec

T : (i) the pure reconstruction efficiency of photons is ε rec ≈ 70%, (green squares), which
includes losses due to excluded regions in the calorimeter and exclusion of clusters close to the border
of EMCal supermodules, as well as bin migration due to energy resolution, (ii) applying in addition
the photon identification reduces the efficiency by about 10%, leading to ε rec · ε id ≈ 60%, (red crosses),
which is mainly driven by the shower shape selection cuts used for the photon sample, (iii) combining it
with the isolation criterion yields an efficiency ε rec · ε id · ε iso ≈ 50%, (blue diamonds).

In addition, the fraction κ iso of generated photons which are isolated is represented by black filled cir-
cles in the figure. The total efficiency corresponds to the ratio of the reconstruction, identification and
isolation efficiency as given in (iii) to the isolated generated photon fraction κ iso and is then directly
calculated as follows:

ε
iso
γ =

dNrec
n, iso

dprec
T

/
dNgen

γ , iso

dpgen
T
≡ ε recε idε iso

κ iso , (13)

where Nrec
n, iso is the number of clusters which are reconstructed and identified as isolated photons and

which are produced by a direct photon, and Ngen
γ , iso is the number of generated direct photons which pass

the isolation cut in the same way as at the detector level. The overall efficiency for the reconstruction
of isolated photons is of the order of 60% on average as shown in Fig. 6 (right panel). To check the
robustness of the efficiency calculation, the effect of a variation of the shape of the momentum spectrum
in the Monte Carlo used has been studied and has been found to be negligible.

3.6 Trigger efficiency and corrections

The EMCal-L0 trigger efficiency εtrig is the probability that the trigger selects events when a photon is
emitted in the EMCal acceptance. This analysis starts well above the trigger threshold (10 GeV compared
to 5.5 GeV) where the trigger efficiency is flat.

The trigger efficiency is however not 100%, because of two effects reducing the geometric coverage of
the trigger compared to the EMCal acceptance: the sliding window technique can only be used within
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Fig. 6: (colour online) Different contributions (reconstruction, identification, isolation) to the total efficiency (left)
and total isolated photon efficiency (right) calculated using Eq. (13), all as a function of the reconstructed pT.

a single given TRU, and in addition, some TRU cards were inactive. The efficiency is calculated from
minimum bias events as the ratio of the number of events containing high energy clusters (E > 10 GeV,
see cluster definition in Sect. 3.1) and leaving a signal in the trigger over the total number of events with
high energy clusters in the same sample. It was estimated to be εtrig = 0.90 ± 0.06 (stat). The statistical
uncertainty quoted here is completely correlated to that of the luminosity so that it will not be taken into
account twice. Moreover, a bias in the trigger efficiency was found, which is due to synchronisation
issues. Sometimes, the EMCal-L0 trigger selected events in the next bunch crossing, 50 ns after the
nominal bunch crossing. The bias was estimated by calculating the ratio C of the number of clusters in
a time window containing only the main bunch crossing over the number of clusters in a time window
including the main and the next bunch crossing. The bias was found to be between 3% and 8% for trigger
cluster pT varying from 10 to 60 GeV/c, and the trigger efficiency is corrected for this effect.

4 Systematic uncertainties

Systematic uncertainties on the cross section measurement are summarised in Table 1 for two extreme
transverse momentum bins used in the analysis and presented in Fig. 7. The uncertainties are treated
as independent and thus summed in quadrature. Though we present systematic uncertainties for inter-
mediate quantities, like purity (Fig. 5) and efficiency (Fig. 6), they do not enter into the calculation of
uncertainties of the final cross section. Instead, systematic uncertainties of all sources are evaluated there
directly.

The uncertainties due to the choice of the photon cluster identification criteria in this analysis are eval-
uated via variations of cuts for the charged particle veto and the shower shape σ2

long for the photon
selection.

The uncertainty due to the charged particle veto was estimated by varying the parameters of the track
pT-dependent cuts for ∆η residual and ∆ϕ residual. The resulting uncertainty on the cross section ranges from
2% to 7% from lower to larger pγ

T. The increase with pγ

T is driven by the use of the charged particle veto
in the cone activity measurement. For high values of pγ

T, the in-cone activity is higher and the systematic
uncertainty from the CPV is higher.

The choice of the signal range of the σ2
long of narrow photon-like showers, is important for the efficiency

calculation, but also influences the background estimate via a “leakage” of photon showers to the control
regions. The uncertainty due to the choice of the signal range is estimated by varying the upper limit
of the range and is found to lie between 3.7% and 7.5%, increasing with pγ

T. Similarly, the uncertainty
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Table 1: Summary of uncorrelated relative systematic uncertainties in percent for selected pγ

T bins of the isolated
photon measurement. The luminosity uncertainty of 9.5% is not included in this table.

pγ

T 10–12 GeV/c 40–60 GeV/c
Charged particle veto 2.0% 7.0%
σ2

long signal range 3.7% 7.5%
σ2

long background range 2.5% 2.5%
MC signal amount 1.0% 2.7%
MC γ enhancement bias 2.0% 2.0%
No MC tuning 4.2% 4.2%
Number of local maxima 2.0% 2.0%
Isolation probability 20.0% 8.5%
Energy scale 3.3% 3.3 %
Trigger stability 5.1% 5.1%
Material budget 2.1% 2.1%
Combined syst. unc. 22.1% 16.0%
Statistical unc. 19.9% 40.3%
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Fig. 7: (colour online) Contributions to the systematic uncertainty of the isolated photon cross section and their
quadratic sum as a function of photon pT.

due to the choice of the background region (wide showers, i.e. large values of σ2
long) is investigated by

moving the corresponding σ2
long interval to smaller and larger values. The estimated uncertainty is found

to be 2.5%.

The Monte Carlo correction of the data-driven purity may also depend on the amount of signal in the
simulation, mainly due to the aforementioned leakage effect. This is checked by changing the relative
normalisation of the signal and background MC samples from the default value corresponding to the the-
oretical cross sections to a relative signal contribution that is 30% larger or smaller than this default.The
resulting uncertainty varies from 1% for the lowest pγ

T to 2.7% for the highest pγ

T. The uncertainty related
to the input particle bias produced by the event selection enhancing photons in simulation is 2%.

The description of the shower shape in simulations can also affect both the efficiency measurement and
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the MC correction of the purity. The associated uncertainty is found to be 4.2%, estimated from the
difference between standard simulations and those including modelling of the cross-talk observed in the
EMCal readout cards. In addition, the sensitivity of the cross section to the number of local maxima of
selected clusters is checked by accepting clusters with NLM > 2. The resulting uncertainty amounts to
2% in the cross section measurement.

Related to the purity, the bias due to the correlation between the two quantities used to estimate the con-
tamination (σ2

long and piso
T ) is taken into account via a number of cut and method variations, which test

the two main assumptions made in this estimate: (i) the background isolation fraction is constant with
respect to the shower shape σ2

long and (ii) the isolation fraction is the same in data and simulation. The
different approaches used for these systematic checks are described in Sect. 3.4. The systematic uncer-
tainty assigned addressing these correlation effects is labelled as “isolation probability” and is obtained
by the root mean square of the results obtained for the different checks mentioned above and in Sect. 3.4.
The resulting uncertainty is estimated to vary from 20.% (pγ

T = 10GeV/c) to 8.5% (pγ

T = 60GeV/c).

The decrease of uncertainties with pγ

T is related to the increase of the purity of the photon candidates.

The uncertainty on the energy scale of the EMCal was estimated to be 0.8%, determined from the analysis
of test beam data [40] and a comparison of the π0 mass-peak position and the energy-to-momentum ratio
of electron tracks in data and Monte Carlo [46]. This uncertainty amounts to 3.3% in the cross section
measurement.

The uncertainty on the trigger normalisation factor is 5.1% and is estimated from the run-by-run vari-
ations of the number of reconstructed clusters with transverse momentum above pγ

T = 10 GeV/c per
event, corrected for the active detector area.

A material budget uncertainty accounting for the material of the different detectors traversed by photons
before they reach the EMCal has been previously determined [47] and amounts to 2.1% in the present
measurement. The in-bunch pile-up uncertainty (affecting the raw yield via the isolation momentum)
was found to be negligible, estimated by adding a random transverse momentum in the isolation cone
estimated from the in-cone energy of a random trigger in minimum bias events.

Fig. 7 summarises the different sources of systematic uncertainties. The dominant source of uncertainty
is the isolation probability, related mainly to the correlation of the two variables used for the purity esti-
mation (σ2

long and piso
T ), the discrepancy in isolation probability between data and MC and the definition

of piso
T . The pγ

T dependence of the total systematic uncertainty is expected and is related to the low purity
at low pγ

T.

5 Results

The isolated direct photon production differential cross section can be obtained from the following equa-
tion:

d2σ γ

dpγ

T dη
=

1
L εtrigC

d2Niso
n

dpγ

T dη

P
ε iso

γ

, (14)

where all the terms were described in the previous sections.

Fig. 8 shows the isolated photon cross section as a function of pγ

T. Error bars indicate the statistical
uncertainties and boxes the systematic uncertainties. An additional normalisation uncertainty of 9.5%,
which includes effects from the measurement of the total minimum bias cross section and effects due to
the rejection factor from the EMCal triggering, is not displayed in the left panel of the figure.

The measurement is compared to next-to-leading order (NLO) pQCD calculations using JETPHOX
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Fig. 8: (colour online) Isolated photon differential cross section measured in pp collisions at
√

s = 7 TeV (left
plot). Error bars are statistical and boxes systematic uncertainties. The bands correspond to pQCD calculations
with JETPHOX. The normalisation uncertainty explained in the text (9.5%) is not included in the left panel and is
presented as an overall box around unity in the right panel.

1.3.1 [48, 49]. The parton distribution function (PDF) used is CT14 [50], and the fragmentation function
is BFG II [51]. The central values of the predictions were obtained by choosing factorisation, normali-
sation and fragmentation scales equal to the photon transverse momentum (µ f = µR = µF = pγ

T). Scale
uncertainties were determined with a 7-point scale variation where µR and µF were varied by a factor of
2 up and down around pγ

T, keeping the µR/µF ratio between 1/2 and 2. As uncertainties related to the
PDF, the 56 eigenvector sets of CT14 were combined with the Hessian method [52, 53].

The isolation criterion in the theory calculations corresponds to the hadronic energy at the partonic level
within R < 0.4 around the photon. The same threshold of piso

T < 2 GeV/c as in data is used. The
theoretical predictions are corrected to take into account the underlying event as well as the fragmentation
in the isolation cone. This correction is estimated using γ-jet PYTHIA simulations as the fraction of
generated photons which are isolated as shown in Fig 6 (right). The theoretical predictions are computed
in the same pγ

T bins as for data.

Within uncertainties, the isolated photon cross section in data and theoretical predictions are in agreement
for the full transverse momentum range measured as demonstrated by Fig. 8 (right).

Fig. 9 compares the ratios of measured differential isolated photon cross sections to theoretical predic-
tions from three different LHC experiments, namely ALICE, ATLAS [11] and CMS [7]. The comparison
is done on ratios of data to similar predictions since the isolation criteria differ among these experiments
such that a direct comparison of the isolated photon cross sections is not fully adequate. The ATLAS and
CMS experiments use larger values for piso

T . In JETPHOX predictions, increasing the isolation threshold
should reflect in a larger fragmentation contribution in the total cross section without necessarily increas-
ing the total isolated photon cross section compared to smaller isolation criteria. However, the data to
theory ratios should be consistent between the experiments as it is observed in Fig. 9.

The ALICE measurement extends the pγ

T range to lower values than ATLAS, which has measured the
isolated photon cross section at mid-rapidity for pγ

T ≥ 15 GeV/c in the same collision system. All
experiments agree with pQCD predictions within theoretical and experimental uncertainties.

For a comparison of cross sections measured at different
√

s, it is more appropriate to use the variable xT
as defined in Eq. (1), which is also closely related to Bjorken x [55]. A compilation of all available data
on isolated photon cross section measurements in collider experiments has been performed in [56] and
all xT spectra were compatible with a single curve when scaled by (

√
s)n with n = 4.5. The ALICE mea-
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Fig. 9: (color online) Ratio between differential cross section measurements and theory predictions for
ATLAS [11], CMS [7] and ALICE. Theory predictions are obtained with JETPHOX and CTEQ 6.6 PDFs [54]
for ATLAS, and JETPHOX and CT14 PDFs [50] for CMS and ALICE. Only experimental uncertainties are shown
here. Error bars are statistical and boxes are the quadratic sum of statistical and systematic uncertainties. The
normalisation uncertainty of each experiment is presented as an overall box around unity.

surement is compared to those data including also latest LHC measurements and the result is presented
on Fig. 10. The ALICE measurement, as anticipated, allows us to extend the xT reach to lower values,
and is in agreement with the n = 4.5 scaling, suggesting that all data are sensitive to the same produc-
tion mechanisms. However, the value n = 4.5 deviates from the 1/(pT)

n=4 dependence expected for the
leading-twist partonic production mechanisms. This may be due to effects like the running coupling and
the evolution of PDFs, but could also indicate significant contributions from fragmentation photons and
higher twist diagrams [57].

6 Conclusions

The isolated photon differential cross section in pp collisions at
√

s = 7 TeV is measured by the ALICE
experiment at mid-rapidity in the transverse momentum range from 10 to 60 GeV/c. Results are com-
pared to ATLAS and CMS results and to pQCD calculations. The mutual agreement of the data sets with
theory supports the theoretical calculations and demonstrates the consistency of the different measure-
ments.

The current measurement extends the lower limit of pγ

T to a smaller value compared to previous mea-
surements by other experiments. This capability of ALICE will be useful for future studies of isolated
photon cross sections and correlations of isolated photons to jets or hadrons in high-statistics data sam-
ples, in particular also for studying medium-induced modifications of hard probes. The measurement
also opens up the possibility to access lower Bjorken-x. While in pp collisions this measurement, in spite
of its lower pT reach, may not provide strong constraints on the low-x PDFs, this should be much more
promising in nuclear collisions due to the larger uncertainties of nuclear PDFs.
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S. Kumar48 , S. Kundu84 , P. Kurashvili83 , A. Kurepin62 , A.B. Kurepin62 , S. Kushpil93 , J. Kvapil109 ,
M.J. Kweon60 , J.Y. Kwon60 , Y. Kwon147 , S.L. La Pointe39 , P. La Rocca28 , Y.S. Lai78 , R. Langoy129 ,
K. Lapidus34 ,146 , A. Lardeux21 , P. Larionov51 , E. Laudi34 , R. Lavicka37 , T. Lazareva112 , R. Lea25 ,
L. Leardini102 , S. Lee147 , F. Lehas88 , S. Lehner113 , J. Lehrbach39 , R.C. Lemmon92 , I. León Monzón120 ,
E.D. Lesser20 , M. Lettrich34 , P. Lévai145 , X. Li12 , X.L. Li6 , J. Lien129 , R. Lietava109 , B. Lim18 , S. Lindal21 ,
V. Lindenstruth39 , S.W. Lindsay127 , C. Lippmann105 , M.A. Lisa95 , V. Litichevskyi43 , A. Liu78 , S. Liu95 ,
W.J. Llope143 , D.F. Lodato63 , I.M. Lofnes22 , V. Loginov91 , C. Loizides94 , P. Loncar35 , X. Lopez134 , E. López
Torres8 , P. Luettig68 , J.R. Luhder144 , M. Lunardon29 , G. Luparello59 , M. Lupi73 , A. Maevskaya62 ,
M. Mager34 , S.M. Mahmood21 , T. Mahmoud42 , A. Maire136 , R.D. Majka146 , M. Malaev96 , Q.W. Malik21 ,
L. Malinina74 ,iii, D. Mal’Kevich90 , P. Malzacher105 , A. Mamonov107 , G. Mandaglio55 , V. Manko86 ,
F. Manso134 , V. Manzari52 , Y. Mao6 , M. Marchisone135 , J. Mareš66 , G.V. Margagliotti25 , A. Margotti53 ,
J. Margutti63 , A. Marín105 , C. Markert119 , M. Marquard68 , N.A. Martin102 , P. Martinengo34 , J.L. Martinez125 ,
M.I. Martínez44 , G. Martínez García114 , M. Martinez Pedreira34 , S. Masciocchi105 , M. Masera26 , A. Masoni54 ,
L. Massacrier61 , E. Masson114 , A. Mastroserio138 , A.M. Mathis103 ,117 , O. Matonoha79 , P.F.T. Matuoka121 ,
A. Matyja118 , C. Mayer118 , M. Mazzilli33 , M.A. Mazzoni57 , A.F. Mechler68 , F. Meddi23 , Y. Melikyan91 ,
A. Menchaca-Rocha71 , E. Meninno30 , M. Meres14 , S. Mhlanga124 , Y. Miake133 , L. Micheletti26 ,
M.M. Mieskolainen43 , D.L. Mihaylov103 , K. Mikhaylov74 ,90 , A. Mischke63 ,i, A.N. Mishra69 ,
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