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Abstract

This Letter presents the first direct investigation of the p—X° interaction, using the femtoscopy tech-
nique in high-multiplicity pp collisions at /s = 13 TeV measured by the ALICE detector. The
¥0 is reconstructed via the decay channel to A7, and the subsequent decay of A to p~. The pho-
ton is detected via the conversion in material to e™e™ pairs exploiting the unique capability of the
ALICE detector to measure electrons at low transverse momenta. The measured p-X° correlation
indicates a shallow strong interaction. The comparison of the data to several theoretical predictions
obtained employing the Correlation Analysis Tool using the Schrodinger Equation (CATS) and the
Lednicky—Lyuboshits approach shows a reasonable agreement. The presented femtoscopic data can-
not yet discriminate between different models, which is also the case for the available scattering and
hypernuclei data. Nevertheless, the p—X° correlation function is found to be sensitive to the strong
interaction, and driven by the interplay of the different spin and isospin channels. This pioneering
study demonstrates the feasibility of a femtoscopic measurement in the p-X° channel and with the
expected larger data samples in LHC Run 3 and Run 4, the p—X interaction will be constrained with
high precision.
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1 Introduction

A quantitative understanding of the hyperon—nucleon interaction in the S = —1 sector is fundamental to
pin down the role of strangeness within low energy quantum chromodynamics and to study the prop-
erties of baryonic matter at finite densities. The possible presence of the isoscalar A and the isovector
(z+, 0 Y7 states in the inner core of neutron stars (NS) is currently under debate due to the limited
knowledge of the interaction of such hyperons with nuclear matter. The inclusion of hyperons in the
description of the nuclear matter inside NS typically contains only A states, and the on-average attractive
nucleon—A (N—A) interaction leads to rather soft Equations of State (EoS) for NS. These are then unable
to provide stability for stars with masses comparable to 2M, [, 2. The X hyperons are never included
in the EoS for NS because of the limited knowledge about the N—X strong interaction.

Indeed, while the attractive N—A interaction is reasonably well constrained from the available scattering
data and light hypernuclei [3H5], the nature of the N—X interaction lacks conclusive and firm experimental
measurements. One of the major complications for experimental studies is the fact that the decay of all
¥ states involves neutral decay products [6]], thus requiring high-resolution calorimeters.

The main source of experimental constraints on the N-X system comes from scattering measurements [[7-
9] and hypernuclei production data [10-13]], although the latter are mainly dominated by large statistical
uncertainties and large kaon decay background. Latest hypernuclear results obtained from different
nuclear targets point towards an attractive interaction in the isospin / = 1/2 channel of the N-X sys-
tem [10, [11]], and repulsion in the I = 3/2 channel [12, [13]. Hypernuclear measurements, however, are
performed at nuclear saturation density and hence in the presence of more than one nucleon, resulting in
a substantial model dependence in the interpretation of the experimental data [14].

Additionally, the hyperon—-nucleon dynamics are strongly affected by the conversion process N—A <+
N-X, occurring in the / = 1/2 channel due to the close kinematic threshold between the two systems
(about 80 MeV) [15H19]]. This coupling is expected to provide an additional attractive contribution in the
two-body N—A interaction in vacuum [[18| |19]]. Indeed, depending on the strength of the N-A <+ N-X
coupling at the two-body level, the corresponding in-medium hyperon properties are very different. For
a strong coupling, this leads to a repulsive single-particle potential Uy at large densities [18}, [19]. For
the X hyperon, the in-medium properties are mostly determined by the overall repulsion in the I = 3/2
component [18, [19]]. A repulsive component in the hyperon—nucleon interactions could shift the onset
for hyperon production to larger densities, above 2—3 times the normal saturation density, thus leading
to stiffer EoS which are able to describe the experimental constraint of NS.

To this end, different theoretical approaches including chiral effective field theories (YEFT) [17)] and
meson-exchange models with hadronic [20] and quark [21] degrees of freedom provide a similar de-
scription of the available data by assuming a strong repulsion in the spin singlet S = 0, I = 1/2 and spin
triplet S = 1, I = 3/2 and an overall attraction in the remaining channels. Recent ab initio lattice calcula-
tions at quark physical masses show a similar dependence on spin-isospin configurations for the central
potential term [22]]. The strength of the coupled-channel N—A <> N-X is strongly model dependent as
well. Calculations based on chiral models [17} /18] and meson-exchange models [15} 23] predict a rather
strong or much weaker coupling, respectively. A self-consistent description of this coupled-channel
demands for a detailed knowledge of the strong interaction in the N-X system.

Recently, the study of two-particle correlations in momentum space measured in ultra-relativistic proton—
proton (pp) and proton—nucleus collisions has proven to provide direct access to the interaction between
particle pairs in vacuum [24H26]. The small size of the colliding systems of about 1fm results in a
pronounced correlation signal from strong final state interactions, which permits the latter to be precisely
constrained. These measurements provided additional data in the hyperon sector with an unprecedented
precision in the low momentum regime. In this Letter, these studies are extended to the X sector. The
electromagnetic decay of the X is exploited for the first direct measurement of the p—X? interaction in pp
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collisions at /s = 13 TeV. This study paves the way for extending these investigations to the charged £
states, in particular in light of the larger data samples expected from the LHC Runs 3 and 4.

2 Data analysis

This Letter presents results obtained from a data sample of pp collisions at /s = 13 TeV recorded with
the ALICE detector [27, 28] during the LHC Run 2 (2015-2018). The sample was collected employing a
high-multiplicity trigger with the VO detectors, which consist of two small-angle plastic scintillator arrays
located on either side of the collision vertex at pseudorapidities 2.8 <1 < 5.1 and —3.7 <n < —1.7 [29].
The high-multiplicity trigger is defined by coincident hits in both VO detectors synchronous with the
LHC bunch crossing and by additionally requiring the sum of the measured signal amplitudes in the
VO to exceed a multiple of the average value in minimum bias collisions. This corresponds, at the
analysis level, to the highest 0.072% multiplicity interval compared to all inelastic collisions (INEL >
0). This data set presents a suitable environment to study correlations due to the enhanced production
of strange particles in such collisions [30]. Additionally, the larger charged-particle multiplicity density
with respect to the minimum bias sample significantly increases the probability to detect particle pairs.
The VO is also employed to suppress background events, such as the interaction of beam particles with
mechanical structures of the beam line, or beam-gas interactions. In-bunch pile-up events with more than
one collision per bunch crossing are rejected by evaluating the presence of additional event vertices [28]].

Charged-particle tracking within the ALICE central barrel is conducted with the Inner Tracking System
(ITS) [27] and the Time Projection Chamber (TPC) [31]. The detectors are immersed in a homogeneous
0.5T solenoidal magnetic field along the beam direction. The ITS consists of six cylindrical layers of
high position-resolution silicon detectors placed radially between 3.9 and 43 cm around the beam pipe.
The two innermost layers are Silicon Pixel Detectors (SPD) and cover the pseudorapidity range || < 2.0
and || < 1.4, respectively. The two intermediate layers are composed of Silicon Drift Detectors, and the
two outermost layers are made of double-sided Silicon micro-Strip Detectors (SSD), covering || < 0.9
and |n| < 1.0, respectively. The TPC consists of a 5m long, cylindrical gaseous detector with full
azimuthal coverage in the pseudorapidity range |n| < 0.9. Particle identification (PID) is conducted
via the measurement of the specific ionization energy loss (dE/dx) with up to 159 reconstructed space
points along the particle trajectory. The Time-Of-Flight (TOF) [32] detector system is located at a radial
distance of 3.7 m from the nominal interaction point and consists of Multigap Resistive Plate Chambers
covering the full azimuthal angle in || < 0.9. PID is accomplished by measuring the particle’s velocity
B via the time of flight of the particles in conjunction with their trajectory. The event collision time is
provided as a combination of the measurements in the TOF and the TO detector, two Cherenkov counter
arrays placed at forward rapidity [33]].

The primary event vertex (PV) is reconstructed with the combined track information of the ITS and the
TPC, and independently with SPD tracklets. When both vertex reconstruction methods are available, the
difference of the corresponding z coordinates is required to be smaller than 5 mm. A uniform detector
coverage is assured by restricting the maximal deviation between the z coordinate of the reconstructed
PV and the nominal interaction point to ==10cm. A total of 1.0 x 10° high-multiplicity events are used
for the analysis after event selection.

The proton candidates are reconstructed following the analysis methods used for minimum bias pp col-
lisions at /s = 7 TeV [24] and 13 TeV [25] 26], and are selected from the charged-particle tracks
reconstructed with the TPC and the ITS in the kinematic range 0.5 < pt < 4.05GeV/c and |n| < 0.8.
The TPC and TOF PID capabilities are employed to select proton candidates by the deviation ns between
the signal hypothesis for a proton and the experimental measurement, normalized by the detector reso-
lution . For candidates with p < 0.75 GeV/c, PID is performed with the TPC only, requiring |ns| < 3.
For larger momenta, the PID information of TPC and TOF are combined. Secondary particles stemming
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from weak decays or the interaction of primary particles with the detector material contaminate the sig-
nal. The corresponding fraction of primary and secondary protons are extracted using Monte Carlo (MC)
template fits to the measured distribution of the Distance of Closest Approach (DCA) of the track to the
primary vertex [24]. The MC templates are generated using PYTHIA 8.2 [34]] and filtered through the
ALICE detector [35] and reconstruction algorithm [27]. The resulting purity of protons is found to be
99%, with a primary fraction of 82%.

The X is reconstructed via the decay channel X° — Ay with a branching ratio of almost 100% [6].
The decay is characterized by a short life time rendering the decay products indistinguishable from
primary particles produced in the initial collision. Due to the small mass difference between the A and
the X0 of about 77 MeV /c?, the ¥ has typically energies of only few hundreds of MeV. Therefore, it is
reconstructed relying on conversions to e e~ pairs in the detector material of the central barrel exploiting
the unique capability of the ALICE detector to measure electrons down to low transverse momenta. For
transverse radii R < 180 cm and |17| < 0.9 the material budget corresponds to (11.4+0.5) % of a radiation
length Xp, and accordingly to a conversion probability of (8.6 +0.4) % [36]]. Details of the photon
conversion analysis and the corresponding selection criteria are described in [36,37]]. The reconstruction
relies on the identification of secondary vertices by forming so-called V® decay candidates from two
oppositely-charged tracks using a procedure described in detail in [38]. The products of the potential
Y conversion are reconstructed with the TPC and the ITS in the kinematic range pt > 0.05 GeV/c and
In| < 0.9. The candidates for the eTe™ pair are identified by a broad PID selection in the TPC —6 < ng <
7. The resulting ¥ candidate is obtained as the combination of the daughter tracks. Only candidates with
pr > 0.02 GeV/c and within || < 0.9 are accepted. Combinatorial background from primary e e~ pairs,
or Dalitz decays of the 7° and 1) mesons is removed by requiring that the radial distance of the conversion
point, with respect to the detector centre, ranges from 5 cm to 180 cm. Residual contaminations from K(S)
and A are removed by a selection in the Armenteros-Podolandski space [37,/39]. Random combinations
of electrons and positrons are further suppressed by a two-dimensional selection on the angle between
the plane defined by the eTe™ pair, and the magnetic field [40] in combination with the reduced y2
of a refit of the reconstructed V° assuming that the particle originates from the primary vertex and has
Myo =0 [37]. The Cosine of the Pointing Angle (CPA) between the Yy momentum and the vector pointing
from the PV to the decay vertex is required to be CPA > 0.999. In addition to the tight CPA selection,
the contribution of particles stemming from out-of-bunch pile-up is suppressed by restricting the DCA
of the photon to be along the beam direction (DCA; < 0.5 cm). After application of the selection criteria,
about 946 x 10° y candidates with a purity of about 98.2% are available for further processing.

The A particle candidates are reconstructed via the subsequent decay A — pw~ with a branching ratio
of 63.9% [6]], following the procedures described in [24, 25]]. For the A the charge conjugate decay is
exploited, and the same selection criteria are applied. The decay products are reconstructed with the
TPC and the ITS within |n| < 0.9. The daughter candidates are identified by a broad PID selection in
the TPC |ng| < 5. The resulting A candidate is obtained as the combination of the daughter tracks. The
contribution of fake candidates is reduced by requesting a minimum pt > 0.3 GeV/c. The coarse PID
selection of the daughter tracks introduces a residual Kg contamination in the sample of the A candidates.
This contamination is removed by a 10 rejection on the invariant mass assuming a decay into 777,
where ¢ corresponds to the width of a Gaussian fitted to the Kg signal. Topological selections further
enhance the purity of the A sample. The radial distance of the decay vertex with respect to the detector
centre ranges from 0.2 cm to 100 cm and CPA > 0.999. In addition to the tight CPA selection, particles
stemming from out-of-bunch pile-up are rejected using the timing information of the SPD and SSD, and
the TOF detector. One of the two daughter tracks is required to have a hit in one of these detectors.
After application of the selection criteria, about 188 x 10° (178 x 10%) A (A) candidates with a purity of
94.6% (95.3%) are available for further processing. The ¥0 (£9) candidates are obtained by combining
all A (A) and y candidates from the same event, where the nominal particle masses [6] are assumed
for the daughters. In particular the timing selection on the daughter tracks of the A assures that the X°
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Figure 1: Invariant mass distribution of the Ay and Ay candidates, in two pr intervals of 1.5 —2.0 GeV/c and
6.5 —7.0GeV/c. The signal is described by a single Gaussian, and the background by a polynomial of third order.
The number of X° candidates is evaluated within Myo(pr) -3 MeV/c?. Only statistical uncertainties are shown.

candidates stem from the right bunch crossing. In case a daughter track is used to construct two 7, A,
and A candidates, or a combination thereof, the one with the smaller CPA is removed from the sample.
To suppress combinatorial background, only X° candidates with pt > 1 GeV/c are used.

The resulting invariant mass spectrum is shown in Fig. [I] for two pr intervals. In order to obtain the
raw yield, the signal is fitted with a single Gaussian, and the background with a third-order polynomial.
Due to the deteriorating momentum resolution for low pr tracks, the mean value of the Gaussian My
exhibits a slight pr dependence, which is well reproduced in MC simulations. The £° (£°) candidates for
femtoscopy are selected as Myo(pr) &3 MeV/c?. The width of the interval is chosen as a compromise
between the candidate counts and purity. In total, about 115 x 103 (110 x 10%) 20 (X9) candidates are
found at a purity of about 34.6%. Due to the enhanced combinatorial background at low pr, the purity
increases from about 20% at the lower pt threshold to its saturation value of about 60% above 5 GeV/c.
Only one candidate per event is used, and is randomly selected in the very rare case in which more
than one is available. In less than one per mille of the cases when the track of a primary proton is also
employed as the daughter track of the y or the A, the corresponding X candidate is rejected. Since only
strongly decaying resonances feed to the X° [6]], all candidates are considered to be primary particles.

3 Analysis of the correlation function

The experimental definition of the two-particle correlation function, for both p—p and p—X° pairs, is given
by [41],

Nsame (k*) k*—o0
Nmixed(k*)

with the same (Ngazme) and mixed (Nmixeqd) €vent distributions of k* and a normalization constant 4.
The relative momentum of the pair k* is defined as k* = % X |p} — p3|, where p} and p} are the mo-
menta of the two particles in the pair rest frame, denoted by the *. The normalization is evaluated in
k* € [240,340] MeV/c for p—p and in k* € [250,400] MeV/c for p-X° pairs, where effects of final state
interactions are absent and hence the correlation function approaches unity.

C(k*) =N x

1, (D

The trajectories of the p—p and p—p pairs at low k* are almost collinear, and might therefore be affected by
detector effects like track splitting and merging [42]]. Accordingly, the reconstruction efficiency for pairs
in the same and mixed event might differ. To this end, a close-pair rejection criterion is employed re-
moving p—p and p—p pairs fulfilling /AN? + A@*? < 0.01, where the azimuthal coordinate ¢* considers
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the track curvature in the magnetic field.

A total number of 1.7 x 106 (1.3 x 10°) p—p (p—p) and 587 (539) p-x° (p—20) pairs contribute to the
respective correlation function in the region k* < 200 MeV/c. To enhance the statistical significance of
the results, the correlation functions of baryon-baryon and antibaryon—antibaryon pairs are combined.
Therefore, in the following p-X° denotes the combination p-X° @ p-X9, and correspondingly for p—p.

The systematic uncertainties of the experimental correlation function are evaluated by simultaneously
varying all proton, A, ¥, and X° single-particle selection criteria by up to 20% around the nominal values.
Only variations that modify the pair yield by less than 10% (20%) for p-X° (p—p) with respect to the
default choice are considered, and the X° purity by less than 5%. The impact of statistical fluctuations is
reduced by evaluating the systematic uncertainties in intervals of 100 MeV /c (20MeV /c) in k* for p-X°
(p—p)- The resulting systematic uncertainties are parametrized by an exponential function and interpo-
lated to obtain the final point-by-point uncertainties. At the respectively lowest k*, the total systematic
uncertainties are of the order of 2.5% for both p—p and p-X°.

Using the femtoscopy formalism [41]], the correlation function can be related to the source function S(r*)
and the two-particle wave function ¥ (r*,k*) incorporating the interaction,

Ck) = [@r s | W0 ) P51, @

where r* refers to the relative distance between the two particles. As demonstrated in [24-26, 43] the
correlation function becomes particularly sensitive to the strong interaction for small emission sources
formed in pp and p—Pb collisions. For this study, a spherically symmetric emitting source is assumed,
with a Gaussian shaped core density profile parametrized by a radius ry, which is obtained from a fit to the
p—p correlation function, similarly as in [25,126]]. Following the premise of a common emission source the
such extracted radius is then used as an input to fit the p-X° correlation function. Possible modifications
of the source profile due to the influence of strongly decaying resonances [44] are considered in the
evaluation of the systematic uncertainties associated with the fitting procedure.

The genuine p—p correlation function is modeled using the Correlation Analysis Tool using the Schrodinger
equation (CATS) [43]], which allows one to use either a local potential V(r) or directly the two-particle
wave function, and additionally any source distribution as input to compute the correlation function. For
the p—p correlation function the strong Argonne vig potential [45] in the S, P, and D waves is used as an
input to CATS.

The theoretical correlation function for p—X° is modeled employing either CATS, or the Lednicky—Lyuboshits
approach [46]]. The latter relies on the effective-range expansion using scattering parameters as input to
evaluate the correlation function. The coupling of the p—X° system to p—A and n—X*is explicitly included

by means of a two-channel approach [47]. The genuine p-X correlation function is then obtained by
summing the correlation functions for four available spin and isospin states taking into account their
statistical weights

1 3
Cpxo = 3 Cn—x(I=1/2,85=0) —|—§ Cn—x(I=1/2,5=1) )
1
+§ Cn—x(I1=3/2,5=0) —l—% Cn—s(I=3/2,5=1).

Details of the employed models are described in the next Section.

The experimental data are compared with the modeled correlation function considering the finite ex-
perimental momentum resolution [24]]. In addition to the genuine correlation function of interest, the
measured correlation function also contains residual correlations due to protons coming from weak de-
cays of other particles, such as A and Z* (feed-down), and misidentifications. These effects are included
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Table 1: Weight parameters for the individual components of the measured correlation function. Contributions
from feed-down contain the mother particle listed as a sub-index. Non-flat contributions are listed individually.

p-p p-z’
Pair ‘ A parameter (%) | Pair ‘ A parameter (%)
P—p 67.0 p-X? 22.0
pA—P 20.3 p—(AY) 73.1
Feed-down (flat) 11.6 Feed-down (flat) 4.7
Misidentification (flat) 1.1 Misidentification (flat) 0.2

by modeling the total correlation function as a decomposition,

Cmodel(k*) = 1+Zkt X (Ct(k*) - 1)7 (4)

where the sum runs over all contributions. Their relative contribution is given by the A parameters com-
puted in a data-driven way from single-particle properties such as the purity and feed-down fractions [24],
and are summarized in Table 11

Apart from the genuine p—p correlation function, a significant contribution comes from the decay of
A particles feeding to the proton pair. The residual p—A correlation function is modeled using either
the Usmani potential [48]], chiral effective field theory calculations at Leading (LO) [49], or Next-To-
Leading order (NLO) [17]. The resulting correlation function is transformed into the momentum basis
of the p—p pair by applying the corresponding decay matrices [SO]. All other contributions are assumed
to be C(k*) ~ 1. Due to the challenging reconstruction of the X°, the experimental purity of the X°
sample is rather low, and additionally exhibits a strong dependence on the transverse momentum pt as
demonstrated in Fig. |1} The average pr of the X° candidates used to construct the correlation function
at k* < 200 MeV/c, however, is lower than the (pr) of all inclusive X° candidates. Considering this
effect, the X purity employed to compute the A parameters is found to be 27.4%. Accordingly, the main
contribution to the p—X” correlation function stems from the combinatorial background appearing in the
invariant mass spectrum below the X peak, which in the following is referred to as (Ay). The shape
of the p—(Ay) correlation function is extracted from the sidebands of the invariant mass selection, and
is found to be independent of the choice of mass window. The non-flat behavior is mainly determined
by residual p—A correlations which are smeared by an uncorrelated Y, and defines the baseline of the
measurement of the p-X correlation function. The shape is parametrized with a Gaussian distribution
and weighted by its A parameter. All other contributions stemming from misidentified protons or from
feed-down are assumed to be C(k*) ~ 1.

The total correlation function including all corrections is then multiplied by a polynomial baseline
Cnonffemto (k* ) s
C(k*) - Cnon—femto (k*) X Cmodel(k*); (5)

to account for the normalization and non-femtoscopic background effects stemming e.g. from momentum
and energy conservation [24]. The p—p correlation function is fitted in the range k* € [0,375] MeV/c
to determine simultaneously the femtoscopic radius rg and the parameters of the baseline. To assess the
systematic uncertainties on ry related to the fitting procedure the upper limit of the fit region is varied
within k* € [350,400] MeV /c. The baseline is modeled as a polynomial of zeroth, first, and second
order. Additionally, as discussed above, all three models for the p—A residual correlation function are
employed, and the input to the A parameters is modified by +20% while maintaining a constant sum of
the primary and secondary fractions. The p—p correlation function is shown in Fig. [2] where the width of
the bands corresponds to one standard deviation of the total systematic uncertainty of the fit. The inset
shows a zoom of the p—p correlation function at intermediate k*, where the effect of repulsion becomes

apparent. The femtoscopic fit yields a radius of ro = 1.249 +-0.008 (stat) *0-0] (syst) fm.
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Figure 2: Measured correlation function of p—p & p—p. Statistical (bars) and systematic uncertainties (boxes) are
shown separately. The width of the band corresponds to one standard deviation of the systematic uncertainty of
the fit.

Following the premise of a common Gaussian source the value of ry is then used to fit the p-X° correlation
function. The parameters of the linear baseline are obtained from a fit to the p—(AYy) correlation function
in k* € [250,600] MeV /c, where it is consistent and kinematically comparable with p-X°, however
features significantly smaller uncertainties. The experimental p—X° correlation function is then fitted
in the range k* < 550 MeV/c, and varied during the fitting procedure within k* € [500,600] MeV/c to
determine the systematic uncertainty. Additionally, the input to the A parameters is modified by +20%
while maintaining a constant sum of the primary and secondary fractions. The parameters of the baseline
are varied within 10 of their uncertainties considering their correlation, including the case of a constant
baseline. Finally, the femtoscopic radius is varied according to its uncertainties. Possible variations of
the p-X” source due to contributions of strong decays are incorporated by decreasing ry by 15%. All
correlation functions resulting from the above mentioned variations of the selection criteria are fitted
during the procedure, additionally considering variations of the mass window to extract the p—(Ay)
baseline. The width of the bands in Fig. [3| corresponds to one standard deviation of the total systematic
uncertainty of the fit. The correlated uncertainty due to the modeling of the p—(Ay) baseline correlation
function is shown separately at the bottom of the figure.

4 Results

The experimental p-X£° & p—X0 correlation function is shown in Fig. |3l The k* value of the data points
is chosen according to the (k* ) of the same event distribution Ngyme (k*) in the corresponding interval.
Therefore, due to the low number of counts in the first bin, the data point is shifted with respect to the bin
center. Since the uncertainties of the data are sizable, a direct determination of scattering parameters via
a femtoscopic fit is not feasible. Instead, the data are directly compared with the various models of the
interaction. These include, on the one hand, meson-exchange models, such as fss2 [21] and two versions
of soft-core Nijmegen models (ESC16 [20], NSC97f [51]), and on the other hand results of yEFT at
Next-to-Leading Order (NLO) [17]. The correlation function is modeled using the Lednicky—Lyuboshits
approach [46] considering the couplings of the p—X° system to p—A and n-X* [47] with scattering param-
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Figure 3: Measured correlation function of p-X° & ﬁ—ﬁ. Statistical (bars) and systematic uncertainties (boxes) are
shown separately. The gray band denotes the p—(AY) baseline. The data are compared with different theoretical
models. The corresponding correlation functions are computed using CATS [43] for yEFT [17], NSC97f [23]
and ESC16 [20], and using the Lednicky—Lyuboshits approach [46, 47] for fss2 [21]. The width of the bands
corresponds to one standard deviation of the systematic uncertainty of the fit. The correlated uncertainty due to the
modeling of the p—(AY) baseline is shown separately as the hatched area at the bottom of the figure.

eters extracted from the fss2 model. For the case of ESC16, NSC97f and yEFT, the wave function of the
p—X" system, including the couplings, is used as an input to CATS to compute the correlation function.
The degree of consistency of the data with the discussed models is expressed by the number of standard
deviations ng, computed in the range k* < 150 MeV/c from the p-value of the theoretical curves. The
range of ns shown in Table 2| is computed as one standard deviation of the corresponding distribution.
The data are within (0.2—0.8)o consistent with the p—( A7) baseline, indicating the presence of an overall
shallow strong potential in the p-X° channel. The main source of uncertainty of the modeling of the cor-
relation function is the parametrization of the p—(Ay) baseline due the sizeable statistical uncertainties
of the latter.

All employed models for the N-X interaction potential succeed in reproducing the scattering data in
the § = —1 sector [7]. Due to the available experimental constraints, the overall description of the
p—A interaction yields a consistent description. On the other hand, the corresponding p-X° correlation
functions differ significantly among each other. This demonstrates that femtoscopic measurements can
discriminate and constrain models, and therefore represent a unique probe to study the N-X interaction.
Both fss2 and yEFT exhibit an overall repulsion in N-X at intermediate k*, which mainly occurs in the
spin singlet S = 0, I = 1/2 and spin triplet S = 1, I = 3/2 components [17, 21]]. In the low momentum
region, below roughly 50 MeV/c, both models yield attraction, which is reflected in the profile of the
correlation function. The Nijmegen models, on the other hand, are characterized by a rather constant
attraction over the whole range of k*. In particular at low relative momenta, however, the behavior of
the two models deviates significantly. The shape of the correlation function of the most recent Nijmegen
model, ESC16, differs significantly from that of the other calculations. This is mainly due to the fact
that the occurrence of bound states in the strangeness sector (S = —1,—2,—3) is not allowed in the
model [20]. This leads to a repulsive core in all the N-X channels, which can well be observed in Fig. 3]
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Table 2: Degree of consistency of the different models with the experimental correlation function.

Model | p-(Ay) baseline | fss2 | yEFT | NSC97f | ESC16
ne (k* <150MeV/ic) | 02-0.8 | 0.2—0.9 | 0.3—1.0 | 0.2—0.6 | 0.1-0.5

as the non-monotonic behavior at small relative momenta. In contrast to all other discussed models,
NSC97f yields attraction in the spin triplet S = 1, I = 3/2 channel [51]]. Accordingly, the corresponding
correlation function demonstrates the strongest attraction at low momenta. The rather large differences
among the modeled p-X° correlation functions demonstrate that the shape of the latter is very sensitive
to details of the strong interaction, and driven by the interplay of the different spin and isospin channels.
This shows the strength of femtoscopic measurements, in particular in the N-X channel.

The underlying two-body N-X interaction obtained within these models, however, translates into sig-
nificantly different values for the in-medium single-particle potential Ux when included in many-body
calculations. Both the fss2 quark-model, along with ¥EFT, deliver similar results at nuclear saturation
density, leading to an overall repulsive Us of around 10—17MeV [177, [18, 21]]. This is in agreement
with the experimental absence of bound states in X hypernuclei [13]. On the contrary, both Nijmegen
models yield a slightly attractive ¥ single-particle potential, ranging from ~ —16 MeV for NSC97f to
~ —3MeV for ESC16. As already mentioned, however, the interpretation of hypernuclear measurements
introduces a significant model dependence. This concerns not only the extraction of the experimental re-
sults, relying for instance on the framework of the distorted-wave impulse approximation [[14], but also
the extrapolation of theoretical calculations to finite density via e.g. the G-matrix approach [52} 53]].

S Summary

This Letter presents the first direct investigation of the p—X interaction in high-multiplicity pp collisions
at /s = 13 TeV, hence proving the feasibility of femtoscopic studies in the N-X sector. The p—X° corre-
lation function is within (0.2—0.8)c consistent with the p—(AY) baseline, and therefore the measurement
indicates the presence of an overall shallow strong potential. The data are compared with state-of-the-art
descriptions of the interaction, including chiral effective field theory and meson-exchange models. Due
to the scarce experimental constraints in the N-X sector, the modeled correlation functions differ signif-
icantly among each other. The shape of the modeled correlation functions is found to be very sensitive
to details of the strong interaction, and driven by the interplay of the different spin and isospin channels.
This proves that femtoscopic measurements in high-energy pp collisions provide a direct study of the
genuine two-body N-X strong interaction. The presented femtoscopic data cannot discriminate between
different models, which is also the case for the available scattering and hypernuclei data. Further femto-
scopic studies enabled by the about two orders of magnitude larger data samples foreseen to be collected
in the LHC Runs 3 and 4 [54] will therefore shed light on the N-X sector and provide constraints on the
models describing the interaction.
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